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Abstract: Recently a computational-based experimental design strategy called rerandomization has been

proposed as an alternative or complement to traditional blocked designs. The idea of rerandomization is to

remove, from consideration, those allocations with large imbalances in observed covariates according to a

balance criterion, and then randomize within the set of acceptable allocations. Based on the Mahalanobis

distance criterion for balancing the covariates,we show that asymptotic inference to thepopulation, fromwhich

the units in the sample are randomly drawn, is possible using only the set of best, or ‘optimal’, allocations.

Finally, we show that for the optimal and near optimal designs, the quite complex asymptotic sampling

distribution derived by Li et al. (2018), is well approximated by a normal distribution.

Keywords: computational-based design, experimental design, Mahalanobis distance, normal approximation,

randomized control trail

1 Introduction
In randomized experiments, the treatment assignment is unconfounded (Rubin 1978; Imbens and Rubin 2015)

or equivalently strongly ignorable (Rosenbaum and Rubin 1983), which permits valid inference to a large

collection of well-defined estimands. For this reason, among others, randomized experiments are seen as the

gold standard for causal inference. However, in a single realized randomized allocation, the imbalance in both

observed and unobserved covariates can be substantial. This can lead to poor precision and low efficiency in

the inference. To reduce these potential imbalances, blocking (also called stratification) on observed covariates

has been used in experimental design, especially with a few discrete covariates. An alternative, or complement,

to blocking that has received attention lately is to utilize modern computational capabilities in finding the

experimental design (see e.g., Morgan and Rubin (2012); Bertsimas et al. (2015); Kallus (2018); Lauretto et al.

(2017); Krieger et al. (2019); Kapelner et al. (2020); Johansson and Schultzberg (2020)). The idea in all the

above strategies is to use the computer to discard allocations with imbalance in the observed covariates or,

alternatively, to find allocations with balance in observed covariates. The paper by Kallus (2018) proposed

algorithms for finding ‘optimal’ designs for the estimation of the population average treatment effect (PATE).

Bertsimas et al. (2015); Lauretto et al. (2017) are not discussing inference in their designs. Morgan and

Rubin (2012); Krieger et al. (2019); Kapelner et al. (2020); Johansson et al. (2020) all used Fisher randomization

tests to test for an average effect among the units in the experiment while Kallus (2018) suggest using bootstrap

inference to the PATE but without any formal proof of its validity.

This aim of this paper is to clarify the concept of an ‘optimal’ design for inferences to the PATE based
on the mean-difference estimator. In addition we suggest a strategy for asymptotic inference to the PATE

in an optimal design based on the Mahalanobis-based rerandomization strategy suggested in Morgan and

Rubin (2012). Here, the operating characteristics, i.e., the expectation, variance, and asymptotic distribution

of the mean-difference estimator are known (Li et al. 2018); the ‘optimal’ designs suggested by Kallus (2018)
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includes rerandomization based on the Mahalanobis distance as a special case when the relation between the

covariates and the potential outcomes is linear (Kallus 2018, Section 2.3.3).

Under complete randomization the mean-difference estimator is an unbiased estimator of the sample

average treatment effect (SATE), that is an average effect among the units in the experiment. Under random

sampling of units from the population to the experiment the estimator is also an unbiased estimator of the

PATE. Standard normal asymptotic inference are possible to either SATE and PATE.

With the computer based designs the asymptotic distribution of the mean-difference estimator will not in

general be normal. In order to provide an intuition to the problem with (asymptotic) inference in these designs

we need to discuss the underlying assumptions used to derive the asymptotic distributions for inferences to

SATE and PATE, respectively. The normal asymptotic inference to SATE is derived using finite sample central

limit theorems (see e.g. Li and Ding (2017)). The underlying assumption is that of replicated randomization

and that the sample size n goes to infinity. The only thing stochastic is thus the allocation of treatments. In

an optimal design the number of allocation is reduced to a minimum. The implication, is that we cannot

derive the asymptotic distribution for the SATE estimand. For instance, in a deterministic design (i.e. one

possible allocation) the resulting distribution has zero variance. Note that with a limited set of allocations a

Fisher randomization test cannot either be conducted. The assumption deriving the asymptotic distribution of

the mean-difference estimator as an estimator of PATE is that of random sampling to the experiment from a

population of size N (N > n), or from a superpopulation. When interest is on conducting inference to PATE

there is no lower limit on the number of possible allocations as the asymptotic distribution is derived under

the assumption of random sampling to the experiment only. The consequence is that we, in theory, can have a

deterministic design and then conduct inference to PATE, however no inference is possible regarding an effect

in the experiment. This is an anomaly, but it is a consequence of the idea behind Neyman-Pearson inference.

We show that when the cardinality of the set of allocations fulfilling the Mahalanobis-distance covariance-

balance criterion is close to its minimum, the asymptotic distribution of the mean-difference estimator for

inference to the PATE is, as is the casewith complete randomization, normally distributedwith known variance.

Furthermore, the difference in efficiency compared to using the ‘optimal’ set is typically very small which

means that, using a slightly larger ‘near optimal’ set, admits non-degenerate inference to both SATE and

PATE without substantially decreasing efficiency of estimation to PATE. Lastly, the large sample asymptotic

distribution of the mean-difference estimator is well approximated by a normal distribution also when a larger

‘near optimal’ set is used. That is, as long as the criterion is selected such that it is small enough according to

evaluation strategies suggested in this paper, standard z-tests can be be applied for inference. The implication

of this results is important as the asymptotic inference after Mahalanobis-based rerandomization is simplified

in contrast to what is suggested in Li et al. (2018).

The next section discusses rerandomization using the Mahalanobis metric. Section 3 provides the main

results concerning asymptotic inference and Section 4 concludes.

2 Rerandomization based on the Mahalanobis criterion
In line with Morgan and Rubin (2012), consider a trial with n units, with n

1
assigned to treatment and n

0

assigned to control. Let Wi = 1 or Wi = 0 if unit i is assigned treatment or control, respectively, and define

W = (W
1
, ...,Wn)

′
. Furthermore let xi , i = 1, ..., n, be K × 1 vectors of fixed covariates in the sample and let

X = (x
′

1
, ..., x

′
n)

′
. Define the sample covariance matrix

cov(X) = 1

n − 1

n∑︁
i=1

(xi − x)2,

where x =

1

n
∑︀n

i xi. In a balanced experiment, i.e., n
1
= n

0
= n/2, there are

(︀ n
n
1

)︀
= nA possible treatment

allocation (assignment) vectors, thusWj
, j = 1, ..., nA and W = (W1

, ...,WnA
) the complete set of allocations.

Note that this set by construction has the ’mirror property’, i.e., it can be enumerated as a set of ’mirror

allocations’Wj
and 1 −Wj

.
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The Mahalanobis distance for allocation j is

M(Wj
,X) = n

4

̂︀τjX ′cov(X)−1̂︀τjX , j = 1, ..., nA

where ̂︀τjX = 1

n
1

n
1∑︁

i=1
W j
ixi −

1

n
0

n
0∑︁

i=1
(1 −W j

i )xi , = XjT − X
j
C , j = 1, ..., nA .

Following Li et al. (2018), denote ̂︀τX the estimator of the covariate mean-difference vector over complete

randomization. Morgan and Rubin (2012) suggested accepting the treatment assignment vectorWj
only when

M(Wj
,X) ≤ a,

where a is a positive constant.
Due to the asymptotic normality of difference in means implied by the Central Limit Theorem (CLT),

M(Wj
,X) follows a χ2K distribution asymptotically. This means that a quantile of this distribution can be used

as an allocation inclusion/exclusion criterion. Let P(χ2K ≤ a) = pa, then to randomize within the set of the

0.01% best balanced allocations implies setting a so that pa = 0.0001.

The minimum number of allocations in the set of allocations with the smallest Mahalanobis distance

(i.e. M(Wj
,X) ≃ 0 or pa ≃ 0) in an experiment with n

1
= n

0
is two.¹ Because the Mahalanobis distance of an

allocation (Wj
) is always exactly the same as for its mirror (1 −Wj

). This minimal set, containing only the

allocations with the smallest Mahalanobis distance across all possible allocations, contains the optimal set in

terms of covariate balance. Thus, by the mirror property, assuming at least one continuous covariate, there

are always

(︀ n
n/2

)︀
/2 unique Mahalanobis values over the set of all

(︀ n
n/2

)︀
allocations. This means that the large

sample rerandomization criterion that gives the minimum set can be written as

amin :=

⎧⎨⎩a : pmina =

1

(

n
n/2)
2

⎫⎬⎭ =

2(︀ n
n/2

)︀ .
We refer to this inclusion criterion as the ‘best allocation inclusion criteria’ (BAIC) and the set of allocations

fulfilling BAIC is denotedMBAIC. However with ties in theminimum of theMahalanobis distance, as could hap-

pen with discrete data,MBAIC would have more than two elements. IfMBAIC is large enough, non-degenerate

inference to the SATE is possible (Johansson et al. 2020). However, because the cardinality ofMBAIC is not

restricted by design, BAIC does not generally allow for non-degenerate inference to SATE. If there are too few

allowed allocations, probabilistic inference to SATE is not helpful (Johansson et al. 2020). Note that in a real

experiment it will not be possible to findMBAIC within a reasonable time limit. The reason is that the number

of allocations is exponential increasing in n. Thus with n > 30 this is a NP-hard problem.

3 Asymptotic Theory
Let Yi(w) denote the potential outcome when unit i is exposed to w. The sample average treatment effect is

defined as

τ = 1

n

n∑︁
i=1

Yi(1) − Yi(0).

Define the sample means Y(w) = 1

n
∑︀n

i=1 Yi(w), w = 0, 1, then the sample variance and the variance of the

treatment effect are equal to

S2Y(w) =
1

n − 1

n∑︁
i=1

(Yi(w) − Y(w))2, w = 0, 1,

1 In an experiment with n
1
≠ n

0
the minimum set could consist of just one allocation. See (Morgan and Rubin 2012, p. 9) for an

example with n = 3 and n
1
≡ 2.
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and

SY(1)Y(0) =
1

n − 1

n∑︁
i=1

(Yi(1) − Yi(0) − (Y(1) − Y(0))2

=

1

n − 1

n∑︁
i=1

(τi − τ)2 = S2τ .

Note that these three variances are fixed in the sample. Define the sample means of treatments and controls

Y
1
=

1

n
1

n
1∑︁

i:Wi=1

Yi and Y0 =
1

n
0

n
0∑︁

i:Wi=0

Yi .

Under SUTVA (no interference between individuals and the same treatment, Rubin (1980)) the observed Yi is
equal to Y(Wi), then the mean-difference estimator

̂︀τ = Y
1
− Y

0
,

is an unbiased estimator of τ (Neyman 1923).

Using CLTs where the n units in the sample is embedded into an infinite sequence of finite populations

with increasing sizes one can show (see e.g Li and Ding (2017)) that under complete randomization

√
n(̂︀τ − τ) d→ N(0, Vτ),

where

Vτ =
n
n
1

S2Y(1) +
n
n
0

S2Y(0) − S
2

τ . (1)

The population average treatment effect (PATE) is defined as

τ = µ
1
− µ

0
,

where µw =E(Y(w)), w = 0, 1. Given random sampling from the population the ̂︀τ is an unbiased and the third
term in Equation (1) vanish (as treated and controls are sampled independently). Based on the standard CLT

under random sampling

√
n(̂︀τ − τ) d→ N(0, V),

where V =

n
n
1

S2Y(1) +
n
n
0

S2Y(0).
For later use defineY(w) = (Y

1
(w), ..., Yn(w))′ and τ = (τ

1
, ...τn)′ and let S2Y(w)|X and S

2

τ|X be the variances

of the linear projection of Y(w), w = 0, 1 and τ on X, respectively. Using the same conditions as in Li and Ding

(2017), Li et al. (2018) showed that the asymptotic distribution of ̂︀τ after randomly choosing an allocation from

the setAa = {W|M(Wj
,X) ≤ a} is

√
n(̂︀τ − τ) d→

√︀
VτQ, (2)

where

Q =

√︀
(1 − R2)ε

0
+

√
R2LK,a . (3)

Here, ε
0
is a standard normal variable (for Y in the space orthogonal to the covariates), LK,a is the projection

of Y into the space of covariates and is thus affected by the rerandomization, and

R2 =
n
n
1

s2Y(1)|X +
n
n
0

s2Y(0)|X − s
2

τ|X
Vτ

Li et al. (2018) show that R2 can be consistently estimated. Under homogeneous treatment effects, i.e., S2τ = 0

and S2τ|X = 0, it follows that R2 = s2Y(0)|X/S
2

Y(0). This implies that R2 can be estimated by a linear projection of

the outcomes of the treated and control units values on X. The second part of Q has the following distribution

LK,a ∼ χK,aS
√︀
βK ,

where χK,a = χ2K |χ2K ≤ a, S a random variable taking values ±1 with probability 1/2, and βK ∼ β(1/2, (K − 1)/2)
degenerating to a point mass at 1 when K = 1.
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3.1 Asymptotic theory for the optimal design

It is only the second term of Equation (3),

√
R2LK,a , that depends on a, where

√
R2 is a constant that can be

estimated consistently. Thus, from the assumption that the n units are randomly sampled from the population,

the asymptotic results when n →∞ in Li et al. (2018) can be used to derive the asymptotic distribution in the

situation when a approaches 0.
LK,a is symmetric and unimodal around zero, with variance

Var(LK,a) = P(χ2K+2,a < a)/P(χ2K,a < a). (4)

For fixed K, Var(LK,a) → 0 as a → 0. That is, the LK,a distribution will converge to point mass at zero when a,
or equivalently pa , goes to zero. This implies that for large n using the minimum criterion amin,

√
n(̂︀τ − τ)|̂︀τX d→

√︀
Vτ

(︁√︀
(1 − R2)ε

0

)︁
. (5)

The intuition of the result is that randomizing the treatment assignment within the set of allocations containing

only the very best allocationswill, in large samples, result in a realized treatment allocationwith aMahalanobis

distance close to zero, which means that essentially all variation in ̂︀τ that is explained by group differences

in X is removed, that is, all the variance in the linear projection of Y(0) and Y(1) on X is eliminated. Thus,

non-degenerate inference to PATE is in general possible using BAIC given random sampling to the experiment.

Under Theorem 1 in (Li et al. 2018, p. 8) and using Equation (5), the test statistic is thus

Z =

̂︀τ − τ√︁
V(1−R2)

n

forW ∈ MBAIC (6)

where Z ∼ N(0, 1) and V is the variance under random sampling. All the well established asymptotic results

for the standard normal distribution apply. The sampling distribution is well defined for R2 < 1. In the situation
where R2 = 1 which is impossible in practice, i.e., that the variation in X explains all variation in both Y(0)
and Y(1) and all variation in X is removed by rerandomization, the sampling distribution is degenerated to a

point mass at zero.

For the inference to PATE the calculation of the R2 is simplified as we can can neglect the heterogeneity in

the calculation of the variance. We thus separately regress Yi on xi for theWi = 1 andWi = 0 samples, then

s2Y(1)|X and s
2

Y(0)|X are estimated as

s2Y
1
|X =

1

n
1
− K

n
1∑︁

i:Wi=1

(Yi − x′î︀β1)2 and s2Y
0
|X =

1

n
0
− K

n
0∑︁

i:Wi=0

(Yi − x′î︀β0)2,
where

̂︀βw , w = 0, 1 is the OLS estimates. The Neyman estimator is used to estimate V, thus

̂︂V(̂︀τ) = s2Y1n
1

+

s2Y
0

n
0

, (7)

where

s2Y
1

=

1

n
1
− 1

n
1∑︁

i:Wi=1

(Yi − Y1)2 and s2Y
0

=

1

n
0
− 1

n
0∑︁

i:Wi=0

(Yi − Y0)2.

This means that ̂︀R2 = n
n
1

s2Y
1
|X +

n
n
0

s2Y
0
|X̂︂V(̂︀τ) ,

and that the estimator of V(1 − R2) is

̂︂V(̂︀τ) −(︂ n
n
1

s2Y
1
|X +

n
n
0

s2Y
1
|X

)︂
.
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By Slutsky’s theorem, plugging in these consistent estimators into Equation 6 yields a statistic that fully

computable from the sample.

To illustrate that the sampling distribution can be approximated by a normal distribution when pa is
sufficiently small, a small Monte Carlo simulation is conducted.We test for themean difference between treated

and control with an equal number of treated and controls with a sample size n = 12, using the corresponding

BAIC. This implies pa = 2/

(︀
12

6

)︀
≈ 0.002. The sampling distibution of the test-statistics given in Equation (6) is

compared to standard normal. We also calculate sampling distributions of the test statistic in Li et al. (2018)̂︀τ − τ√︁
Vτ(1−(1−νa)R2)

n

, (8)

where νa = Pr(χ2
(K+2) ≤ a)/ Pr(χ

2

K ≤ a). This distribution is compared to the Q-distribution.
Data are generated ² as

Yi = x1i + x2i + x3i + x4i + x5i + εi , i = 1, ..., N (10)

where xki ∼ N(2, 2), k = 1, ...5 and εi ∼ N(0, 6). This implies R2 = 0.5. 10,000 independent realizations of

size n = 12 are generated from each distribution, including the theoretical ones. The true R2 and Vτ are used
to exclude the small sample sampling variation of the corresonding estimators, both shown to be consistent

estimators in Li et al. (2018). Figure (1) displays the density plots of the empirical sampling distributions and

Standard Normal

Li et al. (2018)
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Figure 1: Scaled empirical sampling distributions compared to the corresponding theoretical dis-

tribtions; Q (Li et al. 2018) and standard normal.

1

Figure 1: Empirical sampling distribution compared to the theoretical one implied by Li et al. (2018) and standard normal.

their corresponding theoretical distributions. It is clear that both empirical sampling distributions are well

2 One can think of the population regression as

y = zβz (9)

with z aκ ×1 vector of covariates. with a subspace of observed covariates (i.e. x ⊂ z). Let xc be the complement such that x∪xc = z
then εi = xci βc and βx = (1, 1, 1, 1, 1)

′
in yi = xiβz + εi . When using Mahalanobis-based rerandomization with BAIC, for large n,

the variation in y that is common with x is removed.
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described by their corresponding theoretical distributions. A one-sample Kolmogorov-Smirnov test for the

empirical distribution of the statistic given in Equation 6 gives the test statistic D = 0.0096, with p-value =

0.3079 for a two-sided test against a standard normal distribution. It should be noted that in this case the

covariates and error term was generated normal such that the asymptotic results are valid for small sample

sizes in order to be able to do the simulation study, for non-normal covariates and error term these results

require large n to be valid.
To summarize, Table (1) displays the sampling distribution of the ̂︀τ under Mahalanobis-based rerandom-

ization for different regions of pa. Under complete randomization (pa = 1), the distribution is normal, for

pa in the interval (0, 1), the sampling distribution is Q, and for BAIC (pa → 0) the sampling distribution is

again normal but with a scaled variance. These results have the important implication that the large sample

Table 1: The sampling distribution of the ̂︀τ under under Mahalanobis-based rerandomization for different values of pa.
Complete rand. Rerendomization Optimal design

Reran. crit pa = 1 0 < pa < 1 pa → 0

Var(
√
n(τ̂ − τ)) Vτ Vτ(1 − (1 − νa)R2) V(1 − R2)√

n(τ̂ − τ) ∼ N(0, Vτ) Q(Vτ , R2, K, a) N(0, V(1 − R2))
note: νa = Pr(χ2

(K+2) ≤ a)/Pr(χ
2

K ≤ a); 0 < νa < 1

sampling distribution under Mahalanobis-based rerandomization with sufficiently small pa is simply normal

with mean zero but with variance V(1 − R2) instead of V as under complete randomization.

As the inference is simplifiedwhen conducting inference to PATE given small enough a, a relevant question
iswhetherwe in the design phase can choose a pa such that the (scaled) standard normal asymptotic inferences

can be used in the analysis. The issue is discussed in the next section.

3.2 A Mahalanobis-based rerandomization design for simplified asymptotic inference

The variance of Q is equal to

(1 − R2)Var(ϵ
0
) + R2Var(LK,a) = (1 − R2) + R2Var(LK,a)

where the equality comes from ϵ
0
∼ N(0, 1). Because the asymptotic variance of LK,a is known (cf. Equation

4), this allows us to calculate the relative importance of the second term which goes to zero (by Equation 4)

for a specific R2. The variance ratio (VR) of the second term to the overall variance of the estimator under

Mahalanobis based rerandomization given R2 and a, equals

VR =

R2Var(LK,a)
R2Var(LK,a) + (1 − R2)

=

P(χ2K+2,a < a)/P(χ2K,a < a)
P(χ2K+2,a < a)/P(χ2K,a < a) + (

1

R2 − 1)
. (11)

To illustrate, consider a setting with R2 = 0.2 which is often realistic in practice, four covariates, and a

small inclusion criterion, e.g. a = 10

−4

which corresponds to pa ≈ 1.25 × 10−9. It follows that

VR =

Var(L
4,10

−4 )

Var(L
4,10

−4 ) + (1/0.2 − 1)

=

P(χ2
6

≤10

−4

)

P(χ2
4

≤10
−4

)

P(χ2
6

≤10
−4

))

P(χ2
4

≤10
−4

)

+ 4

≈ 4.16 × 10

−5

,

(12)

which means that around 4.16/1000 of a percent of the variance of Q arises from the variance of the second

term. Clearly, including or excluding this term has no practical importance for inferences in this case. For a
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large sample, e.g, n = 100, there would still be around 1.26 × 10

20

(= 1.25 × 10

−9

×

(︀
100

50

)︀
) allocations fulfilling

this rerandomization criterion. Thus choosing a to be 10−4 would also enable inference to the units of the
sample while simultaneously allowing standard methods to make inference to the units of the population.

In real experiments, R2 is not known in the design phase, which complicates this type of analysis. However,

the VR can be calculated for various hypothetical values of R2 that are larger than the expected empirical R2

to create an upper bound for the VR. Figure 2 displays the VR as a function of a for n = 100, K = 5, and R2

between 0.05 and 0.95. It is clear that, in this case, even if R2 is large and the sample size is only moderately

large, there are still enough allocations fulfilling the criterion. For example, if a is set to 10−4, there are still
7.88 × 10

20

allocations fulfilling the criterion. That this small sample size allows for the simplification even

for very large R2 illustrates that these results often can be applied in typical experimental settings.

0.00e+00 7.88e+20 3.15e+21 7.09e+21 1.26e+22

0.00000

0.00005

0.00010

0.00015

0.00000 0.00025 0.00050 0.00075 0.00100

Number of allocations fulfilling a

a

V
R

0.25

0.50

0.75

R2

Figure 2: The variance ratio as a function of the Mahalanobis inclusion criterion a, for K = 4,

n = 100 and different values of R2. The values on the top of the abscissa are the number of

allocations satisfying the criterion and the dotted line is the the proposed rule of thumb.

2

Figure 2: The variance ratio as a function of the Mahalanobis inclusion criterion a, for K = 5, n = 100 and different values of R2.
The values on the top of the abscissa are the number of allocations satisfying the criterion and the dotted line indicates the VR
which implies that variance in the sampling distribution due to the second term in Equation 3 is smaller than 0.01%.

Based on a limited set of simulations, there seem to be no problem with inference, using the normal

approximation, if the ratio of the variance (VR) in the sampling distribution due to the second term in Equation

3 is smaller than 0.01%. In the example above, using VR < 0.01% would allow for the (scaled) standard

asymptotic inferences for all R2 < 0.95. These simple calculations can be performed for any experiment to

quickly evaluate the possibilities of using the simplified results presented in this paper, or, to select a such
that, for the largest plausible R2, the VR is smaller than the rule of thumb.

4 Discussion
The asymptotic sampling distribution for the mean-difference estimator, ̂︀τ, for inferences to the PATE under
Mahalanobis-based rerandomization design is investigated, specifically, how the sampling distribution is

affected by letting the Mahalanobis-based rerandomization inclusion criterion approach the ‘optimal’ design.

The ̂︀τ under complete randomization is asymptotically normal. However, removing allocations associated

with large covariates-differences between treated and controls, as with ‘rerandomization designs’, affects
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the properties of this estimator in ways that depend on the balance criterion used to discard unbalanced

allocations. Morgan and Rubin (2012) and Li et al. (2018) used the well known properties of the affinely

invariant Mahalanobis distance to derive properties of the ̂︀τ after randomizing in the set of allocations with a

Mahalanobis distance smaller than a specified inclusion criterion.

The ̂︀τ has a non-degenerate sampling distribution for repeated sampling inference to the population.

However, deterministically choosing an ‘optimal’ design can lead to a degenerate sampling distribution for

inference to the units in the experiment. Based on the results in Li et al. (2018), we show that the asymptotic

sampling distribution under Mahalanobis-based rerandomization simplifies to a normal distribution when the

inclusion criterion is small. When the sample size is moderately large, there will be large number of allocations

that fulfills even very restrictive inclusion criteria, which enables inference to the PATE or the sample estimand

(SATE) (Johansson et al. 2020).

For these reasons, when usingMahalanobis-based rerandomization, it can be advisable to set the inclusion

criterion for admissible allocations slightly smaller than suggested in Li et al. (2018) so that standard asymptotic

inference can be used for PATE, and slightly larger than the minimum so that inference is possible to both

SATE and PATE. To this end we suggest a simple-to-use rule of thumb for when the simplified asymptotics can

be used that makes it possible to choose the Mahalanobis criterion accordingly.
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