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Abstract. The focus of this work is on rigorous mathematical analysis of the topological derivative based
detection algorithms for the localization of an elastic inclusion of vanishing characteristic size. A
filtered quadratic misfit is considered, and the performance of the topological derivative imaging
functional resulting therefrom is analyzed. Our analysis reveals that the imaging functional may
not attain its maximum at the location of the inclusion. Moreover, the resolution of the image is
below the diffraction limit. Both phenomena are due to the coupling of pressure and shear waves
propagating with different wave speeds and polarization directions. A novel imaging functional based
on the weighted Helmholtz decomposition of the topological derivative is, therefore, introduced. It is
thereby substantiated that the maximum of the imaging functional is attained at the location of the
inclusion and the resolution is enhanced and proves to be the diffraction limit. Finally, we investigate
the stability of the proposed imaging functionals with respect to measurement and medium noises.
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1. Introduction. We consider the inverse problem of identifying from boundary measure-
ments the location of a small elastic inclusion in a homogeneous isotropic background medium.
The main motivations of this work are nondestructive testing (NDT) of elastic structures for
material impurities [14], exploration geophysics [1], and medical diagnosis, in particular, for
detection of potential tumors of diminishing size [26].

The long-standing problem of anomaly detection has been addressed using a variety of
techniques including small volume expansion methods [10, 9], MUSIC-type algorithms [5], and
time-reversal techniques [4, 7]. The focus of the present study is on the topological derivative
based anomaly detection algorithms for elasticity. As shown in [6], in antiplane elasticity, the
topological derivative based imaging functional performs well and is robust with respect to
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noise and sparse or limited view measurements. The objective of this work is to extend this
concept to the general case of linear isotropic elasticity. The analysis is much more delicate
in the general case than in the scalar case because of the coupling between the shear and
pressure waves.

The concept of topological derivative (TD), initially proposed for shape optimization in
[16, 25, 13], has been recently applied to the imaging of small anomalies; see, for instance,
[14, 15, 18, 19, 20, 21, 24] and references therein. However, its use in the context of imaging
has been heuristic and lacks mathematical justifications, notwithstanding its usefulness.

In a prior work [6], acoustic anomaly detection algorithms based on the concept of TD
are analyzed, and their performance is compared with that of different detection techniques.
Moreover, a stability and resolution analysis is carried out in the presence of measurement
and medium noises.

The aim of this work is to analyze the ability of the TD based sensitivity framework for
detecting elastic inclusions of vanishing characteristic size. Precisely, our goal is threefold: (i)
to perform a rigorous mathematical analysis of the TD based imaging; (2) to design a modified
imaging framework based on the analysis. In the case of a density contrast, the modified
framework yields a TD based imaging functional, i.e., deriving from the TD of a discrepancy
functional. However, in the case where the Lamé coefficients of the small inclusion are different
from those of the background medium, the modified functional is rather of a Kirchhoff type.
It is based on the correlations between, separately, the shear and compressional parts of the
backpropagation of the data and those of the background solution. It cannot be derived as the
TD of a discrepancy functional; and (3) to investigate the stability of the proposed imaging
functionals with respect to measurement and medium noises.

In order to put this work in a proper context, we emphasize some of its significant achieve-
ments. A trial inclusion is created in the background medium at a given search location. Then,
a discrepancy functional is considered (cf. section 3), which is the elastic counterpart of the
filtered quadratic misfit proposed in [6]. The search points that minimize the discrepancy
between measured data and the fitted data are then sought. In order to find its minima, the
misfit is expanded using the asymptotic expansions due to the perturbation of the displace-
ment field in the presence of an inclusion versus its characteristic size. The first order term in
the expansion is then referred to as the TD of the misfit (cf. section 3.1), which synthesizes its
sensitivity relative to the insertion of an inclusion at a given search location. We show that its
maximum, which corresponds to the point at which the insertion of the inclusion maximally
decreases the misfit, may not be at the location of the true inclusion (cf. section 3.2). Further,
it is revealed that its resolution is low due to the coupling of pressure and shear wave modes
having different wave speeds and polarization directions. Nevertheless, the coupling terms
responsible for this degeneracy can be canceled out using a modified imaging framework. A
weighed imaging functional is defined using the concept of a weighted Helmholtz decompo-
sition, initially proposed in [4] for time-reversal imaging of extended elastic sources. It is
proved that the modified detection algorithm provides a resolution limit of the order of half
a wavelength, indeed, as the new functional behaves as the square of the imaginary part of
a pressure or shear Green function (cf. section 4.2). For simplicity, we restrict ourselves to
the study of two particular situations when we have only a density contrast or an elasticity
contrast. In order to cater to various applications, we provide explicit results for the canonical
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cases of circular and spherical inclusions. It is also important to note that the formulae of
the TD based functionals are explicit in terms of the incident wave and the free space funda-
mental solution instead of the Green function in the bounded domain with imposed boundary
conditions. This is in contrast with the prior results; see, for instance, [19]. Albeit a Neumann
boundary condition is imposed on the displacement field, the results of this paper extend to
the problem with Dirichlet boundary conditions. A stability analysis of the TD based imaging
functionals was also missing in the literature. In this paper we carry out a detailed stability
analysis of the proposed imaging functionals with respect to both measurement and medium
noises.

The rest of this paper is organized as follows: In section 2, we introduce some notation
and present the asymptotic expansions due to the perturbation of the displacement field in
the presence of small inclusions. Section 3 is devoted to the study of a TD imaging functional
resulting from the expansion of the filtered quadratic misfit with respect to the size of the
inclusion. As discussed in section 3.2, the resolution in the TD imaging framework is not
optimal. Therefore, a modified imaging framework is established in section 4. The sensitivity
analysis of the modified framework is presented in section 4.2. Sections 5 and 6 are devoted
to the stability analysis with respect to measurement and medium noises, respectively. The
paper is concluded in section 7.

2. Mathematical formulation. This section is devoted to preliminaries, notation, and
assumptions used in the rest of this paper. We also recall a few fundamental results related
to small volume asymptotic expansions of the displacement field due to the presence of a
penetrable inclusion with respect to the size of the inclusion, which will be essential in what
follows.

2.1. Preliminaries and notation. Consider a homogeneous isotropic elastic material oc-
cupying a bounded domain Q C R? for d = 2 or 3, with connected Lipschitz boundary 9.
Let the Lamé (compressional and shear) parameters of Q2 be A\g and pg, respectively, in the
absence of any inclusion, and let py > 0 be the (constant) volume density of the background.
Let D C Q be an elastic inclusion with Lamé parameters A1, p1 and density p; > 0. Suppose
that D is given by

(2.1) D := B + z,,

where B is a bounded Lipschitz domain in R% containing the origin and z, represents the
location of the inclusion D. The small parameter d represents the characteristic size of the
diameter of D. Moreover, we assume that D is separated part from the boundary 0%2; i.e.,
there exists a constant ¢y > 0 such that

(2.2) inf dist(x, 08) > co,
xeD

where dist denotes the distance. Further, it is assumed that

(2.3) A + 2 >0, pyy, >0, m € {O, 1}, ()\0 - )\1)(/10 - ,ul) > 0.
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Consider the following transmission problem with the Neumann boundary condition:

(L uou+ pow?u=0 in Q\D,
Ly mu+piw’nu=0 inD,
u =u on 0D,
(2.4) a‘_ |§
u u
a~ = a_ 8D,
ov ‘— ov ‘4— on
ou
— = o)
(v~ 8 on a5
where w > 0 is the angular frequency of the mechanical oscillations and the linear elasticity
o)

system L), ,,, and the conormal derivative 5, associated with parameters (Ao, ji0), are defined
by

(2.5) £>\o,,uo [W] = wpAw + (Ao + po)VV - w
and

ow T T
(2.6) = M(V-w)n+ p(Vw' + (Vw' ) )n,

respectively. Here superscript 1" indicates the transpose of a matrix, n represents the outward
unit normal to 9D, and 6% is the conormal derivative associated with (A1, 7). To ensure well-
posedness, we assume that pow? is different from the Neumann eigenvalues of the operator
—Lxg,po in (L?(Q))%. Using the theory of collectively compact operators (see, for instance, [9,
Appendix A.3]), one can show that for small § the transmission problem (2.4) has a unique
solution for any g € (L?(9Q))%.

Throughout this work, for a domain X, notations |- and |4 indicate, respectively, the
limits from inside and from outside X to its boundary 0X, d;; represents the Kronecker’s
symbol, and

a?/BG{P7S}7 i7j7k7l7i,7j/7k/7l,7p7q€{17"'7d}7 m€{07]‘}7

where P and S stand for pressure and shear parts, respectively.

Statement of the problem. The problem under consideration is the following:
Given the displacement field u, the solution of the Neumann problem (2.4) at the boundary
0L), identify the location z, of the inclusion D using a TD based sensitivity framework.

2.2. Asymptotic analysis and fundamental results. Consider the fundamental solution
' (x,y) := I'Y (x —y) of the homogeneous time-harmonic elastic wave equation in R? with
parameters (A, b, Pm), 1-€., the solution to

(2.7) (Lapgin + P To(x —y) =0, VxR x £y,

subject to the Kupradze outgoing radiation conditions [23], where dy is the Dirac mass at y
and I is the d x d identity matrix. Let cg = /40 and cp = /220 be the background shear
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and the pressure wave speeds, respectively. Then I'§ is given by [1]

1

(2.8) 'y (x) = {iIgGﬁ(x) — ——Dx [GPH(x) — G‘*S’(x)]} , xeRY d=2,3,

where the tensor Dy is defined by
Dy = Vx ® Vx = (0;)] ;21
and the function G¥ is the fundamental solution to the Helmholtz operator, i.e.,
(A4 K2)G¥(x) = do(x), xR x#0,
subject to the Sommerfeld outgoing radiation condition

‘ 0Gs _ ikaGo

on

(x) = o(R""?), x € dB(0,R),

9?2 w

with B(0, R) being the sphere of radius R and center at the origin. Here 0;; = 93,070 o = o

is the wave number, and % represents the normal derivative.
The function G¥ is given by

L alx), d =2,
(2.9) G%(x) =

ema\x|
—_—— d=3
Ar|x|’ ’

where HT(LI) is the order n Hankel function of first kind.
Note that I'j can be decomposed into shear and pressure components, i.e.,

(2.10) T8 (x) = T (%) + T plx) ¥ € RY, x £0,
where

w W w 1 W
(2.11) op(x) = NOHSD xGP(x) and I‘O’S(X):MO—H%(K%E + D) G¢(x).

Note that V - I‘OS—OandeI‘OP—O
Let us define the single layer potential S§ associated with (Ly,, ., + pow?) by

(212 S®l) = [ Tl y)@(y)doly), xR
and the boundary integral operator g by

(2.13) Ko (@ = p.v. / —I“" —y)®(y)do(y) ae. x€0Q
o0 aVy

for any function ® € (L%(99))%, where p.v. stands for Cauchy principal value.
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Let (K&)* be the adjoint operator of K on (LQ(OQ))d, ie.,

(Kg)*[® = p.v. /89 8—VXI‘“ —y)®(y)do(y) a.e. x € 0.

It is well known (see, for instance, [2, section 3.4.3]) that the single layer potential, S&, enjoys
the following jump conditions:

(2.14) @‘i(x) - (iéu (Kﬁ)*) [@](x) ae x € A

Let N“(x,y), for all y € ©Q, be the Neumann solution associated with (Ao, o, po) in €,
ie.,

(Lxg,po + pow?)N¥(x,y) = —oy(x)I, x€Q, x#Yy,
(2.15) IN@
ov

(X7 Y) = 07 X € OQ
Then, by slightly modifying the proof for the case of zero frequency in [10], one can show that

the following result holds.
Lemma 2.1. For all x € 0 and y € ), we have

(2.16) (57 + 8 ) IN“C.)160) = T 9).

where KCg is defined by (2.13).
For i,j € {1,...,d}, let v;; be the solution to

Eko,uovij =0 in Rd\F,
L Vij =0 in B,
(217) Vij‘_ = Vij|+ on 8B,
aVij 8v,~j
— B
o 1~ ow on 05,
vij(x) —zie; = O (|x|1_d) as |x| — oo,
where (ey, ..., e4) denotes the standard basis for R?. Then the elastic moment tensor (EMT)
M := (7niqu)iqu:1 associated with domain B and the Lamé parameters (Ao, po; A1, 11) 18
defined by
O(zpe,) O(xpeq)
(2.18) S /68 [ o) O] Ly i,

see [10, 12]. In particular, for a circular or a spherical inclusion, M can be expressed as

(2.19) M = aly + b1 ® I
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or, equivalently, as "
2
for some constants a and b depending only on Ag, A1, ig, 41 and the space dimension d [2,
section 7.3.2]. Here I is the identity 4-tensor. Note that for any d x d symmetric matrix A,
I4(A) = A. Furthermore, throughout this paper we make the assumption that p; > po and
A1 > Ag in order to ensure that the constants a and b are positive.

It is known that the EMT M has the following symmetry property:

Mijrt = = (0051 + 00jk) + DOijOk

(2.20) Mijpqg = Mpqij = Mjipg = Mijqp,

which allows us to identify M with a symmetric linear transformation on the space of symmet-
ric d x d matrices. It also satisfies the positivity property (positive or negative definiteness)
on the space of symmetric matrices [10, 12].

Let U be the background solution associated with (Ao, io, po) in €, i.e.,

(£>\07M0 + p0w2)U =0 on (),
(2.21) ouU -

E—g on Of).

Then, the following result can be obtained using arguments analogous to those in [8, 10]; see
[5]. Here and throughout this paper

d
A:B= Z aijbij
1,5=1

for matrices A = (a,-j)gjzl and B = (b,-j)gjzl.

Theorem 2.2. Let u be the solution to (2.4), U be the background solution defined by (2.21),
and pow? be different from the Neumann eigenvalues of the operator —Lxg o 11 (L2(Q)%. Let
D be given by (2.1), and let conditions (2.2) and (2.3) be satisfied. Then, for wd < 1, the
following asymptotic expansion holds uniformly for all x € 9S:

(222)  u(x) - U(x) = —&? (VU(za) . M(B)V,, N¥(x, z,)
+w(po — p1)| BIN®(x, 2,)U(2,) ) + O(67).

As a direct consequence of expansion (2.22) and Lemma 2.1, the following result holds.
Corollary 2.3.  Under the assumptions of Theorem 2.2, we have

229) (31 K5) fa - V)

= 5%(VU(2) : M(B) V2, D5 (x — 2a) + (o — p1)|BIT (x — 22) U(za) ) + O(38"*)

uniformly with respect to x € 0€2.
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Remark 2.4. We have made use of the following conventions in (2.22) and (2.23):

d d
(VU(za) . M(B)V,, N¥(x, za))k =3 | 0U;(za) S mijpadpN, (x, 74)
7,7=1 p,q=1

and

(N(x, za)U(za))k - zd: NY, (%, 24) Ui (24).
i=1

3. Imaging small inclusions using TD. In this section, we consider a filtered quadratic
misfit and introduce a TD based imaging functional resulting therefrom and analyze its per-
formance when identifying true location z, of the inclusion D.

For a search point z°, let u,s be the solution to (2.4) in the presence of a trial inclusion
D' = §' B'+z° with parameters (\;, i}, p}), where B’ is chosen a priori and ¢’ is small. Assume
that

(3.1) dX] +2p >0, gy >0, (Ao — ) (o — py) = 0.

Consider the elastic counterpart of the filtered quadratic misfit proposed by Ammari et al. in
[6], that is, the following misfit:

<%1 _ /cgg> T

(3.2) &) =3 |

As shown for Helmholtz equations in [6], the identification of the exact location of true inclu-
sion using the classical quadratic misfit

1

(33) E0) = 5 [ (45 = ) ) do()

cannot be guaranteed, and the postprocessing of the data is necessary. We show in the later
part of this section that exact identification can be achieved using filtered quadratic misfit £;.

We emphasize that the postprocessing compensates for the effects of an imposed Neumann
boundary condition on the displacement field.

3.1. TD of the filtered quadratic misfit. Analogously to Theorem 2.2, the displacement
field u,s, in the presence of the trial inclusion at the search location, can be expanded as

s (2) = U(x) = — () (VU(2) : MU (B)V,sN* (x, 2°)

(3.4) +w(po — )| BIN"(x,2%)U(2%)) + O (&)%)

for a small ¢’ > 0, where M'(B’) is the EMT associated with the domain B’ and the parameters
(Ao, to; A, i) Following the arguments in [6], we obtain, by using Corollary 2.3 and the jump
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conditions (2.14), that

2
do(x)

<% - zcg) [U — Upeas] (%)

&) =5 |
+ (0" Re {VU(2°) : M'(B')Vw(z”) + w?(po — p})|B'[U(z%) - w(z®)}
(3.5) +0((65)7) + 0 (@),

where the function w is defined in terms of the measured data (U — upeas) by

(36) W) = 58] (37 K8 ) hamews ~ 0|01, x€ 22

The function w corresponds to backpropagating inside 2 the boundary measurements of
U — Uyeas. Substituting (2.23) in (3.6), we find that

T¥(a" - )V TFx - 20)do ()|
Q

w(zd) = 54 (Vﬁ(za) . M(B) [ /a

(37) #n = p1B | [| TR a5 x - 2o ()| Ttan) ) + 0014,

Definition 3.1 (TD of £;). The TD imaging functional associated with £ at a search point
z° € Q is defined by

 9&/[U) (=)

(3.8) Itp [U](ZS) = a(6")d

@)i=0

Note that from (3.5) it follows that
(3.9) Zrp[U](z") = —%G{VU(ZS) : M(B")Vw(z%) + w?(po — p})|B'[U(2”) - W(ZS)}v

where w is given by (3.7).

The functional Ztp [U] (z°) at every search point z° € € synthesizes the sensitivity of
the misfit £; relative to the insertion of an elastic inclusion D' = z% + §B’ at that point.
The maximum of Ztp [U] (z°) corresponds to the point at which the insertion of an inclusion
centered at that point maximally decreases the misfit £¢. For Helmholtz equations, as shown
in [6], the location of the maximum of Ztp [U] (z°) is a good estimate of the location z, of
the true inclusion, D, that determines the measured field. In the next section, we explain why
TD imaging functional Zrp, defined by (3.8), may not attain its maximum at the location z,
of the true inclusion.

S

3.2. Sensitivity analysis of TD. We first notice that the functional Ztp consists of two
terms: a density contrast term and an elasticity contrast term with background material. For
simplicity and purely for analysis sake, we consider two special cases when we have only the
density contrast or the elasticity contrast with reference medium.
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3.2.1. Case I: Density contrast. Suppose that \g = Ay and o = p1. In this case, the
wave function w satisfies

310)  wie®) =6 (P ol | [ TRl )T x - 2do()| Tlaw))
o0
Consequently, the imaging functional Ztp at z° € Q reduces to

1) T (U] (%) = Co'e{ 0(a) | ([ Tl mn)Tix - 2°)d0() ) T

Q
where

(3.12) C = 6%(po — p1)(po — p1)|B'| BI.
Throughout this paper we assume that

(po — P1)(po — p1) > 0.

Let us recall the following estimates from [4, Proposition 2.5], which hold as the distance
between the points z° and z, and the boundary 9 goes to infinity.

Lemma 3.2 (Helmholtz—Kirchhoff identities). For z°,z, € Q far from the boundary 0%,
compared to the wavelength of the wave impinging upon ), we have

= 1
[ TRl = )~ 2)do() = — - 9m {T,0° — ).
o ’ ’

Ca
/8Q I'g o (x — 24)IG g(x — z%)do(x) ~0, «o# 6.
Therefore, by virtue of (2.10) and Lemma 3.2, we can easily get
(3.13)

Tup [0](2%) = ~Co*Re { UG [9m { 05 p(a° — 20) + _T¥5(a° ~ 20) | Tlan)| |.

Let (eq,,e€q,,...,eg,) be n uniformly distributed directions over the unit disk or sphere,
and denote by Uf and Uf , respectively, the P-plane and S-plane waves, that is,

(3.14) Uf(x) = /"Pxe; ep; and Uf(x) = /"X e eelj

for d = 2. In three dimensions, we set
iksx-ep. Ll
Uil(x) = '"5%%0; ey =12,
11 12
where (egj,eej €y, :
ITD[UJS](ZS) denotes >, Ztp [Uil](zs).

) is an orthonormal basis of R3. For ease of notation, in three dimensions,
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We have

1 - iKaX-€ -2
(3.15) — E e~ —4 <1> Jm GE(x)
n

R
for large n; see, for instance, [6]. The following proposition holds.

Proposition 3.3. Let U} be defined in (3.14), where j = 1,2,...,n, for n sufficiently large.
Then, for all z° € Q far from 0,

1< \"? (ks \? | 1 o 2
E;ITD[Uf](ZS) ~ 4uon3 <g> < S) [; ‘%m {I‘07P(ZS — za)}‘

-
1
(3.16) + g%m {Fap(zs —24)} : Sm {Fas(zs - za)}] ,

and

1 « m\"2 1 o 2
- ;ITD[UJS] (ZS) ~ 4poCuw? (K_S> [g ‘i‘sm {I‘(],S(ZS — za)}|
(3.17) + é%m {I“6J7P(ZS —24)} : Sm {I“&S(ZS — za)}] )

where C' is given by (3.12).
Proof. From (3.15) it follows that

1~ ™\ 1
- Z e iey @ eg, ~ 4 <—> Sm {TDXG%(X)}

pet Kkp kp
(3.18) ~ Ay (- Y Sm {TGp(x)}
. ~ . o 0,P
and
1 < 1 e
1 Z pirsx-e; eé_j ® eé_j _ 1 s x-eq, (12 —ep, ® eej)
n 4 n <
j=1 i=1
. d—2 1
Ks Ks
o\ 42 N y
319 = holsg)  SmiTEsGOl

where the last equality comes from (2.11). Note that, in three dimensions, (3.19) is to be
understood as follows:
n 2

1 ikgx-ep. 1. 1,1 ™
(3.20) EZZe ey @ ey ~ —Apg e Sm {T§s(x)} .

j=1 I=1
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Then, using the definition of U;D we compute imaging functional Ztp for n P-plane waves as

TR(x - 203 (x — 25)do (0 (2)

—ZITD C’w—Z?ReUP 5). [/@

Jj=1 @

1< e p (25 —2,)- 1
~ —CwW= Y Re T T g [%m{—rgf(zs — 24)
n = cp
1 w S
+ —T§ (27 —2z4) ey,
cs
n

1 ; S_g ).
~ —Cuw’Re [— eip(2° —2a) e, ey, @ ey,
n
i=1

1 1
: [Sm {—I“a’P(zS —z,) + —T%4(z° — za)} ] .
cp csg

Here we used the fact that eg, - Aeg, = ey, ® ey, : A for a matrix A, which is easy to check.

Finally, exploiting the approximation (3.18), we conclude that

d—2 2
1
LS i) <t () (2) o e’ )

Kp
+ Ci%m {F‘&p(zs —24)} : Sm {F‘&s(zs - za)}] .
S

Similarly, we can compute the imaging functional Ztp for n S-plane waves exploiting the
approximation (3.19) as

—ZITD C’w—Z?ReUS 5). [/a

F_‘(’)"(X — za)FBJ(X - ZS)dJ(X)U—JS(Za)]
Q

1
R N T U P E L A
] 1

1
+—T¥(z° — za)}eé‘_]
cg ’ J

1 s (25 —24)-
~ —Cuw3Re [— A
n
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-2 4
~ 441pCo® (%) [g |3m T 5(2° — Za)}|2

+ Ci%m {I‘ap(zs —124)} : Sm {I‘as(zs —24)}
P

In dimension 3, one should use (3.20) to get the desired result. This completes the proof. |

From Proposition 3.3, it is not clear that the imaging functional ZTp attains its maximum
at z,. Moreover, for both £ > i1 Itp [U}q ](z°) and £ > i1 Itp [ur ](z°), the resolution at z,
is not fine enough due to the presence of the term %m{I‘aP(zS —Zg)}: Sm{I‘aS(zS — 7))}
Onfe flvay to cancel out this term is to combine 1 > j=1Ztp [UJS] (z%) and 1 > i=1Ztp [Uf](zs)
as follows:

12 (6o ()" (52) mmotoie) - en () 2t

S

However, one arrives at

%z": (Cs (%P)H <Z_§>21TD[U§D](ZS) —cr (%)d_QITD[UJS](ZS)>
=1

2

4o (22 [9m (L5 p(° = )} — L [9m {1506~ m) ).

which is not a sum of positive terms and thus cannot guarantee that the maximum of the

obtained imaging functional is at the location of the inclusion.

3.2.2. Case ll: Elasticity contrast. Suppose pg = p1. Further, we assume for simplicity
that M = M'(B’) = M(B). From Lemma 3.2 we have

- 1
VL8 (X — 24)V,sT8 (x — 2°)do(x) & ———Sm {VZGVZsI“é’S(zS —2,)}
o0 csw ’

1
_CP—w%m {VZaVzSI‘&P(Zs - za)} :

(3.21)

Then, using (3.7) and (3.21), Ztp [U] (z°) at z° € Q becomes

Trp [U] (2°) = =0 Re VU (2°) : MVw(2z°)

= 61ReVU(2°) : M [ VL8 (X — 24)V,s T8 (x — 2°)do(x) MW(ZG)}

o0

6d — -
(3.22) ~ L ReVU(ZS) : M v2(%m{rg(zs - za)}> . MVU(z,) |,
w
where
—~ 1 1
(3.23) Fg(zs —Za) = C_F%},P(ZS —Za) + _Fg,S(ZS — Za).
P cs
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Let us define
S 2 S 2 S T
(3.24)  Jap(z”) = <M%m (VT ) (z° — za)}> : <M%m (VPTG 5)(2° — za)}) ,
where AT = (Agiij) if A is the 4-tensor given by A = (A;jx). Here A : B = zijkzl AijtiBijr
for any 4-tensors A = (Ajjr) and B = (Bjj).
The following result holds.

Proposition 3.4. Let UY' be defined in (3.14), where j = 1,2,...,n, for n sufficiently large.
Let Jo 5 be defined by (3.24). Then, for all z° € Q far from 09,

w Kp Rp cp

(3.25) %JZZ:IITD[U;D](ZS) ~ 45110 (1>d—2 <,£S>2 (iJRp(zS) n %JS’P(ZS)>
and

1 & o [T\ /1 1
2 31 9(2%) ~ 4692 [ — — S [ p— ).
(3 6) o 2 TD[UJ ](Z ) ) " <Hs> s JS75(Z ) + o szp(z )

Proof. Let us compute Ztp for n P-plane waves, i.e.

%ZITD [UF(2%) = ﬁl§)‘Ee Z vUul(z®%) : M [%m{(VQfg) (z° — za)} : MV—Uf(za)]

L Re 2"2 ¢rep(a%—za) e, ey, @ ey,
(3.27) .M (%m {wﬁou(zs _ za)} : Mey, @ egj) .

Equivalently,

n n d d
1 Z P/ aw 1 Z ik p(25—7q)-€. 0,
g < ITD[U] ](Z ) =9 g;%@ < e J E E AZ]Z: Mimik

ikl m=11 k' I/ m'=1

—~ 0.
(328) X %m { ((8122,1_‘8’) (ZS — Za)) mk/} myrm!i' k! Allgm/7

where the matrix A% = (Af]i)zk is defined as A% := eg, ® ep;. It follows that

n d d
% ZITD [UJP] (ZS) = 5d§Re Z Z Mimik ml/m/i/k/%m [((@%TTO") (ZS - Za))mk’]
j=1

ikl m=14 k1 m/ =1

1 = ikp(2° —2q)-€ i i
(3.29) ><<32—Ze Pl sa) ejAfziAzefmf)

CpTn
P j=1
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Recall that for n sufficiently large, we have from (3.18)

1< a0\ 42 Ko\ 2
; Z pirPX-€; €y, ® €y, ~ —4ug <E> <—> Sm {I‘&P(x)}

J=1

(with the version (3.20) in dimension 3). Taking the Hessian of the previous approximation
leads to

1 — A (7w \? (kg2
EZ:e““:xe%eg @ e © ey X ey, 4,u()w—}; <—> <—S> [m {V2I‘6"’P(x)}

: Rp Rp
J=1

c 7w\ 42
(3.30) ~ dpg—L <R—> Sm {V2I“6’7P(x)} .
S P

Then, by virtue of (3.18) and (3.30), we obtain

1 N N R N AT - a
;ZITD[U]'](Z )=t — =) ) > Mimik M

K
P/ i klm=1 k1 m! =1

<om { (A 05) =) pom { (G5 = 2)

X (e -))

i,k,i ,k'=1 \Il,m=1

X < Z Myryirkr ST { ((812/2'F5J7P) (2% - Za))m’k} ) :
Um/=1

Therefore, by the definition (3.24) of J, g, we conclude that

o amofe) <o ()7 (22) (aom (e -a0)

: ( %m{V2I‘ —za)}>T

d4/,1/() ™ =2 KRS 2 1 S 1 S
~§—— | — — _JP,P(Z )+—JS7P(Z ) .
w Kkp Kp cp cs
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Similarly, consider the case of S-plane waves and compute Ztp for n directions. We have

%ZH:ITD[U;?](Z ‘i Le zn:vus 5) v (Sm { (VPT5) (2° = 24) } : MV US (2)

7j=1

n
w1 ira(zS—z.)-
~ 5= ZRe eiris (@ —2a) e eelj ®ep : M

2
n

X (%m {(v2f70u) (25 — za)} :Mej, ® e9j>
d

d
d w 1 iks( 25—z 6,
§Re E a) E E B} Mimik

iklm=1 i' k' I/ m'=1

0.
(331) X Im { ((8l2/F6J) (ZS — Za)) -~ ml’m’i’k’Bl’Jm,”

where the matrix B% = (Bf,i)lk is defined as BY% = ey, ® ejj . It follows that

n d d
% ZITD [U]S](Zs) = 5d Z Z Mimik mlrm/i/k/Sm [612@/ <fg‘)(ZS — Za))mk’]
j=1

ik, l,m=1 i k'l ;m'=1

1 = ins (25 —24). _y
(3.32) % %;ZGMS(ZS Zq) eejBféBlG/JTn/

Now, recall from (3.19) that for n sufficiently large, we have

d—2
1 Z IKgX- eg] ee ® 66 ~ _4#0 < T;) Im {FL(S),S(X)} .

] 1

Taking the Hessian of this approximation leads to

1 n ikax A 7\
(3.33) - Z " Yiey, @ eéj ® ey, @ ejj ~ 4uow—g <%> Sm {VT§s(x)},
j=1

where we have made use of the convention

(V2I‘6va)ijkl — &k (I‘&S)jl .
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Then, by using (3.19), (3.33), and arguments similar to those in the case of P-waves, we arrive
at

1 n 4,“/0 T d—2 d d
- ZITD [Uf](zs) o~ 5‘17 </<_> Z Z Mk T m/ i k!
=1 5

ikl m=1 i k' m/=1

cam {(O85%)) @~ 2)
< m {((FT8) 1 — 70))

_ a0 <1>d_2 (13 { (V2F%) (2° — 2)})

w \ kg

(9m {715 )} )]

d4ILL() s =2 1 S 1 S
~§—— | — —Jps(z”) + —Jss(z”) ) .
cp Ccs

w \Kg

This completes the proof. |
As observed in section 3.2.1, Proposition 3.4 shows that the resolution of Z1p deteriorates
due to the presence of the coupling term

(3:34) Jps(z%) = (MSm {(V2TEs) (2% — 20)} )+ (MSm { (VT3 p) (2" — 20)} )T

3.2.3. Summary. To conclude, we summarize the results of this section below.

e Propositions 3.3 and 3.4 indicate that the imaging function Ztp may not attain its
maximum at the true location, z,, of the inclusion D.

e In both cases, the resolution of the localization of elastic anomaly D degenerates due
to the presence of the coupling terms %m{FaP(zS —2Z4)} : Sm{I‘aS(zS — 7,)} and
Jp,s(z”), respectively.

e In order to enhance imaging resolution to its optimum and ensure that the imaging
functional attains its maximum only at the location of the inclusion, one must eradicate
the coupling terms.

4. Modified imaging framework. In this section, in order to achieve better localization
and resolution properties, we introduce a modified imaging framework based on a weighted
Helmholtz decomposition of the TD imaging functional. We will show that the modified
framework leads to both a better localization (in the sense that the modified imaging functional
attains its maximum at the location of the inclusion) and a better resolution than the classical
TD based sensitivity framework. It is worth mentioning that the classical framework performs
quite well for the case of the Helmholtz equation [6] and the resolution and localization
deteriorations are purely dependent on the elastic nature of the problem, that is, due to the
coupling of pressure and shear waves propagating with different wave speeds and polarization
directions.
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It should be noted that in the case of a density contrast only, the modified imaging
functional is still TD based, i.e., obtained as the TD of a discrepancy functional. This holds
because of the nonconversion of waves (from shear to compressional and vice versa) in the
presence of only a small inclusion with a contrast density, as shown in Lemma 3.2. However, in
the presence of a small inclusion with different Lamé coefficients with the background medium,
there is a mode conversion through the EMT; see, for instance, [22]. As a consequence, the
modified functional proposed here cannot be written in such a case as the topological derivative
of a discrepancy functional. It is rather a Kirchhoff-type imaging functional and its resolution
and stability analysis differs significantly from the case of a density contrast only.

4.1. Weighted imaging functional. Following [4], we introduce a weighted TD imaging
functional Zyw and justify that it provides a better localization of the inclusion D than Ztp.
This new functional Zw can be seen as a correction based on a weighted Helmholtz decom-
position of Zrp. In fact, using the standard L?-theory of the Helmholtz decomposition (see,
for instance, [17]), we find that in the search domain the pressure and the shear components
of w, defined by (3.6), can be written as

(4.1) W =V X Uy + Vou.
We define the Helmholtz decomposition operators H* and H°, respectively, by
(4.2) HE [w] := Vo and H[w]:=V X y.

Actually, the decomposition w = HP [w] + H° [w] can be found by solving a Neumann
problem in the search domain [17]. Then we multiply the components of w with ¢p and cg,
the background pressure and the shear wave speeds, respectively. Finally, we define Zyw by

Tw [U] = cpRe {—V’HP[U] : M'(B\VHT [w] + w? (% - 1) |B' |1 U] -HP[W]}

(4.3) + csRe {—V?—LS [U] : M/(B)VH[w] 4 w? (Z—i — 1) |B'|H°[U] - HS [w]} .

In the next section we rigorously explain why this new functional should be better than
imaging functional Zrp.

4.2. Sensitivity analysis of weighted imaging functional. In this section, we explain why
imaging functional Zyw attains its maximum at the location z, of the true inclusion with a
better resolution than Zpp. In fact, as shown in this section, Zyw behaves like the square of
the imaginary part of a pressure or a shear Green function depending upon the incident wave.
Consequently, it provides a resolution of the order of half a wavelength. For simplicity, we
once again consider special cases of only density contrast and only elasticity contrast.

4.2.1. Case I: Density contrast. Suppose A\g = A1 and po = p1. Recall that in this case,
the wave function w is given by (3.10). Note that H*[I'j] = I'§ ,, € {P, S}. Therefore, the
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imaging functional Zy at z° € Q turns out to be

Tw [U] (z°) = C w'Re <CPHP[U](ZS ) - [( /8 T3 (x — 2,)T p(x — 2° )da(x)> ﬁ(za)}

Q

(4.4) + et U)o 2T st - 2°)do(x) ) T )

By using Lemma 3.2, we can easily get
Ty [U) (%) = —CuwRe (HP[U](ZS) [3m AT (" — 20)} V)|
(45) + H[U)() - [ {T5 (2 — 20) ﬁ(za>]> .

Consider n uniformly distributed directions (eg,,ep,, ..., ep,) on the unit disk or sphere
for n sufficiently large. Then, the following proposition holds.

Proposition 4.1. Let U} be defined in (3.14), where j = 1,2,...,n, for n sufficiently large.
Then, for all z° € Q far from 052,

2

)

ln .PZSN w31d_2/{—s2%m wZS—Z
@) IO = (T () o Tt )

Kp Kp

and

2

RS 10,8 57\ w (8 2
(4.7) - g Iw(U5](z°) ~ 4poCuw <5—> |Sm AT 5(2° —2z4) }
i=1 s

)

where C' is given by (3.12).
Proof. By using arguments similar to those in Proposition 3.3 and (4.5), we show that the
weighted imaging functional Zyy for n P-plane waves is given by

LS TWIUN#) = O Re S U ) [Sm (T (e~ 5)} U (a0)|
j=1 j=1

n
~ —Cw?’%?Re S e oy [Sm T8 p (25 — 24)} €]
j=1

d—2 2
e () (=) o sttt

Kp
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For n S-plane waves

— ZIW US Z US . \sm {I‘g",s(zs — za)} U]S(za)}

n

1 kg (25 —
3 1Kks\Z Zg) €. | S 1
~ —Cuw - E girs (" —2a) 9369j . [%m {T§ 5(z —Za)}egj]
=1

d—2
w2 (2) et et

where one should use the version (3.20) in dimension 3. [ |

Proposition 4.1 shows that Zyw attains its maximum at z, (see Figure 1), and that the
coupling term Im{I'y p(z°—2,)} Sm{T§ 4(2° —2,)}, responsible for the decreased resolution
in Zpp, is absent. Moreover the resolution using weighted imaging functional Zw is the
Rayleigh one, that is, restricted by the dlffractlon limit of half a wavelength of the wave
impinging upon {2, thanks to the term |\sm {1" 7a —Z4 }| Finally, it is worth mentioning
that Zywy is a TD based imaging functional. In fact, it is the TD of the discrepancy functional
cs€¢[U%] + cp&f[UT], where U? is an S-plane wave and U” is a P-plane wave.

4.2.2. Case llI: Elasticity contrast. Suppose pg = p1, and assume for simplicity that
M = M/(B’) = M(B). Then, the weighted imaging functional Zyw reduces to

Tw(z®) = —6¢ [CPVHP[U(ZS)] - MVH [w(2%)] + cs VHE [U(2”)] : MV'HSW(ZS)]}

= 04| epVHTU(ZY)) M</{m V2 Ly (x — 24)V,sTf p(x — z%)do(x) : MV—U(ZG)>

+ csVHU(2%)] : M < /8 . V2L (x — 24)V,s TG g (x — 2°)do(x) : Mv—U(za)>]

= 5| VHP[U(ZY)) - M(%m{(v%g{ p) (25 —24)) : MV—U(za)>

(4.8) + VHI[U(z%)] : M(%m { (V2I‘6J7S) (25 —24)} : MV—U(za)>] .

We observed in section 3.2.2 that the resolution of Ztp is compromised because of the
coupling term Jg, p(z°). We can cancel out this term by using the weighted imaging functional
Zw. For example, using analogous arguments as in Proposition 3.4, we can easily prove the
following result.

Proposition 4.2. Let U} be defined in (3.14), where j = 1,2,...,n, for n sufficiently large.
Let Jo 5 be defined by (3.24). Then, for all z° € Q far from 09,

(4.9) %ng[U;v](zS) ~ 45110 <1>d_2 <@>2 Jaa(zS), a€{P,S}

w \ Ka Ka
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Figure 1. Typical plots of |Sm {I‘B”S(zs — za)}|2 (on the left) and !Sm {FB’,P(ZS — za)}|2 (on the right)
forzq =0 and cp/cs = V11.

It can be established that Zyw attains its maximum at z° = z,. Consider, for example,
the canonical case of a circular or spherical inclusion. The following propositions hold.
Proposition 4.3. Let D be a disk or a sphere. Then for all search points z° € Q,

2

2
Jpp(z°) = az‘VQ (Sm I‘ap) (2% —z,)| + 2ab‘A(%m I“(’ip) (2% — z,)

2

9

(4.10) + bZ‘A Tr(Sm I‘ap)(zs — 2Z,)

where Tr represents the trace operator and the constants a and b are defined in (2.19).
Proof. Since

21w w
(411) (v pr)ijk:l = 8@](; (I‘O,P)jl)
it follows from (2.19) that

(412) (Mvzrap)ijkl = Z mijp‘l(vzrap)qul

P
a d
= 3 (&k (Fap)jl + ajk (Fap)ﬂ) + bz 8qk (I‘%},P)ql 52']'
q=1
(4.13) = gak ((vrgipel)ij + (Vrapel)fj) + bORV - ((rgﬁpel)>5¢j,

where e; is the unit vector in the direction z;.
Now, since I'j ,e; is a P-wave, its rotational part vanishes and the gradient is symmetric;
ie.,

(4.14) Vx (T§pe) =0 and (VI§pe), = (VIgpe) , = (VIE pez)iTj-
Consequently,
(4.15) vV - ((F;;Pel) ) —V x (v X (I‘é",Pel)) + A(Fapel) - A(Fapel),
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which, together with (4.13) and (4.14), implies
(4.16) MV?T§ p = a VT p + b1y ® AT p.

Moreover, by the definition of I‘B"’ p» its Hessian, V2I“6’7 p» 1s also symmetric. Indeed,

T
2 — 0, = My Gy = (w2
(4.17) (v rgvp)ijkl =0 (T8p) ;= =2 G = (v Fap)ijm'

Therefore, by virtue of (4.16) and (4.17), Jp p can be rewritten as

Tp.p(z%) = <a%m{(V2I‘ap)(zS —2,)} + by ® Sm{ (AT p) (25 — za)})

(4.18) : <a%m{(V2I“6’7p)(zS —2,)} + bSIm{ (ATS p) (25 — 2,)} @ 12).
Finally, we observe that

T
(4.19) <V2Sm {rg,P}) : <V2Sm {rgvp}) - ‘VZSm s [

V2Sm{Ty p} : (12 ® A%m{rap}) — V2Sm{T¥ p} - (A%m{rap} ® 12>

2
(4.20) - ‘A%m{rgp}

and

N—
Il
(=
g
>
4
3
e
(=)
D
b
=
>
1%
3
of
D

(12 ® ASm{FaP}) : (A%m{rg,}} ® I

(4.21) - ‘A Tr(Sm {1“3,;})‘2.

We arrive at the conclusion by substituting (4.19), (4.20), and (4.21) in (4.18). [ ]
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Proposition 4.4. Let D be a disk or a sphere. Then, for all search points z° € Q,

201 2 (d—6 2
Js5(2°) = Z—g %‘V‘l%m {G4(2° — 24)} ‘ + -6 1 )‘Vzﬁm {G4(2° — 24)} ‘
4 2
+ B lom{Gee" - 2}
211 2 d—2 2
- [—4 > Josusm {630~} [ + U2 om (G0 - 2} |
Ho [ Fg ikl k£l
4
(422) + %‘%m {Gg)(zs . Za)} ‘2] 7

where a is the constant as in (2.19).

Proof. As before, we have

(MVTEs) 1y = 5 (9 (Tis); + e (T s),,) +007 - ( (T se) )&j
a w w
(4.23) = 5 (0w (T8s) ;, + 03 (T),,)
and
T
(4.24) (Mv2rg,s)ijkl = g <3ik (Tos) ;, + (I‘%},S)jk> :

Here we have used the facts that I'§ ge; is an S-wave, and I'j ¢ and its Hessian are symmetric,
i.e.,

Substituting (4.23) and (4.24) in (3.24), we obtain

CL2 d
Js,5(2%) = T > Sm{((@'IJ“(S),S)(ZS —%a)), + ((03T65) (2" — Za))u}
irjokel=1
X %m{((@ikrﬁis)(zs — Za))jl + ((ailras)(zs - Za))jk}
(4.26) = %2 (Tl(zs) + 2T (2°) + T3(ZS)>,
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where

i,k 1=1
B = Y (S {(OuTss) 6 — o)) (3m { 0uTs) 05— 2)})
ik, l=1

Notice that

w 1 W
Sm {I‘07S(x)} = —,u0/€2 (/412512 + Dx)Sm {G%(x)},
S

and Qm {G'¢} satisfies
(4.27) ASMA{GEY (2° — z,) + KESIM{G%Y (2° —2,) =0 for z° # z,.

Therefore, the first term 77 can be computed as follows:

Tl(zs) = ‘V2 (%ml"as) (ZS — Z4) ?

d
- Wlm‘é S [(Our(om ) —2)) + who (0 (5m €2) (2 — 2))
k,l=1

+ 263610 (Sm G2) (25 — 2,) 010 (SMGE) (25 — za)}.

We also have

d
D" 2010 (3mGE) (2° — 2) (Digua (Sm GF) (2 — 20))
i,k l=1
d d
=92 Z (&-k (%m G“g)(zs — za)) <8¢k Zﬁu (%m G°§) (zS — za))
i k=1 =1
d 2
= —2/4,25 Z (&-k (%m G‘g)(zs — za))
i k=1
and
d 9 d 9
3 b (&k(%m G2 (25 — za)> =dy (E?ik(%m G3) (25 — za)> .
i,5,k, =1 ik=1
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Consequently, we have

2 2
T (2% = ‘VQ(%mI‘&S)(zS —24)| = 21 1 ‘ 4(Sm G“g)(zs —2Z,)
Hoks
(4.28) d

( ik \smGs (z S—za)>2.

i,k=1
Estimation of the term 75 is quite similar. Indeed,

d

2
Tg( Z [( ijkl \smG“)( S—Za))
+ 2/1%53'15% (%m G°§) (zS — Za)0ijki (%m G“g) (zS — Zg)

+ kA0 (aik (Sm G%) (25 — za)) (au (Sm G¥) (25 — za))] .

Finally, using

Ed: 5jlajk(aik(%mc:§)(z5—za)) (a,l(dmcs) —za) Ed: ( 1k (Sm GS) (2 S—za))z,

i7j7k7l:1 i,k=1

we obtain that

2 2 w — 7
—M—OV(\SmG )( a)

(420)  Ty(a5) = ’

‘V4 Sm Gw)( — Zg)

Mk

Similarly,

d
T(2z”) % > [(@jkl(%mG?)(ZS—%)f

pr— 2
K
Hokis i,5,k,1=1

+ 26300 (Sm G¥) (2° — 24) (aijkl (Sm G¥) (25 — za))

+ wboadin (050 (Sm G2) (25 — 7)) (94(Sm GF) (2° — za))] .

By virtue of

d
> ubin (955 (SmGE)(2° — 24)) (04(SmGY) (2° — 2z4))

i7j7k7l:1

C 3 (0(om @) — 2) (9u(Sm O — 20)
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we have

2

— 32 A& (%m G‘g) (ZS —2Z4)

T3 ZS =
(z7) 2

o |vt o 6) @ — )|

1

0'vs
’{19 s 2
(4.30) + ?‘Sm G225 — 24)
0

We conclude the proof by substituting (4.28), (4.29), and (4.30) in (4.26) and using again
(4.27). =
Figure 2 shows typical plots of J, o for a € {P, S}.

Figure 2. Typical plots of Jp,p (on the left) and Js,s (on the right) for zo =0 and cp/cs = V/11.

5. Statistical stability with measurement noise. Let Uf and Uf be as before. Let {U,}
be plane waves. Define

(51) Twrl{U;))(%) = = 3" TwlU; 1),
j=1

In the previous section, we have analyzed the resolution of the imaging functional Zywg in the
ideal situation where the measurement Uy, is accurate. Here, we analyze how the result will
be modified when the measurement is corrupted by noise.

5.1. Measurement noise model. We consider the simplest model for the measurement
noise. Let ugne be the accurate value of the elastic displacement field. The measurement
Upeas 1S then

(52) umeas(x) = Utrue (X) + Vnoise(x)7

which is the accurate value corrupted by measurement noise modeled as Vygise(X), X € 0S).
Note that peige(x) is valued in C?¢, d = 2, 3.

Let E denote the expectation with respect to the statistics of the measurement noise. We
assume that {vpeise(X),x € 0} is mean-zero circular Gaussian and satisfies

(53) E[Vnoise(Y) ® Vnoise(y,)] = Ur%oiseéy(y/)IZ-
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This means that first, the measurement noises at different locations on the boundary are
uncorrelated; second, different components of the measurement noise are uncorrelated; and
third, the real and imaginary parts are uncorrelated. Finally, the noise has variance 01210150.

In the imaging functional Zywp, the elastic medium is probed by multiple plane waves with
different propagating directions, and consequently multiple measurements are obtained at the
boundary accordingly. We assume that two measurements corresponding to two different

plane wave propagations are uncorrelated. Therefore, it holds that
(54) E[Vﬁoise(y) ® Vnmse(y )] = Un01505]16 ( /)127
where j and [ are labels for the measurements and 4;; is the Kronecker symbol.

5.2. Propagation of measurement noise in the backpropagation step. The measure-
ment noise affects the TD based imaging functional through the backpropagation step which
builds the function w in (3.6). Due to the noise, we have

(5.5) w(x) =S4 K%I — Kg) [U — utrue — unoise]} (X) = Wirue(X) + Wnoise(X)

for x € Q. Here, wiue is the result of backpropagating only the accurate data, while wygige is
that of backpropagating the measurement noise. In particular,

1
(5.6) Whoise(X) = =8¢ [(51 - Kﬁ) [unoise]] (x), xe€.
To analyze the statistics of Wyeise, We proceed in two steps. First define
1
(5.7) Vnoise,1(X) = <§I — ICE) [Vnoise) (X),  x € 9.

Then, due to linearity, vyeise,1 is also a mean-zero circular Gaussian random process. Its
covariance function can be calculated as

- 1 - 1 -
E[Vnoise,l(}’) ® Vnoiso,l(y/)] = ZE[Vnoiso(Y) X Vnoiso(y/)] - §E[IC§J2 [Vnoise](}’) ® Vnoise(y/)]

1 S -
- §E[Vnoise (y)® K [Vnoise] ()] + E[KG [Unoise () Kg [Vnoise] ()]
The terms on the right-hand side can be evaluated using the statistics of vy and the explicit

expression of K¢. Let us calculate the last term. It has the expression

B [ |G = 0] @ |G X e () )0 .

Using the coordinate representations and the summation convention, we can calculate the
jkth element of this matrix by

/69 /69 [25: )} [gz) ' —x )} ks E[Vnoise (%) ® Vnoise (X')]15d0 (x)dor (x)
2 ory or%

_ ) =0 _ 70 I
- 0n01se 59 8I/x (y X) 81/ (X y )dO’(X)
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In the last step, we used the reciprocity relation
(5:8) Ly —x) = [[§(x - y)I"

for any x,y € R
The other terms in the covariance function of Vpise,1 can be similarly calculated. Conse-
quently, we have

— o2, ory ory
Bl () & Vit 0] =252, (41 — T [Ty ) 4 Sy )
Yy

(5.9) orw oTw
2 0 _ 0 -
+ Thoise ) D (y —x) o (x —y')do(x).

From the expression of Zwr and Zw, we see that only the Helmholtz decomposition of
Wineas, that is, HT [w] and H[w], is used in the imaging functional. Define w® = H[w], o €
{P,S}. Using the decomposition in (5.5), we can similarly define w, . and w¢ In partic-
ular, we find that

noise*

W oo (%) = — /6 Talx— Y 1) (y). X €0,

This is a mean-zero C%valued circular Gaussian random field with parameters in . The jkth
element of its covariance function is evaluated by

E[Wioise(X) @WE i Wioise (X)]jk = Z/ Oa X— Y))jl(I‘aa(X/_y/))ksE[Vnoise,l(Y)®Vnoise,1(y/)]ls-

Using the statistics of v4ise,1 derived above, we find that

- o2 -
E[Wg()ise(x) ® Wﬁoise(xl)] = % /BQ (6)705 (X - Y)F%ia (y - Xl)dO’(Y)

O ary , 0Ty S
__ _mnoise w o olg _ N b d d )
2 /(69)2 Balx =) L{?Vy & -y) Ay -y )} 5oy —x)do(y)do(y')

org ory —
+ Uioise /(89)3 g,a(x - Y) 8V0 (y - Z) 8V0 (Z - y/)rﬁa(y, - X/)dO'(Z)dO'(y)dO'(y,).

Thanks to the Helmholtz—Kirchhoff identities, the above expression is simplified to

2

—_— g
E[Wgoise(x) ® Wﬁoiso(xl)] = 42012? C\m{I‘O a(x - X/)}
«
2. oSm{Ty (y —x)}
T hoise w 0,
vl N ) - d
g [ rg e y) e o(y)
2 Tg,(x—¥)}
T noise m{ 0, y / , ,
Ty —x')d
o [ oo Faly —xX)do(y')

O-I%OiSO a%m{raa (X B Z)} 8%777/{]:%0‘),@(2 - X/)}
/89 ov,

(cqw)? - Oy,

do(z).
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Assuming that x,x’ are far away from the boundary, we have from [4] the asymptotic formula

aI‘O a(x Y)

(5.10) e

= ic&wraa(x - Y)7

where the error is of order o(|x —y|*/?~%). Using this asymptotic formula and the Helmholtz—
Kirchhoff identity (taking the imaginary part of the identity), we obtain

2
S o
(511) E[Wgoise(x) ® Wgoise(xl)] — —_hoisc C\m{I‘O a(x - X/)}.
4caw
In conclusion, the random field w&,  (x), x € Q, is a Gaussian field with mean zero and
covariance function (5.11). It is a speckle pattern, i.e., a random cloud of hot spots where
typical diameters are of the order of the wavelength and whose typical amplitudes are of the

order of oypise/(2+4/Caw).

5.3. Stability analysis. Now we are ready to analyze the statistical stability of the imaging
functional Zwr. As before, we consider separate cases where the medium has only density
contrast or only elastic contrast.

5.3.1. Case I: Density contrast. Using the facts that the plane waves U? are irrotational
and that the plane waves U® are solenoidal, we see that for a searching point z € € and for

a € {P,S},
a 2 10/1 ! 1 - « « «
IWF[{U] }](Z) = CqW (% - 1> |B |E Z §Re{Uj (Z) : (Wj,truo(z) + Wj,noiso(z))}‘
j=1

We observe the following: The contribution of {w¢
the other hand, the contribution of {w, ;..
Cy = cow?|B'|(p/po — 1), the covariance function of the corrupted image can be calculated
as follows. Let z' € Q. We have

5 tme} is exactly that in Proposition 4.1. On
} forms a field corrupting the true image. With

n

COV(IWF[{U;I}] (Z)7IWF [{U?}](Z/)) - ng% Z E[%G{U? ’ W?ﬁnoisc}%e{U? ’ Wlofnoise}]
Ji=1

1 «Q wo «a
= 02 “oOn2 Z Re { [Wj,noiso(z) ® Wj,noise(zl)]Uj (Z,)} .

To get the second equality, we used the fact that w ] noise and wit . are uncorrelated unless
j = 1. Thanks to the statistics (5.11), the covariance of the image is given by

U «
— Ol éReZ el e - [SmATY o (2 — 2) }ef |,

Olélc w 2n?

P _ S _ L
where ey, = €y and ey = €p. -
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Using the same arguments as those in the proof of Proposition 4.1, we obtain that

o2
(5.12) Cov(Zwr[{UF }](2), Zwr [{UF}](2')) = Co =32 Sm{TG o (2 — 2)}%,

where the constant

,0/ 2 T d—2 K 2
-t (40 (2) (2
Po Fa Fa

The following remarks hold. First, the perturbation due to noise has small typical values
of order opeise/Vv2n and slightly affects the peak of the imaging functional Zyp. Second, the
typical shape of the hot spot in the perturbation due to the noise is exactly of the form of
the main peak of Zywr obtained in the absence of noise. Third, the use of multiple directional
plane waves reduces the effect of measurement noise on the image quality.

From (5.12) it follows that the variance of the imaging functional Zywp at the search point
z is given by

o2
(5.13) Var(Zwr[{Uj }](2)) = C&%I%m{l“&a(o)}lz

Define the signal-to-noise ratio (SNR) by

 EZwel{U2))(z0)
N R Twe [(02)](2)) 2

where z, is the true location of the inclusion. From (4.6), (4.7), and (5.13), we have

4/ 2mt- 205 =gt 5| Bl py — pol

(5.14) SNR = [SmATG . (0)}-

Onoise

From (5.14), the SNR is proportional to the contrast |p; — po| and the volume of the inclusion
6%|B| over the standard deviation of the noise, opojse-

5.3.2. Case llI: Elasticity contrast. In the case of elastic contrast, the imaging functional
becomes for z € Q)

Twr[{U5 }](2) = Ca% > VUG () : M (B) (VWS e (8) + VWi (7))
j=1

o

Here, Wi, and w7, ;.. are defined in the last section. They correspond to the backpropa-

gation of pure data and that of the measurement noise. The contribution of W e 18 exactly
the imaging functional with unperturbed data, and it is investigated in Proposition 4.2. The

contribution of W hoise Perturbs the true image. For z, z' € Q, the covariance function of the
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TD noisy image is given by
Cov(Zwr [{Uj H(2), Zwr [{Uj }(2'))

= Ci% > ERe{VUS(2) : M'VWS,500(2) }Re{VU} (2') : M'V W}, 500 (2)}]
jl—l

= C 9.2 Z %GE VUa( ) M/VW] nmse( ))(VU?(Z/) : Mlvwﬁénoise(zl))]
7,l=1

—c —Z%e{vua( ) s M [E[VW e (2) VW (2)] ;M'V—U;f(z')]}.

a9n2 j,noise

Using (5.11), we find that

0.2
T (2] = — 20, 9, (T, (2 — #')}.

7, n01se( ) ] noise 4caw

E[Vw

After substituting this term into the expression of the covariance function, we find that it
becomes

—C"Zi’m % Z_; Re {VUS(2) : M [Sm{V2TE (2 — )} : VTS ()| }

The sum has exactly the form that was analyzed in the proof of Proposition 3.4. Using similar
techniques, we finally obtain that

(515) Cov(Zwr[{US)](a), Twr (U })#)) = po (22) <i)d_2 <“—S> Thoie ). (.2,

Ko

where J, o is defined by (3.24). The variance of the TD image can also be obtained from (5.15).
As in the case of density contrast, the typical shape of hot spots in the image corrupted by
noise is the same as the main peak of the true image. Further, the effect of measurement noise
is reduced by a factor of \/n by using n plane waves. In particular, the SNR of the TD image
is given by

d—2
(5.16) SNR = R/ (1) 2 Ks4v2n
. =

Ra
6. Statistical stability with medium noise. In the previous section, we demonstrated
that the proposed imaging functional using multidirectional plane waves is statistically stable
with respect to uncorrelated measurement noises. Now we investigate the case of medium
noise, where the constitutional parameters of the elastic medium fluctuate around a constant
background.

Jo.a(Za, Zg).
Ra Onoise OC’a( “ a)
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6.1. Medium noise model. For simplicity, we consider a medium that fluctuates in the
density parameter only. That is,

(6.1) p(x) = poll +~(x)],

where pg is the constant background and pyy(x) is the random fluctuation in the density.
Note that ~ is real-valued.

Throughout this section, we will call the homogeneous medium with parameters (Ao, 10, po)
the reference medium. The background medium refers to the one without inclusion but with
density fluctuation. Consequently, the background Neumann problem of elastic waves is no
longer (2.21). Indeed, that equation corresponds to the reference medium, and its solution
will be denoted by U . The new background solution is

(ﬁ)\o,uo + p0w2[1 + ’y])U =0 on £,
(6.2)

8_U =g on 0f).

ov

Similarly, the Neumann function associated with the problem in the reference medium will be
denoted by N“»(0), We denote by N* the Neumann function associated with the background
medium, that is,

(Lrgo + pow?[1 +v(x))N¥(x,y) = =0y (x)I2, x€Q, x#Yy,
(6.3) BING
ov

(X7 Y) = 07 X € OQ

We assume that v has small amplitude so that the Born approximation is valid. In
particular, we have

(6.4) N“(x,y) = N (x,y) + pow’® / N O (x, 2)7(2)N) (z,y)dy.
Q
As a consequence, we also have that U ~ U© — UM where
(6.5) U (x) = —p0w2/ N ) (x,2)y(z) U (z)dz.
Q

Letting o denote the typical size of v, the remainders in the above approximations are of
order o(o).

6.2. Statistics of the speckle field in the case of a density contrast only. We assume
that the inclusion has density contrast only. The backpropagation step constructs w as follows:

(6.6) w(x) = /a ) T'%(x,z) <%1 - ;cgv@)) [UO) — Upeas](z)do(z), x € Q.

We emphasize that the backpropagation step uses the reference fundamental solutions, and
the differential measurement is with respect to the reference solution. These are necessary
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steps because of the fluctuation in the background medium or, equivalently, because of the
fact that the background solution is unknown.

We write the difference between U® and umeas as the sum of U® — U and U — uyeqs.
These two differences are estimated by U™ in (6.5) and by (2.22), respectively. Using Lemma
2.1, we find that

w(x) = — pow? Y(x —z T¥(z — (0) o(z
oy MO | rit—a | T ik D (y)1(y)dydo(2)
— O /89 Ty (x — 2)T5 (2 — 2,)UO) (2,)do(z) + O(0,8%) + 0(0,), x€Q,

where C' = w?(pg — p1)|B|. The second term is the leading contribution of U — Upeas given
by approximating the unknown Neumann function and the background solution by those
associated with the reference medium. The leading error in this approximation is of order
O(0,0%) and can be written explicitly as

Cpow?s? / Iy (x,2) / L5 (2, y)N(O0) (y,2,)UO) (24)y(y)dydo(z)
o0 Q

— Cpow?o° / I'§(x,2)T (2, 2,) / N« 0)(zq,y)UO) (y)y(y)dydo(z);
o0 Q

it is neglected in what follows.

For the Helmholtz decomposition w®, o € {P, S}, the first fundamental solution I'f (x — z)
in the expression (6.7) should be changed to I'§ , (x — z). We observe that the second term in
(6.7) is exactly (3.10). Therefore, we call this term wye and refer to the other term in the
expression as Wyeise. Using the Helmholtz—Kirchhoff identity, we obtain

(6.8) Weise(x) = =220 [ (y)S3miTE o (x — y)YUO (y)dy, x € Q.

noise
Cq Q

We have decomposed the backpropagation w® into the “true” wg, ., which behaves as in
the reference medium, and the error part wy . . In the TD imaging functional using multiple
plane waves with equidistributed directions, the contribution of w¢ . is exactly as the one
analyzed in Proposition 4.1. The contribution of w{ .. is a speckle field.

The covariance function of this speckle field or, equivalently, that of the TD image cor-

rupted by noise, is
Cov(Zwr [{ U5 H(z), Zwr [{ U5 }](2))

— 2y 5B [Re (U0 (0) - whra(a) ) Re {00 2) - w7n(2))

J,l=1

for z,z € Q, where C, is defined to be cow?|B’|(p|/po — 1). Here U are the reference
incoming plane waves (3.14).
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Using the expression (6.8), we have

—ZU“ “Winoise() = ~ba —Z / [U“) (z) © U (v) | - Sm{T§ o (2~ y)}dy

n

1 ko (Z—y)-
_ —ba/Q’Y(Y)E Zema(z y)-eo, ey, ® eg. : SM{TG o (z — y)}dy,
j=1

where b, = (pow)/cq. Finally, using (3.18) and (3.19) for « = P and S, respectively, we
obtain that

1 - o « w
(69) =3 U @) Wiial) = i [ 231 Sm{T ol )} .
=1

Here b, = 4ba o (= )d 2(is ) Note that the sum above is a real quantity.
The covariance functlon of the TD image simplifies to

610) O} /Q /Q (3, y)|Sm{TS (2 — y)}2ISm{TS (@ — y')} dydy’,

where C,(y,y’) = E[y(y)v(y’)] is the two-point correlation function of the fluctuations in the
density parameter.

Remark 6.1. The expression in (6.9) shows that the speckle field in the image is essentially
the medium noise smoothed by an integral kernel of the form [SmIY, 2. Similarly, (6.10)
shows that the correlation structure of the speckle field is essentially that of the medium
noise smoothed by the same kernel. Because the typical width of this kernel is about half the
wavelength, the correlation length of the speckle field is roughly the maximum between the
correlation length of medium noise and the wavelength.

6.3. Statistics of the speckle field in the case of an elasticity contrast. The case of
elasticity contrast can be considered similarly. The covariance function of the TD image is

Ci% f: E [Re { VU (2) : M'VWSi0e(2) | e { VU () s VWP e (2) ]
J,l=1

Using the expression of w¢ we have

noise’

n

1 - o 1 . 1ka(Z2—y)-€q.
VU @) MW ea) = b [ A0 S i
j=1 j=1

X ep; @ ef, @ef  [M'Sm{V,I§,(z—y)}]dy.

From (3.18) and (3.19), we see that

1 - d—2 2
(6.11) =Y ikad " ieg, @ f @ ef, = —4uo (%) <“—5> Sm{VT¥,(x)}.

= o Ra
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Using this formula, we get
1 S (e} ! a / 2 !
(612) ; Z VUJ (Z) : M ij,noise(z) = ba o V(Y)QQ[M ](Z - y)dy7
j=1

where Q% [M'](x) is a nonnegative function defined as

QBM](x) = Sm{VI§ p(x)} : MSm{VT] p(x)}]

(6.13) o " 5 o " 9
= a|Sm{VI{ p(x)}" + b|Sm{V - I'5 p(x)}|".

The last equality follows from the expression (2.19) of M and the fact that 0;(I'g p)j, =
9;(TG p)ik- This symmetry is not satisfied for I'y p, for which we have

Q5M](x) = Sm{VIG 5(x)} : MIm{VI{ g(x)}]

= §|3771~{V11),s(><)}|2 + 5 Sm{VIG (%)} : Sm{VIGg(x)} + b[Sm{V - g s(x) .
Here (V - T'§ 5(x))jr = Ok (TE g(x))j1- Note that Q? is nonnegative and (6.12) is real-valued.
The covariance function of the TD image simplifies to

(615 b2 /Q /Q oy, ¥)QR2IM) (2 — Y)Q2MI(Z — y)dydy', 2,2 € 9.

Remark 6.2. If we compare (6.12) with (6.9), then one can see that they are of the same
form except that the integral kernel is now Q2[M’]. Therefore, Remark 6.1 applies here as
well. We remark also that the further reduction of the effect of measurement noise with rate
1/ V2n does not appear in the medium noise case. In this sense, TD imaging is less stable
with respect to medium noise.

6.4. Random elastic medium. In this section we consider the case when the random fluc-
tuation occurs in the elastic coefficients. This is a more delicate case because it is well known
that inhomogeneity in the Lamé coefficients cause mode conversion. Nevertheless, we demon-
strate below that as long as the random fluctuation is weak so that the Born approximation
is valid, the imaging functional we proposed remains stable.

To simplify the presentation, we assume that random fluctuation occurs only in the shear
modulus p while the density pp and the first Lamé coefficient )y are homogeneous. The
equation for a time-harmonic elastic wave is then

(6.16) powu+ A V(V 1) + V- [u(x)(Vu + (Vu)")] = 0,
with the same boundary condition as before. The inhomogeneous shear modulus is given by

(6.17) (1(x) = po + y(x,w),

where ~(x) is a random process modeling the fluctuation.
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Born approximation. The equation for the elastic wave above can be written as
Lot + pow’u = =V - [y(x)(Vu + (Vu)?)].

Assume that the random fluctuation v is small enough so that the Born approximation is
valid. We then have u ~ ug — uy, where ug solves the equation in the background medium
and uy, the first scattering, solves the above equation with u on the right-hand side replaced
by ug. More precisely, we have

(6.18) uy (x) = /Q N“(x, )V - [1(y)(Vu + (Vu)T)]dy.

Here, N*“ is the Neumann function in the background medium without random fluctuation.

Postprocessing step. As seen before, the postprocessing (3.6) is a critical step in our
method. As discussed in section 6.2, even when the medium is random, we have to use the
reference Green function and the reference solution associated with the homogeneous medium
in this postprocessing step. Following the analysis in section 6.2, we see that as in (6.7) the
function w contains two main contributions: First, backpropagating the difference between
the measurement and the background solution in the random medium but without inclusion
contributes to the detection of inclusion. Second, backpropagating the difference between the
background solution and the reference solution in the homogeneous medium amounts to a
speckle pattern in the image.

The first contribution corresponds to the case with exact data and is discussed in section 4.
We focus on the second contribution, which accounts for the statistical stability. This part of
the postprocessed function w has the expression

Wi (2) = H° [85 (57~ xs) u1]

e [ [ v (31 8) [ Netoxvion] <y>da<y>]

~ [ Tuy) [ Tx07 - e (Va+ (VT xldsdo y).
o0 Q

In the second equality above, v(x) is a short-hand notation for the divergence term in the line
below. We refer to this term as the first scattering source. Using the Helmholtz—Kirchhoff
identity again, we obtain that

(619)  Weose(s) = —— [ {20} 9 (60 (Tu + (V) ) i,
(0%

Remark 6.3. Compare the above expression with that in (6.8). The first scattering source
in (6.8) is exactly the incident wave in the case with density fluctuation but is more complicated
in the case with elastic fluctuation; see (6.20) below. This shows that the Born approximation
in an inhomogeneous medium indeed captures weak mode conversion. Nevertheless, (6.19)
shows that our method, due to the Helmholtz—Kirchhoff identity and our proposal of using
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Helmholtz decomposition, extracts only the modes that are desired by the imaging functional.
As we will see, this is crucial to the statistical stability of the imaging functional.

The speckle field. For simplicity of presentation, we consider only the case of density
inclusion and the usage of pressure waves in (5.1). For a pressure wave UP = ¢irpxes the
first scattering source is

(6.20)  v(x) = 2ikpV - (y(x)eP¥ ey @ eg) = 2ikp(Vy - eg)UT (x) — 2657 (x)UT (x).

The speckle field in the imaging functional with a set of pressure waves {Uf }is

Tt o {UF H(2) = cpu? (po 1) B e ZUP wh(@)

n

1
() e [ 2S5 )

Jj=1

1 ¢ i (2—x):
- 2= Z irpe P @) e eg, ® ey, @ ey, : [Vy(x) @ Sm{T{ p(z,x)}]dx.
=1

Using the summation formulas (3.18) and (6.11), we can rewrite the above quantity as

cf /Q 2657(x)|SmATG p (2, %) }|* + 23m{V, TG p(2,%)} : [Vy(x) © Sm{T§ p(z,x)}Hdx.

Here, the constant is

d—2 2 3
m ks o1 d—2 W’ ,
cP =4 <—> <—> <—— >B = 47922 (p) — po)|B'].
1 H0 Kp p 0 | | c}i)(pl P0)| |

Assuming that v = 0 near the boundary and using the divergence theorem, we can further
simplify the expression of the speckle field to

CF [ AGOI(2 T+ An) ST pla 30} ldx = CF [ [T+ Ay () 9m{Ts p(a )}

This expression is again of the form of (6.9) and (6.12) except that the integral kernel is more
complicated. Its correlation can be similarly calculated. Furthermore, Remarks 6.1 and 6.3
apply here.

Remark 6.4. For other settings such as elastic inclusion or when a set of shear waves are
used in the imaging functional, the expressions for the speckle field and its statistics are more
complicated. Explicit formulas for such settings are listed in [3], which is a longer version
of this paper. Nevertheless, the salient feature of the speckle field does not change. It is
essentially the medium noise (or the gradient of the medium noise) smoothed by an integral
kernel whose width is of the order of the wavelength. The correlation length of the speckle
field is of the order of the maximum between that of the medium noise and the wavelength.
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7. Conclusion. In this paper, we performed an analysis of the topological derivative (TD)
based elastic inclusion detection algorithm. We have seen that the standard TD based imaging
functional may not attain its maximum at the location of the inclusion. Moreover, we have
shown that its resolution does not reach the diffraction limit and identified the responsible
terms, which are associated with the coupling of different wave modes. In order to enhance
resolution to its optimum, we cancelled out these coupling terms by means of a Helmholtz
decomposition, thereby designing a weighted imaging functional. We proved that the modified
functional behaves like the square of the imaginary part of a pressure or a shear Green function,
depending upon the choice of the incident wave, and then attains its maximum at the true
location of the inclusion with a Rayleigh resolution limit, that is, of the order of half a
wavelength. Finally, we have shown that the proposed imaging functionals are very stable
with respect to measurement noise and moderately stable with respect to medium noise.

In a forthcoming work, we intend to extend the results of the paper to the localization
of the small infinitesimal elastic cracks and to the case of elastostatics. In this regard recent
contributions [11, 6, 10] are expected to play a key role.
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