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This paper aims to mathematically advance the field of quantita-
tive thermo-acoustic imaging. Given several electromagnetic data
sets, we establish for the first time an analytical formula for re-
constructing the absorption coefficient from thermal energy mea-
surements. Since the formula involves derivatives of the given data
up to the third order, it is unstable in the sense that small mea-
surement noises may cause large errors. However, in the presence
of measurement noise, the obtained formula, together with a noise
regularization technique, provides a good initial guess for the true
absorption coefficient. We finally correct the errors by deriving a
reconstruction formula based on the least square solution of an
optimal control problem and prove that this optimization step re-
duces the errors occurring and enhances the resolution.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Hybrid imaging modalities are based on a multi-wave concept. Different physical types of waves
are combined into one tomographic process to alleviate deficiencies of each separate type of waves,
while combining their strengths. Multi-wave systems are capable of high-resolution and high-contrast
imaging [1,17]. Quantitative thermo-acoustic tomography is an emerging hybrid modality [14,12]. It
allows to determine the absorption distribution of a tissue from boundary measurements of the pres-
sure induced by electromagnetic heating. Other examples of hybrid modalities are acousto-electric
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tomography [3,2,6,9,13,21,32,33], magnetic resonance electrical impedance tomography [20,28,26],
magnetic resonance elastography [8,25,23], impedance-acoustic tomography [18], photo-acoustic [31,
22,4], quantitative photo-acoustic tomography [5,11,27], magneto-acoustic imaging [7], and vibro-
acoustography [16].

The aims of this paper are to derive an exact formula for the absorption coefficient from noiseless
thermo-acoustic measurements and to correct the errors of in the presence of measurement noise.
The former task is motivated by the knowledge of the ratio between two modified data. For the latter
purpose, we show how to regularize the exact formula and propose an optimal control algorithm to
achieve a resolved image starting from the regularized one. As far as we know, our exact formula in
this paper together with the one successfully derived in [6] are among a few exact formulas in hybrid
imaging. Moreover, the fine analysis of the effect of measurement noise on the image quality and the
proof that an optimal control approach starting from the regularized images yields a resolved one
have never been done elsewhere.

To describe our approach, we employ several notations. Let X be a smooth bounded domain in R
d ,

d = 2 or 3. Let ∂ X denote the boundary of X and let ν be the outward normal at ∂ X . For m a
non-negative integer, we define the space Hm(X) as the family of all m times weakly differentiable
functions in L2(X), whose weak derivatives of orders up to m are functions in L2(X). We let Hm

0 (X)

be the closure of C∞
c (X) in Hm(X), where C∞

c (X) is the set of all infinitely differentiable functions
with compact supports in X . Finally, we introduce the space H1/2(∂ X) of traces on ∂ X of all functions
in H1(X).

Let q be a positive real-valued function on X . Consider the Helmholtz problem:

(
� + k2 + ikq

)
u = 0, x ∈ X,

ν · ∇u − iku = g, x ∈ ∂ X, (1.1)

which is the scalar approximation of Maxwell’s equations. Here, k > 0 is the wave number, g is
a boundary datum, and u is the electrical field. The Robin boundary condition approximates Som-
merfeld’s radiation condition at high frequencies [15,19]. For simplicity, instead of considering the
Helmholtz equation on the whole Euclidean space with Sommerfeld’s radiation condition we focus on
the Helmholtz problem with Robin boundary condition on the bounded open set X . Problem (1.1) is
well-posed in H1(X) for all g ∈ L2(∂ X). In fact, writing a variational formulation of (1.1) shows the
uniqueness of a solution to (1.1), while the existence of a solution follows from Fredholm’s alternative.

The thermo-acoustic imaging problem can be formulated as the inverse problem of reconstructing
the absorption coefficient q from thermo-acoustic measurements q|u|2 in X . The quantity q|u|2 in X
is the heat energy due to the absorption distribution q. It generates an acoustic wave propagating
inside the medium. Finding the initial data in the acoustic wave from boundary measurements yields
the heat energy distribution. Our aim in this paper is to separate q from u. We provide an explicit
formula for reconstructing q from the heat energy q|u|2 in X . As far as we know, our formula is new.
Indeed, it is promising since it can be used as an initial guess to achieve a resolved image of the
absorption distribution in a robust way.

Our first task is to enrich the set of data. Suppose that we have measurements q(x)|u j |2 corre-
sponding to linear combinations of boundary data g j , for j = 1, . . . ,d + 1. We show that one can
construct the set of quantities:

E = {
E j(x) = q(x)u j(x)u1(x), x ∈ X

∣∣ j = 1, . . . ,d + 1
}
, (1.2)

where u j denotes the solution of

(
� + k2 + ikq

)
u j = 0, x ∈ X,

ν · ∇u j − iku j = g j, x ∈ ∂ X, (1.3)
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provided that (g j)
d+1
j=1 is a proper set of measurements (see Definition 2.1). The construction of E1

was completely described in [12] and that of E j , j = 2, . . . ,d + 1, will be done using Proposition 2.6.
Noting that

u j

u1
= E j

E1
, j = 2, . . . ,d + 1,

we are able to establish an exact formula for q provided that E = (E j)
d+1
j=1 is “good” enough as in

Theorem 3.3. This procedure will be described in Section 3.
As said, the collected data E are often corrupted by measurement noise that varies on very small

length scale. This renders the aforementioned exact formula, which requires differentiating the data
up to third order, completely unpractical. To solve this issue, we smooth the noise by averaging the
data over a small window and apply the smoothed data to the exact formula. The resulting function is
then shown to be close to the real one, provided that the width of the averaging window is properly
chosen. We thus view this function as an initial guess and then perform a further step of least square
optimization. The resulting reconstruction improves the initial guess in the L2 sense.

The rest of the paper is organized as follows. In Section 2 we introduce the notion of a proper set
of measurements and its role to get data E and some useful estimates as well. The aim of Section 3
is to provide an explicit formula for reconstructing q when a proper set of measurements is given. In
Section 4 we study the Fréchet differentiability of the data with respect to variations of q and prove
that the differential operator is invertible for small enough variations. In Section 5 we consider a noise
model for the data and show how to regularize the exact inversion formula in order to obtain a good
initial guess. We also perform a refinement of the initial guess using an optimal control approach and
show that this procedure yields a resolution enhancement.

2. Preliminaries

Motivated by [6], we introduce the following concept.

Definition 2.1. The set (g j)
d+1
j=1 ⊂ L2(∂ X) is a proper set of measurements of (1.1) if and only if:

(i) |u1| > 0 in X .
(ii) The matrix [u j,∇T u j]1� j�d+1 is invertible for all x ∈ X .

Here, T denotes the transpose and u j is the solution of (1.3).

The following proposition is a direct consequence of Lemma 4.1 in [12] and Proposition 3.1 in [11].
It plays an important role to prove that it is possible to find a proper set of measurements.

Proposition 2.2. Let δ > 0 and m > d/2. There exists a positive constant C such that for any ξ ∈C
d, ξ · ξ = 0,

and |ξ | > δ, and for any q ∈ Hm(X), the solution w of

�w + ξ · ∇w = −(
k2 + ikqχ(X)

)
(1 + w) in R

d, (2.1)

where χ(X) denotes the characteristic function of X , satisfies

‖w‖Hm(X) �
C‖q‖Hm(X)

|ξ | . (2.2)

Proposition 2.3. If q ∈ Hm(X), m > 1 + d
2 , then (1.1) has a proper set of measurements.



1378 H. Ammari et al. / J. Differential Equations 254 (2013) 1375–1395
Proof. Let ε be a small number. By choosing ξ such that ξ · ξ = 0 and |ξ | is large enough, we find
from the Sobolev embedding theorem and (2.2) that the solution w of (2.1) satisfies

‖w‖L∞(X) + ‖∇w‖L∞(X) < ε. (2.3)

It is not hard to verify that the function

u = eξ ·x(1 + w)

is a solution of

(
� + k2 + ikqχ(X)

)
u = 0 (2.4)

and it satisfies

|u| > ∣∣eξ ·x∣∣(1 − ε) > 0.

Choosing g1 = ν · ∇u − iku on ∂ X gives a solution u1 of (1.3) satisfying part (i) of Definition 2.1.
Define

ξ j = n(e j + ie j+1), j = 1, . . . ,d − 1,

ξd = n(ed + ie1),

and

ξd+1 = n

([
d−1∑
j=1

e j +
√

d − 1ed

]
+ i

[
d−1∑
j=1

e j −
√

d − 1ed

])
,

where n � 1 and e j is the jth component of the natural basis of R
d. Again, it is not hard to verify

that

ξ j · ξ j = 0

for all j = 1, . . . ,d + 1, and the vectors (1, ξ j)1� j�d+1 are linearly independent in C
d . Hence,

∣∣det
[

1 ξ T
j

]
1� j�d+1

∣∣ � 1, (2.5)

provided that n � 1. Let w j , 1 � j � d + 1, be the solution of

�w j + 2ξ j · ∇w j = −(
k2 + ikqχ(X)

)
(1 + w j)

and

u j = eξ j ·x(1 + w j)

be the solution of (2.4). We have
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det
[

u j ∇T u j
]

1� j�d+1 = eξ j ·x(1 + w j)det
[
(1 + w j) ξ T

j + ∇T w j
1+w j

]
1� j�d+1

.

Thus, (2.3), (2.5), the continuity of the map that sends a square matrix to its determinant and the
choice of large n imply the second part of Definition 2.1 with

g j = ν · ∇u j − iku j, j = 1, . . . ,d,

on ∂ X . �
Remark 2.4. The solution w of (2.1) is the so-called complex geometric optics solution of (1.1), which
was introduced in [10,29]. The proof of Proposition 2.3 was partly motivated by [30].

We next construct the data E , mentioned in Section 1. Let us for the moment accept the following
proposition.

Proposition 2.5. If g is given, then one can make some measurements to obtain q(x)|u|2 , x ∈ X, where u
solves (1.1).

The following proposition holds.

Proposition 2.6. Let g1, g2 ∈ L2(∂ X). Denote by u j the solution of

(
� + k2 + ikq

)
u j = 0, x ∈ X,

ν · ∇u j − iku j = g j, x ∈ ∂ X, j = 1,2. (2.6)

Then the function q(x)u2(x)u1(x), x ∈ X, can be evaluated.

Proof. Applying Proposition 2.5 for g1 + g2 and then ig1 + g2, we obtain the knowledge of

q|u1 + u2|2 and q|iu1 + u2|2,

respectively. Then the desired data E2 is given by

E2 = 1

2

(
q|u1 + u2|2 − q|u1|2 − q|u2|2

) + i

2

(
q|iu1 + u2|2 − q|u1|2 − q|u2|2

)
, (2.7)

which can be easily verified. �
Let (g j)

d+1
j=1 be a proper set of measurements of (1.1) and u j be the solution of (1.1) with g replaced

by g j . From now on, we have the knowledge of

E = (E j)
d+1
j=1, (2.8)

where E j = qu1u j , and E is, therefore, considered as the data to reconstruct q.
We also need the following proposition. It plays an important role to evaluate the derivative of the

data with respect to q in Section 4 as well as some crucial properties.
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Proposition 2.7. Let q ∈ L∞(X) be such that inf q > 0. For all f ∈ L2(X), the problem

(
� + k2 + ikq

)
u = f , x ∈ X,

ν · ∇u − iku = 0, x ∈ ∂ X, (2.9)

has a unique solution. Moreover, the solution satisfies

‖u‖L2(X) �
1

k inf q
‖ f ‖L2(X) (2.10)

and

‖u‖H1(X) �
√

(k2 + 1) + k inf q

k inf q
‖ f ‖L2(X). (2.11)

Proof. The well-posedness of (2.9) is well-known. Using the test function u in (2.9) and considering
the imaginary and real parts of the resulting equation, we can establish (2.10) and (2.11), respec-
tively. �
3. The exact formula

The main aim of this section is to reconstruct q when a proper set of measurements (g j)
d+1
j=1 of

(1.1) and the data E , defined in (2.8), are given.
Let

α j = E j

E1
, 2 � j � d + 1. (3.1)

Then it is not hard to see that

u j = α ju1,

for 2 � j � d + 1. We have the following lemma.

Lemma 3.1. Let β = 	(u1∇u1). Then

−divβ = kE1, in X . (3.2)

Proof. Let ϕ ∈ C∞
c (X,R) be an arbitrary function. Then using ϕu1 ∈ H1

0(X) as a test function in

−�u1 = (
k2 + ikq

)
u1

yields

∫
X

ϕ|∇u1|2 dx +
∫
X

u1∇u1 · ∇ϕ dx =
∫
X

(
k2 + ikq

)|u|2ϕ dx.

Taking the imaginary part of the equation above gives
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−
∫
X

div(	u1∇u1)ϕ dx =
∫
X

kq|u1|2ϕ dx =
∫
X

kE1ϕ dx,

and (3.2) follows. �
The following lemma plays an important role in the derivation of an exact inversion formula for q.

Lemma 3.2. For all 2 � j � d + 1,

∇α j ·
(

∇ log
q

E1
− 2iqβ

E1

)
= �α j . (3.3)

Proof. Let us fix j ∈ {2, . . . ,d + 1}. Since u j is a solution of the Helmholtz equation under considera-
tion,

(
k2 + ikq

)
α ju1 = −�(α ju1)

= −α j�u1 − u1�α j − 2∇u1 · ∇α j

= (
k2 + ikq

)
α ju1 − u1�α j − 2∇u1 · ∇α j .

Therefore,

−E1�α j = 2qu1∇u1 · ∇α j

= 2q(
u1∇u1 + i	u1∇u1) · ∇α j

= q
(∇|u1|2 + 2i	u1∇u1

) · ∇α j .

We have proved that

−E1�α j = q
(∇|u1|2 + 2iβ

) · ∇α j,

or equivalently,

q∇|u1|2 · ∇α j = −E1�α j − 2iqβ · ∇α j . (3.4)

On the other hand, differentiating the equation E1 = q|u1|2 gives

∇E1 = q∇|u1|2 + E1∇ log q.

This, together with (3.4), implies

(∇E1 − E1∇ log q) · ∇α j = −E1�α j − 2iqβ · ∇α j,

and (3.3), therefore, holds. �
We claim that the set

(∇α j)
d+1
j=2
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is linearly independent for all x ∈ X, where α j was defined in (3.1). We only prove this when d = 2.
The proof when d is larger than 2 can be done in the same manner. In fact, the linear independence
of {∇α2,∇α3} comes from the following calculation:

det

[∇T α2
∇T α3

]
= 1

u4
1

det

[
u1∇T u2 − u2∇T u1
u1∇T u3 − u3∇T u1

]

= 1

u4
1

(
det

[
u1∇T u2

u1∇T u3 − u3∇T u1

]
− u2 det

[ ∇T u1
u1∇T u3 − u3∇T u1

])

= 1

u3
1

(
u1 det

[∇T u2
∇T u3

]
+ u3 det

[∇T u1
∇T u2

]
− u2 det

[∇T u1
∇T u3

])

= 1

u3
1

det

[ u1 ∇T u1
u2 ∇T u2
u3 ∇T u3

]
�= 0.

Here, part (ii) in Definition 2.1 has been used. Since the d × d matrix

A = [∇T α j+1
]

1� j�d, A jl = ∂lα j+1, (3.5)

is invertible, we can solve system (3.3) to get

∇ log
q

E1
− 2iqβ

E1
= a, (3.6)

where a is the vector a = A−1[(∇T AT )T ].
We are now ready to evaluate q. We first split the real and the imaginary parts of (3.6) to get

∇ log
q

E1
= ∇q

q
− ∇ log E1 = 
(a) (3.7)

and

β = − E1	(a)

2q
. (3.8)

Then, differentiating (3.8), we have

divβ = E1	(a) · ∇q

2q2
− div(E1	(a))

2q
.

This, together with (3.2) and (3.7), implies

q = − E1(
(a) + ∇ log E1) · 	(a) − div(E1	(a))

2kE1

= − E1
(a) · 	(a) + ∇E1 · 	(a)

2kE1
+ E1 div	(a) + ∇E1 · 	(a)

2kE1

= −
(a) · 	(a) − div	(a)

2k
.

The results above are summarized in the following theorem.
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Theorem 3.3. Given a proper set of measurements (g j)
d+1
j=1 so that the matrix A, defined in (3.5), is known

and invertible. Then,

q(x) = −
(a) · 	(a) + div	(a)

2k
, (3.9)

where a = A−1[(∇T AT )T ] and A = (∂lα j+1) j,l=1,...,d.

Remark 3.4. Although in the proof of Theorem 3.3, we wrote some notations requiring the first and
second derivatives of E at a single point x ∈ X , it is not necessary to impose the smoothness condi-
tions for E . The reason is that one can make the arguments and establish (3.3) in the weak sense. We
argued, using strong forms of differential equations, only for simplicity.

Remark 3.5. Formula (3.9) is unstable in the sense that if there are some noises occurring when we
measure the data E j, 1 � j � d + 1, then q, given by (3.9), might be far away from the actual q since
the right-hand side of (3.9) depends on the derivatives of the noise (up to the third order).

4. The differentiability of the data map and its inverse

Let 0 < qmin < qmax. Let

L∞+ (X) = {
p ∈ L∞(X): qmin < p < qmax in X

}
.

Then, L∞+ (X) is an open set in L∞(X). We define the solution and the data map as

u : L∞+ (X) → H1(X)

q → u[q] (4.1)

and

F : L∞+ (X) → L2(X)

q → F [q] = q
∣∣u[q]∣∣2

, (4.2)

where u[q] is the solution of (1.1). The map F is well-defined because of the Sobolev embedding
theorems and the fact that d = 2 or 3, which guarantees that u ∈ L4(X).

The main purpose of this section is to study the differential operator, DF [q], of F and show that
it is invertible provided that qmax is small enough.

Lemma 4.1. The map u, defined in (4.1), is Fréchet differentiable in L∞+ (X). Its derivative at the function q is
given by

Du[q](ρ) = v(ρ), ∀ρ ∈ Bq, (4.3)

where Bq ⊂ L∞(X) is an open neighborhood of q in L∞(X) and v(ρ) is the solution of(
� + k2 + ikq

)
v = −ikρu[q], x ∈ X,

ν · ∇v − ikv = 0, x ∈ ∂ X . (4.4)

Consequently, F is also Fréchet differentiable and

DF [q]ρ = ρ
∣∣u[q]∣∣2 + 2q
(

u[q]v(ρ)
)
, ∀q ∈ L∞+ (X), ρ ∈ Bq. (4.5)
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Proof. It is sufficient to show that

lim‖ρ‖L∞(X)→0
h(ρ) = 0, (4.6)

where

h(ρ) = ‖u[q + ρ] − u[q] − v(ρ)‖L2(X)

‖ρ‖L∞(X)

.

In fact, since u[q + ρ] − u[q] − v(ρ) solves the problem

(
� + k2 + ikq

)(
u[q + ρ] − u[q] − v(ρ)

) = −ikρ
(
u[q + ρ] − u[q]), x ∈ X,

ν · ∇(
u[q + ρ] − u[q] − v(ρ)

) − ik
(
u[q + ρ] − u[q] − v(ρ)

) = 0, x ∈ ∂ X,

we can apply inequality (2.10) to obtain

∥∥u[q + ρ] − u[q] − v(ρ)
∥∥

L2(X)
�

‖ρ‖L∞(X)‖(u[q + ρ] − u[q])‖L2(X)

inf q
. (4.7)

On the other hand, since u[q + ρ] − u[q] satisfies

(
� + k2 + ik(q + ρ)

)(
u[q + ρ] − u[q]) = −ikρu[q], x ∈ X,

ν · (∇u[q + ρ] − u[q]) − ik
(
u[q + ρ] − u[q]) = 0, x ∈ ∂ X,

inequality (2.10), again, implies

∥∥u[q + ρ] − u[q]∥∥L2(X)
�

‖ρ‖L∞(X)‖u[q]‖L2(X)

inf(q + ρ)
. (4.8)

Combining (4.7) and (4.8) yields (4.6). Using the chain rule in differentiation, we readily get (4.5). �
Using regularity theory, we see that u[q] belongs to L∞(X) in the two-dimensional case. In three

dimensions, we should assume that g ∈ H1/2(∂ X) in order to claim that u[q] ∈ L∞(X). Hence, DF [q]
can be extended so that its domain is L2(X). By abuse of notation, we denote the extended operator
still by DF [q]. The following key lemma of this section establishes an estimate of the L2(X) norm of
v(ρ), the solution to (4.4), in terms of the L2(X) norm of the source ρu[q]. A corollary of this result
allows us to show the invertibility of DF [q] from L2(X) to L2(X).

Lemma 4.2. Assume that the origin 0 is included in X and define

rad(X) = sup
x∈∂ X

|x|.

Suppose that X is star-shaped and balanced with respect to the origin so that

x · νx � γ rad(X)

for some positive number γ . If
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‖q‖L∞ rad(X) � 1

4
,

and k > 2, then

∥∥v(ρ)
∥∥

L2 � η
∥∥ρu[q]∥∥L2 , (4.9)

where

η =
√

8(1 + γ −1)2 + 2d + 29

(11 − 2d)
max

{
rad(X),1

}
. (4.10)

Proof. Let us define the bilinear form

B[v, w] = −
∫
X

∇v · ∇w dx + k2
∫
X

v w dx + ik

∫
X

qv w dx + ik

∫
∂ X

v w ds, (4.11)

and the linear form

G[w] = −
∫
X

ikρu[q]w dx. (4.12)

Then the weak solution of (4.4) is characterized by v satisfying

B[v, w] = G[w], ∀w ∈ H1(X). (4.13)

Using w = v in (4.13) and considering the imaginary and real parts separately, we have

∫
∂ X

|v|2 ds +
∫
X

q|v|2 dx �
∣∣∣∣
∫
X

ρuv dx

∣∣∣∣,
∫
X

|∇v|2 dx − k2
∫
X

|v|2 dx � k

∣∣∣∣
∫
X

ρuv dx

∣∣∣∣. (4.14)

It follows from these inequalities that

‖v‖2
L2(∂ X)

� ‖ρu‖L2‖v‖L2 , (4.15)

and

‖∇v‖2
L2 �

(
k2 + 1

)‖v‖2
L2 + k2

4
‖ρu‖2

L2 . (4.16)

To estimate ‖v‖L2 , we mimic the technique used in [24, Chapter 8]. We have


(∇v · ∇(x · ∇v)
) = |∇v|2 + x · ∇

( |∇v|2
2

)
, 
(

v(x · ∇v)
) = x · ∇

( |v|2
2

)
.
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Integrating the first equation above gives

∫
X


(∇v · ∇(x · ∇v)
)

dx =
∫
X

|∇v|2 dx + 1

2

∫
X

∇ · (x|∇v|2) − (∇ · x)|∇v|2 dx

= 1

2

∫
∂ X

(ν · x)|∇v|2 ds +
(

1 − d

2

)
‖∇v‖2

L2 .

The second term above is due to the fact that ∇ · x = d. Similarly,

k2
∫
X


(
v(x · ∇v)

)
dx = k2

2

∫
X

∇ · (x|v|2) − (∇ · x)|v|2 dx

= −dk2

2

∫
X

|v|2 dx + k2

2

∫
∂ X

(ν · x)|v|2 ds.

Consequently, taking w = −x · ∇v in (4.11) we find

−
B[v, x · ∇v] = dk2

2
‖v‖2

L2 + 1

2

∫
∂ X

(x · ν)|∇v|2 ds − k2

2

∫
∂ X

(x · ν)|v|2 ds

+
(

1 − d

2

)
‖∇v‖2

L2 + 

(

−ik

∫
X

qv(x · ∇v)dx − ik

∫
∂ X

v(x · ∇v)ds

)
.

Equate the above expression with the real part of −
G[x · ∇v], i.e., 
ik
∫

ρux · ∇v dx. We then obtain
the estimate (using the fact that x · ν � γ rad(X)):

dk2

2
‖v‖2

L2 + rad(X)γ

2
‖∇v‖2

L2(∂ X)

� k2 rad(X)

2
‖v‖2

L2(∂ X)
+

(
d

2
− 1

)
‖∇v‖2

L2

+ k rad(X)
(‖q‖L∞‖v‖L2‖∇v‖L2 + ‖v‖L2(∂ X)‖∇v‖L2(∂ X) + ‖ρu‖L2‖∇v‖L2

)
.

On the other hand, it follows from Young’s inequality that

‖v‖L2(∂ X)‖∇v‖L2(∂ X) � ε‖∇v‖2
L2(∂ X)

+ 1

4ε
‖v‖2

L2(∂ X)
,

for all ε > 0. We choose ε such that kε = γ /2 to get

k2 rad(X)

2
‖v‖2

L2(∂ X)
+ k rad(X)‖v‖L2(∂ X)‖∇v‖L2(∂ X)

� γ rad(X)

2
‖∇v‖2

L2(∂ X)
+ k2 rad(X)

2

γ + 1

γ
‖v‖2

L2(∂ X)
.
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Recall (4.15). The left-hand side of the inequality above can be further bounded by

γ rad(X)

2
‖∇v‖2

L2(∂ X)
+ k2 rad(X)

2

γ + 1

γ

(
ε1‖v‖2

L2 + 1

4ε1
‖ρu‖2

L2

)
. (4.17)

Applying Young’s inequality to the term ‖ρu‖L2‖∇v‖L2 with εk rad(X) = 1/8 yields

k rad(X)‖ρu‖L2‖∇v‖L2 �
1

8
‖∇v‖2

L2 + 2k2 rad2(X)‖ρu‖2
L2 . (4.18)

Applying the same technique to the term ‖v‖L2‖∇v‖L2 shows

k rad(X)‖q‖L∞‖v‖L2‖∇v‖L2 �
1

8
‖∇v‖2

L2 + 2k2 rad2(X)‖q‖2
L∞‖v‖2

L2 . (4.19)

Finally, recalling estimate (4.16) and combining the above inequalities, we have

d

2
‖v‖2

L2 �
(

rad(X)

2

γ + 1

γ
ε1 +

(
d

2
− 3

4

)(
1 + k−2) + 2‖q‖2

L∞ rad2(X)

)
‖v‖2

L2

+
(

rad(X)

8ε1

γ + 1

γ
+ 2 rad2(X) + 1

4

(
d

2
− 3

4

))
‖ρu‖2

L2 . (4.20)

Suppose that the wave number k is larger than 2 and the product ‖q‖L∞ rad(X) is smaller than
1/4. Then, if 4ε1 is chosen to be (rad(X)(γ + 1)/γ )−1, the coefficient in front of ‖v‖2

L2 on the right
is less than 5d/8 − 11/16. Then ‖v‖L2 term on the left dominates and we have

(
11

16
− d

8

)
‖v‖2

L2 �
(

(γ + 1)2

2γ 2
rad2(X) + 2 rad2(X) + 1

4

(
d

2
− 3

4

))
‖ρu‖2

L2 .

Estimate (4.9) follows from this immediately. �
Lemma 4.3. Let η denote the constant (4.10). Suppose that the absorption coefficient q is such that

η‖q‖L∞(X) <
1

4
. (4.21)

Suppose also that |u[q]| is bounded from below by a positive number. Then the map DF [q], as an operator
from L2(X) to L2(X), is invertible. Moreover,

∥∥D F [q]−1
∥∥
L(L2(X))

� 1

inf |u[q]|2√1 − 4η‖q‖L∞(X)

. (4.22)

Proof. Define

T [q](ρ) = ∣∣u[q]∣∣−2DF [q](ρ) − ρ.

It is not hard to see that T is compact since it can be decomposed as

T : L2(X) → H1(X) ↪→ L2(X) → L2(X)

ρ → v(ρ) → v(ρ) → 2q
∣∣u[q]∣∣−2
(

u[q]v(ρ)
)
.
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The continuity of maps in the diagram above can be deduced from Proposition 2.7 and the choice of
g such that |u[q]| > 0 in X .

On the other hand, a straightforward calculation shows that

∥∥DF [q](ρ)
∥∥2

L2(X)
� inf

∣∣u[q]∣∣4‖ρ‖2
L2(X)

[
1 − 4η‖q‖L∞(X)

]
. (4.23)

In fact,

∥∥DF [q](ρ)
∥∥2

L2(X)
=

∫
X

[
ρ2

∣∣u[q]∣∣4 + 4q2
2(u[q]v(ρ)
) + 4qρ

∣∣u[q]∣∣2
(
u[q]v(ρ)

)]
dx

� inf
∣∣u[q]∣∣2

∫
X

[
ρ2

∣∣u[q]∣∣2 + 4q2
2(u[q]v(ρ))

|u[q]|2 + 4q
(
ρu[q]v(ρ)

)]
dx

� inf
∣∣u[q]∣∣2

∫
X

[
ρ2

∣∣u[q]∣∣2 − 4‖q‖L∞(X)

∣∣ρu[q]v(ρ)
∣∣]dx

� inf
∣∣u[q]∣∣2[∥∥ρ∣∣u[q]∣∣∥∥2

L2(X)
− 4‖q‖L∞(X)

∥∥ρu[q]∥∥L2(X)

∥∥v(ρ)
∥∥

L2(X)

]
� inf

∣∣u[q]∣∣2∥∥ρu[q]∥∥2
L2(X)

[
1 − 4η‖q‖L∞(X)

]
.

Since η‖q‖L∞(X) < 1/4, we find (4.23). It follows that the kernel of DF [q] is {0}. Hence, by the Fred-
holm theory, DF [q] is invertible. Moreover, (4.23) also implies (4.22). �
Remark 4.4. Recall the definition of η in (4.10). When X is a ball, η is roughly three to four times
the radius of X in dimensions three or two. Condition (4.21) hence requires that ‖q‖L∞ rad(X), which
can be interpreted as the typical absorption rate as signals propagate to the boundary, should be
sufficiently small.

5. Measurement noise and resolution enhancement

In this section, we consider additive noise in the data set E given in (1.2).

5.1. Noise model

As described in Proposition 2.6, the data E are acquired by measuring several sets of absorbed ra-
diations: q|u1 +u j |2, q|iu1 +u j |2, q|u1|2, and q|u j|2 for j = 2, . . . ,d+1. In practice, the measurements
of these absorbed energies are corrupted by additive noises. We model a typical energy measurement
by

Em(x) = E(x) + σ Wδ(x). (5.1)

Here and in the sequel, the superscript “m” indicates measured quantity, and E itself is the pure
quantity without noise. Wδ is a stationary random field with mean zero and covariance function of
the form

E
[
Wδ(x)Wδ(y)

] = E
[
Wδ(0)Wδ(x − y)

] = R

(
x − y

δ

)
, (5.2)
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where R is an integrable function normalized so that R(0) = 1. In this additive noise model, σ 2 is the
variance of the noise, δ is the correlation length which is related to the distance between measure-
ment points.

The random process Wδ is assumed to be bounded almost surely by a constant independent of δ.
This constant is assumed to be smaller than Emin which is a lower bound for the real energy. This
technical hypothesis ensures that Em is bounded from below by a positive constant for any σ � 1 and
for any δ.

In the forthcoming analysis, both the noise variance σ and the noise correlation length δ will be
supposed to be small. We assume that the measured data Em = (Em

j )d+1
j=1 are given by

Em
1 (x) = E1(x) + σ Wδ1(x),

Em
j (x) = E j(x) + σ Uδ j(x) + iσ V δ j(x), j = 2, . . . ,d + 1. (5.3)

According to the procedure of measuring E j , the random fields Uδ j and V δ j are given by (Wδ1 j −
Wδ1 − Wδ j)/2 and (Wδ1 j′ − Wδ1 − Wδ j)/2 respectively, where Wδ j , Wδ1 j and Wδ1 j′ correspond to
the additive noises of the energy measurements q|u j |2, q|u1 + u j |2 and q|iu1 + u j |2, respectively. It
is natural to assume that Wδ1, Wδ j , Wδ1 j and Wδ1 j′ are mutually independent and have the same
statistical distribution as Wδ in (5.1). As a consequence, Uδ j , V δ j and Wδ1 are correlated.

5.2. Initial guess with smoothed data

We smooth the data E by using the convolution kernel

ϕδ(x) := 1

δdp
ϕ

(
x

δp

)
, (5.4)

where p ∈ (0, d
d+6 ) and ϕ is in the Schwartz space of smooth non-negative functions that decay

rapidly at infinity and that satisfy
∫
Rd ϕ(x)dx = 1. The condition p < d/(d + 6) will be clear later. The

following lemma will be useful.

Lemma 5.1. Let |γ | denote the sum of all components of the multi-index γ and ∂γ ϕ (resp. ∂γ ϕδ) denote the
usual γ -partial derivative of ϕ (resp. ϕδ). For any δ we have

E
∣∣W1δ ∗ ∂γ ϕδ

∣∣2 � δd−(d+2|γ |)p‖R‖L1(Rd)

∥∥∂γ ϕ
∥∥2

L2(Rd)
. (5.5)

More precisely, for δ � 1, we have

E
∣∣W1δ ∗ ∂γ ϕδ

∣∣2 = δd−(d+2|γ |)p
∫
Rd

R(y)dy

∫
Rd

∣∣∂γ ϕ
(

y′)∣∣2
dy′ + o

(
δd−(d+2|γ |)p)

. (5.6)

Proof. The variance (5.5) can be written as

E
∣∣W1δ ∗ ∂γ ϕδ

∣∣2 = E
1

δ2p|γ |+2dp

∫
Rd

∫
Rd

W1δ(x − y)W1δ

(
x − y′)(∂γ ϕ

)( y

δp

)(
∂γ ϕ

)( y′

δp

)
dy dy′

= 1

δ2p|γ |+2dp

∫
d

∫
d

R

(
y − y′

δ

)(
∂γ ϕ

)( y

δp

)(
∂γ ϕ

)( y′

δp

)
dy dy′.
R R
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We apply the change of variable (y − y′)/δ → y′ and y/δp → y, and take advantage of the resulting
Jacobian. We verify that the variance can be written as

E
∣∣W1δ ∗ ∂γ ϕδ

∣∣2 = δd+dp−2p|γ |−2dp
∫
Rd

R
(

y′) ∫
Rd

(
∂γ ϕ

)
(y)

(
∂γ ϕ

)(
y − δ1−p y′)dy dy′.

Using Cauchy–Schwarz inequality and the fact that ∂γ ϕ ∈ L2 and R ∈ L1, we obtain (5.5). Since
∂γ ϕ ∈ L2, p < 1, and R is integrable, (5.6) is also easily verified by the dominated convergence theo-
rem. �
Remark 5.2. The above calculation works also for U jδ and V jδ .

We smooth the data by evaluating the convolution with the kernel ϕδ :

Es
j = Em

j ∗ ϕδ, j = 1, . . . ,d + 1, (5.7)

which gives

Es
1 = E1 ∗ ϕδ + σ W1δ ∗ ϕδ, (5.8)

Es
j = E j ∗ ϕδ + σ U jδ ∗ ϕδ + iσ V jδ ∗ ϕδ, j = 2, . . . ,d + 1. (5.9)

Here and below, the superscript “s” indicates smoothed quantities. The parameter δp can be in-
terpreted as the size of the averaging window. To simplify the notation, E jδ will be used as the
short-hand notation for the smoothed unperturbed data E j ∗ ϕδ in the sequel.

Proposition 5.3. If we substitute the smoothed measured data (Es
j)

d+1
j=1 into the reconstruction formula (3.9):

qs(x) = −
(as)	(as) + div	(as)

2k
, (5.10)

with as = (As)
−1[(∇T (As)

T
)T ], As = (∂lα

s
j+1) j,l=1,...,d, and αs

j = Es
j/Es

1 , then the estimate qs satisfies:

sup
x∈X

E
[∣∣qs(x) − qδ(x)

∣∣2] � Cσ 2δd−(d+6)p, (5.11)

where

qδ(x) = −
(aδ)	(aδ) + div	(aδ)

2k

is obtained by substituting the smoothed unperturbed data (E jδ)
d+1
j=1 into the reconstruction formula (3.9).

Proof. We substitute the smoothed data (Es
j)

d+1
j=1 into the reconstruction formula (3.9). Recall the

definitions of A and α j in (3.5) and (3.1). Then,

αs
j = E jδ + σ U jδ ∗ ϕδ + iσ V jδ ∗ ϕδ

E + σ W ∗ ϕ
. (5.12)
1δ 1δ δ
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When σ � 1, we can linearize this term and find that

αs
j = E jδ

E1δ

− σ
W1δ ∗ ϕδ

E1δ

E jδ

E1δ

+ σ
U jδ ∗ ϕδ

E1δ

+ iσ
V jδ ∗ ϕδ

E1δ

+ O
(
σ 2). (5.13)

The coefficients of the matrix As are defined by As
jl = ∂lα

s
j+1 and they can be expanded from (5.12)

as

As
jl = Aδ

jl + σ Aδ(1)

jl + o
(
σδd/2−(d+2)p/2), 1 � j, l � d, (5.14)

where

Aδ
jl = ∂l

E j+1δ

E1δ

, Aδ(1)

jl = − W1δ ∗ ∂lϕδ

E1δ

E j+1δ

E1δ

+ U j+1δ ∗ ∂lϕδ

E1δ

+ i
V j+1δ ∗ ∂lϕδ

E1δ

.

The leading-order error terms σ Aδ(1)

jl have zero means and their variances are of order O (σ 2δd−(d+2)p)

according to Lemma 5.1, provided that the functions E j ’s are sufficiently smooth with bounded deriva-

tives. The following error terms like W1δ ∗ ϕδ∂l(
E j+1δ

E2
1δ

) are smaller since their square means are of

order O (σ 2δd−dp).
Since Aδ is a smoothed version of A, which was defined in (3.5) and whose determinant can

be bounded from below by a large constant (see Proposition 2.3), the inverse of Aδ is well-defined.
Linearizing (As)−1, we have

(
As)−1 = (

Aδ
)−1 + σ

(
Aδ

)−1
Aδ(1)

(
Aδ

)−1 + o
(
σδd/2−(d+2)p/2).

Similarly, the vector (∇T AsT
)T can be decomposed as

(∇T AsT )
j = (∇T AT )

j + σ

(
− W1δ ∗ �ϕδ

E1δ

E j+1δ

E1δ

+ U j+1δ ∗ �ϕδ

E1δ

+ i
V j+1δ ∗ �ϕδ

E1δ

)

+ o
(
σδd/2−(d+4)p/2).

Finally, we have for the vector as = (As)
−1

(∇T AsT
)T :

as
j = aδ

j + σ

d∑
l=1

(
Aδ

)−1
jl

(
− W1δ ∗ �ϕδ

E1δ

El+1δ

E1δ

+ Ul+1δ ∗ �ϕδ

E1δ

+ i
Vl+1δ ∗ �ϕδ

E1δ

)

+ o
(
σδd/2−(d+4)p/2),

and

div as = div aδ + σ

d∑
j,l=1

(
Aδ

)−1
jl

(
− W1δ ∗ (∂ j�ϕ)δ

E1δ

El+1δ

E1δ

+ Ul+1δ ∗ (∂ j�ϕ)δ

E1δ

+ i
Vl+1δ ∗ (∂ j�ϕ)δ

E1δ

)

+ o
(
σδd/2−(d+6)p/2).

The vector aδ = (Aδ)
−1

(∇T Aδ T
)T is obtained by applying formulas (3.1) and (3.5) to the smoothed

unperturbed data (E jδ)
d+1
j=1 . The leading-order error terms have zero means and their variances are of

order O (σ 2δd−(d+6)p) according to Lemma 5.1. Our choice p < d
d+6 guarantees that the noisy data are
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smoothed enough so that the terms above have variance of order smaller than σ 2. To summarize, if
we apply (3.9) to the smoothed data (Es

j)
d+1
j=1 , then we get

qs(x) = qδ(x) − σ

2k

{
d∑

j,l=1

	(
Aδ

)−1
jl

(
− W1δ ∗ ∂ j�ϕδ

E1δ

El+1δ

E1δ

+ Ul+1δ ∗ ∂ j�ϕδ

E1δ

)

+ 
(
Aδ

)−1
jl

Vl+1δ ∗ ∂ j�ϕδ

E1δ

}
+ o

(
σδd/2−(d+6)p/2), (5.15)

from which we deduce the desired result. �
The terms qδ can be shown to be close to the real absorption parameter qo uniformly in x (we

show this in Theorem 5.4). However, it is impossible to separate qδ from the noise, that is the other
terms in (5.15). Nevertheless, the estimate qs is a good initial guess in the mean square sense as
shown by the following theorem.

Theorem 5.4. Suppose that the pure data (E j)
d+1
j=1 belong to C3,ε for some positive real number ε. Then, we

have

‖qδ − qo‖L∞(X) � Cδεp . (5.16)

As a result, estimate (5.10) obtained from the smoothed data satisfies

sup
x∈X

E
[∣∣qs(x) − qo(x)

∣∣2] � C
(
δ2εp + σ 2δd−(d+6)p)

. (5.17)

Proof. Under the conditions of the theorem, the inequality |∂γ E j(x − y) − ∂γ E j(x)| � C |y|ε holds for
some constant C and for any multi-index γ with |γ | � 3. As a result, we have the following estimate
as an analog of Lemma 5.1:

∣∣∂γ E jδ(x) − ∂γ E j(x)
∣∣ =

∣∣∣∣ 1

δdp

∫
Rd

(
∂γ E j(x − y) − ∂γ E j(x)

)
ϕ

(
y

δp

)
dy

∣∣∣∣
� C

1

δdp

∫
Rd

|y|ε
∣∣∣∣ϕ

(
y

δp

)∣∣∣∣dy = Cδεp
∫
Rd

|y|ε∣∣ϕ(y)
∣∣dy � Cδεp . (5.18)

Then the estimate of qδ follows because the reconstruction formula in (3.9) depends continuously on
the data and their derivatives. For the second estimate, we apply the triangle inequality and use the
control of the stochastic terms in the linearization procedure. �
Remark 5.5. Estimate (5.17) is a bit over pessimistic. Indeed, it does not imply that qs is positive,
which is a physical constraint for the absorption parameter. We will exploit this remark in the next
section.

5.3. The optimization step and resolution enhancement

Now we refine the above initial guess qs by an optimal control approach. We seek for the least
square estimate of the discrepancy functional
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J [q] =
∫
X

∣∣F [q](x) − Es
1(x)

∣∣2
dx. (5.19)

Here, Es
1 is the smoothed data (E1 + σ W1δ) ∗ ϕδ and F [q] = q|u1[q]|2 is the absorbed heat energy

with boundary condition g1.
In Theorem 5.4, the initial guess qs is shown to be close to the true absorption coefficient. This

allows us to approximate the integrand in the definition of J by its linearization around qs; that is,

J [q] ≈
∫
X

∣∣DF
[
qs](q − qs) − bs

∣∣2
dx, (5.20)

where bs = Es
1 − F [qs] is the residue. In the case when DF [qs] is invertible from L2 to L2, the least

square solution of the approximate discrepancy functional is given by

q∗ = qs + (
DF

[
qs])−1

bs. (5.21)

The following result shows that q∗ is a refinement of qs in the mean square sense (compared to
Theorem 5.4).

Theorem 5.6. Recall that qo denotes the true absorption coefficient and assume that the condition in Theo-
rem 5.4 holds. We have

E
[‖q∗ − qo‖2

L2(X)

] = o
(
δ2εp + σ 2δd−(d+6)p) + O

(
δ2p + σ 2δd(1−p)

)
. (5.22)

Proof. From the definition of bs and Es
1, the residue can be expanded as

bs = E1 − F
[
qs] + (E1δ − E1) + σ W1δ ∗ ϕδ.

Since E1 = F [qo], the difference F [qo] − F [qs] can be linearized as DF [qs](qo − qs) + o(qo − qs). This,
together with (5.21), implies

q∗ − qo = (
DF

[
qs])−1{

σ W1δ ∗ ϕδ + (E1δ − E1) + o
(
qo − qs)}. (5.23)

Lemma 5.1 shows that σ W1δ ∗ϕδ has mean square of order σ 2δd(1−p); the calculation in (5.18) shows
that E1δ − E1 can be bounded uniformly by Cδp ; the term qo − qs is also controlled in (5.17). Conse-
quently, since DF [qs] has bounded inverse (see Lemma 4.3), the desired estimate holds. �
Remark 5.7. Assume that qo is bounded from below and above by two known positive numbers qmin
and qmax. Let

q̂∗ = min
{

max{q∗,qmin},qmax
} ∈ [qmin,qmax].

We can see that

‖q̂∗ − qo‖L2(X) � ‖q∗ − qo‖L2(X).

We note that there is no guarantee that q∗ is positive, but the modified version q̂∗ is. In addition
to this advantage, the estimate above shows that q̂∗ is a better approximation of qo in comparison
with q∗ . Further, the range of q̂∗ allows us to make iterations for further corrections.
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Remark 5.8. Finally, we note that the above result also shows that the optimization step enhances the
resolution. In fact, from (5.21) it follows that q∗ contains higher oscillations than qs and therefore,
yields a more resolved approximation of qo .

6. Conclusion

In this paper we have derived an exact reconstruction formula for the absorption coefficient from
thermo-acoustic data associated with a proper set of measurements. Using a noise model for the data,
we have regularized this formula in order to obtain a good initial guess. We have also performed a
refinement of the initial guess using an optimal control approach and shown that this procedure re-
duces the occurring errors and yields a resolution enhancement. A challenging problem is to estimate
analytically the resolution. It would be also very interesting to study the reconstruction problem in
the case of incomplete measurements, where the thermal energy is known only on an open subset of
the domain. The numerical implementation of our approach in this paper is the subject of forthcom-
ing work, which will be published elsewhere.
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