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CORRECTOR ANALYSIS OF A HETEROGENEOUS MULTI-SCALE SCHEME
FOR ELLIPTIC EQUATIONS WITH RANDOM POTENTIAL

Guillaume Bal1 and Wenjia Jing2

Abstract. This paper analyzes the random fluctuations obtained by a heterogeneous multi-scale first-
order finite element method applied to solve elliptic equations with a random potential. Several multi-
scale numerical algorithms have been shown to correctly capture the homogenized limit of solutions of
elliptic equations with coefficients modeled as stationary and ergodic random fields. Because theoretical
results are available in the continuum setting for such equations, we consider here the case of a second-
order elliptic equations with random potential in two dimensions of space. We show that the random
fluctuations of such solutions are correctly estimated by the heterogeneous multi-scale algorithm when
appropriate fine-scale problems are solved on subsets that cover the whole computational domain.
However, when the fine-scale problems are solved over patches that do not cover the entire domain,
the random fluctuations may or may not be estimated accurately. In the case of random potentials
with short-range interactions, the variance of the random fluctuations is amplified as the inverse of
the fraction of the medium covered by the patches. In the case of random potentials with long-range
interactions, however, such an amplification does not occur and random fluctuations are correctly
captured independent of the (macroscopic) size of the patches. These results are consistent with those
obtained in [9] for more general equations in the one-dimensional setting and provide indications on the
loss in accuracy that results from using coarser, and hence computationally less intensive, algorithms.
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1. Introduction

Differential equations with highly oscillatory coefficients arise naturally in many areas of applied sciences. The
microscopic details of such equations are difficult to compute. Nevertheless, when the heterogeneous medium has
certain properties involving separation of scales, periodicity, or stationary ergodicity, homogenization theories
have been developed and they provide macroscopic models for the heterogeneous equations; see e.g. [20,22,26].
Many multi-scale algorithms have been devised to capture as much of the microscopic scale as possible without
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solving all the details of the micro-structure [1, 2, 15, 16, 19]. Such a scheme is viewed as correct if it can well
approximate the macroscopic solution when the heterogeneous medium satisfies conditions for homogenization to
happen. Homogenization theory thus serves as a benchmark which ensures that the multi-scale scheme performs
well in controlled environments, with the hope that it will still perform well in non-controlled environments, for
instance when ergodicity and stationarity assumptions are not valid.

In many applications such as parameter estimation and uncertainty quantification, estimating the ran-
dom fluctuations (finding the random corrector) in the solution is as important as finding its homogenized
limit [10, 24]. When this is relevant, another benchmark for multi-scale numerical schemes that addresses the
limiting stochasticity of the solutions is plausible: one computes the limiting (probability) distribution of the
random fluctuation given by the multi-scale algorithm in the limit that the correlation length of the medium
tends to 0 while the discretization size h of the scheme is fixed. If this h-dependent distribution converges, as
h→ 0, to the limiting distribution of the corrector of the continuous equation (before discretization), we deduce
that the multi-scale algorithm asymptotically correctly captures the randomness in the solution and passes the
random corrector test.

Such proposal requires a controlled environment in which the theory of correctors is available. We introduced
and analyzed such a benchmark in [9] using an ODE model whose corrector theory was studied in [8, 12]. The
main purpose of this paper is to provide and analyze another benchmark using a PDE model whose corrector
theory was studied in [6, 7, 17], hence to generalize the main results of [9] in higher dimensional spaces. In the
rest of this introduction, we first review some main results in [9]. Then we introduce the results of the current
paper that address the corrector test using an elliptic PDE with random potential.

1.1. Corrector test using an ODE with random elliptic coefficient

The corrector test is based on the homogenization and corrector theory of the following equation:⎧⎪⎨⎪⎩
− d

dx
a
(x
ε
, ω

) d
dx
uε(x, ω) = f(x), x ∈ (0, 1),

uε(0, ω) = uε(1, ω) = 0.
(1.1)

Here, the diffusion coefficient a(x
ε , ω) is obtained by rescaling a(x, ω) which is a random process on some

probability space (Ω,F ,P). It is well-known [22, 26] that (and this generalizes to higher dimensions as well)
when a(x, ω) is stationary, ergodic, and uniformly elliptic, then the solution uε converges to the following
homogenized equation with deterministic and constant coefficient:⎧⎪⎨⎪⎩

− d
dx
a∗

d
dx
u0(x) = f(x), x ∈ (0, 1),

u0(0) = u0(1) = 0.
(1.2)

In the one-dimensional case, the coefficient a∗ is the harmonic mean of a(x, ω), i.e., the inverse of the expectation
of a−1. We denote by q(x) the deviation of 1/a(x) from its mean 1/a∗. The corrector theories for the limiting
distribution of uε − u0 were studied by [8, 12]. The results in these papers are represented in path (iii) of the
diagram in Figure 1. The limiting distribution showing at the lower-right corner depends on the de-correlation
rate of q(x). When q is strongly mixing with integrable mixing coefficient (see (2.3) below), then β = 1 and
W β is a standard Brownian motion multiplied by σ, a factor determined by the correlation function of q as
detailed in (2.2) below. When q has a heavy tail (is long-range) in the sense of (L1-L3) in Section 2, we should
take β = α, α < 1 being defined in (2.4), and Wα is the fractional Brownian motion with Hurst index 1 − α

2
multiplied by certain factor. These convergence results are understood as convergence in distribution in the
space of continuous paths C([0, 1]).

The corrector test for multi-scale numerical schemes is therefore the following: let h be the discretization size
and uh

ε (x) the solution to (1.1) yielded by the scheme. Let uh
0 (x) be the solution yielded by the same scheme
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uh
ε − uh

0√
εβ

(x, ω)
h→0−−−−−→
(i)

uε − u0√
εβ

(x, ω)

ε→0

⏐⏐	(ii) (iii)

⏐⏐	ε→0∫
Lh(x, y)dW β(y)

h→0−−−−−→
(iv)

∫
(a∗)2

∂G

∂y
(x, y)

∂u

∂y
(y)dW β(y).

Figure 1. A diagram describing the corrector test with a random ODE.

applied to (1.2). The discrete corrector is uh
ε − uh

0 . According to the de-correlation property of q(x), we choose
εβ and interpret W β as before. We say that a numerical procedure is consistent with the corrector theory and
that it passes the corrector test when the diagram in Figure 1 commutes:

More precisely, we need to characterize the intermediate limit in path (ii) which appears on the left of the
diagram. In this step, h is fixed while the correlation length ε is sent to zero. The intermediate limit distribution
is h-dependent. Very often, it can be described as a stochastic integral as shown and we need to determine the
kernel function Lh(x, y). Next, we need to verify the converge path (iv) which is taken as h→ 0. The numerical
scheme is said to pass (or fail) the corrector test if this limit holds (or does not).

In [9], we considered a Finite Element Method (FEM) based scheme in the framework of Heterogeneous
Multiscale Methods (HMM), which is a general methodology for designing sublinear algorithms for multi-scale
problems by exploiting special features of the problem, e.g. scale separation [16]. The macro-solver of this FEM-
HMM scheme uses the standard P1 element on a uniform grid of size h. The corresponding discrete bilinear
form which approximates the continuous bilinear form associated to (1.1) is

Ah
(
uh, vh

)
=

N∑
j=1

duh

dx
(xj)a∗

dvh

dx
(xj)h ≈

∫ 1

0

duh

dx
(x)a∗

dvh

dx
(x)dx =: A

(
uh, vh

)
. (1.3)

Here, a simple middle-point quadrature is used for the integral and xj , j = 1, . . . , N = 1/h are the evaluation
points. Since the effective coefficient a∗ is unknown a priori, the FEM-HMM scheme approximates the discrete
integrand by

duh

dx
(xj)a∗

dvh

dx
(xj) ≈

1
δ

∫
Ijδ

dũh

dx
(x)aε(x)

dṽh

dx
(x)dx,

where Ijδ = (xj − δ/2, xj + δ/2) is a patch inside the discretization interval Ij = (xj − h/2, xj + h/2); the
functions ũh and ṽh are given in terms of {φ̃j} where {φj} are the nodal bases and {φ̃j} are given by the
micro-solver ⎧⎪⎨⎪⎩

− d
dx
aε(x)

d
dx
φ̃j(x) = 0, x ∈ Ijδ ,

φ̃j(x) = φj(x), x ∈ ∂Ijδ .

(1.4)

When δ = h, this scheme coincides with those in [1,19]. It is known that one can choose δ < h to greatly reduce
computational cost while still approximating the macroscopic solution quite well [16].

The main result of [9] shows that the corrector test for the above FEM-HMM scheme depends on the
correlation structure of the random media. More precisely, for a long range correlated media (L1-L3 in Sect. 2.1),
the scheme is robust for the corrector test: the final limit in path (iv) of the diagram in Figure 1 agrees with the
theoretical Gaussian limit for all δ ≤ h. For a short range correlated media (S1-S3 in Sect. 2.1), however, this
holds true only for δ = h. The final limit for δ < h is an amplified version of the theoretical Gaussian limit with
an amplification factor (h/δ)1/2, which shows that reducing the computational cost results in an amplification
of the variance of the numerical calculations.
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uh,δ

ε − uh,δ
0√

εβ
(x,ω), ϕ

〉
h=δ→0−−−−−→

(i)

〈
uε − u0√

εβ
(x, ω), ϕ

〉
ε→0

h,δ fixed
δ≤h

⏐⏐	(ii) (iii)

⏐⏐	ε→0∫
Y

Lh,δ[ϕ](x, y)dW β(y)

h→0
h
δ

fixed−−−−−→
(iv)

∫
Y

ϕ(x)G(x, y)u0(y)dW β(y).

Figure 2. A diagram describing the corrector test with a random PDE.

1.2. Corrector test using elliptic PDE with random potential

The main objective of this paper is to provide a two dimensional corrector test. Such a strategy generalizes
to arbitrary space dimensions, although for concreteness, we concentrate on the two-dimensional setting. A full
theory of random fluctuations for second order elliptic PDE with highly oscillating random diffusion coefficients
in dimension higher than one remains open and we can not use it for the corrector test. Instead, we base the
test on the following elliptic equation with random potential:{ −Δuε + (q0 + qε)uε(x, ω) = f, x ∈ Y,

uε(x, ω) = 0, x ∈ ∂Y.
(1.5)

The coefficient in the potential term consists of a smooth varying function q0, and a highly oscillatory random
function q(ε−1x, ω) denoted by qε(x) for simplicity. The random field q(x, ω) is assumed to be stationary ergodic
and mean-zero. When ε goes to zero, the solution uε converges in L2(Ω × Y ) to the homogenized solution u0

that solves { −Δu0 + q0u0(x) = f, x ∈ Y,

u0(x) = 0, x ∈ ∂Y.
(1.6)

The corrector theory for the above homogenization is well understood; see [6,7,17]. When the corrector uε−u0

is properly scaled, it converges to a stochastic integral in a weak sense. This is described by the path (iii) of the
diagram in Figure 2. Both the scaling factor and the limit depend on the correlation structure of the random
field. These results are reviewed in Section 2 below. As in the ODE (one-dimensional) setting, a corrector test
can be sketched as in the diagram of Figure 2. For a given multi-scale scheme, which yields uh,δ

ε and uh,δ
0 when it

is applied to (1.5) and (1.6), respectively, the main tasks are again to characterize the intermediate convergence
in path (ii) where ε is sent to zero first while the parameters h and δ of the scheme are fixed, and to check the
validity of path (iv) where h and δ are sent to zero afterwards.

Now we introduce a heterogeneous multi-scale scheme for (1.5). The weak formulation of the equation is to
find uε in the Sobolev space H1

0 (Y ) so that Aε(uε, v) = 〈f, v〉 for all v ∈ H1
0 (Y ). Here and below, 〈·, ·〉 denotes

the usual pairing; Aε is the bilinear form

Aε(u, v) =
∫

Y

∇u · ∇v + (q0 + qε)uv dx, ∀u, v ∈ H1
0 (Y ). (1.7)

Since we always assume that q0 + qε is positive, the weak formulation is well-posed thanks to the Lax–Milgram
lemma. The scheme that will be considered is based on FEM. For simplicity, Y is taken as the two dimensional
unit square (0, 1)2. Let Th be the standard uniform triangulation as illustrated in Figure 3. Here, the typical
length of the triangles is h = 1/N and N is the number of partitions on the axes. We consider first-order
Lagrange elements. Associated to each (interior) nodal point (ih, jh), there is a continuous function φij which is
linear polynomial restricted to each triangle K ∈ Th and which has value one at this nodal point and has value
zero at all other nodal points. Note that the index i, j runs from 1 to N − 1. The space V h spanned by {φij}
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Figure 3. Left: triangulation of the unit square. Right: shrinking from K to Kδ with respect
to the barycenter.

is a finite dimensional subspace of H1
0 (Y ). The heterogeneous multi-scale scheme for (1.5) is to find uh,δ

ε ∈ V h

that satisfies
Ah,δ

ε

(
uh,δ

ε , vh
)

= 〈f, vh〉, for all vh ∈ V h, (1.8)

where Ah,δ
ε is a bilinear form on V h × V h which approximates Aε as follows:

Ah,δ
ε (uh, vh) :=

∑
K∈Th

|K|
(

1
|Kδ|

∫
Kδ

∇uh · ∇vh + (q0 + qε)uhvh dx
)
. (1.9)

Here, Kδ ⊂ K is a patch centered at the barycenter of K and has typical length δ (see the remark below);
the symbol | · | means taking the area. Ah,δ

ε can be viewed as a numerical quadrature for the integral in (1.7)
using averaged value around the barycenters of the elements. The scheme (1.8) is analyzed in Section 3 and it
is well-posed.

When the above scheme is applied to the homogenized equation (1.6), it yields a solution uh,δ
0 in V h so that

Ah,δ
0 (uh,δ

0 , vh) = 〈f, vh〉, for all vh ∈ V h, (1.10)

and Ah,δ
0 is given by

Ah,δ
0 (uh, vh) :=

∑
K∈Th

|K|
(

1
|Kδ|

∫
Kδ

∇uh · ∇vh + q0u
hvh dx

)
.

The discrete corrector function is defined to be the difference between uh,δ
ε and uh,δ

0 .

Remark 1.1. The patch Kδ is the two dimensional analog of Iδ in the aforementioned FEM-HMM scheme
for the ODE setting. The ratio |Kδ|/|K| hence measures savings in the computational cost. As in the ODE
setting, we expect the corrector test to depend on the ratios, say in the SRC setting. To simplify notations,
we assume that Kδ is chosen in the following way: Consider a typical triangle K with vertices (0, 0), (h, 0)
and (0, h). Kδ is obtained by shrinking K with respect to the barycenter (h/3, h/3) so that it has vertices
((h − δ)/3, (h− δ)/3), ((h + 2δ)/3, (h− δ)/3) and ((h − δ)/3, (h+ 2δ)/3); see Figure 3. Consequently we have
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|Kδ|/|K| = (δ/h)d with d = 2. More general patches than those of the paper could also be considered without
changing our main conclusions. Throughout this paper, we assume that the parameters h and δ, which obviously
satisfies δ ≤ h from the above construction of Kδ, are much larger than the correlation length ε of the random
field so that mixing happens in the integrals of (1.8). Further comments on the numerical scheme can be found
in Section 1.4 below.

1.3. Main results

The main results of this paper concern the limiting distribution of the discrete corrector uh,δ
ε − uh,δ

0 with
proper scaling. They depend on the correlation structure of the random field qε. We refer to Section 2.1 below
for notation. In particular, SRC (respectively LRC) stands for short (respectively long) range correlation.

Theorem 1.2. Let uh,δ
ε and uh,δ

0 be the solutions obtained from the heterogeneous multi-scale schemes (1.8)
and (1.10), respectively. Assume that q0 ∈ C1(Y ) is positive and f is in C2(Y ). For an arbitrary test function
ϕ ∈ C2(Y ), the following holds.

(1) In the SRC setting, i.e. assume that the random field q(x, ω) satisfies (S1)(S2)(S3) of Section 2.1. Let σ be
defined by (2.2) and Lh,δ[ϕ] be the bounded function defined in (4.18) below. Then as ε goes to zero while h
and δ with δ ≤ h are kept fixed, we have

1√
εd

∫
Y

ϕ(x)[uh,δ
ε − uh,δ

0 ]dx distribution−−−−−−−→
ε→0

σ

∫
Y

Lh,δ[ϕ](x)dW (x), (1.11)

where W is the standard multi-parameter Wiener process.
(2) Assume the same setting in (1). Let G be the solution operator of (1.6). Then as h and δ go to zero with

the ratio δ/h being fixed, we have

σ

∫
Y

Lh,δ[ϕ](x)dW (x) distribution−−−−−−−→
h→0

h

δ
σ

∫
Y

Gϕ(x)u0(x)dW (x). (1.12)

(3) In the LRC setting, i.e. assume that q(x, ω) satisfies (L1)(L2)(L3) of Section 2.1. Let κ be defined as in the
line after (2.5).Then convergence results in item (1) and (2) are replaced by

1√
εα

∫
Y

ϕ(x)
[
uh,δ

ε − uh,δ
0

]
dx distribution−−−−−−−→

ε→0

√
κ

∫
Y

Lh,δ[ϕ](x)Wα(dx), (1.13)

and √
κ

∫
Y

Lh,δ[ϕ](x)Wα(dx) distribution−−−−−−−→
h→0

√
κ

∫
Y

Gϕ(x)u0(x)Wα(dx), (1.14)

where Wα(dy) is formally defined to be W̃α(y)dy and W̃α(y) is a Gaussian random field with covariance function
given by E{W̃α(x)W̃α(y)} = |x− y|−α.

Remark 1.3. We refer the reader to [21] for theories of stochastic integrals with respect to multi-parameter
random processes. In fact, the limits above can be written as the following Gaussian distributions:

σ

∫
Y

Gϕ(x)u0(x)dW (x) distribution= N
(
0, σ2‖u0Gϕ‖2

L2

)
, (1.15)

√
κ

∫
Y

Gϕ(x)u0(x)Wα(dx) distribution= N
(

0,
∫

Y 2

κ(u0Gϕ) ⊗ (u0Gϕ)
|x− y|α dxdy

)
. (1.16)

Comparing these results with Theorem 2.1 below which recalls the theory of random fluctuations in the
continuous setting, and with the paths in Figure 2, we find in the LRC setting that the multi-scale scheme (1.8)
captures the theoretical Gaussian limit fluctuations after ε and h are successively sent to zero. Furthermore, the
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scheme is robust in the sense that it provides the correct fluctuations for arbitrary small patches with 0 < δ < h
(both being independent of and hence much larger than ε). For SRC medium, however, the correct limit for the
random fluctuations is captured only when δ = h, that is Kδ = K for all K ∈ Th. The amplification effect in
the case of δ < h is again characterized by (h/δ)

d
2 . The main results hence generalize the findings of [9] to a

higher dimensional setting.

Remark 1.4. The main results are stated under the assumptions in Remark 1.1. When the ratios {|K|/|Kδ|}
are not uniform over Th, the limit in (1.12) does not have a simple form and must account for the non-uniform
amplification factors over different triangulation elements. Nevertheless, the main conclusions in the above result
are not modified. This remark applies to the ODE setting in [9] also.

The rest of this paper is devoted to the proof of the main theorem. Preliminary material on random fields
and the corrector theory in the continuous scale are provided in Section 2. Then main ingredient of the proof
is a conservative structure of the stiffness matrix associated to the multi-scale scheme; this is considered in
Section 3. Similar structures have been observed and explored in other settings [9,19]. It allows us to write the
discrete corrector in the form of oscillatory random integrals. Their limiting distributions are then characterized
using well established techniques in [6, 7, 17]. This is done in Section 4. These sections also include some useful
results on the scheme, such as the H1 estimate of the solution to (1.8), which are interesting in their own right.
We conclude this introduction by several comments.

1.4. Further discussions

This paper studies the specific multi-scale scheme (1.8) for the elliptic equation (1.5) with a random potential.
The analysis takes advantage of the conservative structure of the stiffness matrix. We refer to Proposition 3.4
below for a detailed statement. Other schemes possessing this property can be analyzed similarly. To simplify
the presentation, we considered first-order nodal basis on a uniform triangulation. For higher order schemes
in which basis functions occupy larger sub-domain of Y , and for general regular triangulation where different
nodal basis may occupy different number of triangles, the structure in the stiffness matrix is more complicated.
Nevertheless, we believe that the analysis should extend without major differences to this more general setting.

The scheme (1.8) fits within the framework of HMM, which is a general methodology for designing multi-scale
methods by exploiting scale separation and other special features of the problem. We refer to [16] for references
on this method applied to the following Lε-problem:⎧⎪⎪⎨⎪⎪⎩

Lεuε(x, ω) =
d∑

α,β=1

∂

∂xα

(
aαβ

(x
ε
, ω

) ∂

∂xβ
uε(x, ω)

)
= f, x ∈ Y,

uε(x, ω) = 0, x ∈ ∂Y.

This problem is the higher dimensional version of (1.1). Like the treatment there, the macro-solver is a conven-
tional FEM on the triangulation Th as for the homogenized equation. The missing effective stiffness matrix is
approximated by solving a fine-scale problem on Kδ. The Problem (1.5) considered in this paper is much easier.
Indeed, the homogenized coefficient of (1.5) is simply an average of qε, whereas that of the Lε-problem involves
some auxiliary problem and is highly non-trivial; see [22,26]. In particular, the missing part of the macroscopic
effective stiffness matrix for (1.5) is just the integral of the zeroth order term, i.e.

∑
K∈Th

|K|q0uhvh(xK),
say when barycenter numerical quadrature is used for the integrals. In the scheme (1.8), this missing datum
q0u

hvh(xK) are supplied by averaging qεuhvh around the barycenter xK . Consequently, in the scheme of this
paper, the macro-solver is the standard P1 FEM on Th and the micro-level computation is simply a fine-scale
average on Kδ. Though this scheme is very simple, our results show that it captures the homogenization and
corrector effectively.

The amplification effect of the HMM scheme (1.8) with δ < h in the SRC setting can be remedied as follows:
on a typical triangle element K ∈ Th, instead of using one patch Kδ, one may cover K by a number of patches
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{Ki
δ | i = 1, . . . , (h

δ )2} for certain δ and average qεuhvh on these patches in parallel, and then combine them to
approximate the effective integral of q0uhvh. Essentially this recovers the scheme (1.8) with δ = h and hence
rectifies the amplification of fluctuations. This technique has already been exploited in [9] for the HMM scheme
of (1.1).

Other multi-scale schemes and methodologies have been developed for the Lε-problem using properties of the
medium such as separation of scales, periodicity, or ergodicity, e.g. [3–5,19]. For instance, the Multiscale Finite
Element Method (MsFEM) in [19] constructs oscillatory bases by solving Lε-problems on the supports of the
nodal bases {φij} and uses the so-called over-sampling strategy to diminish the resonance errors introduced by
the artificial boundary conditions of the local Lε-problems. It would be interesting to investigate how random
fluctuation are captured by this scheme and in particular what is the effect of the over-sampling strategy. The
differential operator in (1.6) does not exhibit such resonances, and hence this paper does not address such issues.

Other multi-scale schemes approach differential operators with rough coefficients like Lε without assuming
any separation of scales or special properties of the coefficient aαβ. For instance, [25] constructs oscillatory bases
by solving Lε-problems on sub-domains that are larger than the supports of {φij} but still small compared to
the whole domain Y . It was proved there, using the so-called transfer property of the divergence operator [11],
that the resulting finite dimensional space can be used to solve the whole Lε-problem with errors that are
independent of the regularity of {aαβ}. Analyzing the fluctuations in such schemes is beyond the scope of this
paper.

2. Review of corrector theory in the continuous scale

In this section, we review the corrector theories for (1.5) developed in [6, 17]. They are formulated for the
following random fields.

2.1. Random field settings

In the elliptic equation (1.5), the heterogeneous potential, denoted by q̃ε(x) henceforth, consists of a slowly
varying part q0(x) and a highly oscillating part qε(x). The latter is modeled as q(x

ε , ω), that is, spatially
rescaled from some random field q(x, ω) defined on the probability space (Ω,F ,P). In the sequel, E denotes the
mathematical expectation with respect to the probability measure P.

We assume that q(x, ω) is stationary. That is to say, for any positive integer k and k-tuple (x1, . . . , xk), for
any point z and any Borel measurable set A ⊂ R

k, one has

P{(q(x1), . . . , q(xk)) ∈ A} = P{(q(x1 + z), . . . , q(xk + z)) ∈ A}.

With this assumption, q admits an (auto-)correlation function R(x) defined by

R(x) := Eq(y)q(y + x) = Eq(0)q(x). (2.1)

It is easy to check that R is symmetric, that is R(x) = R(−x) for all x ∈ R
d. It holds also that R is a function

of positive type in the sense that the N -by-N matrix formed by {R(xi − xj)}N
i,j=1 for any positive integer N

and N -tuple x1, . . . , xN ∈ R
d is a non-negative definite matrix. Due to Bochner’s theorem [28], the Fourier

transform of R is a positive Radon measure. In particular, when R is integrable, one can define

σ2 :=
∫

Rd

R(x)dx, (2.2)

and it is a finite non-negative number. Without loss of generality, we also assume that q is mean-zero.
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A key parameter of the random field that will determine different limiting correctors is the de-correlation
rate. It is an indicator of how fast (with respect to distance) the random field becomes independent.

Recall that a random field q(x, ω) is said to be ρ-mixing with mixing coefficient ρ if there exists some function
ρ(r), which maps R+ to R+ and vanishes as r tends to infinity, so that for any Borel sets A,B ⊂ R

d, the sub-σ-
algebras FA and FB generated by the process restricted on A and B respectively de-correlate rapidly as follows:

sup
ξ∈L2(FA),η∈L2(FB)

∣∣∣∣ E ξη − Eξ Eη

(Var ξ Var η)1/2

∣∣∣∣ ≤ ρ(d(A,B)). (2.3)

Here d(A,B) is the distance between the sets A and B. The function ρ characterizes the decay of the dependence
of the random field at different places. We refer the reader to [14] for more information on mixing properties of
random fields.

We consider two settings of random fields. In the first case, we say that q(x, ω) is short range correlated
(SRC). This means

(S1) q is ρ-mixing with mixing coefficient ρ(r) such that ρ(|x|) ∈ L1(Rd).
(S2) |q(x)| ≤ C so that q̃ε(x) is positive for a.e. ω ∈ Ω.
(S3) In this case, the correlation function R(x) is integrable over R

d and we assume that σ defined in (2.2) does
not vanish, that is to say σ > 0.

In the second case, we say that q(x, ω) is long range correlated (LRC). In fact, we consider the very specific
setting as follows.

(L1) q(x) has the form Φ◦g(x), where Φ : R → R is function on the real line and g(x, ω) is a centered stationary
Gaussian random field with unit variance and heavy tail, i.e.

Rg(x) := E{g(y)g(y + x)} ∼ κg|x|−α as |x| → ∞, (2.4)

for some positive constant κg and some real number α < d.
(L2) The function Φ is uniformly bounded so that q̃ε(x) is positive for a.e. ω. Further, we assume the Fourier

transform Φ̂ satisfies that
∫

R
|Φ̂|(1 + |ξ|3) is finite.

(L3) We assume also that Φ has Hermite rank one, that is∫
R

Φ(s)e−
s2
2 ds = 0, V1 :=

∫
R

sΦ(s)e−
s2
2 ds �= 0. (2.5)

As a consequence κ := V 2
1 κg defines a positive number. For more information on the Hermite rank, we refer the

reader to [30].

2.2. Corrector theory in the continuous scale

The corrector theory for the elliptic equation with random potential, that is the limiting distribution of the
difference between uε and u0 which solve (1.5) and (1.6) respectively, has been investigated in [6, 17] in the
SRC setting, and in [7] in the LRC setting. Using the notations and random field settings introduced above,
the results in dimension two of these references can be summarized as follows.

Theorem 2.1 ([6, 7, 17]). Let uε and u0 be as above and let the dimension d = 2. Denote by G(x, y) be the
fundamental solution to the Dirichlet problem (1.6). When the random potential q(x, ω) satisfies the SRC setting,
we have

uε(x) − u0(x)√
εd

distribution−−−−−−−→
ε→0

σ

∫
Y

G(x, y)u0(y)dW (y) (2.6)

weakly in the spatial variable. When the random potential satisfies the LRC setting, we have

uε(x) − u0(x)√
εα

distribution−−−−−−−→
ε→0

√
κ

∫
Y

G(x, y)u0(y)Wα(dy) (2.7)
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weakly in the spatial variable.

Here, W and Wα are the same as in Theorem 1.2. The convergences above are weakly in the spatial variable in
the sense of (1.15) and (1.16).

3. Analysis of the discrete equation

In this section, we analyze the heterogeneous multi-scale scheme (1.8) in detail. In particular, we prove
that the scheme with ε � δ ≤ h admits a unique solution in the space V h that approximates u0 in H1.
With the standard uniform triangulation, we show that the stiffness matrix associated to the scheme has some
conservative form, which allows us to write the discrete corrector conveniently in terms of their coordinates. In
the next section, we use this discrete representation to prove the main theorem.

3.1. Well-posedness of the scheme

The multi-scale scheme (1.8) with δ = h coincides with the standard FEM and is well-posed. For the sake of
completeness, we show that this holds also for δ < h.

Recall that V h is the finite dimensional subspace of H1
0 (Y ) with nodal basis {φij} defined in Section 1.2.

We have defined three quadratic forms: Aε for the heterogeneous equation (1.5), Ah,δ
ε for the heterogeneous

multi-scale scheme which is an approximation of Aε by local integration, and Ah,δ
0 which is like Ah,δ

ε but uses
the mean coefficient q0 only and which is an approximation of the quadratic form associated to the homogenized
equation (1.6), that is

A0(u, v) =
∫

Y

∇u · ∇v + q0uv dx, u, v ∈ H1
0 (Y ). (3.1)

Let K be an element in the triangulation Th, and let xK denote its barycenter. Then one may check that
Ah,δ

ε (uh, vh) is a weighted sum of terms of the form

Âh,δ
ε (uh, vh)[xK ] =

∫
−

Kδ

∇uh · ∇vh + (q0 + qε)uhvh dx.

We define Âh,δ
0 (uh, vh)[xK ] similarly. Hereafter, the integral symbol with a dash in the middle denotes the

averaged integral.
The characterize the difference between the discrete bilinear forms associated to the random and homogenized

equations, we define

e(HMS) := max
K∈Th

sup
P1(K)�uh,vh �=0

|K||Âh,δ
ε (uh, vh)[xK ] − Âh,δ

0 (uh, vh)[xK ]|
‖uh‖H1(K)‖vh‖H1(K)

· (3.2)

With this notation we have the following theorem.

Theorem 3.1. Assume that q0 is a nonnegative C1(Y ) and qε(x) + q0 is uniformly bounded and nonnegative;
assume also that f ∈ C(Y ). There exist unique solutions uh,δ

ε and uh,δ
0 in V h for the numerical schemes (1.8)

and (1.10). Let u0 solves (1.6). Let the parameters h and δ in the numerical schemes be fixed with 1 ≤ h/δ ≤ C.
Then we have

‖uh,δ
ε − u0‖H1 ≤ C(h+ e(HMS)), (3.3)

The above estimates hold also if we replace uh,δ
ε by uh,δ

0 and delete the term e(HMS).

Proof. Let p be either ε or 0. The existence and uniqueness follow from

Ah,δ
p

(
vh, vh

)
≥ C‖vh‖2

H1 , for any vh ∈ V h.
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Indeed, because ∇vh is constant on K ∈ Th and q0 + qε is non-negative, we have

Ah,δ
p

(
vh, vh

)
≥

∑
K∈Th

|K|
∫
−

Kδ

|∇vh|2dx =
∑

K∈Th

∫
K

|∇vh|2dx = |vh|2H1 ≥ C‖vh‖2
H1 .

Here and in the sequel, | · |H1 and | · |W k,p are the standard semi-norms of the corresponding Sobolev spaces.
We apply the first Strang lemma (Thm. 4.1.1 of [13]), and obtain

‖u0 − uh,δ
ε ‖H1 ≤ C inf

vh∈V h

(
‖u0 − vh‖H1 + sup

wh∈V h

∣∣Ah,δ
ε (vh, wh) −A0(vh, wh)

∣∣
‖wh‖H1

)
·

Set vh = Πu0, the projection of u0 to the space V h. From classical interpolation result, e.g. Theorem 3.1.6
of [13], we have

‖Πu0 − u0‖H1 ≤ Ch‖u0‖H2 .

For any wh ∈ V h, we have∣∣Ah,δ
ε (vh, wh) −A0(vh, wh)

∣∣ ≤ ∣∣∣Ah,δ
ε (vh, wh) −Ah,δ

0 (vh, wh)
∣∣∣ +

∣∣∣Ah,δ
0 (vh, wh) −A0(vh, wh)

∣∣∣ .
For the first term, we have∣∣∣Ah,δ

ε (vh, wh) −Ah,δ
0 (vh, wh)

∣∣∣ ≤ ∑
K∈Th

|K|
∣∣∣Âh,δ

ε (vh, wh)[xK ] − Âh,δ
0 (vh, wh)[xK ]

∣∣∣
≤ e(HMS)

∑
K∈Th

‖vh‖H1(K)‖wh‖H1(K)

≤ e(HMS)‖vh‖H1‖wh‖H1 .

In the equalities above, we used the definition of e(HMS) and Cauchy–Schwarz respectively. For the second
term, we first observe that

Ah,δ
0 (vh, wh) −A0(vh, wh) =

∑
K∈Th

{
|K|
|Kδ|

(∫
Kδ

q0v
hwh dx− |Kδ|

(
q0v

hwh
)
(xK)

)

−
(∫

K

q0v
hwh dx− |K|

(
q0v

hwh
)
(xK)

)}
.

The items in the sum can be recognized as errors of barycenter numerical approximation of integrals. Error
estimate for such numerical quadrature is discussed in the next lemma and by (3.4) we have that |Ah,δ

0 (vh, wh)−
A0(vh, wh)| is bounded by∑

K∈Th

C‖q0‖C1

{
h2

δ2
δ
∥∥vh

∥∥
H1(Kδ)

∥∥wh
∥∥

L2(Kδ)
+ h

∥∥vh
∥∥

H1(K)

∥∥wh
∥∥

L2(K)

}
≤ Ch ‖q0‖C1

∑
K∈Th

∥∥vh
∥∥

H1(K)

∥∥wh
∥∥

L2(K)
≤ Ch ‖q0‖C1

∥∥vh
∥∥

H1

∥∥wh
∥∥

H1 .

Combining the above estimates, we find that∥∥u0 − uh,δ
ε

∥∥
H1 ≤ ‖Πu0 − u0‖H1 + (e(HMS) + Ch)‖Πu0‖H1 ≤ C(h+ e(HMS)).

The constant depends on ‖q0‖C1 , ‖u0‖H2 and some uniform bound of h/δ and hence is independent of ε, h or
δ. �
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The following lemma concerns error estimate for barycenter numerical quadrature of product of two functions
in P1(K), the space of linear polynomials on a triangular element K. It is stated in the simplest setting thought
it can be generalized to regular element easily. This lemma is used in the proof of the previous theorem.

Lemma 3.2. Let K̂ be an isosceles right triangle with unit side length. Let K be the image of K̂ under some
linear transform F (x̂) = Bx̂+ b ∈ R

2. Assume q0 ∈ W 1,∞(K). Then for any v, w ∈ P1(K), we have∣∣∣∣∫
K

q0(x)v(x)w(x) dx− |K|(q0vw)(xK )
∣∣∣∣ ≤ C‖B‖‖q0‖W 1,∞(K)‖v‖H1(K)‖w‖L2(K). (3.4)

Here, xK is the barycenter of K; ‖B‖ is the matrix norm of B.

Proof. We follow the steps in the proof of [13], Theorem 4.1.4 . Consider any ψ ∈ W 1,∞(K) so that ψ̂ = ψ ◦F is
in W 1,∞(K̂). Let |E(ψw)| denote the error of the barycenter quadrature for the integral

∫
K
ψwdx. After change

of variables,

E(ψw) = |det(B)|
(∫

K̂

ψ̂(x̂)ŵ(x̂) dx̂− |K̂|(ψ̂ŵ)(x̂K̂)
)

= |det(B)|Ê(ψ̂ŵ).

On the reference element K̂, since all norms on P1(K̂) are equivalent, we have

|Ê(ψ̂ŵ)| ≤ Ĉ‖ψ̂‖L∞(K̂)‖ŵ‖L∞(K̂) ≤ Ĉ‖ψ̂‖W 1,∞(K̂)‖ŵ‖L2(K̂).

We view Ê(· ŵ) : ψ̂ �→ Ê(ψ̂ŵ) as a linear functional on W 1,∞(K̂). The above estimate shows that Ê(· ŵ) is
continuous with norm less than Ĉ‖ŵ‖L2(K̂). We check also that Ê(· ŵ) vanishes on P0(K̂), the space of constant

functions on K̂. Therefore, due to Bramble–Hilbert lemma [13], Theorem 4.1.3, there exists some Ĉ such that
for all ψ̂ ∈W 1,∞(K̂),

|Ê(ψ̂ŵ)| ≤ Ĉ‖Ê(· ŵ)‖L(W 1,∞(K̂))|ψ̂|W 1,∞(K̂) ≤ Ĉ‖ŵ‖L2(K̂)|ψ̂|W 1,∞(K̂).

Take ψ̂ = q̂0v̂. We check that

|ψ̂|W 1,∞(K̂) ≤ |q̂0|W 1,∞(K̂)‖v̂‖L∞(K̂) + ‖q̂0‖L∞(K̂)|v̂|W 1,∞(K̂)

≤ Ĉ
(
|q̂0|W 1,∞(K̂)‖v̂‖L2(K̂) + ‖q̂0‖L∞(K̂)|v̂|H1(K̂)

)
.

The last inequality holds because v̂ ∈ P1(K̂) and all norms on P1(K̂) are equivalent. Finally, recall the rela-
tions [13], Theorem 3.1.2 that for any integer m ≥ 0, any q ∈ [1,∞], and for any φ ∈Wm,p(K),

|φ̂|W m,q(K̂) ≤ C‖B‖m|det(B)|−
1
q |φ|W m,q(K). (3.5)

Apply this inequality to control the terms |q̂0|W 1,∞(K̂) and |v̂|H1(K̂). On the other hand, for any φ ∈ Lp(K), we
have

‖v̂‖Lp(K̂) = | det(B)|− 1
p ‖v‖Lp(K). (3.6)

Use this equality to estimate the L2 norms of v̂ and ŵ. Finally, combining the above estimates, we obtain the
desired inequality. �

For the heterogeneous multi-scale error, we have the following result. We do not intend to make these estimates
sharp. Nevertheless, the following theorem shows that the error in (3.3) is small if the correlation length ε is
much smaller than the parameters h and δ of the HMM scheme, say when ε/(δh2) � 1 in the SRC setting and
when ε/(δh2d/α) � 1 in the LRC setting.
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Theorem 3.3. Let dimension d = 2. Let e(HMS) be the multi-scale heterogeneous error defined in (3.2), and
h, δ > 0 with δ ≤ h be the fixed parameters of the scheme (1.8). Then for ε sufficiently small, we have the
following estimate:

E e(HMS) ≤

⎧⎪⎪⎨⎪⎪⎩
C

1
hd

(ε
δ

) d
2
, in the SRC setting,

C
1
hd

(ε
δ

)α
2
, in the LRC setting.

(3.7)

The constants C above does not depend on h, δ or ε.

Proof. In the definition (3.2), if we replace the H1 norm on the denominator by L2 norm and define for each
K ∈ Th

eK := sup
v,w∈P1(K)

eK(v, w) and eK(v, w) :=
|K|

∣∣∣Âh,δ
ε (u, v)[xK ] − Âh,δ

0 (u, v)[xK ]
∣∣∣

‖v‖L2(K)‖w‖L2(K)
,

then we check that e(HMS) ≤ supK∈Th
eK . Therefore, it suffices to estimate eK .

For any K ∈ Th, let {φm,m = 1, 2, 3} be the standard basis functions of P1(K). As described above (1.8),
each of these basis functions is a linear polynomial on K that has value 1 at one vertex of K and vanishes at the
other two vertices. Any function v ∈ P1(K) is identified with its coordinate V ∈ R

3, that is by v =
∑3

m=1 Vmφm.
We claim that there exist constants 0 < ĉ < Ĉ, which are independent of h, δ and ε, such that

ĉh
d
2 ‖V ‖ ≤ ‖v‖L2(K) ≤ Ĉh

d
2 ‖V ‖, (3.8)

where ‖V ‖ is the Euclidean norm of V . To see this, recall the linear transform F : K̂ → K in the proof of
Lemma 3.2. As before, a function v ∈ P1(K) is related to v̂ = v ◦ F ∈ P1(K̂). In particular, v̂ and v have
the same coefficients with respect to the basis {φ̂m} and {φm} respectively. In the finite dimensional space
P1(K̂), since all norms are equivalent, we have ĉ‖V ‖ ≤ ‖v̂‖L2(K̂) ≤ Ĉ‖V ‖ for some ĉ, Ĉ. Thanks to (3.6), we
obtain (3.8).

For arbitrarily fixed K ∈ Th, v, w ∈ P1(K) and v, w �≡ 0, identified with their coefficients V,W , we explicitly
calculate the expression of eK(v, w) and get

eK(v, w) =
|K|

|Kδ|‖v‖L2(K)‖w‖L2(K)

∣∣∣∣∣
3∑

m,n=1

VjWm

∫
Kδ

qε(x)φm(x)φn(x)dx

∣∣∣∣∣ .
Let us define, with χA denoting the indicator function of a set A ⊂ R

2,

Xε
m,n =

∫
qε(x)ψm,n(x)dx, where ψm,n(x) = χKδ

(x)φm(x)φn(x).

Thanks to the Cauchy–Schwarz inequality and (3.8), we have

eK(v, w) ≤
(
h

δ

)d 1
ĉ2hd

(
3∑

m,n=1

|Xε
m,n|2

) 1
2

, (3.9)

where the ratio |K|/|Kδ| is replaced by hdδ−d. Since this inequality is uniform in v, w, it is also satisfied by eK .
To simplify the presentation, let Xε and ψ be the short-hand notation for Xε

m,n and ψm,n momentarily. Let
us estimate E|Xε|2. We observe that Xε is an integral of the highly oscillating random field qε against some
slowly varying function ψ. Such integrals are studied carefully in [6,7]. In the SRC setting, ε−

d
2Xε converges in

distribution to a mean-zero Gaussian variable with variance σ2‖ψ‖2
L2 (see [6], Thm. 3.8). In fact, its variance

converges. Therefore, for sufficiently small ε, we have

E|Xε|2 ≤ Cεd‖R‖L1‖ψ‖2
L2 = Cεd‖R‖L1‖φmφn‖2

L2(Kδ) ≤ C‖R‖L1εdδd. (3.10)
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Here R is the correlation function of q defined in (2.1). We argued that ‖φmφn‖2
L2(Kδ) ≤ |Kδ| ≤ Cδd because

|φmφn| ≤ 1.
In the LRC setting, ε−

α
2 Xε converges in distribution to a mean-zero Gaussian variable with variance ‖ψ ⊗

ψ‖L1(Y 2,κ|x−y|−αdxdy) (see [7], Lem. 4.3). In fact, its variance converges. Consequently, for sufficiently small ε,
we have

E|Xε|2 ≤ Cεα

∫∫
Kδ×Kδ

κψ(x)ψ(y)
|x− y|α dxdy ≤ Cεα‖ψ‖2

L
2d

2d−α

= Cεα‖φmφn‖2

L
2d

2d−α
≤ Cεαδ2d−α.

(3.11)

In the second inequality we used Hardy–Littlewood–Sobolev inequality ([23], Thm. 4.3), and we calculated that
‖φmφn‖

L
2d

2d−α
≤ |Kδ|

2d−α
2d .

We observe that the above estimates of E|Xε|2 is uniform in m,n, and that the sum in (3.9) has a finite
number of terms independent of h, δ, ε. As a result, the inequalities (3.10) and (3.11) show that E eK is of order
( ε

δ )d/2 and ( ε
δ )α/2 in the SRC and LRC settings respectively. Finally, we replace the maximum in (3.2) by the

sum and get

E e(HMS) ≤
∑

K∈Th

E eK ≤ 2
hd

sup
K∈Th

E eK . (3.12)

Here, 2
hd is the number of elements in Th. Since the estimates (3.10) and (3.11) are uniform over K ∈ Th, we

obtain the desired estimates. �

3.2. Coordinate representation and conservative form

The next step is to reformulate the multi-scale schemes (1.8) and (1.10) as linear systems for the coordinates
of the solutions in V h, to investigate the structure of the associated stiffness matrices, and to write the discrete
corrector uh,δ

ε − uh,δ
0 in terms of their coordinates.

We start by introducing some useful notation. In the triangulation illustrated by Figure 3, we identify each
grid point (ih, jh) with a unique two dimensional index (i, j). The set of inner grid points are denoted by
I = {(i, j) | 1 ≤ i, j ≤ N − 1}, and the set of all grid points including the boundary ones is denoted by
I = {(i, j) | 0 ≤ i, j ≤ N}. We define six difference operators d±

s : I → I as follows:

d±
1 (i, j) = (i± 1, j), d±

2 (i, j) = (i, j ± 1), d±
3 (i, j) = (i± 1, j ± 1). (3.13)

Here, s = 1, 2, 3 denotes three directions: horizontal, vertical and diagonal; the plus or minus sign indicates
forward or backward differences.

In the sequel, we often write (i, j) simply as ij. For each ij ∈ I, there corresponds a basis function φij

which is piecewise linear on each element K ∈ Th, has value one at ij and has value zero at other nodal
points. Any function vh in the space V h can be uniquely written as vh(x) =

∑
ij∈I Vijφ

ij(x), and the vector
(Vij) ∈ R

(N−1)×(N−1) is called the coordinates of vh. We identify R
(N−1)×(N−1), the space for the coordinates,

with V h itself. Now, the difference operators d±
s induce difference operators D±

s on V h as follows:

D+
s Vij = Vd+

s ij − Vij , D−
s Vij = Vij − Vd−

s ij . (3.14)

Note when d±
s ij lands outside of I, i.e. on the boundary, the value Vd±

s ij is set to zero.
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i

j

i

j

Figure 4. Left: the support of a basis function φij , denoted by Kij . Right: the shrunk integral
region Kδ

ij .

Using the coordinate representation of functions uh,δ
ε =

∑
ij U

ε
ijφ

ij and uh,δ
0 =

∑
ij U

0
ijφ

ij , we can recast the
heterogeneous multi-scale schemes (1.8) and (1.10) as the following systems: for all ij ∈ I,∑

kl

Aε
ijklU

ε
kl = 〈f, φij〉, (3.15)∑

kl

A0
ijklU

0
kl = 〈f, φij〉. (3.16)

Here, the stiffness matrices are defined by

Aε
ijkl = Ah,δ

ε

(
φij , φkl

)
, A0

ijkl = Ah,δ
0

(
φij , φkl

)
.

These stiffness matrices have the following structures.

Proposition 3.4. Let Ap = (Ap
ijkl) with p = 0 or ε be the stiffness matrices above. We observe

(P1) Ap
ijkl = Ap

klij ;
(P2) Ap

ijkl = 0 unless kl ∈ Iij := {ij}
⋃
{d±

s ij | s = 1, 2, 3}.
(P3) For any ij ∈ I, we have

Ap
ijij = dp

ij −
3∑

s=1

(
Ap

ijd+
s ij

+Ap

ijd−
s ij

)
, (3.17)

for some dp
ij that can be explicitly computed as in (3.18) below.

Proof. The first two observations are obvious, so only the third one needs to be stressed. According to (1.8)
and (1.10), to calculate Ap

ijij we need to integrate the function |∇φij(x)|2 + qp(x)|φij(x)|2. We observe that the
support of φij , denoted by Kij , is a hexagon consisting of six triangle elements as illustrated in Figure 4-Left.
The integration is actually taken over Kδ

ij , the region obtained by shrinking the triangle elements in Kij with
respect to their barycenters as illustrated in Figure 4-Right. Let us consider a typical triangle in Kij with nodal
points ij, d+

1 ij and d+
3 ij. Abusing notation, we call it K and the corresponding smaller triangle Kδ. Note Kδ

corresponds to the shaded region in the figure. On this region, the three non-zero basis functions are φij , φd+
1 ij

and φd+
3 ij . They satisfy

φij + φd+
1 ij + φd+

3 ij = 1, ∇φij + ∇φd+
1 ij + ∇φd+

3 ij = 0.

Multiply φij on both sides of the first equation, and ∇φij on the second equation. We have

(φij)2 = φij −
(
φd+

1 ij + φd+
3 ij

)
φij , |∇φij |2 = −

(
∇φd+

1 ij + ∇φd+
3 ij

)
· ∇φij .
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Consequently, we have

Âh,δ
p

(
φij , φij

)
[xK ] =

∫
−

Kδ

|∇φij |2 + qp|φij |2dx

=
∫
−

Kδ

qpφijdx−
∑

s=1,3

∫
−

Kδ

∇φij · ∇φd+
s ij + qpφijφd+

s ijdx

=
∫
−

Kδ

qpφijdx− Âh,δ
p

(
φij , φd+

1 ij
)

[xK ] − Âh,δ
p

(
φij , φd+

s ij
)

[xK ].

Summing over the integrals on all six triangles, and using the notations of Ap, Ah,δ
p and Âh,δ

p , p = 0, ε, we see
that (3.17) holds with dp

ij defined by

dp
ij =

∑
K∈Kij

|K|
∫
−

Kδ

qpφijdx. (3.18)

This completes the proof. �

It follows immediately that the matrix Ap acts on vectors in V h as follows:

(ApV )ij =
3∑

s=1

D+
s

(
αs,p

ij D
−
s Vij

)
+ dp

ijVij ,

where αs,p
ij is short-hand notation for Ap

ijd−
s ij

and it has the expression

αs,p
ij :=

∑
K∈Kij

|K|
∫
−

Kδ

∇φij · ∇φd−
s ij + qpφijφd−

s ijdx.

Note that when d±
s ij lands outside of I, i.e. on the boundary, φd±

s ij is the unique continuous function which
is linear on each K ∈ Th, has value one at d±

s ij and value zero at all other nodal points. Finally, taking the
difference of Aε and A0 we obtain

(
AεV −A0V

)
ij

=
3∑

s=1

D+
s

(
αs

εijD
−
s Vij

)
+ dεijVij , (3.19)

where the vectors (αs
εij) and (dεij) are

αs
εij := αs,ε

ij − αs,0
ij =

∑
K∈Kij

|K|
∫
−

Kδ

qεφ
ijφd−

s ijdx, (3.20)

dεij := dε
ij − d0

ij =
∑

K∈Kij

|K|
∫
−

Kδ

qεφ
ijdx. (3.21)

Formula (3.19) is essential in our analysis because it provides an explicit expression of the discrete corrector
uh,δ

ε − uh,δ
0 . Identify these solutions with the vectors (Uε

ij) and (U0
ij) in (3.15)–(3.16). We verify that for all

ij ∈ I, ∑
kl

A0
ijkl(U

ε − U0)kl = −
∑
kl

(
Aε −A0

)
ijkl

Uε
kl.

Let G = (Gijkl) be the inverse of A0. Solving the equation above, we get

(Uε − U0)ij = −
∑
kl

Gijkl[
(
Aε −A0

)
Uε]kl. (3.22)
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Using the formula (3.19) and summation by parts, we obtain

(Uε − U0)ij = −
∑
kl

Gijkl

3∑
s=1

D+
s (αs

εklD
−
s U

ε
kl) +

∑
kl

GijkldεklU
ε
kl

=
∑
kl

3∑
s=1

(D−
s Gijkl)(αs

εklD
−
s U

ε
kl) −

∑
kl

GijkldεklU
ε
kl.

Here and in the sequel, D±
s acts on G as defined in (3.14) but in the second pair of indices, namely kl here. We

can also write this expression as

(Uε − U0)ij =
∑
kl

3∑
s=1

(D−
s Gijkl)(αs

εklD
−
s U

0
kl) −

∑
kl

GijkldεklU
0
kl

+
∑
kl

3∑
s=1

(D−
s Gijkl)

[
αs

εklD
−
s (Uε − U0)kl

]
−

∑
kl

Gijkldεkl(Uε − U0)kl. (3.23)

This decomposition formula will be the starting point of our analysis in the next section.

4. Proof of the main results

In this section, we prove Theorem 1.2 using the coordinate representation (3.23) of the discrete corrector.
We briefly describe the strategy of proof. We first show that ‖Uε − U0‖	2 is small in mean square when ε

goes to zero while h and δ are fixed (Lem. 4.1). This indicates that the first line in the representation (3.23),
i.e. the terms that are linear in αs

ε and dε, is dominant while the second line is asymptotically small (Lem. 4.3).
Then to prove the main theorem, using the coordinate representation (3.23), we write the normalized corrector
integrated with a test function, more precisely its dominant part, as an integral of the highly oscillating random
field qε(x) with certain slowly varying function, and invoke the aforementioned theorems in [6, 7] to prove the
convergence in distribution as ε ↓ 0 while h and δ are fixed. Finally, the limit as h, δ ↓ 0 afterwards with the
ratio h

δ ≥ 1 fixed boils down to convergence of Gaussian random variables, and the proof is somewhat standard.

Lemma 4.1. Let Uε
ij and U0

ij be the coordinates of the solutions to the random and the deterministic discrete
equations (1.8) and (1.10) respectively. Suppose that there exist some constants C > 0 and γj ∈ R, j = 1, . . . , 4,
which are possibly negative, so that

|D−
s Gijkl | ≤ Chγ1 , |D−

s U
ε
ij | ≤ Chγ2 , |Gijkl | ≤ Chγ3and |Uε

ij | ≤ Chγ4 (4.1)

for any s = 1, 2, 3 and any indices ij, kl ∈ I. Let d = 2. Then the following holds.
(1) If the random process q satisfies the SRC setting, we have

E‖Uε − U0‖2
	2 ≤ Ch2(min{γ1+γ2,γ3+γ4})−d‖R‖1

(ε
δ

)d

· (4.2)

(2) If the random process q satisfies the LRC setting, we have

E‖Uε − U0‖2
	2 ≤ C(α, κ)h2(min{γ1+γ2,γ3+γ4})−d

(ε
δ

)α

· (4.3)

The constant C does not depend on h, δ or ε.
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Remark 4.2. The assumption (4.1) is not a restriction because γj there can be chosen negative. Indeed,
consider a typical triangle K ∈ Th, namely the one with vertices (ij, i− 1j, ij + 1), and a function v ∈ P1(K);
the L2(K) norm of v is related to its coordinate by (3.8). Similarly, the W 1,q(K) semi-norm of v is related to
its coordinates by

|v|W 1,q(K) = Ch
2
q −1‖(D−

1 Vij , D
−
2 Vij+1)‖ = Ch

2
q −1

(
|D−

1 Vij |2 + |D−
2 Vij+1|2

) 1
2 . (4.4)

This follows from the fact that ∇vh|K is a constant vector (D−
1 Vij , D

−
2 Vij+1)/h.

Now for uh,δ
ε , we know itsH1 norm is bounded independent of h and ε. Applying the results above we find that

|Uε
ij | ≤ Ch−1 and |D−

1 U
ε
ij | ≤ C. Other coordinates of Uε and D−

s U
ε can be estimated in the same way. Hence,

we may choose γ2 = 0 and γ4 = −1. Similarly, the discrete Green’s function Gh(x, y) =
∑

ij,kl Gijklφ
ij(x)φkl(y)

is known to have W 1,q norm for some q < 2 bounded by C| log h| for any fixed x (see [18], Thm. 5.1). Using (3.8)
and (4.4) we may choose γ1 and γ3 properly, say γ1 = γ3 = −1. �

Proof of Lemma 4.1. Apply the bounds in (4.1) to the representation of (Uε − U0)ij above (3.23), and then
take expectation and use Cauchy–Schwarz. We get

E|Uε − U0|2ij ≤ Ch−dh2(γ1+γ2)
3∑

s=1

∑
kl

E|αs
εkl|2 + Ch−dh2(γ3+γ4)

∑
kl

E|dεkl|2. (4.5)

Here, h−d is the number of nodal points (up to a factor of d), i.e. |I|. It suffices to estimate E|αs
εkl|2 and E|dεkl|2.

We rewrite (3.20) and (3.21) as

αs
εkl =

∫
qε(x)as

kl(x)dx, dεkl =
∫
qε(x)bkl(x)dx, (4.6)

with as
ε and bε defined by

as
kl(x) =

∑
K∈Kkl

|K|
|Kδ|

χKδ
(x)φkl(x)φd−

s kl(x), bkl(x) =
∑

K∈Kkl

|K|
|Kδ|

χKδ
(x)φkl(x). (4.7)

Above, Kkl is defined below (3.17). We check that |K|/|Kδ| = (h/δ)d and that as
kl and bkl are uniformly bounded

on Y . Hence, αs
εkl and dεkl can be recognized as oscillatory integrals of the highly oscillatory random field qε(x)

against some slowly varying functions. Such integrals are well understood. In fact, αs
ε has the same form as Xε

in the proof of Theorem 3.3 and can be estimated in the same manner. In the SRC setting, we have that

E|αs
εkl |2 ≤ Cεd‖R‖L1‖as

kl‖2
L2 ≤ C‖R‖L1h2d

(ε
δ

)d

. (4.8)

In the LRC setting, the above estimate should be replaced by

E|αs
εkl|2 ≤ Cεα‖as

kl ⊗ as
kl‖L1(Y ×Y,|x−y|−αdxdy) ≤ C(α, κ)h2d

(ε
δ

)α

. (4.9)

The mean square of dεkl can be similarly estimated. Substitute these estimates into (4.5) to con-
trol the mean square of (Uε − U0)ij ; note that the sum over kl introduces a factor of h−d which
is the number of items in the sum. The estimates of (Uε − U0)ij are uniform in ij, summation
over ij yields the desired results. Note that this additional summation introduces another h−d to the
estimates. �

Lemma 4.3. Under the same conditions of the previous lemma, we have

(Uε − U0)ij =
∑
kl∈I

3∑
s=1

(D−
s Gijkl)αs

εkl(D
−
s U

0
kl) −

∑
kl∈I

GijkldεklU
0
kl + rε

ij . (4.10)
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Further, the error term rε
ij satisfies

sup
ij∈I

E|rε
ij | ≤

⎧⎪⎨⎪⎩
Chmin{γ1,γ3}+min{γ1+γ2,γ3+γ4}

(ε
δ

)d

, in the SRC setting,

Chmin{γ1,γ3}+min{γ1+γ2,γ3+γ4}
(ε
δ

)α

, in the LRC setting,
(4.11)

where γ1, . . . , γ4 are as in (4.1) and can be negative.

Proof. The decomposition holds with

rε
ij =

3∑
s=1

∑
kl∈I

(D−
s Gijkl)αs

εklD
−
s (Uε

kl − U0)kl −
∑
kl∈I

Gijkldεkl(Uε − U0)kl. (4.12)

Bound the D−
s Gijkl and Gijkl terms by (4.1), and use Cauchy–Schwarz. We get

|rε
ij | ≤ Chγ1

3∑
s=1

‖αs
ε‖	2‖D−

s (Uε − U0)‖	2 + Chγ3‖dε‖	2‖Uε − U0‖	2 .

Note that ‖D−
s (Uε − U0)‖2

	2 ≤ C‖Uε − U0‖	2 . Take expectation and use Cauchy–Schwarz again to get

E|rε
ij | ≤ Chγ1

3∑
s=1

(
E ‖αs

ε‖
2
	2 E

∥∥Uε − U0
∥∥2

	2

) 1
2

+ Chγ3

(
E ‖dε‖2

	2 E
∥∥Uε − U0

∥∥2

	2

) 1
2
. (4.13)

Summing over kl in the estimates (4.8) and (4.9), we have

E‖αs
ε‖2

	2 ≤

⎧⎪⎨⎪⎩
C‖R‖L1hd

(ε
δ

)d

, in the SRC setting,

C(α, κ)hd
(ε
δ

)α

, in the LRC setting.

The same estimates hold also for E‖dε‖2
	2 . Substituting these estimates, together with (4.2) and (4.3), into (4.13)

completes the proof. �

Now we prove the main theorem of the paper. Let Gh,δ denote the solution operator of the discrete equa-
tion (1.10) which corresponds to the homogenized equation (1.6). Using the coordinate representation, the
solution to (1.10) is then

Gh,δf(x) =
∑
ij∈I

(∑
kl∈I

Gijkl

〈
f, φkl

〉)
φij(x). (4.14)

Proof of Theorem 1.2. Take any test function ϕ ∈ C2(Y ). Let mh denote the function Gh,δϕ. Its coordinate
vector (Mij) is then Mij =

∑
kl Gijkl〈ϕ, φkl〉 thanks to (4.14). Let β = d in the SRC setting and β = α in the

LRC setting. By (4.10), we have

1√
εβ

∫
Y

ϕ(x)
[
uh,δ

ε − uh,δ
0

]
dx =

1√
εβ

∑
ij

(
Uε − U0

)
ij
〈ϕ, φij〉

=
1√
εβ

∑
ij

(∑
kl

3∑
s=1

(D−
s Gijkl)αs

εkl(D
−
s U

0
kl) −

∑
kl

GijkldεklU
0
kl + rε

ij

)
〈ϕ, φij〉

=
1√
εβ

[∑
kl

3∑
s=1

(D−
s Mkl)αs

εkl(D
−
s U

0
kl) −

∑
kl

MkldεklU
0
kl

]
+

1√
εβ

∑
ij

rε
ij〈ϕ, φij〉. (4.15)
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In the last equality, we used the fact that Gijkl = Gklij and recognized the coordinate Mkl.
First convergence as ε → 0 while h and δ are fixed. Let us control the last term in (4.15). Thanks to the

estimate (4.11), we have

E

∣∣∣∣∣∣ 1√
εβ

∑
ij∈I

rε
ij〈ϕ, φij〉

∣∣∣∣∣∣ ≤ 1√
εβ

sup
ij∈I

(
E|rε

ij |
)∑

ij

|〈ϕ, φij〉| ≤ C(h, δ)‖ϕ‖L1

√
εβ. (4.16)

Above C(h, δ) is a constant, say some negative powers of h and δ. As ε goes to zero while h and δ are fixed, the
term above converges to zero in L1(P) and does not contribute to the limiting distribution of (4.15). The other
terms there are linear in (αs

εkl) and (dεkl). By (4.7), we find that

1√
εβ

∫
Y

ϕ(x)
[
uh,δ

ε − uh,δ
0

]
dx � 1√

εβ

∫
Y

qε(x)L
h,δ
1 (x)dx +

1√
εβ

∫
Y

qε(x)L
h,δ
2 (x)dx

=
1√
εβ

∫
Y

qε(x)Lh,δ(x)dx.
(4.17)

Here, Lh,δ
j , j = 1, 2 and Lh,δ = Lh,δ

1 + Lh,δ
2 depend on ϕ through M and are defined by

Lh,δ
1 (x) =

∑
kl

3∑
s=1

(D−
s Mkl)(D−

s U
0
kl)a

s
kl(x)

=
∑
kl

∑
K∈Kkl

|K|
|Kδ|

χKδ
(x)

3∑
s=1

(D−
s Mkl)(D−

s U
0
kl)φ

kl(x)φd−
s kl(x),

Lh,δ
2 (x) = −

∑
kl

bkl(x)MklU
0
kl = −

∑
kl

∑
K∈Kkl

|K|
|Kδ|

χKδ
(x)MklU

0
klφ

kl(x)

= −
∑

K∈Th

|K|
|Kδ|

χKδ
(x)

∑
kl∈IK

MklU
0
klφ

kl(x) = −
∑

K∈Th

|K|
|Kδ|

χKδ
(x)Πh(mhuh,δ

0 )(x).

(4.18)

Here, IK = {kl ∈ I | (kh, lh) ∈ K} and Πh(mhuh,δ
0 ) is the projection in V h of the function mhuh,δ

0 . Now the
convergence results (1.11) and (1.13) of Theorem 1.2 follow from the representation (4.17) and the aforemen-
tioned results on limiting distribution of oscillatory integrals, namely Theorem 3.8 of [6] for the SRC setting
and Lemma 4.3 of [7] for the LRC setting.

Second convergence as h, δ ↓ 0 with h/δ ≥ 1 fixed, SRC setting. Now we prove (1.12). It concerns the limiting
distribution, as h goes to zero, of the Gaussian random variable which is obtained as the limiting distribution
in the first step.

We have the following key observation:

Lh,δ
1 −→ 0 in L∞(Y ) as h→ 0. (4.19)

Indeed, for any fixed x ∈ Y , since |φij | ≤ 1 uniformly and |K|/|Kδ| = (hδ−1)2, we have

|Lh,δ
1 (x)| ≤ C

(
h

δ

)2

h2
3∑

s=1

∥∥∥∥D−
s Mkl

h

∥∥∥∥
	2

∥∥∥∥D−
s U

0
kl

h

∥∥∥∥
	2

≤ C

(
h

δ

)2

h2|mh|H1 |uh,δ
0 |H1 .

Since uh,δ
0 and mh are yielded form the scheme (1.10) for smooth right hand side f and ϕ, they have bounded

H1 norms. We assume that the ratio h/δ is fixed while h is sent to zero. Therefore, the above estimate shows
that Lh,δ

1 goes to zero uniformly, proving the claim.
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According to (4.17), the left hand side of (1.12) can be written as

σ

∫
Y

Lh,δ
1 (x)dW (x) + σ

∫
Y

Lh,δ
2 (x)dW (x). (4.20)

To prove (1.12), it suffices to show that the second term above converges to the right hand side of (1.12) while
the first term above converges in probability to zero. Since all random variables involved are Gaussian, we only
need to calculate their variances. Thanks to Itô’s isometry, we have

Var σ
∫

Y

Lh,δ
1 (x)dW (x) = σ2

∫
Y

|Lh,δ
1 (x)|2dx.

Due to (4.19), the above variance goes to zero, proving our claim for the first term. For the second one, we have
again

Var σ
∫

Y

Lh,δ
2 (x)dW (x) = σ2

∫
Y

∣∣∣Lh,δ
2 (x)

∣∣∣2 dx =
(
σh

δ

)2 ∑
K∈Th

|K|
∫
−

Kδ

|Πh
(
mhuh,δ

0

)
(x)|2dx.

We recognize the sum in the last term as a barycenter approximation of the integral that gives the L2 norm square
of Πh(mhuh,δ

0 ). Thanks to Lemma 4.4 below, ‖Πh(mhuh,δ
0 )‖L2 converges to ‖u0Gϕ‖L2 by applying (4.23) with

f1 = ϕ and f2 = f . This implies that the variance of the second term in (4.20) converges to (σh/δ)2‖u0Gϕ‖2
L2 ,

proving (1.12).
Second convergence as h, δ → 0 with h/δ ≥ 1 fixed, LRC setting. Now we prove (1.14). Like in (4.20), we can

write the left hand side of (1.14) as a sum of two Gaussian random variables. Using a modified isometry, we
write the variance of the first variable as

Var σ
∫

Y

Lh,δ
1 (x)Wα(dx) =

∫∫
Y 2

κLh,δ
1 (x)Lh,δ

1 (y)
|x− y|α dxdy = I

(
Lh,δ

1

)
.

Here, we define the operator I : L
4

4−α → R as

I (g) := ‖g ⊗ g‖L1(Y 2,κ|x−y|−αdxdy) =
∫∫

Y 2

κg(x)g(y)
|x− y|α dxdy. (4.21)

Recalling the Hardy–Littlewood–Sobolev inequality, Theorem 4.3 of [23], we have

|I (g)| ≤ κC(α)‖g‖2

L
4

4−α
. (4.22)

Due to (4.19), the term in the equation above (4.21) converges to zero and doesn’t contribute to the limiting
distribution. For the the term with Lh,δ

2 , we have

Var σ
∫

Y

Lh,δ
2 (x)Wα(dx) =

∫∫
Y 2

κLh,δ
2 (x)Lh,δ

2 (y)
|x− y|α dxdy

=
∑

K∈Th

∑
K′∈Th

|K|2
∫
−

Kδ

∫
−

K′
δ

κΠh
(
mhuh,δ

0

)
(x)Πh

(
mhuh,δ

0

)
(y)

|x− y|α dxdy.

We recognize the last sum as the barycenter approximation of I (Πh(mhuh,δ
0 )). Now (4.22) shows that

I is continuous on L
4

4−α . Since α < 2 and 4
4−α < 2, we have the inclusion L2(Y ) ⊂ L

4
4−α (Y ).

Therefore I is also continuous on L2(Y ). Applying (4.23) with f1 = ϕ and f2 = f , we con-
clude that I (Πh(mhuh,δ

0 )) converges to I (u0Gϕ). This proves (1.14) and completes the proof of the
theorem. �
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It remains to prove the following key lemma concerning the convergence of product of solutions yielded from
the discrete equation (1.10).

Lemma 4.4. Let Gh,δ be the Green’s operator of the scheme (1.10). For any two functions fj ∈ C2(Y ), j = 1, 2,
let Πh(Gh,δf1Gh,δf2) be the projection in V h of the product of Gh,δf1 and Gh,δf2. We have that

Πh(Gh,δf1Gh,δf2)
L2

−−−→ Gf1Gf2, as h→ 0 with h/δ ≥ 1 fixed. (4.23)

As before, G above is the Green’s operator of the homogenized equation (1.6).

Proof. To simplify notation, let us denote the function Gh,δfj by ũh
j , the functions Gfj by uj , j = 1, 2.

The key to the proof relies on L∞ error estimates for finite element methods. Such results are classic for
the scheme with h = δ as proved in [27, 29]. For δ < h, as explained before we may view the scheme as the
standard finite element method with (barycenter) numerical quadrature for evaluation of integrations. L∞ error
estimates for such practical schemes are more involved but were obtained in [18,31]. In particular, the piecewise
linear FEM with numerical quadrature was considered in Theorem 5.1 of [18], which shows

‖ũh
j − uj‖L∞ ≤ Ch2| log h|‖fj‖W 2,∞ .

Since ũh
j , j = 1, 2, are bounded, the above also implies that

‖ũh
1 ũ

h
2 − u1u2‖L∞ ≤ Ch2| log h|max

j
‖fj‖2

W 2,∞ . (4.24)

In fact, Theorem 5.1 of [18] also shows that

‖ũh
j ‖W 1,∞ ≤ ‖uh

j ‖W 1,∞ + Ch| log h| (‖uj‖W 2,∞ + ‖fj‖W 2,∞) .

Here, uh
j is the FEM solution with h = δ. The above estimate shows that ũh

j is in W 1
∞. Since uj are bounded,

we check that ũh
1 ũ

h
2 ∈ W 1

∞. From classical interpolation estimates, e.g. taking k = m = 0, p = ∞ and q = 2 in
Theorem 3.1.6 of [13], we have∥∥ũh

1 ũ
h
2 −Πh

K

(
ũh

1 ũ
h
2

)∥∥
L2(K)

≤ C|K| 12 h|ũh
1 ũ

h
2 |W 1,∞(Y ).

Here, Πh
K is the projection on the triangle element K. Summing over K ∈ Th, we have∥∥ũh

1 ũ
h
2 −Πh

(
ũh

1 ũ
h
2

)∥∥
L2(Y )

≤ Ch‖ũh
1 ũ

h
2‖W 1,∞ . (4.25)

Note that (4.24) controls ‖ũh
1 ũ

h
2‖W 1,∞ . Sending h to zero, we finish the proof. �
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