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Abstract. We study the averaging of fronts moving with positive oscillatory normal velocity,

which is periodic in space and stationary ergodic in time. The problem can be reformulated as

the homogenization of coercive level set Hamilton-Jacobi equations with spatio-temporal oscilla-

tions. To overcome the difficulties due to the oscillations in time and the sublinear growth of the

Hamiltonian, we first study the long time averaged behavior of the associated reachable sets using

geometric arguments. The results are new for higher than one dimensions even in the space-time

periodic setting.
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1. Introduction

We investigate the averaging behavior of fronts moving with positive oscillatory normal velocity,

which is periodic in space and stationary ergodic in time. The problem can be reformulated, using

the level-set method, as the homogenization of coercive level set Hamilton-Jacobi equations with

spatio-temporal oscillations.

In particular, we study the homogenized (averaging) behavior of the solution uε = uε(x, t, ω) to the

level-set Hamilton-Jacobi equation
{
uεt + a

(
x
ε ,

t
ε , ω
)
|Duε| = 0 in Rn × (0,∞),

uε = u0 on Rn × {0},
(1.1)

where u0 ∈ UC(Rn), the space of uniformly continuous functions, and, for each element ω of the

underlying probability space (Ω,F ,P), the velocity a is bounded from above and from below away

from 0 uniformly in x, t and ω, periodic in x and stationary ergodic in t; exact definitions are given

in the next section. The Hamiltonian H(x, t, p, ω) = a(x, t, ω)|p| inherits the above properties in

x, t and, in view of the bounds on a, is coercive and has linear growth in p uniformly in ω.

In spite of its simple form and the coercivity of H, (1.1) falls outside of the scope of the existing

homogenization theory for Hamilton-Jacobi equations even in the spatio-temporal periodic setting.

The reason is that, contrary to the time independent setting with linear growth and the time

dependent setting with superlinear growth, the time oscillations and the linear growth of H in p

do not yield any a priori good control, that is independent of ε estimates, for the oscillations of the

uε’s.
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We overcome this difficulty by studying a more general problem, namely the large time averaging

of the reachable sets of the associated control problem which we describe next.

For t > 0 and ω ∈ Ω, let A0,t(ω) be the set of solutions (admissible paths) to the controlled system



γ′(r) = f(γ(r), r, ξ(r), ω) := a(γ(r), r, ω)ξ(r, ω) a.e. r ∈ (0, t),

|ξ(r, ω)| ≤ 1 a.e. r ∈ (0, t),
(1.2)

that is

A0,t(ω) := {γ : [0, t] → Rn : |γ′(r)| ≤ a(γ(r), r, ω) for a.e. r ∈ [0, t]}.

The reachable set Rt(x, ω) at time t > 0 emanating from x ∈ Rn is

Rt(x, ω) := {y ∈ Rn : there exists γ ∈ A0,t(ω) such that γ(0) = x, γ(t) = y}, (1.3)

and, here, we are interested in the long time average of Rt(x, ω), that is the the limit, as t → ∞, of

t−1Rt(x, ω). (1.4)

The study of the long time averaged asymptotic behavior of the reachable sets, for spatio-temporal

periodic a and n = 1, goes back to Poincaré and Denjoy; we refer to the book of Arnol’d [6] for

details. In this case, for each t ≥ 0, Rt(x) = [γL(t), γR(t)] with γL, γR prescribed by the dynamical

systems




γ′R(t) = a(γR(t), t) for t > 0 and γR(0) = x,

γ′L(t) = −a(γL(t), t) for t > 0 and γL(0) = x.

The large time average of (1.4) is controlled by the limits, as t → ∞, of t−1γR(t) and t−1γL(t),

which exist and are the so-called rotation numbers first defined by Poincaré. These results were

generalized, always when n = 1, for a periodic in x and stationary ergodic in t by Li and Lu [20].

To the best of our knowledge, the asymptotic behavior of (1.4) for n ≥ 2 was unknown, even in the

space-time periodic case. One of our main results, Theorem 2.4 below, characterizes this behavior,

for spatial periodic and temporal stationary ergodic a and for all dimension n.

Next we recall the relationship between the reachable sets and the solution of (1.1) which is based

on the control interpretation of (1.1) and is given by the well known Lax-Oleinik formula.

The Lagrangian L(x, t, q, ω), that is the Legendre transform of the map p 7→ H(x, t, p, ω), is of the

form

L(x, t, q) =




0 if |q| ≤ a(x, t, ω),

+∞ otherwise.
(1.5)

Hence the action along a path is finite if and only if this path is admissible, in which case the action

is actually zero. As a result, the Lax-Oleinik formula formula for solutions to (1.1) for ε = 1 gives

u(x, t, ω) = inf
y∈Rn

{u0(y) : x ∈ Rt(y, ω)},

and, after a space-time scaling,

uε(x, t, ω) = inf
y∈Rn

{u0(y) :
x

ε
∈ R t

ε
(
y

ε
, ω)t}.
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We show that there exists a convex and compact set D ⊂ Rn, such that, for every t > 0, the

almost sure long time average
(
t
ε

)−1R t
ε

(y
ε , ω

)
, as ε → 0, is given by t−1y+D. As a result, the set

{y : x
ε ∈ R t

ε

(y
ε , ω

)
} converges, as ε → 0, to the set {y : x ∈ y+ tD}. It then follows that uε(x, t, ω)

converges almost surely to

u(x, t) := inf
y∈Rn

{u0(y) : x ∈ y + tD},

which is the solution of the homogenized equation



ut +H(Du) = 0 in Rn × (0,∞),

u = u0 on Rn × {0};
(1.6)

and the effective Hamiltonian H is defined through the set D. See Theorem 2.5 and Section 4

below for the details.

The periodic homogenization of coercive Hamilton-Jacobi equations was first studied by Lions, Pa-

panicolaou and Varadhan [21] and, later, Evans [15, 16]. Ishii established in [19] homogenization in

almost periodic settings. The stochastic homogenization of Hamilton-Jacobi equations with convex

and coercive Hamiltonians was established independently by Souganidis [29] and Rezakhanlou and

Tarver [24], and later Schwab [27] considered problems with space-time oscillations and superlinear

growth in p. In [22] Lions and Souganidis gave a simpler proof for homogenization in probability

using weak convergence techniques. Their program was extended by Armstrong and Souganidis in

[3, 4] using the so-called metric problem. The homogenization of general nonconvex Hamiltonians in

random environments remains to date an open problem. A first extension to level-set convex Hamil-

tonians was proven by Armstrong and Souganidis in [4] and, more recently, Armstrong, Tran and

Yu [5] established stochastic homogenization for a special class (double-well-type) of Hamiltonians.

Few results are available for non-coercive Hamiltonians and they all rely on some reduction prop-

erty that compensates for the lack of coercivity; see, for example, Alvarez and Bardi [1], Barles

[7] and Imbert and Monneau [18]. A different approach, based on nonresonance conditions, was

initiated by Arisawa and Lions [2] and extended to periodic noncoercive-nonconvex Hamiltonians

by Cardaliaguet in [9]. Of special interest is the study of noncoercive Hamilton-Jacobi equations

associated to moving interfaces. The homogenization of time independent noncoercive level set

equations in the periodic setting was established by Cardaliaguet, Lions and Souganidis [10] and

recently by Ciomaga, Souganidis and Tran [14] in the random setting. The homogenization of the

G-equation, which is used as model for fronts propagating with normal velocity and advection, in

periodic environments was established by Cardaliaguet, Nolen and Souganidis [11] (a special case

of space periodic incompressible flows was considered by Xin and Yu [30]) and by Cardaliaguet and

Souganidis in [13] in random media (a special case was studied by Novikov and Nolen [23]).

We explain now in more detail the nontrivial difference in the behavior of solutions when the

Hamiltonian H(x, t, p) grows linearly in p and oscillates in time, the setting we study here, and

when one of those two situations does not happen. Indeed, when H = a(x)|p| is coercive, that

is a is strictly positive, and has no time oscillations, then one can easily obtain uniform in ε and

global in time Lipschitz bounds for uε, which depend only on the Lipschitz constant of u0 and the

bounds on a. If H grows superlinearly in p and oscillates in time, Cardaliaguet and Silvestre [12]

obtained local uniform space-time C0,α− estimates, which only depend on the growth condition of

the Hamiltonian but not on its smoothness, for the solutions to the oscillatory Hamilton-Jacobi
3



equations. In both cases, these estimates are useful and important for the homogenization of (1.1).

For the problem at hand, however, no such estimates are known.

Another important difference can be seen in the definition, properties and behavior of the minimal

time function, that is the smallest time it takes to go from one point to other using admissible

paths, which is fundamental for the homogenization theory in the absence of time oscillations.

To explain this we describe next the role of the minimal time function in the study of the long

time average of (1.4) and, hence, the homogenization of (1.1) when there are no time oscillations.

Throughout this discussion we omit the dependence on ω.

When a and, hence, f in the aforementioned control system are independent of t, the reachable set

Rt(x) is characterized in terms of the minimal time to reach a point y ∈ Rn from a point x ∈ Rn,

which is defined as

θ(y, x) := inf{t ≥ 0 : y ∈ Rt(x)}. (1.7)

Indeed, it is immediate from (1.3) and (1.7), that, for all t > 0,

Rt(x) = {y ∈ Rn : θ(y, x) ≤ t}.
One of the key and very natural property of the minimal time function is subadditivity, that is the

fact that, for x, y, z ∈ Rn,

θ(y, x) ≤ θ(y, z) + θ(z, x).

Moreover, In view of the positive lower bound of a, there exists a universal constant C > 0 such

that, for all x, y ∈ Rn,

θ(y, x) ≤ C|y − x|. (1.8)

Consequently, we can apply the subadditive ergodic theorem to θ and obtain the large time av-

erage of it along any direction. It follows that there exists a 1-positively homogeneous, Lipschitz

continuous (with Lipschitz constant C in (1.8)), convex θ : Rn → R such that, for any y ∈ Rn (and

almost surely in ω),

lim
t→∞

1

t
θ(ty, 0) = θ(y). (1.9)

Using the relation between minimal time functions and reachable sets, we deduce further that, for

all x ∈ Rn (and almost surely in ω),

lim
t→∞

Rt(x)

t
= {y ∈ Rn : θ(y) ≤ 1},

and, this, eventually determines the homogenization limit of (1.1) when a is time independent.

We discuss now what happens when a and, hence, the control system depends on t and, in the same

time, we outline the methodology of the paper. In this case, it is necessary to take into account the

starting time in the definition of minimal time function θ(x, y) in (1.7) since, for different starting

times, the controls for admissible paths are different. We thus need to consider the minimal time

function in space-time instead of just space variable. In this framework, the minimal time to reach

a point (y, t) ∈ Rn × [0,∞) from (x, 0) ∈ Rn × {0} can be defined as

θ((y, t), (x, 0)) :=

{
t if y ∈ Rt(x),

+∞ if y /∈ Rt(x).
(1.10)

Let α > 0 and β > α be respectively the lower and upper bounds of a. Then, for all t > 0,

B(x, tα) ⊂ Rt(x) ⊂ B(x, tβ),
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and the space-time reachable set W ((x, 0)) := {(y, t) ∈ Rn × [0,∞) : θ((y, t), (x, 0)) < ∞} ema-

nating from (x, 0) satisfies
⋃

t≥0

B(x, tα)× {t} ⊂ W ((x, 0)) ⊂
⋃

t≥0

B(x, tβ) × {t}. (1.11)

It follows that W ((x, 0)) has a cone-like shape and is controlled by the two lower and upper cones

with speed of propagation α and β respectively. The problem, however, is that θ(·, (x, 0)) = +∞
in Rn × [0,∞) \ W ((x, 0)). Hence, it does not seem possible to have any estimates like (1.8) or

to extend the minimal time function to the whole Rn × [0,∞) as in [14]. Because of this lack of

control on the minimal time function, we found it necessary to come up with a new approach.

Here we look directly at the spatial reachable sets instead of the space-time minimal time function.

In some sense, instead of exploring the joint space-time structure of a, we let the space periodicity

and the time stationarity play different roles in our devising of appropriate subadditive quantities

as we explain next. We use t as the index of the subadditive object, which is chosen as some kind

of supremum of reachable sets. Indeed in place of Rt(x) for each x, we consider the enlarged set

Rt(Y ) :=
⋃

x∈Y
Rt(x),

with Y := [0, 1]n; at this point we assume that a is 1-periodic in x for all t and ω.

It is clear that Rt(Y ) serves as a uniform control of Rt(x) for x ∈ Y , and, in view of the spatial

periodicity of a, all x ∈ Rn, since Rt(x) = [x] +Rt(x̂) where [x] is the integer part of x and x̂ ∈ Y .

As it should be expected, Rt(Y ) satisfies some sort of subadditivity property. Indeed, if Ỹ := −Y

is the reflected unit cube, we show in Lemma 3.2 that, for all m,k ∈ N with k ≤ m,

Rm(Y ) ⊂ Rk(Y ) +Rm−k(Y ) + Ỹ . (1.12)

We use then a subadditive ergodic theorem for compact sets due to Schürger [26] and Hansen and

Hulse [17], which, however, requires convexity; in fact it is explained in [26] that the result is wrong,

in general, for non convex sets. As a consequence this result can not be applied to the sets Rt(Y )’s,

which are not necessarily convex sets. Instead we apply the result of [17] to the convex hull of

the Rt(Y )’s, which are also subbaditive in the sense of (1.12) and find a compact and convex set

D ⊂ Rn such that,

lim
m→∞

coRm(Y )

m
= D, (1.13)

which, since, Rm(Y ) ⊂ coRm(Y ), is an upper bound for the large time average of Rm(Y ). The

issue is of course to show that D is also a lower bound and, hence, the long time average of Rm(Y )

itself. As mentioned earlier, this is wrong in general, if we do not have any additional properties of

the reachable sets.

In turns out that we can use the structure of the the control problem to overcome this difficulty

and this is the key observation in our analysis. In Theorem 3.4, we prove that, for any point y ∈ D,

there exists a sequence {ym ∈ Rm(Y )
m : m ∈ N} that stays close to y. This is done by designing paths

satisfying the ODEs of the controlled system up to time m; the spatial periodicity and temporal

stationarity are crucial in this design. It then follows that D is also a lower bound of the large time

average of Rm(Y ) and, hence, it is possible to remove the convex hull in (1.13). In view of the

monotonicity of Rt(Y ) in t, D is the large time average of Rt(Y ) along continuous time. Finally,

since, in view of the spatial periodicity, we can control Rt(x) by Rt(Y ) from above and by Rt−ℓ(Y )
5



from below for some finite constant ℓ, we find that D is also the large time average of Rt(x) for all

x ∈ Y ; see the proofs of Theorem 3.4 and Theorem 2.4 for the details.

The rest of this paper is organized as follows. In the next section, we specify the general assumptions

on the velocity a(x, t, ω) and state the main theorems of this paper. In Section 3 we establish the

large time average D of the enlarged reachable sets. We prove the main theorems of this paper in

Section 4, showing that D is also the large time average of the reachable set starting from any point

in the unit cube uniformly, and we apply this result to homogenize (1.1). Finally in Section 5, we

study the homogenization of moving fronts where there is an ambient drift in the velocity using the

asymptotic behavior of the corresponding reachable set; we also investigate the homogenization of

a non-coercive Hamilton-Jacobi equation.

Notations. We work in the n-dimensional Euclidean space Rn and we denote by Zn the set of

points with integer coordinates. N denotes the set of natural numbers including zero. Let Y be

the unit cell [0, 1]n and and Ỹ := −Y = [−1, 0]n. For any x ∈ Rn, we set ([x], x̂) to be the

unique pair in Zn × [0, 1)n such that x = [x] + x̂. The open ball in Rn centered at x with radius

r > 0 is denoted by Br(x), and this notation is further simplified to Br if the center is the origin.

The cardinality of a set K that has finite number of elements is denoted by Card(K). The set

of non-empty compact subsets of Rn is denoted by C . For any A,B ∈ C and any c ∈ R, we

set A + B := {x + y : x ∈ A, y ∈ B} and cA := {cx : x ∈ A}. The Hausdorff metric ρ on

C is defined as ρ(A,B) := max{supx∈A infy∈B |x − y|, supx∈B infy∈A |x − y|}. For any A ∈ C ,

‖A‖ := max{|x| : x ∈ A} and coA and E(A) are respectively the convex hull and set of extreme

points of A. The set of non-empty compact and convex subsets of Rn, which is a closed subset of

C , is denoted by coC ; C0,1(Rn+1) s the set of bounded, Lipschitz continuous defined on Rn, ‖ · ‖∞
is the L∞-norm of a bounded function, and B(Ξ) is the Borel σ-algebra the metric space Ξ.

2. Assumptions, preliminaries and main results

The setting and assumptions. We consider a probability space (Ω,F ,P) endowed with an

ergodic group of measure preserving transformations (τk)k∈Z, that is, a family of maps τk : Ω → Ω

satisfying, for all k, k′ ∈ Z and all U ∈ F ,

τk+k′ = τk ◦ τk′ and P[τkU ] = P[U ]
and

if τk(U) = U for every k ∈ Z, then either P[U ] = 1 or P[U ] = 0.

As far as a : Rn × R×Ω → R is concerned, we assume that

(A0) a is measurable with respect to B(Rn+1)×F ,

(A1) a is Zn-periodic in x and stationary in t with respect to (τk)k∈Z, that is, for every (x, l) ∈
Rn × Zn, (t, k) ∈ R× Z, and ω ∈ Ω,

a(x+ l, t, τkω) = a(x, t+ k, ω),

(A2) a(·, ·, ω) ∈ C0,1(Rn+1) for each ω and there exist α, β > 0 such that, for all (x, t) ∈ Rn+1

and ω ∈ Ω,

α ≤ a(x, t, ω) ≤ β. (2.1)

For simplicity, we combine all the assumptions into
6



(A) a = a(x, t, ω) satisfies (A0), (A1) and (A2).

The admissible paths and reachable sets. We recall and define some notions concerning the

reachable sets. For t ≥ s and ω ∈ Ω, the set As,t(ω) of admissible paths is given by

As,t(ω) := {γ : [s, t] → Rn : |γ′(r)| ≤ a(γ(r), r, ω) for a.e. r ∈ [s, t]}. (2.2)

The space-time reachable set corresponding to (x, s, ω) ∈ Rn × R× Ω is defined by

Γ(x, s)(ω) := {(y, t) ∈ Rn × [s,∞) : there exists γ ∈ As,t(ω) such that γ(s) = x, γ(t) = y}. (2.3)

For t ≥ s, the (space-time) reachable set from (x, s) at time t is

Γt(x, s)(ω) := Γ(x, s)(ω) ∩ (Rn × [s, t]). (2.4)

The projection of Γt(x, s)(ω) on Rn is given by

Rt(x, s)(ω) := {y ∈ Rn : there exists γ ∈ As,t(ω) such that γ(s) = x, γ(t) = y}; (2.5)

note that, in view of the discussion in the Introduction, Rt(x, s)(ω) is the (spatial) reachable set

at time t starting from x with initial time s.

In our analysis, we use the “enlarged” reachable set

Rt(Y, s)(ω) := ∪x∈Y Rt(x, s)(ω),

which is the set of spatial points reachable at t starting from the unit cell Y at time s.

Throughout the paper, when the initial time s = 0, we write

Rt(x)(ω) := Rt(x, 0)(ω) and Rt(Y )(ω) := Rt(Y, 0)(ω).

We discuss next some properties of the reachable sets which we will use in the sequel.

The reachable set Rt(x, s) for all x ∈ Rn, s ∈ R and t ≥ s, is compact, and so is the enlarged

reachable set Rt(Y, s); see for instance Cannarsa and Frankowska [8] and the references therein. If

the control system (1.2) is linear, that is if f(x, t, ξ) = Mx+Lξ, then Rt(x) is convex. In general,

when f is nonlinear in x and ξ, then Rt(x) is not convex. Since we do not assume that a is linear,

Rt(x) is presumably not convex, which makes the study of large time limit of Rt(x) much more

interesting.

The next observation was already discussed in the Introduction.

Lemma 2.1. Assume (A). Then, for any (x, t, ω) ∈ Rn × [0,∞)× Ω,

Btα(x) ⊂ Rt(x)(ω) ⊂ Btβ(x) (2.6)

and

Btα(0) ⊂ Rt(Y )(ω) ⊂ Btβ(0) + Y. (2.7)

Proof. If |y − x| ≤ αt, then the straight line path connecting y to x with speed α is admissible,

which implies the first inclusion of (2.6). On the other hand, for any γ ∈ A0,t(ω) with γ(0) = x,

|γ(t)− x| ≤ ‖a‖∞t ≤ βt, which yields the second inclusion of (2.6).

In view of Rt(0)(ω) ⊂ Rt(Y )(ω), the first inclusion of (2.7) follows from that of (2.6). On the

other hand, from the definition of Rt(Y )(ω) and the second inclusion in (2.6), we have Rt(Y )(ω) ⊂⋃
x∈Y Btβ(x) ⊂ Btβ(0) + Y . �

7



The second result implies that the reachable sets grow, a fact that follows from their monotonicity

in time.

Lemma 2.2. Assume (A) and fix ω ∈ Ω and x ∈ Rn. For any s ∈ R and t2 ≥ t1 ≥ s,

Rt1(x, s)(ω) ⊂ Rt2(x, s)(ω), (2.8)

and, for any t ∈ R and s1 ≤ s2 ≤ t,

Rt(x, s2)(ω) ⊂ Rt(x, s1)(ω). (2.9)

These relations are still true for the enlarged reachable sets.

Proof. Fix y ∈ Rt1(x, s), choose γ ∈ As,t1(ω) such that γ(0) = x and γ(t1) = y, and define

γ̃ : [0, t2] ∈ Rn by γ̃(r) = γ(r) for r ∈ [0, t1] and γ̃(r) = y for r ∈ [t1, t2]. It is immediate that

γ̃ ∈ As,t2(ω) and γ̃(t2) = y. This proves (2.8). The inclusion (2.9) and the corresponding results

for Rt(Y, s) are proved similarly. �

The subadditive ergodic theorem for compact convex sets. A key tool that we will use is

the subadditive ergodic theorem for compact convex sets. We say that a family of C -valued random

sets X = (Xk,m(ω))0≤k<m, where k,m ∈ N, is stationary if

Xm+l,k+l(ω) = Xm,k(τlω), for all l,m, k ∈ N, m ≤ k, and ω ∈ Ω,

and subadditive if

Xm,k(ω) ⊂ Xm,l(ω) +Xl,k(ω), for all l,m, k ∈ N, m < l < k and ω ∈ Ω.

A more general version of the next result is proved in [26] and [17]

Theorem 2.3 (Subadditive ergodic theorem). Let X = (Xm,k(ω))0≤k<m be a stationary subadditive

family of coC -valued random sets defined on (Ω,F ,P) and assume that E‖X0,1‖ ≤ C for some

C > 0. Then there exists a coC -valued set D and a subset Ω1 ⊂ Ω with full measure, such that

n−1X0,n(ω) converges to D in (C , ρ), as n → ∞, for all ω ∈ Ω1.

Main theorems. The first main theorem of this paper concerns the large time average of the

reachable sets starting from any point in the unit cell.

Theorem 2.4. Assume (A). There exists a compact and convex D ⊂ Rn and an event Ω̃ ∈ F of

full probability such that, for each ω ∈ Ω̃ and any x ∈ Y ,

lim
t→∞

Rt(x)(ω)

t
= D in (C , ρ) (2.10)

and,

lim
t→∞

sup
x∈Y

ρ

(Rt(x)(ω)

t
,D

)
= 0. (2.11)

Next, we identify the effective Hamiltonian from the compact convex set D of Theorem 2.4 as

follows. Let

L(q) :=

{
0 for q ∈ D,

+∞ otherwise,

and, for p ∈ Rn, define

H(p) := sup
q∈Rn

(
p · q − L(q)

)
= sup

q∈D
p · q. (2.12)

8



It is straightforward that H is convex and 1-positively homogeneous.

Let u be the solution of the following equation


ut +H(Du) = 0 in Rn × (0,∞),

u = u0 on Rn × {0}.
(2.13)

The homogenization result is:

Theorem 2.5. Assume (A) and let Ω̃ be as defined in Theorem 2.4. Then, for each ω ∈ Ω̃, the

solution uε = uε(·, ·, ω) of (1.1) converges locally uniformly in Rn × [0,∞) to the solution u of

(2.13).

3. Large time average of the enlarged reachable sets

Some properties of the reachable sets and the admissible paths. We investigate, using (A

0), the behavior of the the reachable set Rs(x, t)(ω), when x and t are translated, as well as its

subadditivity properties.

Lemma 3.1. Assume (A). For any x ∈ Rn, t ≥ 0, k ∈ N and ω ∈ Ω,

Rt(x)(ω) = [x] +Rt(x̂)(ω) (3.1)

and

Rk+t(x, k)(ω) = Rt(x)(τkω). (3.2)

Proof. For any y ∈ Rt(x)(ω), choose γ ∈ A0,t(ω) satisfying γ(0) = x and γ(t) = y, and define

γ̃ : [0, t] → Rn by γ̃(·) = γ(·) − [x]. The periodicity in space of a yields γ̃ ∈ A0,t(ω). Moreover,

γ̃(0) = x̂, γ̃(t) = y − [x] and, hence, y − [x] ∈ Rt(x̂)(ω) and thus (3.1) follows. The other direction

of inclusion in (3.1) follows similarly.

To prove (3.2), for any y ∈ Rk+t(x, k)(ω), choose γ ∈ Ak,k+t(ω) such that γ(k) = x and γ(k+t) = y

and define γ̃ : [0, t] → Rn by γ̃(·) = γ(·+ k). Then, f γ̃(0) = x and γ̃(t) = y and, for a.e. r ∈ (0, t),

|γ̃′(r)| = |γ′(k + r)| ≤ a(γ(k + r), k + r, ω) = a(γ̃(r), r, τkω).

It follows that γ̃ ∈ A0,t(τkω), y ∈ Rt(x)(τkω), and, hence, Rk+t(x, k)(ω) ⊂ Rt(x)(τkω). The other

inclusion follows in the same way. �

Lemma 3.2. Assume (A). Then, for any t ∈ R, s ∈ N such that t ≥ s and ω ∈ Ω,

Rt(Y )(ω) ⊂ Rs(Y )(ω) +Rt−s(Y )(τsω) + Ỹ .

Proof. For y ∈ Rt(Y )(ω), choose γ ∈ A0,t(ω) such that γ(0) ∈ Y and γ(t) = y. Then, in light of

(3.1) and (3.2), we get

y = γ(t) = γ(s) + (γ(t)− [γ(s)]) + ([γ(s)]− γ(s))

∈ Rs(Y )(ω) + (Rt(γ(s), s)(ω) − [γ(s)]) + Ỹ

= Rs(Y )(ω) + (Rt−s(γ(s))(τsω)− [γ(s)]) + Ỹ

= Rs(Y )(ω) +Rt−s(γ̂(s))(τsω) + Ỹ

⊂ Rs(Y )(ω) +Rt−s(Y )(τsω) + Ỹ ,

9



which is the desired conclusion. �

Since taking the closed convex hull is a linear operation and Ỹ is convex and compact, it follows

from Lemma 3.2 that

coRm(Y )(ω) ⊂ coRk(Y )(ω) + coRm−k(Y )(τkω) + Ỹ . (3.3)

In the analysis that follows we will need to construct admissible curves connecting any two points

within a uniform time. This is the topic of the following lemma.

Lemma 3.3. Assume (A) and let ℓ := [
√
n/α] + 1. For each ω ∈ Ω and any y1, y2 ∈ Y , there

exists γy1,y2 ∈ A0,ℓ(ω) such that γy1,y2(0) = y1 and γy1,y2(ℓ) = y2.

Proof. If y1 = y2, the path γy1,y2(·) ≡ y1 yields the desired result. Hence, we assume y1 6= y2 and

note that |y2 − y1| ≤
√
n and thus |y2− y1|/α ≤ ℓ. It is immediate that the path satisfies the claim

γy1,y2(t) =




y1 +

tα(y2 − y1)

|y2 − y1|
, t ∈ [0, |y2 − y1|/α],

y2, t ∈ (|y2 − y1|/α, ℓ],
(3.4)

satisfies the claim. �

The large time average of the enlarged reachable set. We prove the following theorem which

identifies the large time average of the enlarged reachable set.

Theorem 3.4. Assume (A). There exist a compact and convex set D ⊂ Rn and an event Ω̃ ∈ F
of full probability such that, for any ω ∈ Ω̃,

lim
t→∞

Rt(Y )(ω)

t
= D in (C , ρ). (3.5)

Following the strategy outlined in the Introduction, we first need identify the long time behavior

of the convex hull coRm(Y )(ω) of the reachable set Rm(Y )(ω), along integer time m ∈ N. To this

end, consider the family X := (Xm,k(ω))0≤m<k ⊂ coC given by

Xm,k(ω) := coRk−m(Y )(τmω) + Ỹ = co (Rk−m(Y )(τmω) + Ỹ ). (3.6)

Theorem 3.5. Assume (A). There exist a compact and convex set D ⊂ Rn and an event of full

probability Ω0 ⊆ Ω such that, for any ω ∈ Ω0,

lim
m→∞

X0,m(ω)

m
= D in (C , ρ), (3.7)

and

lim
m→∞

coRm(Y )(ω)

m
= D in (C , ρ). (3.8)

Moreover,

Bα ⊂ D ⊂ Bβ. (3.9)

Proof. It is immediate from (3.6) and (3.3) that shows that X is stationary and subadditive.

Moreover, in view of Lemma 2.1, E‖X0,1‖ is finite. It follows from Theorem 2.3 that there exist

a convex set D ∈ C and a set of full probability Ω0 ⊆ Ω such that, for every ω ∈ Ω0, (3.7) holds.

Upon redefining Ω0 as
⋂

j∈Z τjΩ0, we may assume that Ω0 is invariant under integral translations

and has full measure. Note that (3.7) holds for all ω ∈ Ω0.
10



To prove (3.8) we fix ω ∈ Ω0 and for simplicity, we omit the dependence of Rm(Y ) on it. Since

ρ

(
coRm(Y )

m
,D

)
≤ ρ

(
coRm(Y )

m
,
coRm(Y ) + Ỹ

m

)
+ ρ

(
coRm(Y ) + Ỹ

m
,D

)
,

it is enough to show that the right hand side of the above inequality converges to 0 as m → ∞.

Indeed, in view of (3.7), the second term on the right hand side above approaches zero as m → ∞,

while, the first term, in light of

ρ(A,A+B) ≤ ‖B‖ for all A,B ∈ C , (3.10)

is bounded by ‖Ỹ /m‖ and, hence, also converges to zero.

The last claim is immediate from Lemma 2.1 and (3.7) and (3.8). �

In the following lemma and for future use we show that almost surely the convergence in (3.8) holds

simultaneously for a special family of translations of the realization. The proof is technical, but

the benefit of this lemma will be clear later. We recall that ℓ = [
√
n/α] + 1.

Lemma 3.6. Assume (A). Let D be as in Theorem 3.5. There exists an event Ω̃ ⊂ Ω of full

probability measure, such that for each ω ∈ Ω̃ and any integer s ≥ 0,

lim
m→∞

coRm(Y )(τs(m+ℓ)ω)

m
= D in (C , ρ). (3.11)

Proof. For each fixed s ∈ N, we construct Ωs ∈ F with P(Ωs) = 1 such that (3.11) holds for s. The

conclusion then follows once we define Ω̃ :=
⋂

s∈NΩs.

For s = 0, let Ω0 be as defined in Theorem 3.5 and (3.11) follows. It remains to define Ωs for any

fixed s ≥ 1. In view of the pointwise convergence in Ω0 and Egoroff’s theorem, for any δ ∈ (0, 1),

there exists Ws,δ ⊂ Ω1 with P(Ws,δ) > 1− δ
4sβ and Ms,δ ∈ N such that, if m ≥ Ms,δ, then

sup
ω∈Ws,δ

ρ

(
coRm(Y )(τsℓω)

m
,D

)
<

δ

4
.

Applying the ergodic theorem to the indicator function 1Ws,δ
, we find Ωs,δ ∈ F with P(Ωs,δ) = 1

so that, for each ω ∈ Ωs,δ,

lim
N→∞

1

N + 1

N∑

k=0

1Ws,δ
(τkω) = P(Ws,δ) > 1− δ

4sβ
. (3.12)

Let Ωs :=
⋂

δ∈Q∩(0,1)Ωs,δ. It is clear that Ωs ∈ Ω1 and P(Ωs) = 1. We need to check that (3.11)

holds for all ω ∈ Ωs. Fix any such ω ∈ Ωs and observe that for ε > 0, in view of (3.12), there exists

Ns,ε > 0 so that, for N ≥ Ns,ε,

N∑

k=0

1Ws,ε(τkω) = Card {k ∈ [0, N ] : k ∈ N, τkω ∈ Ws,ε} >

(
1− ε

4sβ

)
(N + 1). (3.13)

Set Ms,ε := max{Ns,ε/(2s), 8
√
n/ε}. Then, for any m ≥ Ms,ε, the previous claim with N = 2sm

yields that, inside the set N≤2sm := {0, 1, · · · , 2sm}, there is no subset J = {k, k+1, · · · , k+[ εm2β ]},
which consists of [ εm2β ] + 1 consecutive integers such that, if j ∈ J , then τjω fails to be in Ws,ε.

Consequently, there exists an integer r̃ ≤ sm with sm− r̃ ≤ [ εm2β ] such that τr̃ω ∈ Ws,ε.
11



Next observe that

ρ

(
coRm(Y )(τs(m+ℓ)ω)

m
,D

)
≤ ρ

(
coRm(Y )(τs(m+ℓ)ω)

m
,
coRm(Y )(τr̃ ◦ τsℓω)

m

)

+ ρ

(
coRm(Y )(τr̃ ◦ τsℓω)

m
,D

)
.

Since τr̃ω ∈ Ws,ε, the second term in the right hand side of the inequality above is bounded from

above by ε/4. To estimate the first term, we note that 0 < s(m+ ℓ)− r̃ + sℓ ≤ [ εm2β ].

In view of Lemma 3.2, we have

Rm(Y )(τr̃+sℓω) ⊂ Rsm−r̃(Y )(τr̃+sℓω) +Rm−(sm−r̃)(Y )(τs(m+ℓ)ω) + Ỹ

⊂ Rsm−r̃(Y )(τr̃+sℓω) +Rm(Y )(τs(m+ℓ)ω) + Ỹ .

On the other hand, the stationarity yields

Rm(Y )(τs(m+ℓ)ω) = Rm+sm−r̃(Y, sm− r̃)(τr̃+sℓω),

Next we apply Lemma 3.2 to the set on the right,and get

Rm(Y )(τs(m+ℓ)ω) ⊂ Rsm−r̃(Y, sm− r̃)(τr̃+sℓω) +Rm(Y, sm− r̃)(τs(m+ℓ)ω) + Ỹ

⊂ Rsm−r̃(Y )(τr̃+sℓω) +Rm(Y )(τs(m+ℓ)ω) + Ỹ ,

where the second line follows from Lemma 2.2.

These relations, together with the fact that Rsm−r̃(Y ) ⊂ B[ εm
2β

]β + Y , imply that

ρ

(
coRm(Y )(τs(m+ℓ)ω)

m
,
coRm(Y )(τr̃ ◦ τsℓω)

m

)
≤ 1

m

(εm
2

+ 2
√
n
)
≤ 3ε

4
.

Combining this with the previous estimate, we showed that (3.11) holds for the fixed s and any

ω ∈ Ωs. This verifies the eligibility of Ωs and the proof of the lemma is complete. �

It follows from Theorem 3.5 that the average of the convex hull of Rm(Y )(ω) converges to D ∈ coC ,

which is an upper bound of limm→∞Rm(Y )(ω)/m should the latter exist. To show that they are

equal, it remains to prove that

lim
m→∞

sup
x∈D

d(x,Rm(Y )(ω)/m) = 0,

and, hence, in view of the the compactness of D, it suffices to show that

lim
m→∞

d(x,Rm(Y )(ω)/m) = 0 for any fixed x ∈ D.

This last limit is the key difficulty in the whole proof. As a first step we use the convexity of D and

some basic convex analysis to prove the convergence result for any y ∈ E(D), the set of extreme

points of D.

We recall that e ∈ D is an extreme point of a compact and convex set D ⊂ Rn if, whenever

e = λx + (1 − λ)y with x, y ∈ D and λ ∈ [0, 1], then either x = e or y = e. Moreover p ∈ D is

exposed, if there exists a linear functional f : Rd → R such that f(p) > f(p′) for all p′ ∈ D \ {p}.
12



Lemma 3.7. Assume (A) and let D and Ω̃ be as in Theorem 3.5 and Lemma 3.6 respectively. For

each extreme point y of D, ω ∈ Ω̃ and s ∈ N,

lim
m→∞

d

(
y,

Rm(Y )(τs(m+ℓ)ω)

m

)
= 0. (3.14)

Proof. Since, in view of the Straszewicz’s theorem [25, Theorem 18.6], every extreme point of D

is the limit of some sequence of exposed points of D, without loss of generality, we assume that y

is an exposed point of D and choose a linear function f : Rn → R such that f(y) > f(x) for any

x ∈ D \ {y}.
For each m, assume that f achieve its maximum in coRm(Y )(τs(m+ℓ)ω) at xm. Without loss of

generality, we may assume that xm ∈ E(coRm(Y )(τs(m+ℓ)ω)). Then in view of (3.11),

lim
m→∞

f(xm/m) = f(y).

It follows that every cluster point of xm/m, which is in D, coincides with y. This shows that

lim
m→∞

d

(
y, E

(
coRm(Y )(τs(m+ℓ)ω)

m

))
= 0.

The desired limit follows from the fact that E(coA) ⊂ A for any compact set A ⊂ Rn. �

With all the previous facts at hand, we may now proceed to the proof of Theorem 3.4. As mentioned

earlier, the claim will follow if we show limk→∞ d(x,Rk(Y )(ω)/k) = 0 for an arbitrary x ∈ D. That

is, for any ε neighborhood V of x and k sufficiently large, we need to find γ ∈ A0,k(ω) such that

γ(k)/k ∈ V . Next we explain briefly the idea of how to construct γ.

We use the Minkowski-Carathéodory theorem [28, Theorem 8.11] to express x as a convex combi-

nation of n+ 1 extreme points (yi ∈ E(D))i=1,...,n+1. The reason for this is that, for each extreme

point yi, it is possible to find sub-paths γij ∈ A0,m(τsj(m+ℓ)ω), for some sequence (sj)j and and

appropriately chosen large m ∈ N, such that γij(m)/m lies in a small neighborhood of yi. Then

we construct the desired γ ∈ A0,k(ω) by translating and connecting those sub-paths (γij)ij . In the

proof that follows, we carefully carry out these arguments. It turns out that, the integer m and

the sequence (sj)j can be chosen according to some rational approximation of the coefficients in

the convex combination of x. The periodicity in space and the stationarity in time are crucial for

this construction to work.

Proof of Theorem 3.4. Since the argument is long, we divide the proof in three steps.

Step 1: Pointwise convergence in Euclidean distance. Let Ω̃ be as in Lemma 3.6. We show that,

for each fixed x ∈ D and ω ∈ Ω̃,

lim
k→∞

d

(
x,

Rk(Y )(ω)

k

)
= 0. (3.15)

As explained in the discussion prior to the proof, there exist n + 1 extreme points y1, . . . , yn+1 of

D and n+ 1 numbers λ1, . . . , λn+1 in [0, 1] with
∑n+1

i=1 λi = 1 such that

x = λ1y1 + λ2y2 + · · ·+ λn+1yn+1.
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Fix ε > 0 and choose q ∈ N sufficiently large and r1, r2, . . . , rn+1 ∈ N such that q =
∑n+1

i=0 ri and,

moreover, for any i = 1, . . . , n+ 1,
∣∣∣∣λi −

ri
q

∣∣∣∣ ≤ ε

4(n + 1)β
. (3.16)

It follows from (3.14) that there exists Mε ∈ N such that, if m ≥ Mε, then

max
1≤i≤n+1

max
0≤s≤q

d

(
yi,

Rm(Y )(τs(m+ℓ)ω)

m

)
≤ ε

4
. (3.17)

For any k ≥ q(Mε + ℓ), let m ≥ Mε be the unique integer such that q(m+ ℓ) ≤ k < q(m+ 1 + ℓ)

and, for each i = 1, 2, . . . , n+1, and j = 0, . . . , ri−1, set sij := ri−1+ j. Let r0 := 0 so that s1j = j

for j = 0, . . . , r1 − 1. Then d(yi,m
−1Rm(Y, τsij(m+ℓ)ω)) is controlled by (3.17), which yields the

existence of γij ∈ A0,m(τsij(m+ℓ)ω) such that the end point yij := γij(m) satisfies
∣∣∣yi −

yij
m

∣∣∣ ≤ ε

4
.

We denote the starting point γij(0) by y0ij. and next we construct an admissible path γ ∈ A0,k(ω)

using the sub-paths γij, i = 1, 2, . . . , n+ 1, j = 0, 1, . . . , ri − 1, as follows.

Set i = 1. We connect the sub-paths γ1j , with j = 0, 1, . . . , r1 − 1, to construct γ ∈ A0,r1(m+ℓ)(ω).

For 0 ≤ t < m, we set γ(t) := γ10(t), and for m ≤ t < m+ ℓ, we define γ to be a bridge connecting

y10 to [y10] + y011 constructed as in Lemma 3.3. Note that at t = m + ℓ, the path is ready to be

connected with γ11. Hence, for m+ ℓ ≤ t < 2m+ ℓ, we define γ(t) = [y10] + γ11(t− (m+ ℓ)), and

then for 2m+ℓ ≤ t < 2(m+ℓ) we build a bridge to [y10]+[y11]+y012. It follows from the periodicity

in space and the stationarity in time that γ ∈ A0,2(m+ℓ)(ω).

We repeat this procedure for a total of r1 times as follows. Suppose γ is constructed on [0, j(m+ℓ)].

Then, for t ∈ [j(m + ℓ), j(m + ℓ) + m], set γ(t) :=
∑j−1

l=0 [y1l] + γ1j(t − j(m + ℓ)). Next, for

t ∈ [j(m + ℓ) + m, (j + 1)(m + ℓ)], set γ to be the bridge that connects γ(j(m + ℓ) + m) to∑j
l=0[y1l] + y01(j+1). In the r1-th step and for r1(m + ℓ) − ℓ ≤ t ≤ r1(m + ℓ), γ(t) is chosen as a

bridge which connects γ(r1(m+ ℓ)− ℓ) and
∑r1−1

j=0 [y1j ] + y020. By construction, γ ∈ A0,r1(m+ℓ)(ω)

and, in particular, γ(r1(m+ ℓ)) =
∑r1−1

j=0 [y1j] + y020.

Now suppose that, for some 1 ≤ i ≤ n, we have constructed γ ∈ A0,Si(m+ℓ)(ω) where Si :=
∑i

p=1 rp

and, in particular, γ(Si(m + ℓ)) =
∑i

p=1

∑rp−1
j=0 [ypj] + y0(i+1)0. We continue the construction so

that γ ∈ A0,Si+1(m+ℓ)(ω). Since γ(Si(m + ℓ)) = y0(i+1)0 modulo an element in Zn, we can connect

the sub-path γ(i+1)0 to γ. Then, following the procedure as in the case of i = 1, we translate and

connect the sub-paths γ(i+1)j , j = 0, 1, . . . , ri+1 − 1, to γ and obtain γ ∈ A0,Si+1(m+ℓ)(ω). We have,

in particular, γ(Si+1(m+ ℓ)) =
∑i+1

p=1

∑rp−1
j=0 [ypj] + y0(i+2)0, which is ready for the next step in the

induction.

After n+ 1 steps, we obtain γ ∈ A0,q(m+ℓ). We can set y0(n+2)0 := 0 in the (n + 1)-th step, so that

γ(q(m+ ℓ)) =
∑n+1

i=1

∑ri−1
j=0 [yij].

Finally, for q(m+ ℓ) ≤ t < k, we let γ(t) = γ(q(m+ ℓ)). Then, γ ∈ A0,k(ω), and

xk :=
γ(k)

k
=

1

k

n+1∑

i=1

ri−1∑

j=0

[yij] ∈
Rk(Y )(ω)

k
.
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Let Kε := max{q(Mε+ℓ), [8q(ℓ+1)β/ε]+1} and observe that, if k ≥ Kε, then |xk−x| ≤ ε. Indeed,

from the construction above, we have

|x− xk| ≤
∣∣∣∣∣
n+1∑

i=1

(
λi −

ri
q

)
yi

∣∣∣∣∣+

∣∣∣∣∣∣

n+1∑

i=1

ri
q
yi −

n+1∑

i=1

ri−1∑

j=0

[yij]

k

∣∣∣∣∣∣
.

For the first term on the right hand side above, in view of (3.9) and yi ∈ D ⊂ Bβ(0), we have
∣∣∣∣∣
n+1∑

i=1

(
λi −

ri
q

)
yi

∣∣∣∣∣ ≤ β

n+1∑

i=1

ε

4(n+ 1)β
=

ε

4
.

For the second term, we rewrite the sum as

n+1∑

i=1

ri−1∑

j=0

(
yi
q
− yij

k
+

ŷij
k

)
=

n+1∑

i=1

ri−1∑

j=0

(
m

k

(
yi −

yij
m

)
+

(
1

q
− m

k

)
yi +

ŷij
k

)
.

and estimate each of the three terms in the sum below.

Using that qm < k, we find

n+1∑

i=1

ri−1∑

j=0

m

k

∣∣∣yi −
yij
m

∣∣∣ ≤
n+1∑

i=1

ri−1∑

j=0

m

k

ε

4
=

ε

4

qm

k
<

ε

4
,

the fact that yi ∈ D ⊂ Bβ yields

n+1∑

i=1

ri−1∑

j=1

∣∣∣∣
(
1

q
− m

k

)
yi

∣∣∣∣ ≤ β

n+1∑

i=1

ri−1∑

j=1

(
1

q
− m

k

)
= β

(
1− qm

k

)
≤ βq(ℓ+ 1)

k
≤ ε

8
,

and, finally and for the third term, since ŷij ∈ Y ⊂ B√
n we have

n+1∑

i=1

ri−1∑

j=1

∣∣∣∣
ŷij
k

∣∣∣∣ ≤
q
√
n

k
≤ βq(ℓ+ 1)

k
≤ ε

8
.

Combining these estimates above, we establish (3.15).

Step 2: Convergence in Hausdorff metric. Since we work with an fixed ω ∈ Ω̃, for simplicity, we

omit its dependence.

We prove that D is the long time average of Rm(Y )/m, m ∈ N, that is

lim
m→∞

Rm(Y )

m
= D in (C , ρ). (3.18)

Let fm : D → R be defined by

fm(x) := d

(
x,

Rm(Y )

m

)
= inf

y∈Rm(Y )/m
d(x, y).

In view of (3.15), fm(x) → 0 for each x ∈ D. Since the sequence (fm)m∈N is uniformly bounded

and equicontinuous in D, it follows that actually fm → 0 uniformly in D, that is

lim
m→∞

sup
x∈D

inf
y∈Rm(Y )/m

d(x, y) = 0. (3.19)
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Next we use (3.8) and the fact that Rm(Y ) ⊂ coRm(Y ) for all m ∈ N to get

0 ≤ lim sup
m→∞

sup
x∈Rm(Y )/m

inf
y∈D

d(x, y) ≤ lim sup
m→∞

sup
x∈coRm(Y )/m

inf
y∈D

d(x, y) = 0, (3.20)

Finally, (3.19) and (3.20) together confirm the claim (3.18).

Step 3: From discrete to continuous time. We prove that D is the long time limit of Rt(Y )/t for

t ∈ R.

Recall that, for any A ∈ C and c ∈ R,

ρ(cA,A) ≤ |c− 1|‖A‖. (3.21)

This follows from the observation that, for any x ∈ cA, there exists x′ ∈ A such that x = cx′ and,

since |x− x′| = |cx′ − x′| ≤ |c− 1|‖A‖,
sup
x∈cA

inf
y∈A

|x− y| ≤ |c− 1| · ‖A‖,

while, for any x ∈ A, there exists x′ ∈ cA such that x′ = cx and, since |x−x′| = |cx−x| ≤ |c−1|‖A‖,
sup
x∈A

inf
y∈cA

|x− y| ≤ |c− 1|‖A‖.

Also the monotonicity of Rt(Y ) with t > 0 yields

R[t](Y ) ⊂ Rt(Y ) ⊂ R[t]+1(Y ).

It follows that

sup
x∈Rt(Y )

inf
y∈tD

|x− y| ≤ sup
x∈R[t]+1(Y )

inf
y∈tD

|x− y| ≤ ρ(R[t]+1(Y ), tD),

and

sup
x∈tD

inf
y∈Rt(Y )

|x− y| ≤ sup
x∈tD

inf
y∈R[t](Y )

|x− y| ≤ ρ(R[t](Y ), tD)

and, thus,

ρ(Rt(Y ), tD) ≤ max
{
ρ(R[t](Y ), tD), ρ(R[t]+1(Y ), tD)

}
. (3.22)

Using the triangle inequality and (3.21), we also get

ρ(R[t](Y ), tD) ≤ ρ(R[t](Y ), [t]D) + ρ([t]D, tD) ≤ ρ(R[t](Y ), [t]D) + ‖D‖, (3.23)

and, as above,

ρ(R[t]+1(Y ), tD) ≤ ρ(R[t]+1(Y ), ([t] + 1)D) + ‖D‖. (3.24)

Finally, in view of the positive homogeneity of ρ and (3.22), (3.23), and (3.24), we have

ρ

(Rt(Y )

t
,D

)
≤ max

{
[t]

t
ρ

(R[t](Y )

[t]
,D

)
,
[t] + 1

t
ρ

(R[t]+1(Y )

[t] + 1
,D

)}
+

‖D‖
t

t→∞−−−→ 0.

�

In this somewhat more standard setting, a(x, t) is Zn+1-periodic, that is, for (x, t) ∈ Rn × R, and

(k, l) ∈ Zn × Z,

a(x+ k, t+ l) = a(x, t),

the proof simplifies considerably. Indeed this is a special case of the general setting of Section 2

and corresponds to Ω having one single element. It is then easy to see that, for any x ∈ Rn, k ∈ N
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and t ≥ 0, Rt(x) = [x] + Rt(x̂) and Rt+k(x, k) = Rt(x). Moreover, as in Lemma 3.2, the family

(Rm(Y ))m∈N is almost subadditive, in the sense that, for all m,k ∈ N with k < m,

Rm(Y ) ⊂ Rk(Y ) +Rm−k(Y ) + Ỹ . (3.25)

It follows that limm→∞ coRm(Y )/m = D in (C , ρ). As before, we can prove that D is also the

limit of Rm(Y )/m, once we establish (3.15). The proof of the latter is much simpler in the space-

time periodic setting. We do not need the technical Lemma 3.6 which, in fact, is no different than

Theorem 3.5. Indeed, for any x ∈ D which is a convex combination of (yi ∈ E(D))i=1,...,n+1, to

construct γ ∈ A0,k as in the proof of Theorem 3.4 above, we only use one sub-path γi ∈ A0,m

for each yi, and then copy, translate and connect them. In the temporal random setting, the

environment does not simply repeat itself and, for each yi, we had to find a sequence of sub-paths

(γij ∈ A0,m(τsij(m+ℓ)ω))0≤j≤ri−1, where τsij(m+ℓ)ω takes care of the change of the environment.

4. The proofs of the main results

We prove Theorem 2.4 first and demonstrate how the large time average of the enlarged reachable

set Rt(Y )(ω) controls that of reachable set Rt(x)(ω) from any point. Then we apply Theorem 2.4

to prove the homogenization theory for the level-set equation (1.1).

Large time average of reachable set from a point. Theorem 2.4 says, essentially, that the

large time average of the reachable set Rt(x)(ω) converges in (C , ρ) uniformly in Y . In view of

(3.1), this convergence is in fact local uniform in Rn.

Proof of Theorem 2.4. Set Ω̃ be as in Lemma 3.6 and ℓ = [
√
n/α] + 1 as in Lemma 3.3. For any

ω ∈ Ω̃ and any x ∈ Y , in view of (2.6), we have Y ⊂ B√
n(x) ⊂ Rℓ(x)(ω). Moreover, the definition

of Rt and (3.2), for t > ℓ, yield

Rt(x)(ω) =
⋃

y∈Rℓ(x)(ω)

Rt(y, ℓ)(ω) =
⋃

y∈Rℓ(x)(ω)

Rt−ℓ(y)(τℓω) ⊃
⋃

y∈Y
Rt−ℓ(y)(τℓω) = Rt−ℓ(Y )(τℓω),

and, thus,

Rt−ℓ(Y )(τℓω) ⊂ Rt(x)(ω) ⊂ Rt(Y )(ω). (4.1)

Using an argument similar to the one that leads to (3.22), we obtain

ρ (Rt(x)(ω), tD) ≤ max {ρ(Rt−ℓ(Y )(τℓω), tD), ρ(Rt(Y )(ω), tD)} . (4.2)

Note that estimate above holds for all x ∈ Y , while the right hand side is independent of x. As a

result, (4.2) can be improved to

sup
x∈Y

ρ

(Rt(x)(ω)

t
,D

)
≤ max

{
ρ

(Rt−ℓ(Y )(τℓω)

t
,D

)
, ρ

(Rt(Y )(ω)

t
,D

)}
, (4.3)

and to conclude we only need to control each of the two terms inside the max on the right hand

side.
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Theorem 3.4 yields that the second term converges to zero as t → ∞, while for the the first term,

using (3.21) and the positive homogeneity of ρ, we get

ρ

(Rt−ℓ(Y )(τℓω)

t
,D

)
≤ ρ

(Rt−ℓ(Y )(τℓω)

t
,
t− ℓ

t
D

)
+ ρ

(
t− ℓ

t
D,D

)

≤ t− ℓ

t
ρ

(Rt−ℓ(Y )(τℓω)

t− ℓ
,D

)
+

ℓ‖D‖
t

.

(4.4)

As t → ∞, the last term above vanishes. The proof of (2.11) is now complete, and since (2.10) is

a weaker statement, it follows immediately. �

The homogenization of the level-set pde. Recall that the Lax-Oleinik formula for the solution

of (2.13) yields that

u(x, t) = inf{u0(y) :
x− y

t
∈ D} = inf{u0(y) : x ∈ y + tD}.

Proof of Theorem 2.5. Fix ω ∈ Ω̃, T > 0 and R > 0. The representation formula of uε gives, for

any (x, t) ∈ BR × [0, T ],

uε(x, t, ω) = inf
{
u0(y) :

x

ε
∈ R t

ε

(y
ε

)
(ω)
}

= inf
{
u0(y) : x ∈ ε

([y
ε

]
+R t

ε

(y
ε
−
[y
ε

])
(ω)
)}

.
(4.5)

In light of (2.6), for ε ∈ (0, 1) and t ∈ [0, T ],

Dε(y, t, ω) := ε
([y

ε

]
+R t

ε

(y
ε
−
[y
ε

])
(ω)
)
= y + ε

[
R t

ε

(y
ε
−
[y
ε

])
(ω)−

(y
ε
−
[y
ε

])]

⊂ y + εB tβ
ε

= y +Btβ ⊂ y +BTβ,
(4.6)

a fact yielding that x ∈ Dε(y, t, ω) only if |y| ≤ Tβ +R.

Next let Kε(x, t, ω) := {y : x ∈ Dε(y, t, ω)} and K(x, t) := {y : x ∈ y + tD} = x − tD. We show

that

lim
ε→0

sup
(x,t)∈BR×[0,T ]

ρ (Kε(x, t, ω),K(x, t)) = 0. (4.7)

Once this limit is established, it follows that

uε(x, t, ω) = inf {u0(y) : x ∈ Dε(y, t, ω)} = inf
{
u0(y) : y ∈ BTβ+R and y ∈ Kε(x, t, ω)

}

ε→0−−−→ inf
{
u0(y) : y ∈ BTβ+R and y ∈ K(x, t)

}
= inf {u0(y) : x ∈ y + tD} = u(x, t),

and, moreover, the convergence is uniform on BR × [0, T ].

It remains to prove (4.7). Fix δ > 0 and consider first the case 0 ≤ t ≤ δ. In view of (4.6), for all

x ∈ BR,

{x} ⊂ Kε(x, t, ω) ⊂ {y : x ∈ y +Btβ} = x−Btβ ,

and it follows that

sup
y1∈Kε(x,t,ω)

inf
y2∈K(x,t)

|y1 − y2| ≤ ρ
(
x−Btβ , x− tD

)
= tρ(Bβ ,D) ≤ δρ(Bβ,D),

and

sup
y1∈K(x,t)

inf
y2∈Kε(x,t,ω)

|y1 − y2| ≤ ρ (x− tD, {x}) = t‖D‖ ≤ δ‖D‖.

18



Since the two estimates above are uniform in x and t, for C := max(ρ(Bβ,D), ‖D‖), we get

sup
(x,t)∈BR×[0,δ]

ρ(Kε(x, t, ω),K(x, t)) ≤ Cδ. (4.8)

Next we consider the case t > δ. Taking ε small so that t/ε > ℓ, we claim that, for all x ∈ BR,

x− εR t
ε
−ℓ(Y )(τℓω) ⊂ Kε(x, t, ω) ⊂ x− εR t

ε
(Y )(ω) + εY. (4.9)

The first inclusion follows from the observation that, if x ∈ y + εR t
ε
−ℓ(Y )(τℓω), then

x ∈ y + ε
[
R t

ε

(y
ε
−
[y
ε

])
(ω)−

(y
ε
−
[y
ε

])]
= Dε(y, t, ω),

which is a consequence of the first inclusion in (4.1).

The second inclusion in (4.9) is due to the fact that, if x ∈ Dε(y, t, ω), then

x ∈ y + εR t
ε
(Y )(ω) + εỸ ,

which follows from the second inclusion in (4.1). Thus,

sup
y1∈Kε(x,t,ω)

inf
y2∈K(x,t)

|y1 − y2| ≤ ρ
(
x− εR t

ε
(Y )(ω) + εY, x− tD

)
= tρ

(
Rt/ε(Y )(ω)

t/ε
+

εỸ

t
,D

)
,

and

sup
y1∈K(x,t)

inf
y2∈Kε(x,t,ω)

|y1 − y2| ≤ ρ
(
x− tD, x− εR t

ε
−ℓ(Y )(τℓω)

)
= tρ

(
D,

Rt/ε−ℓ(Y )(τℓω)

t/ε

)
.

Again the uniformity in x and t of the last two estimates are uniform in x and t implies

sup
(x,t)∈BR×(δ,T ]

ρ(Kε(x, t, ω),K(x, t)) ≤ T max

{
ρ

(Rt/ε(Y )(ω)

t/ε
,D

)
, ρ

(Rt/ε−ℓ(Y )(τℓω)

t/ε
,D

)}

+ ε‖Ỹ ‖.
(4.10)

We first let ε → 0 and apply Theorem 3.4 in (4.10) and then we let δ → 0 in (4.8). Combining

these two estimates, we establish (4.7) and complete the proof of the theorem. �

5. Further applications

In this section, we present two more examples of Hamilton-Jacobi equations with Hamiltonians

of linear growth. The first concerns front propagation in an environment that is subjected to a

background drift, and the second involves a non-coercive Hamiltonian.

Front propagation with ambient drift. We study the behavior, as ε → 0, of the solution

uε = uε(x, t, ω) to
{
uεt + a

(
x
ε ,

t
ε , ω
)
|Duε|+ b

(
x
ε ,

t
ε , ω
)
·Duε = 0 in Rn × (0,∞),

uε = u0 on Rn × {0},
(5.1)

which models front propagation with velocity V = a
(
x
ε ,

t
ε , ω
)
ν + b

(
x
ε ,

t
ε , ω
)
, where ν is the normal

vector to the front.

In addition to (A), we assume that the random process b(·, ·, ω) ∈ C0,1(Rn+1,Rn) satisfies
19



(B1) b = b(x, t, ω) is Zn-periodic in x and stationary in t with respect to (τk)k∈Z, that is, for

every (x, l) ∈ Rn × Zn, (t, k) ∈ R× Z, and ω ∈ Ω,

b(x+ l, t, τkω) = b(x, t+ k, ω),

(B2) there exist η > 0 such that for all (x, t) ∈ Rn+1 and ω ∈ Ω,

α− |b(x, t, ω)| ≥ η. (5.2)

As before, we group the above assumptions as

(B) b = b(x, t, ω) satisfies (B1) and (B2).

In view of (B2), the Hamiltonian H(x, t, p, ω) = a(x, t, ω)|p| + b(x, t, ω) · p is coercive and the

representation formula for the solution uε is

uε(x, t, ω) = inf
{
u0(y) :

x

ε
∈ R t

ε

(y
ε

)
(ω)
}
, (5.3)

for the reachable set Rt(x)(ω) with admissible paths associated to the control system

{
γ′(r) = f(γ(r), r, ξ(r)) := b(γ(r), r) + a(γ(r), r)ξ(r) for r ∈ (0, t),

|ξ(r)| ≤ 1 a.e. r ∈ (0, t),

The set of admissible paths in the time interval [s, t] is

As,t(ω) := {γ : [s, t] → Rn : |γ′(r)− b(γ(r), r, ω)| ≤ a(γ(r), r, ω) for a.e. r ∈ [s, t]}. (5.4)

Following the arguments developed earlier, we can show that the large time average Rt(x)(ω)/t,

for almost all ω ∈ Ω, converges in (C , ρ), to some compact and convex subset D of Rn. Indeed,

thanks to (B2), Btη(x) ⊂ Rt(x)(ω) ⊂ Bt(β+α−η) (this is the analogue of (2.6)) and, furthermore,

any two points y1, y2 ∈ Y can be connected by an admissible path within time ℓ′ := [
√
n/η]+1 (this

is an analogue of Lemma 3.3). On the other hand, due to the periodicity in space and stationary

ergodicity in time of the control system, the translation rules and the (modified) subadditivity of

Rt(x)(ω), that is Lemma 3.1 and Lemma 3.2, still hold. Hence, we can carry out the whole program

of the analysis in this paper aand obtain the following homogenization result. Its proof is exactly

the same as those of Theorem 2.4 and Theorem 2.5 and hence is omitted.

Theorem 5.1. Assume (A) and (B). There exists a compact and convex D ⊂ Rn and an event

Ω̃ ∈ F of full probability such that, for each ω ∈ Ω̃:

(i) The large time average of reachable set converges locally uniformly to D, that is, as t → ∞,

lim
t→∞

sup
x∈Y

ρ

(Rt(x)(ω)

t
,D

)
= 0. (5.5)

(ii) As ε → 0, the solution uε = uε(·, ·, ω) of (5.1) converges locally uniformly in Rn × [0,∞)

to u the solution to (2.13) with H defined as in (2.12).
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A non-coercive Hamilton-Jacobi equation. We are interested in the limit, as ε → 0, of the

solution vε = vε(x′, t, ω) of



vεt + a

(
x′

ε

)
|Dxv

ε|+ vεxn+1
= 0 in Rn+1 × (0,∞)

vε = v0 on Rn+1 × {0}.
(5.6)

Here x′ = (x, xn+1) ∈ Rn ×R and a ∈ C0,1(Rn+1) satisfies (A), with xn+1 playing the role of t. We

also write p′, q′, y′ ∈ Rn+1 as p′ = (p, pn+1), q
′ = (q, qn+1), y

′ = (y, yn+1) ∈ Rn ×R.

For (y′, p′) ∈ Rn+1 ×Rn+1, the Hamiltonian is

H ′(y′, p′) = a(y′)|p|+ pn+1,

and, for (q′, y′) ∈ Rn+1 × Rn+1, the Lagrangian is

L′(y′, q′) =

{
0, for qn+1 = 1, and |q| ≤ a(y′),

+∞, otherwise.

The representation formula for the solution vε is

vε(x′, t, ω) = inf
y∈Rn

{
v0(y, xn+1 − t) : there exists γ :

[
0, ε−1t

]
→ Rn such that γ(0) =

y

ε
,

γ

(
t

ε

)
=

x

ε
, and |γ̇(s)| ≤ a

(
γ(s),

xn+1 − t

ε
+ s

)
for a.e s ∈

(
0, ε−1t

)}
.

Recalling the definition of the reachable set Rt(x, s)(ω) in Section 2, with the associated control

system (1.2), we rewrite the formula as

vε(x′, t, ω) = inf
y∈Rn

{
v0(y, xn+1 − t) :

x

ε
∈ R t

ε
+
(

xn+1−t

ε

)

(
y

ε
,
xn+1 − t

ε

)
(ω)

}
.

We have the following homogenization result for vε.

Theorem 5.2. Assume (A). Let Ω̃ be as defined in Theorem 2.4. Then, for each ω ∈ Ω̃, the

solution vε of (5.6) converges locally uniformly in Rn+1 × (0,∞) to the solution v of
{
vt +H(Dxv) + vxn+1 = 0 in Rn+1 × (0,∞)

v = v0 on Rn+1 × {0},
(5.7)

where H is defined in (2.12).

We only give a sketch of proof. Since the complete argument follows exactly the proof of Theorem

2.5, here we only give a sketch of proof. Comparing the representation formula of vε with that of

uε in (4.5), we observe that the only complication in the former is the presence of the initial time
xn+1−t

ε in the reachable set. The difficulty caused by this can be overcome, since we know precisely

how the reachable sets change with respect to integral translations in time, and we can control the

difference between non-integral translations and their nearest integral ones. It follows, from the

proof of Theorem 2.5, that, locally uniformly for (x′, t) ∈ Rn+1 × (0,∞),

ρ

({
y ∈ Rn : x ∈ εR t

ε
+
(

xn+1−t

ε

)

(
y

ε
,
xn+1 − t

ε

)
(ω)

}
, x− tD

)
−→ 0.

This shows essentially that vε converges, locally uniformly, to v(x′, t) = infx−tD v0(y, xn+1 − t), the

solution of (5.7).
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