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ABSTRACT
In deconvolution in Rd , d ≥ 1, with mixing density p(∈ P) and ker-
nel h, the mixture density fp(∈ Fp) is estimated with MDE fp̂n , having
upper L1-error rate, an, in probability or in risk; p̂n ∈ P . In one appli-
cation, P consists of L1-separable densities in R with differences
changing sign at most J times and h(x − y) Totally Positive. When h
is known and p is q̃-smooth, vanishing outside a compact in Rd , plug-
in upper bounds are provided for the L2-error rate of p̂n and its [s]-th
mixed partial derivative p̂(s)n , via ‖fp̂n − fp‖1, with rates (log a−1

n )−N1

and aN2
n , respectively, for h super-smooth and smooth; q̃ ∈ R+, [s] ≤

q̃, d ≥ 1, N1 > 0, N2 > 0. For an ∼ (log n)ζ · n−δ , the former rate is
optimal for any δ > 0 and the latter misses the optimal by the factor
(log n)ξ when δ = .5; ζ > 0, ξ > 0.N1 andN2 appear in optimal rates
and lower error and risk bounds in the deconvolution literature.

ARTICLE HISTORY
Received 16 December 2017
Accepted 11 June 2019

KEYWORDS
Deconvolution; minimum
distance estimation; plug-in
upper error/risk bounds;
totally positive kernels;
Vapnik–Chervonenkis classes

AMS SUBJECT
CLASSIFICATIONS
62G07; 62G20

1. Introduction

In the deconvolution problem, random vectors Y and X in Rd, d ≥ 1, have densities,
respectively, p and fp and satisfy the equation

X = Y + ε; (1)

Y is independent of the error ε that has density h,

fp(x) = h ∗ p(x) =
∫
Rd

h(x − y)p(y)dy, p ∈ P , (2)

FP = FP ,d = {fp, p ∈ P}; (3)

P is any class of densities of interest, ‘∗′ denotes convolution. Independent copies
X1, . . . ,Xn ofX are observed and the goal is to estimate p, its derivative(s) and calculate the
estimation errors. Usually, h is assumed known, with non-vanishing Fourrier transform h̃.
The classic approach is to estimate p via a kernel estimate of fp.
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Until recently, research has been devoted mainly to the one-dimensional deconvolu-
tion problem. However, X-observations in Rd can be used to estimate fp, e.g. with a kernel
estimate f̂n; d > 1. A Minimum Distance Estimate (MDE) fp̂n with p̂n ∈ P can then be
obtained, either via f̂n or directly as described in Section 3, with calculation of upper L1-
error rate for ||fp̂n − fp||1 when h is either known or unknown. In applications, P consists
either of products of d q̃-smooth densities defined on a compact in R, or L1-separable den-
sities inRwith their differences changing sign atmost J times and h(x − y)Totally Positive;
J is either known or unknown. The problem that has not been tackled so far in the literature
is to derive ‘plug-in’ upper error and risk bounds for p̂n and the s-th order mixed partial
derivative, p̂(s)n , from the rate of convergence of fp̂n to fp.

This problem is addressed herein when P is a sup-norm compact family of q̃-smooth
densities vanishing outside a compactY inRd (see Definition 2.3); d ≥ 1. Upper bounds in
probability for the L2-errors of p̂n and of p̂

(s)
n and for their risks are provided that depend on

the L1-error ||fp̂n − fp||1, non-vanishing h̃ and the smoothing parameter bn of a trapezoidal
kernel K [1] that is used as approximation tool.

If fp̂n is L1-optimal with respect to some criterion, e.g. minimax, the difference of
p̂n’s L2-error rate from the optimal is not expected to be substantial. For example, if h
is super-smooth (see (28)) and fp̂n converges to fp in L1-distance with the typical rate
n−δ · (log n)ζ in probability or in risk, it follows from (32) that p̂n has upper L2-error
rate the optimal, (log n)−q̃/k, for any δ, ζ ; k determines the rate of the exponential decay
of h̃, δ > 0, ζ ∈ R. If h is smooth (see (29)), for fp̂n ’s typical rate and from (33), p̂n has

upper L2-error rate [(log n)2ζ /n2δ)]
q̃

2q̃+2
∑d

i=1 βi+d , which misses the optimal by the fac-
tor (log n)ξ when δ = .5; ξ > 0, β1, . . . ,βd are the exponents determining h̃’s algebraic
decay.

The exponents in the rates’ bounds coincide with those of the lower or optimal rates for
the isotropic Hölder and Sobolev classes and for the isotropic and bounded Nikolskii class
pointwise, for the mean integrated square error, and in Lu-distance and risk, 2 ≤ u ≤ ∞
[2–4]. The same holds in univariate deconvolution (see, e.g. [5–8], [9, Chapter 2], [10]).

Some readers may, as the referees did, acknowledge the generality of the assump-
tions concerning the noise density h but express concerns about the isotropy condition
imposed on p and the non-adaptivity of the obtained estimates. Rates can be obtained
under anisotropic Lipschitz, Sobolev and Nikolskii conditions by the interested reader fol-
lowing the same approach and appropriate Taylor expansions; it is expected that either the
least favourable anisotropic component or their average will determine the convergence
rate. Remarks 4.1 and 4.3 indicate how the rates are affected by anisotropic conditions.
In Minimum Distance Estimation the existence of unknown parameters is addressed
by enlarging the minimization grid, including additional grids from the corresponding
parameter spaces; see, e.g. Proposition 3.2. In the present context, the unknown param-
eters, i.e. the number qi of existing partial derivatives and the constants Li, γi for the
Lipschitz condition in each coordinate for the qi-th partial derivative, are not expected to
affect the convergence rate by more than the factor (ln n)α since their parameter spaces are
not as ‘rich’ as those of p, h, fp; 0 < α < 1, i = 1, . . . , d. When the modulus of continuity,
wqi of the ultimate partial derivative is element of a ‘richer’ space, the rate of convergence
may be affected by more than (ln n)α ; see, e.g. Proposition 3.2.
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In multidimensional deconvolution, estimates have been obtained also by [11,12]. For
the deconvolution in R, consistent estimates have been provided and, when p is q̃-smooth,
optimality of the error rates has been established for smooth and super-smooth h, point-
wise and in weighted Lu-distance, among others by [13–20] 1 ≤ u ≤ ∞. Devroye [14]
showed in particular that one can construct a consistent kernel estimate of p when the
set {t : h̃(t) = 0} has Lebesgue measure zero. More recent work includes, among others,
[21–24]. Johannes [25] estimated non-parametrically p when ε’s distribution in (1) is
estimated.

Hall andMeister [8] presented a new estimate for p using ridging, ‘not involving kernels
in any way’, used also when h̃ has periodic zeros. Meister [26] proposed also an estimate
for p using local polynomials when h̃ has periodic zeros. Under additional assumptions
on either p or h, the estimates in [8, see page 1542, lines −3, −2] and in [26, see the
Introduction] are optimal but the assumptions and the rates are different.

2. Notation, definitions and tools

All the functions used are defined in Rd and are measurable and integrable with real
values; d ≥ 1. The densities are defined with respect to Lebesgue measure. When the
domain of integration is Rd, it is omitted. For any function g, its Fourrier transform
is g̃. The vectors X, Y take values, respectively, in X , Y , which are both sets in Rd.
C, c, C1, C2 denote generic positive constants. For positive a, b, a ∼ bmeans C1b ≤ a ≤
C2b. Constants an, bn, βn, δn, θn decrease to zero as n increases.

Distances between densities are needed to evaluate the errors (p̂n − p) and (fp̂n − fp).

Definition 2.1 (Distances): For densities p1, p2 defined in Y(⊂ Rd) their Lu-distance is

||p1 − p2||u =
[∫

Y
|p1(w)− p2(w)|udw

]1/u
, 1 ≤ u < ∞.

The sup-norm (or L∞)- distance is

||p1 − p2||∞ = sup
w∈Y

|p1(w)− p2(w)|.

The Hellinger distance is

H(p1, p2) =
[∫

Y
(
√
p1(y)− √

p2(y))2dy
]1/2

.

A well-known inequality between the L1-distance and Hellinger distance is used:

||p1 − p2||1 ≤ 2H(p1, p2). (4)

Notation and definitions needed to define P in (2) follow.
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Notation: If x = (x1, . . . , xd) ∈ Rd, a ∈ R and s = (s1, . . . , sd) is a d-tuple of non-
negative integers,

xs = (xs11 , . . . , x
sd
d ), xs = x1s1 + . . .+ xdsd, ax = (ax1, . . . , axd), [s] = s1 + . . .+ sd;

for y ∈ Rd,

|x − y| = max{|xi − yi|, i = 1, . . . , d}.
For a real-valued function g defined in Rd let g(s)(x0) denote the [s]-th order mixed partial
derivative of g at x0, i.e.

g(s)(x0) = ∂ [s]g(x0)
∂xs11 . . . x

sd
d
.

Definition 2.2: The modulus of continuity w of g is a function from R+ with positive
values such that

w(δ) = sup{|g(x)− g(y)| : |x − y| ≤ δ}, δ > 0. (5)

If the rth order mixed partial derivative of g has modulus of continuity w, then

|g(t)(x)− g(t)(y)| ≤ w(|x − y|), [t] = r. (6)

Definition 2.3: LetP in (2) consist of densities defined on the same compact setY (⊂ Rd),
that have all s-mixed order partial derivatives uniformly bounded, 0 ≤ [s] ≤ q, with the
q-th mixed order derivative having the same and known modulus of continuity wq.

When

wq(δ) = L · δγ , L > 0, 0 < γ < 1, q̃ = q + γ , (7)

P is called q̃-smooth family of densities, ignoring L.

Kernels are introduced, used either to obtain fp̂n or upper bounds on ||p̂n − p||2. Let
K(x) be a symmetric function defined in Rd at least q times continuously differentiable
with bounded Fourrier transform K̃ having compact support [−M,M]d, M > 0, such that
for s ∈ (R+)d,∫

K(x)dx = 1,
∫

xsK(x)dx = 0, [s] = 1, . . . , q,
∫
(|x|q + |x|q+1)K(x)dx < ∞. (8)

KernelK can be obtained by taking d-fold products of Devroye’s trapezoidal kernel [1] and
making smooth enough the linear leg of the trapezoid [27]. For any positive number bn,
let

Kn(x) = b−d
n K(xb−1

n ), (9)

with bn decreasing to 0 as n increases. If X1,X2, . . . ,Xn are independent, identically
distributed (i.i.d.) vectors in Rd with density f, the kernel estimate of f using K is

f̂n(x) = 1
n

n∑
j=1

Kn(x − Xj). (10)
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Rates of convergence are obtained herein when h(x − y) is Totally Positive. Thus, the
notion of Total Positivity is introduced from [28], as well as other results needed.

Definition 2.4: A real function Q(x, y) of two variables ranging over linearly ordered sets
X and Y , respectively, is said to be Totally Positive of order r (abbreviated TPr) if for all

x1 < x2,< . . . < xm, y1 < y2 < . . . < ym, xi ∈ X , yi ∈ Y , 1 ≤ m ≤ r, (11)

the determinant
∣∣∣∣∣∣∣∣
Q(x1, y1) Q(x1, y2) . . . Q(x1, ym)
Q(x2, y1) Q(x2, y2) . . . Q(x2, ym)
. . .

Q(xm, y1) Q(xm, y2) . . . Q(xm, ym)

∣∣∣∣∣∣∣∣
≥ 0. (12)

Most often X and Y are either intervals of the real line or countable subsets of discrete
values along the real line. When r is omitted in TPr, total positivity holds for any value of r.
Many density functionsQ(x, y) are totally positive (TP) with respect to a σ -finite measure,
with the variable y being a real parameter. Examples include the exponential family, the
normal and the non-central t-density [28, pages 19 and 20]. A potential TP densityQ(x, y)
is h(x − y) used in h ∗ p, in (2), e.g. when h is the standard normal density.

Proposition 2.1 ([29, p. 34, 1968, Theorem3.1 (a), p. 21]): LetQ(x, y) be TPr , letμ denote
a σ -finite measure such that

∫
Y Q(x, y)dμ(y) exists for every x ∈ X and μ(U) > 0 for each

open set U for which U ∩ Y is not empty. Suppose p(y) is bounded, measurable and changes
sign J ≤ r − 1 times. Let

fp(x) =
∫

Q(x, y)p(y)dμ(y),

be well defined such that the integral converges absolutely, then fp(x) changes sign at most J
times.

Remark 2.1: When h(x − y) is totally positive, aMDE fp̂n is obtained and its L1-upper-rate
of convergence to fp is calculated for densitiesPJ in R such that for all p1, p2 ∈ PJ , p1 − p2
changes sign at most J times. The Minimum Distance criterion is used over a Vap-
nik–Chervonenkis class of sets (defined below) obtained via PJ . Class PJ is less general
than a class of densities P̃ introduced by [30] when studying distinguishability of sets of
distributions. P̃ is used in [31] to obtain MDE of a density and its L1-error rate in prob-
ability which, for normal densities with known variance, provides the n−.5 rate for the
estimate of the mean. This rate is not achievable with nonparametric methods based on
parameter space discretization and the use of its metric entropy, due to a multiplicative
factor (log n)α ,α > 0, appearing because of the exponential bound used to evaluate the
discrepancy of the empirical distribution from the population distribution/probability; see
the convergence rates in Remark 4.5.
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Definition 2.5 ([32]): Given a class C of subsets of a set V and a finite set U that is subset
of V, let�C(U) be the number of different sets A ∩ U for A ∈ C. Let

mC(n) = max{�C(U) : U has n elements}, n = 1, 2, . . . ,

v(C) =
{
inf{n : mC(n) < 2n}
∞, ifmC(n) = 2n for all n.

The class C will be called Vapnik–Chervonenkis (VC) class of exponent v(C) if v(C) < ∞.

3. Estimates fp̂n with p̂n ∈ P and convergence rates

Let X1, . . . ,Xn be a sample of d-dimensional vectors from unknown density g ∈ G, d ≥
1;G is a known family of densities, ρ is a distance for densities.

Definition 3.1: Let Sn be an estimate of g(∈ G).
a) Sn is uniformly consistent estimate for g in probability, with upper rate of convergence

δn, if for every ε > 0 there is C(ε)(> 1 w.l.o.g.) such that

sup
g∈G

Pg[ρ(Sn, g) > C(ε)δn] ≤ ε, ∀n ≥ 1; (13)

(13) is briefly denoted ‘Sn has upper ρ-error rate, δn, in probability, ρ(Sn, g) ≤ Cδn’.
b) The uniform upper risk rate of Sn is δn when there is constant CU(> 0) such that

sup
g∈G

Egρ(Sn, g) ≤ CUδn, ∀n ≥ 1; (14)

(14) is briefly denoted ‘Sn has upper ρ-risk rate, δn, Egρ(Sn, g) ≤ Cδn’.

Pg and Eg in (13), (14) denote, respectively, probability and expected value under g
which is omitted in the sequel. G is determined from experts in the problem studied,
in order to include the unknown density g; the rate of convergence δn in Definition 3.1
depends on G.

For any estimateTn of g inG withTn /∈ G, aMinimumDistance Estimate (MDE) ĝn ∈ G
is obtained with the same upper convergence rate as Tn.

Lemma 3.1: Let X1, . . . ,Xn be a sample of d-dimensional vectors from unknown density g,
element of a known family of densities G, ρ is a distance; d ≥ 1. Let Tn be an estimate of
g, Tn /∈ G, such that the upper ρ-error rate of Tn is θn, either in probability or in risk.

Define MDE ĝn ∈ G :

ρ(Tn, ĝn) ≤ inf {ρ(Tn, g∗); g∗ ∈ G} + θn. (15)

Then, the upper ρ-error rate of ĝn is 3θn, either in probability or in risk.

Remark 3.1: TheMDE ĝn(∈ G) always exists, whether achieving the value of the infimum,
In, in (15) or another value in (In, In + θn]; ĝn is not necessarily unique and can be obtained,
e.g. with ρ-discretization of G. The difficulty of the minimization in (15) will depend onG
and ρ; ĝn is not an improvement of Tn but both g, ĝn are elements of G.
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For the deconvolution problem (1)–(3), with (G, ρ) in (15) replaced by (FP , || · ||1)
that is not totally bounded, kernel estimate f̂n in (10) can be used for Tn in Lemma 3.1
to obtain MDE fp̂n . However, for estimation on Rd in L1-norm, [33] showed that consis-
tent estimates cannot be built in a minimax sense. Under some additional condition, [34,
Theorem 4, Remark 4] showed optimal estimators can be obtained that could be used as
Tn in Lemma 3.1.

When (FP , || · ||1) is totally bounded, the intermediate estimateTn is not needed.Direct
approaches to obtainMDE fp̂n follow. The next Proposition from [35] is used as tool, with
notation from the deconvolution problem (1)–(3) and taking into account its structure via
NFP ,d(an).

Proposition 3.1: Let X1, . . . ,Xn be a sample in Rd from unknown density fp, p ∈ P ; d ≥
1. Assume that FP ,d = {fp; p ∈ P} is L1 totally bounded and let NFP ,d(an) be the smallest
number of L1-balls of radius an needed to cover FP ,d. Then, a MDE fp̂n can be constructed
with upper L1 error bound in probability

C1an + C2

( logNFP ,d(an)
n

)1/2
, C1 > 0, C2 > 0, (16)

and upper-L1-rate of convergence, an, to fp in probability

an ∼
( logNFP ,d(an)

n

)1/2
. (17)

The centres of theNFP ,d(an) balls coveringFP ,d in Proposition 3.1 areFP ,d’s elements
and constitute an an-L1-sieve which, in the deconvolution problem (1)–(3), depends on
h and is used to construct fp̂n . The Minimum Distance method to obtain fp̂n can be used
also when model parameters, like h or the smoothness q̃ are not known. The unknown
parameters are included in theMDE criterion andNFP ,d(an) is increased. The approach is
used in the next proposition with h assumed unknown, element of a family of densitiesH,
with fp in (2) replaced by fp,h and FP in (3) replaced by

FP ,H = {fp,h; p ∈ P , h ∈ H}. (18)

In the remaining Propositions in this section, the deconvolution structure (1),(2), (3)
or (18) is used: in Propositions 3.2, 3.3 to show, respectively,FP ,H andFP ,d are L1-totally
bounded and in Proposition 3.4 for the sets used inMDE to beVapnik–Chervonenkis class.

Proposition 3.2: In the deconvolution problem (1),(2), (18), assuming identifiability of fp,h,
let X1, . . . ,Xn be a sample from unknown density fp,h, p ∈ P , h ∈ H. Assume thatP andH
are both L1 totally bounded. Let NP(an) and NH(ξn) be, respectively the smallest numbers
of L1-balls of radius an and ξn needed to cover P and H. Then, an MDE ĥn ∗ p̂n can be
constructed with upper-L1-rate of convergencemax{an, ξn} to fp,h in probability, with

an ∼
(
logNP(an)

n

)1/2
, ξn ∼

(
logNH(ξn)

n

)1/2
. (19)
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Remark 3.2: Upper error rates for ||fp̂n − fp||1, as those in Propositions 3.1 and 3.2, can be
obtained also under weak dependence, with the mixing coefficient φ(rn) appearing under
the square-root in (16); with the proper choice of rn the upper rate is the same with that in
the i.i.d. case [36,37].

Particular examples of deconvolution problems (1)–(3) are now studied.

Proposition 3.3: For the d-dimensional deconvolution problem (1)–(3), assume that Y con-
sists of d independent random variables, h is standard multivariate normalN (0, Id) and P
is the family of d-products of q̃-smooth densities, each having known support [−a, a], a ∈
R+; Id is unit matrix in Rd, d ≥ 1.

An MDE fp̂n can be obtained with upper-L1-rate of convergence an in probability,

an ∼ { [log(1/an)]
2

n
}1/2 ∼ log n√

n
. (20)

In the next proposition, p is element of familyPJ described in Section 2 that has not been
used often in the literature and an is obtained via [31], without using the metric entropy,
logNFP ,d(an), as in (17).

Proposition 3.4: For the deconvolution problem (1)–(3) in R, let h be such that Q(x, y) =
h(x − y) is Totally Positive (TP) and let PJ be a family of bounded and measurable densities
that is L1-separable (to avoid measurability problems), such that for every p1, p2 in PJ their
difference (p1 − p2) changes sign at most J times; 0 < J < ∞. Assume also that the σ -finite
measure determined via h and Lebesgue measure satisfy the conditions in Proposition 2.1.
Then, an MDE fp̂n can be obtained with upper-L1-rate of convergence in probability,

(a) when J is known,

an ∼ (log n).5

n.5
, (21)

(b) when J is unknown,

an ∼ m,5
n (log n).5

n.5
, (22)

with mn increasing to infinity as slow as it is wished.

4. L2-upper rates of convergence for p̂n, h̃ �= 0

For the deconvolution problem inRd, letX1, . . . ,Xn be i.i.d. vectorswith values inX (⊂ Rd)
and density fp satisfying (2) with p defined on Y(⊂ Rd); d ≥ 1. It is assumed that esti-
mate fp̂n and an upper bound on the error ||fp̂n − fp||1 have been obtained, as described in
the previous section, thus p̂n is already available. The main result connecting this section
with the previous is the upper bound for ||p̂n − p||2 in (26) that depends on ||fp̂n − fp||1,
obtained via ψn introduced below.

The Assumptions:

(A1) h is known, h̃ �= 0, ||h̃||2 < ∞,
(A2) Y is compact,
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(A3) P is the family of q̃-smooth densities (Definition 2.3),
(A4) Y ⊂ X ⊂ Rd, d ≥ 1,
(A5) fp̂n is an estimate of fp, obtained as described in Section 3, with upper L1-error rate,

an, in probability and in risk; p̂n ∈ P .

Remark 4.1: When p is anisotropic, plug-in upper convergence rates can be obtained for
||p̂(s)n − p(s)||2, [s] = 0, 1, . . . , q, that will depend on the least favourable anisotropic com-
ponent. Assume, e.g. that P has q-derivatives and the modulus of continuity of ∂

qp
∂xqi

is
wq,i(x), i = 1, . . . , d. Then, in (26) and thereafter wq(bn) is replaced by max{wq,i(bn); i =
1, . . . , d}, and wherever q + γ appears it is replaced by q + min{γi; i = 1, . . . , d}. When
some of the parameters are unknown, e.g. either the smoothness q or the γi, i = 1, . . . , d, or
the deconvolution kernel h, discretization of the corresponding enlarged parameter space
is used in the Minimum Distance Estimation criterion; see, e.g. Proposition 3.2.

Let h̃ and K̃n be, respectively, the Fourrier transforms of h andKn; in (9),Kn(x) is defined
as b−d

n K(xb−1
n ), with bn a positive number to be determined. Since h̃ �= 0, let ψn be the

inverse Fourrier transform of

ψ̃n = K̃n

h̃
. (23)

By the convolution theorem,

ψn ∗ h = Kn. (24)

An upper bound for ||ψn||2 is obtained. The set [−M,M]d is the support of K̃.

Lemma 4.1: Under (A1),

||ψn||2 = C||ψ̃n||2 ≤ C ·
[∫

[− M
bn ,

M
bn ]

d
|K̃(tbn)|2|h̃(t)|−2dt

]1/2

≤ C · supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
. (25)

An upper bound for ||p̂n − p||2 is provided when h̃ �= 0.

Proposition 4.1: Under assumptions (A1)− (A5),

||p̂n − p||2 ≤ C[bqnwq(bn)+ ||ψn||2 ||fp̂n − fp||1]

≤ C[bqnwq(bn)+ supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
||fp̂n − fp||1]; (26)

[−M,M]d is K̃’s support, C is generic constant.

The next Lemma provides an upper bound for ||p̂n − p||2 in probability or in risk from
the corresponding bound of ||fp̂n − fp||1.
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Lemma 4.2: If the upper ρ1-error rate of fp̂n is an, in probability and/or in risk, and for the
ρ2-error of p̂n and positive scalars λn, μn holds

ρ2(p̂n, p) ≤ λn + μnρ1(fp̂n , fp), (27)

then, the upper ρ2-error rate of p̂n is λn + μnan, respectively, in probability and/or in risk.

Remark 4.2: Usually, λn,μn in (27) depend on a parameter, e.g. bn, to be determined such
that λn + μnan is minimized. Lemma 4.2 can be used for any estimates Sn,Un instead of
p̂n, fp̂n .

Models for h are now presented. Let 0 < C1 ≤ C2 < ∞, |t| = (|t1|, . . . , |td|), k >
0, αj ≥ 0, βj > .5, j = 1, . . . , d, ᾱ = 1

d
∑d

j=1 αj, β̄ = 1
d

∑d
j=1 βj.

(M1) h is super-smooth when h̃ �= 0 and for large |t|-values, dᾱ > 0,

C1e−
∑d

j=1 αj|tj|k�d
j=1|tj|βj ≤ |h̃(t1, . . . , td)| ≤ C2e−

∑d
j=1 αj|tj|k�d

j=1|tj|βj . (28)

(M2) h is smooth when h̃ �= 0 and for large |t|-values
C1�

d
j=1|tj|−βj ≤ |h̃(t1, . . . , td)| ≤ C2�

d
j=1|tj|−βj . (29)

Careful choice of bn determines the least upper bound (26).When h̃(t) varies exponentially
as t increases, it determines the upper bound in (26). For algebraic variation of h̃(t) as t
increases, bn satisfies

bq+.5d
n wq(bn)

supt∈[−M/bn,M/bn]d |h̃(t)|−1
∼ an. (30)

A small bn-value satisfying (30) exists and is unique since when bn decreases to zero, the
numerator in the left side of (30) decreases to zero, the denominator increases to infin-
ity and wq, h̃ are continuous. Thus, the estimate fp̂n with the smallest rate an in (A5) is
preferred.

The upper error rates for ||p̂n − p||2 in probability and for E||p̂n − p||2 are now given
explicitly as function of an, the upper bound of ||fp̂n − fp||1 in probability or in risk in (A5),
for super-smooth and smooth h, using in (31)–(36) and in Examples 4.1 and 4.2 the brief
notations for (a) and (b) in Definition 3.1. Note that only the lower bounds in (28) and (29)
are used herein to obtain the upper error bound for ||p̂n − p||2.

Proposition 4.2: Assume that (A1)− (A5) hold, in particular an is in (A5).
(i) For super-smooth h from model (M1), an upper rate in probability on p̂n’s L2-error is

||p̂n − p||2 ≤ Cᾱ,d,k,M · (log a−1
n )−q/kwq[C(log a−1

n )−1/k]. (31)

When wq(bn) = L·bγn , 0 < γ < 1, q̃ = q + γ ,

||p̂n − p||2 ≤ Cᾱ,d,k,M · (log a−1
n )−q̃/k. (32)

The dimension d affects only constant Cᾱ,d,k,M .
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(ii) For smooth h from model (M2), an upper rate on ||p̂n − p||2 is obtained when bn
satisfies

bqnwq(bn) ∼ an

bdβ̄+.5d
n

.

When wq(bn) = L·bγn , 0 < γ < 1, an upper rate in probability on p̂n’s L2-error is

||p̂n − p||2 ≤ cMaq̃/(q̃+dβ̄+.5d)
n , q̃ = q + γ . (33)

(iii) When E||fp̂n − fp||1 ≤ an and wq(bn) = L·bγn , the upper rates in (32) and (33) hold also
for E||p̂n − p||2.

Remark 4.3: Model (M1) can be enlarged, with k in (28) replaced by positive kj, j =
1, . . . , d. Then, upper bounds (31), (32) remain valid with max{k1, . . . , kd} replacing k.
In the proof, k of the upper bound in (A7) will be replaced by max{k1, . . . , kd}.

Upper rates on the L2-error and risk of the derivative of p̂n follow. Since p̂n ∈ P , its
derivative p̂(s)n is used to estimate p(s).

Corollary 4.1: Assume (A1)− (A5) hold, δn is the upper bound obtained in Propo-
sition 4.2, wq(b) = L · bγ , 0 < γ < 1, q̃ = q + γ , L > 0, s = (s1, . . . , sd) is a d-tuple of
non-negative integers, [s] = s1 + . . .+ sd ≤ q.
(i) If ||p̂n − p||2 ≤ δn in probability, then in probability

||p̂(s)n − p(s)||2 ≤ C · δ
q̃−[s]
q̃

n . (34)

(ii) If the upper rate of E||p̂n − p||2 is δn, then

E||p̂(s)n − p(s)||2 ≤ C · δ
q̃−[s]
q̃

n . (35)

The next result indicates the reason that, when h is super-smooth, estimates of p and
p(s) are frequently minimax optimal.

Corollary 4.2: Under the assumptions in Proposition 4.2 (a) (i) and Corollary 4.1 and if
||fp̂n − fp||1 ∼ n−δ in probability, 0 < δ < 1,

||p̂(s)n − p(s)||2 ≤ Cᾱ,d,k,M(δ log n)−(q̃−[s])/k, [s] ≥ 0. (36)

If E||f̂n − fp||1 ∼ n−δ , the upper bound in (36) is valid for the risk E||p̂(s)n − p(s)||2.

Remark 4.4: When d = 1, p̂(s)n is risk minimax optimal for any δ > 0 for the weighted
L2-distance [6] and the L2-distance (see [9, e.g.]). The same holds for d > 1; see, e.g. [2],
Theorem 3, Case B.

Remark 4.5: We searched the literature for density estimates of fp.
For p defined on a compact subset in R, estimates for location-scale Gaussian mixtures

have Hellinger error rates in probability (log n)ζ /nδ , 0 < δ ≤ .5, ζ > 0 [38–40]. From (4)
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these bounds hold also for L1-distance and estimates with form fp̂n can be obtained via
Lemma 3.1, with the same upper L1-error rates. These rates and additional results in the
literature, e.g. ([41, Theorems 2.1 and 2.2 and for a slowly increasing sequence of compact
domains with lengths affecting multiplicatively the rates]), as well as (20)–(22) suggest to
use an ∼ n−1/2(log n)ζ , 0 < ζ .

Example 4.1: Assume (A1)− (A5) with an ∼ n−1/2(log n)ζ in probability, d = 1,wq(b)
= L·bγ , γ > 0, q̃ = q + γ . Then:
(a) for h the standard normal, h̃(t) ∼ e−t2 for large |t|, and from (32), (34) in probability

||p̂(s)n − p(s)||2 ≤ C(log n)(q̃−[s])/2, [s] ≥ 0.

(b) for h the Cauchy, h̃(t) ∼ e−|t| for large |t|, and from (32), (34) in probability

||p̂(s)n − p(s)||2 ≤ C(log n)q̃−[s], [s] ≥ 0.

(c) for h the exponential, h̃(t) ∼ |t|−β for large |t|, and from (33) in probability

||p̂(s)n − p(s)||2 ≤ C
(log n)ξ

n(q̃−[s])/(2q̃+2β+1) , ξ = ζ(q̃ − [s])/(q̃ + β + .5), [s] ≥ 0.

The bound in (c) misses by the factor (log n)ξ the weighted L2-minimax rate [6] and the
L2-minimax rate (see, e.g. [9]).

The bounds in (a)–(c) remain valid when an is the risk rate.

Example 4.2: For the d-dimensional deconvolution in Proposition 3.3, the upper rate of
convergence in probability of fp̂n to fp is log n

n.5 . Thus, the upper L2-rates of convergence
in probability to p(s) for super-smooth and smooth h are, respectively, (log n)(q−[s])/k and

(log n)
2(q̃−[s])

2q̃+2
∑d

i=1 βi+d · n
− q−[s]

2q̃+2
∑d

i=1 βi+d , [s] ≥ 0.

Remark 4.6: When h is smooth, we compare the upper L2-risk rate herein with that of the
lower Lu-risk bound provided by [3, p. 892–895] for the isotropic and bounded Nikolskii
class,Nr,d(q̃, L), in the generalized deconvolution with density of theX’s in Rd having form
(1 − α)p + α(h ∗ p); 0 ≤ α ≤ 1, d ≥ 1, 2 ≤ u < ∞, r is d-vector (u, u, . . . , u), q̃ and L as
defined in (7). The rate of the lower bound is δ−ρ(α)n ; ρ(α)depends onparametersβ(α) and
ω(α) and on whether a parameter κα(u) is larger than u · ω(α) or not. With our notation
and for α = 1 that corresponds to the problem herein,

β(1) = q̃

2
∑d

j=1 βj + d
, ω(1) = uq̃

2
∑d

j=1 βj + d

and

κ1(u) = ω(1)[2 + 1
β(1)

] − u = 2uq̃

2
∑d

j=1 βj + d
= 2ω(1).

Since κ1(u) is positive and κ1(u) ≤ uω(1), for u ≥ 2,

ρ(1) = β(1)
2β(1)+ 1

= q̃

2
∑d

j=1 βj + d
/(2

q̃

2
∑d

j=1 βj + d
+ 1) = q̃

2q̃ + 2
∑d

j=1 βj + d
.
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The rate of the Lu-lower bound is n
− q̃

2q̃+2
∑d

j=1 βj+d , 2 ≤ u < ∞. When an ∼ (log n)ζn−.5,

the rate of the plug-in upper L2-error bound herein is [ (log n)
2ζ

n ]
− q̃

2q̃+2
∑d

j=1 βj+d , missing the
lower bound by a power of log n. However, the exponents in both bounds coincide.
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Appendix.

Proof of Lemma 3.1.: From (15), for the estimate ĝn ∈ G it holds

ρ(ĝn, g) ≤ ρ(ĝn,Tn)+ ρ(Tn, g) ≤ inf {ρ(Tn, g∗); g∗ ∈ G} + θn + ρ(Tn, g) ≤ 2ρ(Tn, g)+ θn.
(A1)
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When Tn’s risk is bounded by θn, it follows from (15) that

sup
g∈G

Eρ(ĝn, g) ≤ 3θn.

For the upper rate in probability, for ε > 0 let C(ε)(> 1) be the constant in (13) such that

sup
g∈G

P[ρ(Tn, g) > C(ε)θn] ≤ ε.

Then, from (A1),

sup
g∈G

P[ρ(ĝn, g) > C(ε)3θn] ≤ sup
g∈G

P[2ρ(Tn, g)+ θn > C(ε)3θn] ≤ sup
g∈G

P[ρ(Tn, g) > C(ε)θn]. �

Proof of Proposition 3.1.: Follows from [35, Theorem 1]. �

Proof of Proposition 3.2.: Let h∗
1, . . . , h

∗
NH(ξn) be a ξn-L1-sieve for H and p∗

1, . . . , p
∗
NP (an) be a an-

L1-sieve for P . For h ∈ H, p ∈ P , let h∗
i , p

∗
k be such that

||h − h∗
i ||1 ≤ ξn, ||p − p∗

k ||1 ≤ an. (A2)

Then, using (A2) and Young’s inequality it follows that,

||h ∗ p − h∗
i ∗ p∗

k ||1 ≤ ||h ∗ p − h∗
i ∗ p||1 + ||h∗

i ∗ p − h∗
i ∗ p∗

k ||1 ≤ ξn + an.

Thus,

{h∗
i ∗ p∗

k , 1 ≤ i ≤ NH(ξn), 1 ≤ k ≤ NP (an)}
is a (an + ξn)-L1-sieve with cardinality NP (an) · NH(ξn) in the space

{h ∗ p, h ∈ H, p ∈ P}.
Thus, from (16) the upper bound in probability of theMDE ĥn ∗ p̂n is

C1(an + ξn)+ C2

(
log[NP (an) · NH(ξn)]

n

)1/2

≤ C

[
an + ξn +

(
logNP (an)

n

)1/2
+

(
logNH(ξn)

n

)1/2
]
. �

Proof of Proposition 3.3.: Since P is sup-norm compact [42, p. 153], it is also L1-totally bounded
and by Young’s inequality,FP ,d is also L1-totally bounded. Thus, for every an > 0 there is a Can-L1-
sieve of densities in FP ,d. An upper bound for the logNFP ,d (an) is obtained using the an-L1-sieve
for p continuous on [−a, a], with the logarithm of the sieve’s cardinality bounded by C1[log(1/an)]2
([39], Theorem 3.1, p. 1240, with known a, σ = 1 and γ = .5). In every an-L1 ball with centre in this
sieve, replace the centre by a density inFP ,1 from the same ball, if it exists. The so-obtained densities
are a (2an)-L1 sieve forFP ,1 with cardinality bounded by C1[log(1/an)]2. Thus, d-products of these
densities are a C2an-L1 sieve of FP ,d and

logNFP ,d (C2an) ≤ c[log(1/an)]2. (A3)

The rate (20) follows from Proposition 3.1. �

Proof of Proposition 3.4.: (a) Consider the L1-separable subset P∗
J = {p∗

1, p
∗
2, . . . , p

∗
n, . . . , } of PJ .

For every p ∈ PJ denote by Fp the probability measure with density fp. For βn = (log n).5
n.5 , there is
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p∗ ∈ P∗
J such that ||p − p∗||1 ≤ βn and ||fp − fp∗ ||1 ≤ βn. If

SJ = { {x : h ∗ p∗
i (x) > h ∗ p∗

j (x)}, i �= j}, (A4)

then, for p1, p2 ∈ PJ ,

||fp1 − fp2 ||1 ≤ 2βn + ||fp∗
1
− fp∗

2
||1 ≤ 2βn + 2 sup

A∈SJ

|Fp∗
1
(A)− Fp∗

2
(A)|

≤ 6βn + 2 sup
A∈SJ

|Fp1(A)− Fp2(A)|. (A5)

By Total Positivity of h for any r and from Proposition 2.1 for every i �= j, h ∗ (pi − pj) has at most
J changes of sign and the sets in SJ are unions of at most J disjoint intervals, thus SJ is VC class
with exponent 2J + 1. From [31, Theorem 2, p. 287, with an = βn, lk = 2, vk = 2J + 1, Fak = SJ]
it follows that the upper L1 rate of convergence of fp̂n is

an ∼ (log n).5

n.5
.

(b) When J is unknown, consider L1-separable families of densities PI with the same properties as
PJ and I the maximum number of sign changes for the densities’ differences; I ≥ 1. Observe that
PI ⊂ PL, I ≤ L. Let In increase to infinity with n and assume w.l.o.g that it takes integer values. For
n ≥ n0, PJ ⊂ PIn and for p1, p2 ∈ PIn , (A5) holds with βn = (2In+1).25(log n).5

n.5 and SJ replaced by SIn
with VC-exponent 2In + 1. From [31, Theorem 2] it follows that the upper L1 rate of convergence
of fp̂n is

an ∼ (2In + 1).5(log n).5

n.5
. �

Proof of Lemma 4.2.: By taking expected values in both sides of (27) and the supremum over all
p ∈ P the upper bound follows. For the upper bound in probability, let ε > 0, and let C(ε)(> 1) be
such that

sup
p∈P

P[ρ1(fp̂n , fp) > C(ε)δn] ≤ ε.

Then,

P[ρ2(p̂n, p) > C(ε)(λn + μnδn)] ≤ P[λn + μnρ1(fp̂n , fp) > C(ε)(λn + μnδn)]

≤ P[ρ1(fp̂n , fp) > C(ε)δn]

and the result follows by taking the supremum for p ∈ P . �

LemmaA.3: Let g be a function defined on a setY in Rd that has all s-mixed order partial derivatives
uniformly bounded for 0 ≤ [s] ≤ q, with the q-th derivative having modulus of continuity wq. Then,
for the kernel K satisfying (8), Kn defined in (9) and Y compact,

||g − Kn ∗ g||u ≤ cbqnwq(bn), c > 0, u ≥ 1. (A6)

Proof of Lemma A.3.: The result follows from [43, p. 173, Proposition 1]. �

Proof of Lemma 4.1.: For the Fourrier transform K̃n(x) it holds,

K̃n(x) = C
∫

e−ixyb−d
n K(y/bn)dy = C

∫
ei(xbn)yb

−1
n K(yb−1

n )d(yb−1
n ) = CK̃(xbn).

Boundedness of K̃ and Parseval’s identity imply that

||ψn||2 = C||ψ̃n||2 = C

[∫
[−M/bn ,M/bn]d

|K̃(bnt)|2
|h̃(t)|2

dt

].5

≤ C
supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
. �
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Proof of Proposition 4.1.:[∫
Y

|p̂n(y)− p(y)|2dy
]1/2

≤
[∫

Y
|p̂n(y)− Kn ∗ p̂n(y)|2dy

]1/2

+
[∫

X
|Kn ∗ p̂n(x)− Kn ∗ p(x)|2dx

]1/2
+

[∫
Y

|Kn ∗ p(y)− p(y)|2dy
]1/2

≤ Cbqnwq(bn)+ ||ψn ∗ h ∗ (p̂n − p)||2 ≤ Cbqnwq(bn)+ ||ψn||2 · ||fp̂n − fp||1.
The first inequality is due to the triangular property of the || · ||2-distance and toY ⊂ X . The second
inequality is due to Lemma A.3 and (24). The third inequality follows from Young’s inequality for
convolutions. The result follows from Lemma 4.1. �

Proof of Proposition 4.2.: (i) When h follows the super-smooth model (28), the second term in the
upper bound (26) has an exponential rate but the first term decreases at algebraic rate. Since

sup
t∈[−M/bn ,M/bn]d

|h̃(t)|−1 ≤ C · e
∑d

j=1 αjM
kb−k

n ≤ C · edᾱMkb−k
n , (A7)

the second term in upper bound (26) converges to zero as n increases if

lim
n→∞

exp{dᾱMkb−k
n }

b.5dn
an = 0 ⇐⇒ lim

n→∞ dᾱMkb−k
n − .5d log bn − log a−1

n = −∞. (A8)

Choosing

bkn = 4dᾱMk

log a−1
n

or bn = (4dᾱ)1/kM
(log a−1

n )1/k

(A8) holds and from Lemma 4.2 the terms in upper bound (26) are

bqnwq(bn) ∼ (log a−1
n )−q/kwq[C(log a−1

n )−1/k], (A9)

supt∈[−M/bn,M/bn]d |h̃(t)|−1

b.5dn
an ≤ a3/4n (log a−1

n )5d/k, (A10)

with (A10) converging faster to 0 as n increases than (A9).
When wq(bn)= L·bγn , (A9) determines the upper convergence rate (log a−1

n )−(q+γ )/k.
(ii) When h follows the smooth model (29), both terms in upper bound (26) have algebraic rate.

Since

sup
t∈[−M/bn,M/bn]d

|h̃(t)|−1 ≤ C ·
(
M
bn

)dβ̄

and from Lemma 4.2 we choose bn such that

bqnwq(bn) ∼ an

bdβ̄+.5d
n

.

When wq(bn)= L·bγn , q̃ = q + γ ,

bq̃n ∼ 1

bdβ̄n · b.5dn
an or bn ∼ a1/(q̃+dβ̄+.5d)

n (A11)

and

||p̂n − p||2 ≤ cMaq̃/(q̃+dβ̄+.5d)
n .

(iii) Follows using the approach in (i) and (ii). �
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Proof of Corollary 4.1.: Follows along the lines in [43], Proposition 2, p. 174 and Remarks (i) and
(ii) pages 174, 175, since p and p(s) have compact support. �

Proof of Corollary 4.2.: The bounds are obtained by plugging an ∼ n−δ in the bounds in Propo-
sition 4.2 (a) (i) and in (34) and (35). For densities in R, optimality for any δ > 0 follows from the
optimal rates in [5–7]. �
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