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a b s t r a c t

We consider the effect of small scale random fluctuations of the constitutive coefficients

on boundary measurements of solutions to radiative transfer equations. As the

correlation length of the random oscillations tends to zero, the transport solution is

well approximated by a deterministic, averaged, solution. In this paper, we analyze the

random fluctuations to the averaged solution, which may be interpreted as a central

limit correction to homogenization.

With the inverse transport problem in mind, we characterize the random structure

of the singular components of the transport measurement operator. In regimes of

moderate scattering, such components provide stable reconstructions of the constitu-

tive parameters in the transport equation. We show that the random fluctuations

strongly depend on the decorrelation properties of the random medium.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Radiative transfer [8,10,13] are used in many practical
applications in medical and geophysical imaging [1,17].
There, one is interested in reconstructing the optical
properties of a domain of interest from measurements
typically collected at the boundary of the domain. If we
denote by ½s� the set of unknown coefficients and by [D]
the collected data, then the measurement operator F is
defined as

F : ½s�/F½s� ¼ ½D�:

Inverse transport theory is applied to the aforementioned
imaging techniques; there ½s� consists of fa,kg, where a is
the attenuation coefficient and k the scattering coefficient,
while [D] is the density of particles (photons) u(x,v) for v

an outgoing direction at a point x on the boundary of a
domain. The operator F is often a smoothing operator, in
which small scale structures are typically lost, either
because detectors are separated by a small distance, or
ll rights reserved.

: +1 212 854 8257.
because each detector has a finite numerical aperture. Let
e51 measure such a small scale. In each of these settings,
the structure of ½s� at the scale e cannot be reconstructed.
Yet, in many settings, the latter small scale structure still
has an influence on the measurements [D]. In this paper,
we consider such an influence in the setting of the
radiative transfer equation.

Since the small scale structure cannot be recon-
structed, it is reasonable to model it as a spatially rescaled
random field daðx=e,oÞ in (1) below, where the unscaled
random field daðx,oÞ has correlation length of order one.
Consequently, daðx=e,oÞ has correlation length of order e,
hence modeling the small scale structure of the attenua-
tion parameter. We also assume that the scattering cross-
section k� 1, and the domain of interest has a typical
scale L� 1, so that the typical mean free path l� L=k� 1.
Here we use b� c to say b and c have the same order.
Viewing the above small structure as random variations in
the absorption section a, the small parameter e can also be
interpreted as the ratio between the length scale of this
random variation and the mean free path l. The influence
of such small scale structure thus becomes a problem of
characterizing the effect of random heterogeneities on the
solution to a transport equation. We consider here the
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setting of detectors with very fine spatial and angular
resolution that are placed on a lattice with grid size e.
Variations at scales smaller than e are then not present in
the measurements. For such a configuration, we char-
acterize the asymptotic randomness in the measurements
[D] as e tends to 0.

With the above modeling, we obtain radiative transfer
equations with random coefficients that vary on a small
scale e. Such equations have been analyzed in several
settings; we refer the reader to, e.g., [12,15,16,18]. Well-
known homogenization results state that as e decreases to
zero, solutions of the random equations converge to
solutions of averaged (homogenized) equations. The
theory of random correctors to homogenization, which
provides the asymptotic characterization of random
fluctuations in available measurements, is not as devel-
oped. In [5], we considered the theory of correctors to
homogenization for the transport equation. The main
result of that paper is a characterization of the random
fluctuations as approximately a Gaussian process in the
limit e-0. However, such a result requires that the
transport solution be sufficiently averaged in the spatial
and angular variables. That is, the data [D] in those results
are spatially and angularly averaged, not point-wise. We
found that such data have variances of order ed where d is
the spatial dimension of the domain of interest. The main
objective of this paper is to show that the situation is
modified when point-wise (in space and direction)
measurements are considered. In particular, our measure-
ments are the ballistic part and single scattering part of the
transport solution, i.e., particles that are not scattered or
scattered once along their paths, which are the essential
contributions used in inverse transport; see Section 2.3.
We find that such data have much larger variances of
order e independent of the spatial dimension d when the
random field decorrelates sufficiently fast, and even larger
variances otherwise; see Section 3.

The rest of the paper is structured as follows. The
radiative transfer equation with random attenuation is
presented in Section 2. We assume here that the
scattering coefficient is deterministic. It turns out that
the influence of randomness on the measurements
strongly depends on the decorrelation properties of the
random coefficients. To quantify this property, we
introduce the (auto-)correlation function R(x) of the
random field daðxÞ. The random field is said to have short

range correlation if R(x) is integrable along any one-
dimensional subspace of Rd, and long range correlation
otherwise. We consider here both cases. As we mentioned
above, we are interested in the influence of randomness
on the measurement operator F. In transport theory, the
reconstruction of ½s� is stable when the singular compo-
nents of F can be measured. The decomposition of the
measurement operator into singular components is
recalled in Section 2.3.

Our main results on the influence of randomness on
the singular components of the measurement operator are
presented in Section 3. We primarily consider the setting
of an array of detectors separated by a distance e and
capable of measuring the density of particles point-wise
(i.e., at a spatial and angular scale negligible compared to e).
In such a setting, we observe a much larger influence on the
measured data when the correlation function of the
random attenuation decays slowly. We also describe in
some detail how the measurements are cross-correlated.

The methodology used to describe the measurement
fluctuations can be generalized to other settings, such as,
e.g., the setting of detectors that have a spatial aperture
comparable to e. We briefly present how the results are
modified in such a setting. A sketch of the proof of the
results is proposed in Section 4. To a large extent, the
derivation of the results follows from the techniques
presented, e.g., in [2,4].

2. Radiative transfer equation with random attenuation

As described above, in some inverse problem applica-
tions, gaps between detectors introduce a small scale e,
and structures in the absorption coefficients that vary on
this scale cannot be stably reconstructed. We hence model
this part of the absorption as a scaled random field and
aim to characterize its effect on the measurements. Let us
model the total absorption as

ae x,
x

e ,o
� �

¼ aðxÞþda
x

e ,o
� �

, ð1Þ

where the deterministic function a(x) is assumed to be
smooth and slowly varying (on a scale much larger than
e), and where da is a stationary random field defined on
some abstract probability space ðO,F ,PÞ, with O the space
of realizations, F the space of (measurable) subsets of O
and P the probability measure on F . Thus daeðxÞ :

¼ daðx=eÞ models the high frequency structures men-
tioned above.

Then we need to consider the following steady-state
radiative transfer equation with random attenuation
coefficient:

v � rxueþae x,
x

e
,o

� �
u¼ kðxÞ

Z
V

ueðx,vuÞdvu, ðx,vÞ 2 X � V ,

ueðx,vÞ ¼ gðx,vÞ, ðx,vÞ 2 G-: ð2Þ

Here, X is an open, bounded, subset in Rd for d=2,3 spatial
dimension, and V is the velocity space, which here is
chosen as the unit sphere V=Sd�1 to simplify the
presentation. The sets G7 are the sets of outgoing and
incoming conditions, defined by

G7 :¼ fðx,vÞjx 2 @X, 7nx � v40g, ð3Þ

where @X is the boundary of X, assumed to be smooth, and
the normal vector to X at x 2 @X is denoted by nx. See Fig. 1
for an illustration of these definitions and a few more to
come.

We assume here that scattering is isotropic to simplify
the presentation. We also assume that k(x) is determinis-
tic while the attenuation coefficient ae is assumed to be
random. This assumption is not unrealistic in medical
imaging applications, where the absorption coefficients of
tissues vary more rapidly than the scattering coefficients.
Also, it may be justified from the point of view of an
inverse problem as follows.

From measurements formalized by the ‘‘albedo’’
operator defined in Section 2.3 below, it is possible [6,9]
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Fig. 1. Schematic of forward radiative transfer problem for a medium with high-frequency variability. Three boundary points on the left-hand side are

collimated sources. On the right-hand side are direction-specific point-wise detectors. Because of the singularities of the albedo operator, these detectors

read the ballistic part ub in (13) and (in dimension dZ3) the single scattering parts us in (14). The two former trajectories form the contributions

ajðx,v; y,wÞ in (12) with j = 0,1, respectively, to the albedo operator. Here BL stands for the single scattering broken line used in (14).
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to extract the ‘‘singular’’ components of ueðx,vÞ, cf. (12)
below. Such components provide explicit reconstructions
for the attenuation and scattering coefficients. The
reconstruction of the attenuation coefficient involves
the inversion of an X-ray transform, while the inversion
of the scattering coefficient is local in space. More
precisely, knowledge of a1ðx,v; y,wÞ in (12) provides
reconstruction of k(z) at the point z (when it exists) given
by the intersection of the lines {x+tv} and {y+sw}. A delta
source emitted at (x,v) with a detector at (y,w) will thus
provide a reconstruction for k at a unique point z. No
statistical averaging (for instance by integrating over
several values of z) occurs in our model with detectors
that are assumed to have a spatial and angular resolution
below the scale e.

However, the reconstruction of ae from knowledge of
a0ðx,v; y,wÞ in (12) involves line integrals of ae. The
reconstruction of k from a1 also involves line integrals
of ae. Since our detectors are assumed to be separated
from each other by spatial distances of order e, the small
scale structure of ae cannot be reconstructed. We thus
model it as random and aim at understanding the
influence of such undetectable small scale structures on
the available measurements.

Existence and uniqueness of solutions of (2) has been
investigated in, e.g., [6,9,10]. A sufficient condition for
existence and uniqueness is that the intrinsic attenuation
be non-negative; that is, the total absorption ae subtracted
by the scattering contribution

R
V kðx,v,vuÞdvu¼ cdkðxÞ is
non-negative; here cd is the volume of the unit sphere
Sd�1. We assume here that this condition is satisfied by
ðae,kÞ almost surely with respect to probability measure P

ðP�a:s:Þ, so that our transport solution is well-defined
P�a:s:

To develop a homogenization and corrector theory for
the random transport equation (2), we need to impose
additional conditions on the random coefficients.

We first assume that the random field da is stationary,
which means that the joint distribution of
fdaðx1Þ, . . . ,daðxnÞg is conserved under translation for
any n 2 N and any n-tuple (x1,y,xn). In particular, let E

denote the mathematical expectation with respect to the
measure P; then EdaðxÞ ¼ c for some constant indepen-
dent of x. By absorbing this deterministic constant into
a(x) if necessary, we may assume that da is mean-zero.
The correlation function R of the stationary random field
da defined by

RðxÞ :¼ EfdaðyÞdaðyþxÞg, ð4Þ

measures the two-point correlation of the field. As defined
in the introduction, we say da has short range correlation
if R is integrable along any line LðvÞ : ¼ ftvjt 2 Rg, that is
along one-dimensional subspaces of Rd with direction
v 2 Sd�1; and we say da has long range correlation if R fails
to satisfy these conditions.

Homogenization theory for (2), which is in fact an
averaging theory since the coefficients are replaced in the
limit e-0 by their ensemble average, holds under the
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general condition that da is stationary and ergodic; see
[12]. Henceforth, Eq. (2) with ae replaced by its average a

will be referred to as the homogenized equation.
The random corrector to homogenization, however, is

much more complicated and strongly depends on the
structure of randomness. In this paper, we develop a
corrector theory for two types of random coefficients: (i)
strongly mixing coefficients with short range correlations;
and (ii) functionals of Gaussian processes with long-range
correlations. We will show that the size of the random
corrector is very different for short-range and long-range
coefficients.

For similar works on random correctors, we refer the
reader to, e.g., [2,4,5].

2.1. Random fields with short range correlation

Our main results of this paper consider two types of
random field models. In the first case, we use the
following assumption which implies that random field
has short range correlations.

Assumption A (Short range correlation). The random field
ae is defined as in (1) and da is stationary, mean-zero, and
r�mixing with mixing coefficient rðrÞ that is integrable as
a function on R. Further, daomaxx2Xfa�cdkg for almost
every realization.

The last requirement implies that ðae,kÞ is admissible,
so that Eq. (2) is well-posed.

A process qðx,oÞ on the probability space ðO,F ,PÞ is
said to be r�mixing if for any Borel sets A,B � Rd, the
sub-s�algebras FA and F B generated by the process
restricted on A and B respectively decorrelate rapidly in
the sense that there exists some function r such that for
any square integrable random variables x and Z that are
FA�measurable and FB�measurable respectively, we
have

jEfðx�ExÞðZ�EZÞgjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarfxgVarfZg

p rrðdðA,BÞÞ: ð5Þ

Here d(A,B) is the distance between the sets A and B. What
this means is that (functionals of) the random fields
restricted on disjoint spatial domains A and B become
more and more independent as the distance between the
sets A and B increases. The function r quantifies that
decay.

We verify that under assumption A, da has short range
correlation. Indeed, from (5) we see jRðtvÞjrCrðjtjÞ where
C is a bound for the variance of da. Hence, we define

s2
a ðvÞ :¼

Z
LðvÞ

RðxÞdx¼

Z
R

RðtvÞdt: ð6Þ

Since RjLðvÞ can be viewed as the correlation of the random
process dajLðvÞ, by Bochner’s theorem [19] saðvÞ is non-
negative. We call Assumption A the case of short range
correlation because R is integrable in all directions.

Examples. There are many examples of processes that
satisfy Assumption A. We refer the reader to [5] for a
detailed discussion of a model based on spatial Poisson
point process. In the next section, we will consider a
model based on a functional of a Gaussian random field
that will be parameterized by a coefficient a which
quantifies the decay of its correlation function. The case
a41 in (7) below corresponds to a case that satisfies
Assumption A.

Note that Gaussian fields do not satisfy the positivity
constraint 0omaxx2Xfa�cdkg�da. The analysis of mean
ballistic transport effects of Gaussian fields with short-
range correlations (white- and blue-noise cases) is
investigated in [11].

2.2. Random fields with long range correlation

In order to display the different behaviors of the
random fluctuations in a transport solution, we consider
the following case of random coefficients with long-range
correlations:

Assumption B (Long range correlation). The random field
ae is defined as in (1) and da¼F3gðx,oÞ : ¼Fðgðx,oÞÞ
where gðx,oÞ is a real-valued mean-zero variance-one
stationary Gaussian random field on ðO,F ,PÞ with correla-
tion function Rg. For simplicity we assume Rg is a radial
function and has the following asymptotic behavior:

RgðrÞ � kgr�a, 0oao1, as r-1: ð7Þ

The function F : R-R is bounded andZ
R
FðgÞe�g2=2 dg ¼ 0: ð8Þ

Furthermore, we assume that supx2RjFðxÞjomaxfa�cdkg.
The latter requirement implies that (2) is well-posed.

Remark 2.1. We observe that assumption A is relatively
general comparing with B. As we will see in the proof of
the main theorems, the fast decorrelation property in A
allows us to invoke central limit theorem conveniently and
processes required there are relatively general. This is no
longer the case for random fields with long range
correlation. We choose the above model so that we can
calculate the main estimates based on our knowledge of
Gaussian fields. A uniform approach for general random
fields with long range correlations is still unavailable and
the results we derived under assumption B do not
necessarily hold in general.

Examples. Bounded, odd, functions satisfy the condition
(8) above. With F¼ sgn, the process F3g models a two-
component composite medium. If we take F¼ tanh or
arctan, then F3g models a continuous medium with
bounded variations. This model was used in [4]. By
choosing F bounded, we can ensure that the intrinsic
attenuation coefficient is non-negative P�a:s:

We need to analyze the random field da restricted to lines
L(v). Let us denote jðtÞ ¼ daðtvÞ, then it is a one-parameter
random process of the type F3g. Such random fields were
discussed in details in [4]. In particular, if we define

V1 ¼ Efg0Fðg0Þg ¼
1ffiffiffiffiffiffi
2p
p

Z
R

gFðgÞe�g2=2 dg, ð9Þ
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V2 ¼ EfF2
ðg0Þg ¼

1ffiffiffiffiffiffi
2p
p

Z
R
F2
ðgÞe�g2=2 dg, ð10Þ

and k¼ kgV2
1 , then it is shown in [4] that j is a stationary

mean-zero process with variance V2. Moreover, the correla-
tion function of j, still denoted as R, behaves like kr�a as
r-1.

Note that the constraint supx2RjFðxÞjomaxfa�cdkg

precludes the use of Gaussian fields to model da. The
analysis of long-range correlations of Gaussian fields
(pink-noise case) on the mean ballistic transport term is
investigated in [11].

2.3. Albedo operator of transport equation

When k� 0 in (2), the free transport equation can be
solved explicitly using the method of characteristics.
When scattering is non-zero, the solution to (2) can be
expressed as a Neumann series expansion. Let A denote
the albedo operator, which maps the incoming boundary
condition ujG-

¼ g on G- to the outgoing solution on Gþ :

A : ujG-
/AðujG-

Þðx,vÞ ¼ ujGþ ðx,vÞ, ðx,vÞ 2 Gþ : ð11Þ

This operator can be decomposed into three terms
A¼

P2
j ¼ 0Aj where the operators Aj have different

singularities as shown in [3,6,9]; it is this difference of
singularities that allows one to uniquely reconstruct the
optical parameters ða,kÞ in inverse transport. The operator
A0 denotes the part that does not depend on scattering. It
is called the ballistic part. The operator A1 denotes the
part that is linear in the scattering coefficient and is called
the single scattering part. The operator A2 denotes the
part that is higher order in scattering and is called
the multiple scattering part.

The ballistic part A0 is always more singular than the
other parts and can be extracted form the measured data
[3]. Knowledge of A0 implies that of the Radon transform
of a, which uniquely determines a. In dimension dZ3 (or
in dimension d=2 in the time-dependent setting), A1 is
more singular than the multiple scattering part and can
also be separated from the latter for sufficiently accurate
detectors. Knowledge of A1 and a allows us to uniquely
reconstruct k. We are therefore interested in the con-
tributions A0 and A1 in the inverse problem setting. Their
distributional kernels are given by

a0ðx,v; y,wÞ ¼ dvðwÞdfx�t-zðx,vÞvgðyÞexp �

Z t-ðx,vÞ

0
aðx�svÞds

� �
,

a1ðx,v; y,wÞ ¼

Z t-ðx,vÞ

0
exp �

Z t

0
aðx�svÞds�

Z t-ðx�tv,wÞ

0
aðx�tv�swÞds

� �

kðx�tvÞdfx�tv�t-ðx�tv,wÞwgðyÞdt: ð12Þ

Here we used the standard notation t7 ðx,vÞ for the
traveling times from x to @X along direction 7v, and they
are given by

t7 ðx,vÞ ¼ supft40 : x7tv 2 Xg,

see illustrations of t-ðx,vÞ in Fig. 1. The above means that

Ajfðx,vÞ ¼

Z
G�
ajðx,v; y,wÞfðy,wÞdsðyÞdw, j¼ 0,1,2,

where dsðyÞ is the surface measure on @X.
Let Ae and ae denote the corresponding albedo
operator and its kernel for the stochastic transport
equation (2), and let A and a be those for the
homogenized equation. This paper is devoted to the
analysis of the ballistic and single scattering contributions
of the random corrector Ae�A. More specifically, we want
to understand the random fluctuations in the coefficients
akðx,v; y,wÞ for k=0,1.

It turns out that the random fluctuations in akðx,v; y,wÞ
depend on the scale at which the latter quantities are
observed. In the setting of random coefficients with short-
range correlations, so that the correlation functions of the
random coefficients are integrable on Rd, we analyzed in
[5] the random fluctuations for integrals (in all variables
(x,v;y,w)) of the above kernels. By an application of the
central limit theorem in d-dimensional spaces, we obtain
that such integrals are asymptotically Gaussian with
variance proportional to ed. Point-wise, we observe that
akðx,v; y,wÞ for k=0,1 involve integrals of ae along lines,
and this independent of dimension. As a consequence, we
expect point-wise measurements to have variances of
order OðeÞ as an application of the central limit theorem
independent of dimension d. An intermediate case with
measurements that are point-wise in space and averaged
in angle turns out to have variance of order Oðe2jlogejÞ in
dimension d=2 and of order Oðe2Þ in dimension dZ3; we
refer to calculations presented in the Appendix for details.

In this paper, as we mentioned in the introduction, we
are interested in the setting of point-wise measurements.
In the following section, we indeed show that point-wise
measurements have a variance of order OðeÞ as an
application of the central limit theorem when the random
fluctuations have short-range correlations. In the setting
of long-range correlations, we observe much larger
random fluctuations, which is consistent with the results
obtained in [4] for elliptic equations.

3. Random fluctuations of point-wise measurements

In this section, we state our main results on the
asymptotic random fluctuations in the measurements
a0ðx,v; y,wÞ and a1ðx,v; y,wÞ. We show that the size of the
random fluctuations depends on the decorrelation proper-
ties of the random attenuation coefficient. We consider
the cases of short range and long range correlations. The
measurements at different values of (x,v; y,w) also may be
correlated. We present the limiting joint distribution for
some families of measurements. Finally, we briefly
mention how the results need to be modified when
point-wise measurements are replaced by measurements
on detectors with a spatial resolution comparable to the
small scale e. The derivation of the results is presented in
Section 4.

We first observe that a0ðx,v; y,wÞ is of the form
ubðx,vÞdvðwÞdfx�t-ðx,vÞvgðyÞ. Thus, ub can be thought of as
the solution of the free transport equation at (x,v) with a
unit source located at ðx�t-ðx,vÞv,vÞ. It is given for the
deterministic part by

ubðx,vÞ ¼ exp �

Z t-ðx,vÞ

0
aðx�svÞds

� �
: ð13Þ
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Since the random coefficients affect only the function ub
e ,

it suffices to investigate the corrector ub
e�ub.

The systematic impact of broad band fluctuations of a

modeled as a Gaussian random field (with a positive
probability of being (non-physically) negative) or as
random fields preserving the positivity of a (such as
gamma-distributed random fields) on the mean ballistic
transmission Efubg is investigated, e.g., in [11] and the
references therein.

Similarly for the single-scattering part, the kernel a1

can be written asZ t-ðx,vÞ

0
usðx,v; t,wÞkðx�vtÞdfx�tv�t-ðx�tv,wÞwgðyÞdt,

with us(x,v; t,w) defined by

usðx,v; t,wÞ :¼ exp �

Z
BLðx,v,t,wÞ

að‘Þd‘

� �

¼ exp �

Z t

0
aðx�svÞds�

Z t-ðx�tv,wÞ

0
aðx�tv�swÞds

� �
:

ð14Þ

Here BL(x,v,t,w) denotes the broken line between
x�tv�t-ðx�tv,wÞw, x�tv and x, as illustrated in Fig. 1 for
d=2. The random corrector of A1 is therefore obtained by
analyzing us

e�us.
Random media with short range correlations: We have

the following results regarding to the limiting distribution
of a point-wise/direction-specific measurement.

Theorem 3.1. Let ae satisfy the short range correlation

assumption A. Let (x,v) be any point in Gþ or in X�V, and t

be any real number, so that x�tv 2 X. Then for any fixed

(x, v, t) the following results hold.
1.
 For the ballistic part, we have

ub
e�ubffiffiffi
e
p ðx,vÞ�!

D
ubðx,vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t-ðx,vÞ

p
saðvÞN ð0,1Þ: ð15Þ

For the single scattering part, we have
2.
us
e�usffiffiffi
e
p ðx,v; t,wÞ�!

D
usðx,v; t,wÞð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t-ðx�tv,wÞ

p
saðwÞN 1ð0,1Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ ðx�tv,vÞ

p
saðvÞN 2ð0,1ÞÞ: ð16Þ
In both equations, N ð0,1Þ denotes the centered normal
variable, and the convergence is interpreted as conver-

gence in distribution of random variables. The real
numbers sa’s are defined in (6). In the second equation,
N i, i= 1, 2, are independent variables with normal
distribution.

Remark 3.2. In particular, the above result shows that the
variance of point-wise measurements is of order OðeÞ
unlike what happens for angularly or spatially averaged
measurements. We refer the reader to Appendix A and [5]
for some results in the latter cases.

Solving the inverse transport problem requires many
measurements [3]. In order to minimize errors in the
reconstructions (see, e.g., [7]), it is useful to understand
how such measurements are correlated. We do not
consider the most general case of an arbitrary finite
number of measurements. Rather, we consider the
following families of measurements and present their
joint limiting behavior as e-0. In all cases considered
here, the limiting distributions are centered and Gaussian
and thus characterized by their covariance matrix.

We first introduce some notation. For ðx,vÞ 2 X � V , let
L(x,v) denote the line fx�sv,s 2 Rg and LX(x,v) be the
intersection of L(x,v) with X. Let us suppose we have a
finite collection of ballistic measurements for sources at
ðxi,vbÞ where i 2 ½N�, b 2 ½M� and ½n� :¼ f1,2, . . . ,ng. Given a
pair of points ðxi,vbÞ and ðxj,vgÞ, let dðLXðxi,vbÞ,LXðxj,vgÞÞ
denote the distance between the segments (as the distance
between two sets), and let ybg denote the non-oriented
angle between vb and vg which is always non-negative.
We define the function d: fðxi,vbÞg � fðxj,vgÞg-Rþ as

dððxi,vbÞ,ðxj,vgÞÞ ¼ dðLXðxi,vbÞ,LXðxj,vgÞÞþybg: ð17Þ

Theorem 3.3. Let ae satisfy the short range correlation

assumption A; the following results hold.

1. Consider a collection of points fðxi,vbÞg in Gþ , i 2 ½N�,

b 2 ½M�. Suppose that for any i,j,b,g, we have

dððxi,vbÞ,ðxj,vgÞÞbe. Denote ðub
e�ubÞðxi,vbÞ by dub,i,b

e . Then

the N�M-dimensional random vector e�1=2ðdub;1,1
e ,

. . . ,dub;N,M
e Þ converges in distribution to an N�M-variate

normal vector with diagonal covariance matrix. That is,

ðdub;1,1
e , . . . ,dub;N,M

e Þffiffiffi
e
p �!

D N ð0,SN�Mðxi,vbÞÞ, ð18Þ

and SN�M is a diagonal matrix whose ði,bÞ-th diagonal entry

is ðubðxi,vbÞsaðvbÞÞ
2t-ðxi,vbÞ.

2. Consider ðxi,vÞ,ðxj,vÞ 2 Gþ . Let v? be the perpendicular

direction of v in the two-dimensional plane determined by

the lines LX(xi,v) and LX(xj,v); let ‘ij be the length of their

common segment when one is projected into the other, and

let dij be the distance betwen these parallel lines. Then we

have

Cov
dub

e ðxi,vÞffiffiffi
e
p ,

dub
e ðxj,vÞffiffiffi
e
p

 !
¼ ‘iju

bðxi,vÞu
bðxj,vÞ

Z
R

R
dijv

?

e þtv

� �
dtþoð1Þ:

ð19Þ

In particular, when dij ¼ ze for z40, using ~R to denote the

Radon transform of R in the two-dimensional plane, the

correlation is ‘iju
bðxi,vÞu

bðxj,vÞ ~Rðz,vÞ.

3. Consider the two broken lines that start at ðy,wÞ 2 G-

and end at ðxi,vbÞ and ðxj,vgÞ, respectively. Let t1, t2 be such

that xi�t1vb and xj�t2vg are the points where the broken

lines break. Assume that dððxi�t1vb,vbÞ,ðxj�t2vg,vgÞÞbe.
Then

Cov
dus

eðxi,vbÞffiffiffi
e
p

usðxi,vbÞ
,
dus

eðxj,vgÞffiffiffi
e
p

usðxj,vgÞ

 !

¼minðt�ðxi�t1vb,wÞ,t�ðxj�t2vg,wÞÞs2
a ðwÞ: ð20Þ

Remark 3.4. We therefore obtain that lines that are far
apart compared to e generate measurements that are
asymptotically uncorrelated. When the lines are sepa-
rated by a distance of order OðeÞ as in case 2, then we
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obtain that the measurements are correlated. We have
considered here a family of two measurements although
joint distributions for measurements along a finite
number of parallel lines can also easily be shown to be
jointly Gaussian (and correlated) in the limit e-0. Case 3
shows that single scattering measurements generated by
a given source display larger correlations than ballistic
measurements because they visit the same ballistic line of
propagation during a positive distance. Other collection of
data with parameter ðxi,vbÞ can be considered similarly.

So far, we have assumed that the detectors were point-
wise and could capture particles exiting X at x with a
velocity v. In practice, this models detectors with a
resolution in space and angle that is much better than e.
We now consider the case of thicker detectors with a
spatial resolution comparable to e. The main features of
Theorem 3.1 remain valid. However, for detectors whose
spatial resolution is much worse than e, then additional
averaging would occur and the measurement would have
significantly smaller variance; see [5].

For simplicity, we assume that @X is (a part of) a
hyperplane and that detectors have perfect resolution in
the angular variable. Consider the data obtained at
ðx,vÞ 2 Gþ . Let us use a coordinate system centered at x

with v being the first coordinate axis while the other
axes span the boundary @X. Then the measured ‘‘ballistic’’
part is

Ieðx,vÞ ¼

Z
Rd�1

1

ed�1
f

y

e

� �
ubðy,vÞdy: ð21Þ

Here, the function fðyÞ is a weight function assumed to be
non-negative and compactly supported on the unit ball
and integrating to one over Rd�1.
Theorem 3.5. Let ae satisfy the short range correlation

assumption A. Let (x,v) be a point in Gþ and assume that @X

is flat at x in the above sense and v is the outward normal

direction. Then we have

Ieðx,v; aeÞ�Ieðx,v; aÞffiffiffi
e
p ðx,vÞ�!

D
ubðx,vÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t-ðx,vÞ

p
N ð0,s2

s Þ, ð22Þ

with s2
s defined by

s2
s ¼

Z
R�R2ðd�1Þ

fðyÞfðzÞRðy�zþtvÞdt dy dz, ð23Þ

where R is the correlation function of the process da defined

in (4).

We have considered only the limiting distribution for
one thick detector. Joint distributions of a finite number
(independent of e) of measurements can be dealt with as
in the setting of point-wise measurements.

The case of long range correlations: Finally, we general-
ize the result obtained in Theorem 3.1 to the case of
random fields with long range correlations. The limit of
joint distributions for several measurements involves
more complicated calculations that are not considered
here.
For a single point-wise/direction-specific measure-
ment, the following result holds.

Theorem 3.6. Let ae satisfy the long range correlation

assumption B. Let (x,v) be a point in Gþ or in X�V and t be a

real number, so that x�tv 2 X. Then we have
1.
 For the ballistic part, we have

ub
e�ub

ea=2
ðx,vÞ�!

D
ubðx,vÞN ð0,s2

HÞ, where

s2
H ¼

2kðt-ðx,vÞÞ2�a

ð1�aÞð2�aÞ
: ð24Þ

For the single scattering part, we have
2.
us
e�us

ea=2
ðx,v; t,wÞ�!

D
usðx,v; t,wÞðN1þN2Þ, ð25Þ

where the random vector (N1, N2) has a two-variate

normal distribution N ð0,SÞ with

S11 ¼
2kðt�ðx�tv,wÞÞ2�a

ð1�aÞð2�aÞ , S22 ¼
2kðtþ ðx�tv,vÞÞ2�a

ð1�aÞð2�aÞ ,

and

S12 ¼S21 ¼

Z t-ðx�tv,wÞ

0

Z tþ ðx�tv,vÞ

0

k
jtwþsvja

dt ds: ð26Þ

This result shows that point-wise measurements with
long-range correlations have variances that are much larger

than in the short range case. Moreover, the correlation of
two crossing lines that are separated by a distance of order
O(1) is as large as the variance of each of them, unlike what
was obtained for short-range correlations.

More generally, the competition between the slow decay
modeled by a and the spatial dimension determines the
order of the cross-correlations of the singular components of
measured data. In any m-dimensional subspace, the cross-
correlation will be of order eminðm,aÞ, which is smaller than the
variance of order OðeÞ as soon as a41 in dimension mZ2.

4. Sketch of proofs

In this section, we sketch the proofs of our main results
and also refer the reader to [5] for additional details on
the analysis of transport equations with random coeffi-
cients. Using a Taylor expansion to order 2, we have

eMe�1¼Meþ
1

2
M2

e

Z 1

0
ð1þtÞetMe dt,

Meðx,vÞ ¼�

Z t-ðx,vÞ

0
daeðx�svÞds: ð27Þ

To simplify notation, we denote the second term in the
expansion of eMe�1 by M2

e He. Note that, although the integral
Me needs to be 51, its (zero-mean) integrand daeðxÞ can be
O(1) since oscillations will indeed cancel very effectively in
variability regimes dominated by very high frequencies.

Since Me is bounded from below, we verify that jHej is
bounded by some constant C uniformly in e. Now we have
the following expressions:

ðub
e�ubÞ ¼ ubðMeþM2

e HeÞ,

ðus
e�usÞ ¼ usðMs

eþðM
s
eÞ

2Hs
eÞ: ð28Þ
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Here Ms
e ¼Meðx�tv,wÞþMeðx�tv,�vÞ and Hs

e is again
bounded uniformly.
4.1. Proof of Theorems 3.1, 3.3 and 3.5

The proof of these theorems stems essentially from the
analysis of the moments of Me up to fourth order (Lemma
4.2), the asymptotic independence of Meðxi,vbÞ and
Meðxj,vgÞ when the lines are not close for the function
(17) (Lemma 4.4), and the following central limit theorem
type result proved, e.g., in [2].

Theorem 4.1 (Bal [2]). Let D be a bounded interval in R,
and q a bounded, stationary, mean-zero, r-mixing random

process with r integrable. Assume m 2 L2ðDÞ. Then we haveZ
D

mðyÞ
1ffiffiffi
e
p q

y

e

� �
dy�!

D
Z

D
mðyÞsdWy: ð29Þ

Here, Wy is the standard Wiener process on R, and

s2 ¼
R
REfqð0ÞqðyÞgdy.

Using formula (28), we need to control the term that is
nonlinear in Me.

Lemma 4.2. Let da satisfies conditions in assumption A.
Then the following estimates hold

EM2
e ðx,vÞ ¼ et-ðx,vÞs2

aðvÞþoðeÞ, EM4
e rCe2: ð30Þ

Proof. Let t- denote t-ðx,vÞ. We have

EM2
e ¼ E

Z Z t-

0
daeðx�tvÞdaeðx�svÞdt ds

¼

Z
R2

R
t�s

e v

� �
Fx,vðtÞFx,vðsÞdt ds: ð31Þ

Here Fx,vðtÞ ¼ wXðx�tvÞ is a cut-off function where wX is the
indicator function of the domain X. Let Rv denote the
function of R restricted on the line L(v) and let Rev denote
the function Rvð

�
eÞ. Then we have

EM2
e ¼

Z
R
ðRev 	 Fx,vÞðtÞFx,vðtÞdt

¼

Z
R

R̂evðxÞF̂ x,vðxÞF̂ x,vðxÞ dx¼ e
Z
R

R̂vðexÞjF̂ x,vðxÞj2 dx:

Here, R̂v is the Fourier transform of Rv and is real
according to Bochner’s theorem, and R̂ðexÞ converges to
R̂ð0Þ. Hence, the right-hand side of the last equation
converges to

eR̂vð0Þ

Z
R

F2
x,vðtÞdt¼ et-ðx,vÞ

Z
R

RðtvÞdt:

Recall that s2
aðvÞ is defined to be the last integral. This

completes the proof of the first part. The second part can
be proved by the same lines using an estimate for the
fourth order moments of the strong mixing random
process derived in [2]. The detail is omitted here. &

Remark 4.3. If we require tR(tv) to be integrable in t, then
we obtain the more accurate estimate: EM2

e ¼ et-ðx,vÞ
R̂vð0ÞþOðe2Þ.
This can be seen fromZ
R

Fx,vðtÞFx,vðt�esÞdt¼ t-ðx,vÞ�es:

Lemma 4.4 (Asymptotic independence). Let da satisfy the

conditions in assumption A. Let fxj,vbg, j 2 ½N�,b 2 ½M� be a

finite collection of sampling points, so that for any two pairs

of indices j,k,b,g, the corresponding lines are not close for the

function (17), i.e., dððxj,vbÞ,ðxk,vgÞÞbe, then the random

variables fð
ffiffiffi
e
p
Þ
�1Meðxj,vbÞg are independent in the limit.

Proof. By definition of independence, we need to show
that

lim
e-0

E exp i
XN

j ¼ 1

XM
b ¼ 1

xjb
Meffiffiffi
e
p ðxj,vbÞ

0
@

1
A

8<
:

9=
;

¼
YN
j ¼ 1

YM
b ¼ 1

E exp ixjb
Meffiffiffi
e
p ðxj,vbÞ

� �� �
: ð32Þ

Here i¼
ffiffiffiffiffiffiffi
�1
p

should not be confused with the indices. By
induction and by breaking crossing lines into broken
lines with common breaking point, this boils down to the
case of N=2, M=1 and the case of N=1, M=2. In the first
case, we apply the strong mixing property (5) and the
result follows directly. The second case is a little more
involved.

The two segments are LX(xs,v) and LX(xs,w) where xs is

the breaking point. Let us break the latter into two parts,

1ffiffiffi
e
p Meðxs,wÞ

¼�
1ffiffiffi
e
p

Z Zt1

0
daeðxs�swÞdsþ

Z t1

Zt1

daeðxs�twÞdt

 !
,

where t1 ¼ t-ðxs,wÞ and Z is a positive real number smaller

than one. Call them ð1=
ffiffiffi
e
p
ÞQZ

e and ð1=
ffiffiffi
e
p
ÞPZe , respectively.

Then we have

Efeix1ð1=
ffiffi
e
p
ÞMeðxs ,wÞþ ix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞg

�Efeix1ð1=
ffiffi
e
p
ÞMeðxs ,wÞgEfeix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞg

¼ Ef½eix1ð1=
ffiffi
e
p
ÞQZ

e �1�eix1ð1=
ffiffi
e
p
ÞPZe þ ix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞg

�Ef½eix1ð1=
ffiffi
e
p
ÞQZ

e �1�eix1ð1=
ffiffi
e
p
ÞPZe gEfeix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞg

þEfeix1ð1=
ffiffi
e
p
ÞPZe þ ix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞg

�Efeix1ð1=
ffiffi
e
p
ÞPZe ðxs ,wÞgEfeix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞg: ð33Þ

Now for the last two term, we use the mixing condition

(5) and get

jEfeix1ð1=
ffiffi
e
p
ÞPZe þ ix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞg

�Efeix1ð1=
ffiffi
e
p
ÞP

Z
e ðxs ,wÞgEfeix2ð1=

ffiffi
e
p
ÞMeðxs ,vÞgjrr Zsinb

e

� �
,

where Zsinb is the distance of the segments LX(xs, v) and

LXðxs�Zt1,wÞ.

For the first term (and similarly the second term), we

use the fact that jeix�1jr jxj and conclude that it is

bounded by

jx1j E
1ffiffiffi
e
p QZ

e

� �2
( )1=2

¼ jx1j
1

e

Z Zt-

0

Z Zt-

0
R

t�s

e v

� �
dt dsr jx1jZ:
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Hence, by choosing Z properly, so that both Z and

rðZsinb=eÞ goes to zero; for instance, take Z¼
ffiffiffi
e
p

. Then

we see the term in (33) goes to zero,which completes the

proof. &

Proof of Theorem 3.1. 1. Ballistic part: From the expan-
sion (28) and the control of M2

e in Lemma 4.2, we have

E
ub
e�ubffiffiffi
e
p ðx,vÞ�ubðx,vÞ

Meffiffiffi
e
p

				
				rC

EM2
effiffiffi
e
p rC

ffiffiffi
e
p
�!0:

This shows that the scaled corrector dub
e converges to

e�1=2ubMe, for any fixed ðx,vÞ, in L1ðOÞ and hence in
distribution. Therefore, the limiting distribution of
e�1=2dub

e is given by that of e�1=2ubMe. This term is an
oscillatory integral of the form

e�1=2ubðx,vÞ

Z
R
da

x�tv

e

� �
Fx,vðtÞdt:

First observe that we can ignore the x in dae thanks to
stationarity. Then we apply Theorem 4.1 to the process da

restricted on the line L(v) and have

Meffiffiffi
e
p �!

D
Z t-ðx,vÞ

0
sa dWt : ð34Þ

Here, s2
a ¼

R
REfdað0ÞdaðtvÞgdt. Finally we observe that the

stochastic integral above is simply a Gaussian random
variable with mean-zero and variance s2

at-ðx,vÞ. This
completes the first part of the proof.

2. Single scattering part: As before, we only need to

capture the asymptotic distribution of the term linear in

Me, that is usðMeðxs,wÞþMeðxs,�vÞ where xs = x�tv. For

each of them, we apply part one to obtain their

asymptotic law. Jointly, they are independent in the limit

thanks to Lemma 4.4. &

Proof of Theorem 3.3. 1. The first item follows directly
from Theorem 3.1 and Lemma 4.4.

2. The second item: We need to control the term that is a

product of two terms linear in Me. Let xi�xj ¼ dijv
?þZv.

We calculate

EMeðxi,vÞMeðxj,vÞ ¼

Z
R2

R
dijv

?þðZ�tþsÞv

e

� �
Fxi ,vðtÞFxj ,vðsÞdt ds

¼ e
Z
R2

R
dijv

?

e
þtv

� �
Fxi ,vðZþsÞFxj ,vðsÞdt dsþoðeÞ:

ð35Þ

In the second equality, we have changed variable

ðZ�tþsÞ=e-t. Then integrate over s to obtain the

conclusion.

3. The third item is again a simple combination of

Theorem 3.1 and Lemma 4.4. Namely, the parts after

scattering will be independent in the limit, and the only

correlation comes from the common ballistic part, for

which we can apply (15). &

Proof of Theorem 3.5. The asymptotic distribution of
the corrector will be determined by that of the term
that is linear in da. Let us denote this term by dIe
expressed by

dIeðx,v; aÞ ¼�

Z
Rd�1

ubðy,vÞ
1

ed
f

y

e

� � Z t-

0
da

y�tv

e

� �
dt dy

¼�ubðx,vÞ

Z t-

0
db

t

e

� �
dtþoðeÞ, ð36Þ

where dbðtÞ is defined to be the ‘‘vertically’’ averaged
process

dbðtÞ :¼

Z
Rd�1

fðyÞdaðy�tvÞdy: ð37Þ

Clearly db inherits stationarity and strong mixing proper-
ties from da. Therefore, part one of Theorem 3.1 can be
applied. It suffices to verify that

s2
bðvÞ ¼

Z
R
Efdbð0ÞdbðtÞgdt

¼

Z
R�R2ðd�1Þ

fðyÞfðzÞRðy�zþtvÞdt dy dz: ð38Þ

This completes the proof. &

4.2. Proof of Theorem 3.6

The proof in the case of long range correlations also
relies on the control of moments of Me up to fourth order
and the asymptotic law of Me point-wise. In both analyses,
we essentially follow the procedure in [4], namely
replacing the random field F3g by the underlying
Gaussian random field g. We will need

Theorem 4.5 (Bal et al. [4]). Let da satisfies the conditions

in assumption B with correlation function decaying like jxj�a.
For any function F 2 L1ðRÞ \ L1ðRÞ, we have

e�a2
Z
R
jeðtÞFðtÞdt�!

D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k
Hð2H�1Þ

r Z
R

FðtÞ dWH
t , ð39Þ

where Wt
H is a fractional Brownian motion with Hurst index

H¼ 1�a=2.

Proof of Theorem 3.6. 1. Ballistic part: From the expan-
sion (28) and control of M2

e , we have

E
ub
e�ub

ea=2
ðx,vÞ�ubðx,vÞe�a=2Me

				
				rCea=2�!0:

Hence, we only need to capture the limit distribution of
ubðx,vÞe�a=2Me, which can be written as product of ub(x,v)
with the following oscillatory integral:

Ie ¼ e�a=2

Z
R
da

x�tv

e

� �
Fx,vðtÞdt: ð40Þ

Here Fx,v is the cut-off function introduced earlier. Then
applying Theorem 4.5 for the process da restricted on the
line L(v) (ignoring x), we have

Ie�!
D

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k

Hð2H�1Þ

r Z
R

Fx,vðtÞdWH
t : ð41Þ

Finally, the variance of the stochastic integral above is
given byZ
R2

k
jt�sja

FðtÞFðsÞdt ds¼

Z Z t-ðx,vÞ

0

k
jt�sja

dt ds:

This integral can be calculated explicitly as given in (26).
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2. Single scattering part: As before, only the term that is

linear in Ms
e matters. Using the same method as in [4], we

need to find the limiting distribution of e�a=2usV2
1 Ms,g

e with

Ms,g
e ðx,v,y,wÞ :¼

Z
BLðx,v,y,wÞ

geð‘Þd‘: ð42Þ

This is a Gaussian random variable and it suffices to find

the limit of its variance, which is precisely

E
1

ea=2

Z
R

Fxs ,�vðtÞg
xsþtv

e

� �
dt

� �2

þE
1

ea=2

Z
R

Fxs ,wðsÞg
xs�sw

e

� �
ds

� �2

þ
2

ea E
Z
R2

Fxs ,wðsÞFxs ,�vðtÞg
xsþtv

e

� �
g

xs�sw

e

� �
dt ds: ð43Þ

The first two terms are exactly as part 1. By the

asymptotic behavior of Rg, the third one is given by

2

ea

Z
R2

Fxs ,�vðtÞFxs ,wðsÞ
eakg

jtvþswja
dt ds:

This completes the proof of the result. &

5. Conclusions

The highly oscillatory part of the absorption coefficient
in the radiative transfer equation, which varies on a scale
of e51 and cannot be stably reconstructed using inverse
transport technique, is modeled as a random field. The
scale e may be introduced in practice in several ways
accounting for different experimental settings, for in-
stance as the gap between detectors as considered in this
paper. Furthermore, the effects of the above random
fluctuations in the absorption coefficient on the point-
wise measurements of particle densities at the boundary
are described asymptotically. More precisely, we found
that the fluctuations in the measurements are asympto-
tically Gaussian and of size e1=2 (resp. ea=2 for ao1) when
the random fluctuations in the absorption have integrable
(resp. non-integrable) correlation function.

Such results are useful for inverse transport as we
explain now in more detail. Since we can only hope to
reconstruct stably the low frequency part of the absorp-
tion a, we view the measurement ue as the ‘‘true’’
measurement u corresponding to a plus ‘‘noise’’.

In standard notations of the generic inverse problem,
½s� denotes the unknown coefficient to reconstruct, [D]
the measured data and e the error. The collected data can
be written as

½D� ¼Fð½s�Þþe: ð44Þ

The measurement operator F is typically determined by
equations modeling the physics and is usually smoothing.
Noise e is therefore typically amplified during the
reconstruction of ½s� from knowledge of [D] [14]. Knowing
its statistical structure allows us to mitigate the influence
of noise in an optimal manner [7].

In our problem, the noise term e is precisely given by
ue�u. Our results on the statistics of the corrector ue�u

provide statistics for this noise that are derived from physical
principles, which is often better than assuming a ‘‘standard’’
noise model. We refer the reader to [7] for an application of
corrector analysis to an inverse spectral problem.
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Appendix A. Variance for angularly averaged
measurements

In this appendix, we show that measurements that are
point-wise in space but averaged angularly have variance
of order e2jlogej in dimension d=2 and of order e2 when
dZ3. To simplify the presentation, we present the
calculations only for the ballistic part ub(x,v), knowing
that the other contributions to the transport equation
have variances of the same order. In the rest of the
appendix, we drop the superscript b to simplify notation.

Fixing x, a point in X or on its boundary @X, the
angularly averaged measurement at this point is obtained
by integrating u(x,v) over v. That is,

JðxÞ ¼

Z
V

uðx,vÞdv, ð45Þ

for x 2 X. For measurements performed on the boundary,
the integration is taken over fv : nx � v40g. Then the
random corrector of such measurements is simply

dJe :¼ Je�J¼

Z
V

uðx,vÞðexpðMeðx,vÞÞ�1Þdv: ð46Þ

We have the following result regarding the order of its
variance.

Lemma A.1 (Variance for angularly averaged measure-

ments). Let da be a stationary random field with correlation

function R decaying faster than jxj�d�d at infinity for some
d40. Then

VarfdJegr
Ce2jlogej, d¼ 2

Ce2, dZ3:

(
ð47Þ

Proof. Thanks to the control of the fourth moments of Me,
we only need to control the term that is linear in Me. Using
the change of variablesZ

V

Z t-ðx,vÞ

0
f ðx�tv,vÞdt dv¼

Z
X

f ðy,vÞ

jx�yjd�1

				
v ¼ ðx�yÞ=ðjx�yjÞ

dy,

ð48Þ

the linear term in dJe can be written as

�

Z
X

uðx,vÞdaeðyÞ

jx�yjd�1

				
v ¼ ðx�yÞ=ðjx�yjÞ

dy:

Call this term I. We have

VarfIg ¼ EfI2g ¼

Z
X2

uðx,vÞuðx,wÞR
y�z

e

� �
jx�yjd�1jx�zjd�1

							
v ¼ ðx�yÞ=ðjx�yjÞ,w ¼ ðx�zÞ=ðjx�zjÞ

dy dz:
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Now, change variables ðy�zÞ=e-z and x�y-y. Then we
have

EI2 ¼ ed

Z
Rd
�Rd

uðx,vÞuðx,wuðeÞÞRðzÞ
jyjd�1jyþezjd�1

wXðx�yÞwXðx�y�ezÞdz dy:

Here, wuðeÞ is the direction of the vector x�y�ez and as e
goes to zero it converges to that of x�y. Assuming that u

is bounded, and then integrating in y (over X) and using
the estimate that

Z
X

1

jyjd�1jyþzjd�1
dyr

CðjlogjzJþ1Þ, d¼ 2,

C
1

jzjd�2
, dZ3,

8><
>: ð49Þ

we obtain that in dimension two that

EI2rCe2jlogej
Z
Rd

RðzÞjlogjzJdz,

and in dimension three that

EI2rCe2

Z
Rd

RðzÞ
1

jzjd�2
dz:

In both cases, the integral converges due to the fact that R

decays sufficiently fast at infinity and logjzj (in dimension
two) and jzjd�2 (in dimension three) are integrable near the
origin. For a proof of estimate (49), we refer the reader,
e.g., to the appendix of [5]. This completes the proof. &
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