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Abstract
We investigate Lamé systems in periodically perforated domains, and establish quantitative
homogenization results in the setting where the domain is clamped at the boundary of the
holes. Our method is based on layer potentials and it provides a unified proof for various
regimes of hole-cell ratios (the ratio between the size of the holes and the size of the periodic
cells), and, more importantly, it yields natural correctors that facilitate error estimates. A key
ingredient is the asymptotic analysis for the rescaled cell problems, and this is studied by
exploring the convergence of the periodic layer potentials for the Lamé system to those in
the whole space when the period tends to infinity.

Mathematics Subject Classification 35B27 · 35J08

1 Introduction

In this paper we are motivated to establish the quantitative homogenization results for the
elastostatic problem in a periodically perforated domainwhere the deformation of thematerial
is prescribed at the boundary of the holes. Let Dε = Dε,η ⊆ R

d , d ≥ 2, model the perforated
elastic medium, obtained by removing a periodic array of identical holes. ε ∈ (0, 1) is the
typical distance between neighboring holes, ηε is the length scale of each hole and η ∈ (0, 1)
in general depends on ε. Mathematically, the homogenization problem corresponds to the
asymptotic analysis of the following Lamé system as ε → 0.

{−Lλ,μ[uε](x) = f (x), x ∈ Dε,

uε(x) = 0, x ∈ ∂Dε.
(1.1)
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Here, uε : Dε → R
d is a vector field modeling the displacement field of the material reacting

to a forcing field f . The differential operator Lλ,μ is given by

Lλ,μ[u] := μ�u + (λ + μ)∇(∇ · u), (1.2)

where λ and μ are the so-called Lamé parameters. In this paper they are assumed to be
constants and satisfy

μ > 0, λ + μ > 0.

The material occupied by Dε is hence homogeneous but porous. In view of the boundary
conditions, the porous elastic body Dε has prescribed deformations at the boundaries of the
holes. The holes can model, for example, inclusions with deformations controlled by some
other mechanism. As we will see, this Dirichlet type boundary conditions result in various
asymptotic regimes for (1.1) depending on the smallness of η relative to ε; see Remark 2.1
below.

Partial differential equations in porous media, or more generally in domains with het-
erogenous geometric features, find many applications in applied physics and engineering,
e.g. in reservoir engineering, environmental studies, material analysis and design, etc. The
mathematical studies also attracted many attentions and produced fruitful results. The litera-
ture is enormous, and we only mention a few that are closely related to the homogenization of
(1.1). In [8], the scalar conductivity problem in perforated domain with Dirichlet condition
on the holes was considered, and the authors there first identified the critical smallness of
η at which the overall effect of the holes emerges in the homogenization limit. In fact, a
“strange term from nowhere” appears in the effective equation in the critical setting. Error
estimates were also obtained in [19]. In [1,2], Allaire established the corresponding theory for
Navier-Stokes system, and further clarified, in [3], the relation between the “Brinkman term”
(i.e. the strange term) in the critical setting and the conductivity matrix in the Darcy’s law,
the latter being the effective model in the super-critical setting. In [18], the author developed
a new method based on layer potential techniques and established quantitative homogeniza-
tion for the scalar conductivity problem in a unified manner for various asymptotic regimes.
We extend the approach there to Lamé systems in this paper. Some recent related works on
homogenization in perforated domains with Dirichlet conditions on the holes can be found
in [13–16,20]. We remark that when other boundary conditions such as Neumann, Robin or
transmission conditions are imposed at the boundary of the holes or inclusions, the asymptotic
behavior could be very different; see e.g. [4,5,9,15,17].

As in [18], our unified homogenization approach utilizes the standard oscillating test
function method adapted to perforated domains (see e.g. [22]). The building blocks of the
oscillating test functions are related to the rescaled cell problem. In the classical periodic
setting, when η is fixed (e.g. η = 1), one derives the cell problem by considering the ansatz

uε(x) = [
u0(x, y) + εu1(x, y) + ε2u2(x, y) + · · · ]y= x

ε
,

and impose that ui isZd -periodic in y and vanishes when εy is in the holes (of Dε). Plugging
this in (1.1), replacing ∇ by 1

ε
∇y + ∇x , we find, formally and at the leading order approx-

imation, uε/ε2 ≈ ∑
k χk(

x
ε
) f k(x). Here f k is the kth component of the vector f , and the

vector field χk , for each k = 1, . . . , d , is the solution to the cell problem

− Lλ,μ[χk](y) = ek in T
d \ ηT , χk = 0 in ηT . (1.3)

Here and in the sequel, Td = R
d/Zd is the unit flat torus, and T is the model hole. In view of

the Riemann-Lebesgue lemma, we expect that the sequence uε

ε2
converges weakly to 〈χ〉 f ,

where columns of 〈χ〉 is the average of χk’s in the torus. In the general setting considered
in (1.1), the holes are of size ηε when the periodic cell is rescaled to T

d , (1.3) hence still
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depends on ε through ηε , and we need to address the asymptotic behavior of χk(ε) as ε tends
to zero. Equivalently, we can rescale the function and define

χ
η
k (x) = ηd−2χk(ηx), x ∈ 1

η
T
d .

Then we need to consider the problem

− Lλ,μ
y [χη

k ](y) = ηdek in η−1
T
d \ T , χ

η
k = 0 in T , (1.4)

where the hole is fixed at the unit scale and the cell is of size 1/η. To establish quantitative
homogenization of (1.1), we need to identify the limit of χ

η
k , as η → 0, and to quantify the

convergence rate of appropriate quantities.
Following the idea of [18], we carry out those asymptotic analysis through an explicit

representation of the solution to (1.4). This is obtained by using a particular double-layer
potential operator which we introduce now. First we recast the Lamé system,−Lλ,μ[u] = f ,
as a symmetric and strongly elliptic system of the form

−∂i

(
Aαβ
i j ∂ j u

β
)

= f α,

where summations over i, j and β are taken. Symmetry means Aαβ
i j = Aβα

j i and “strongly
elliptic” means:

Aαβ
i j ξ iξ jζ αζ β > 0 for all non-zero vectors ξ = (ξ i ) ∈ R

d , ζ = (ζ α) ∈ R
d .

It turns out that there are in general infinitely many choices for (Aαβ
i j ) with the above con-

straints. Each choice of A yields a conormal derivative for u on a surface with normal vector
N , defined by (

∂u

∂νA

)α

= Ni Aαβ
i j ∂ j u

β .

Different choices of conormal derivatives induce different definitions of double-layer poten-
tials. The physically most meaningful choice is

(A(1))
αβ
i j = λδiαδ jβ + μ(δi jδαβ + δiβδ jα),

which satisfies the additional symmetry Aαβ
i j = Aiβ

α j = Aα j
iβ . It results the conormal derivative

∂u

∂νA(1)
= λ(divu)N + 2με[u]N , ε[u] = 1

2
(∂ j u

i + ∂i u
j ).

In elasticity theory, ε[u] is called the strain tensor and the conormal derivative above corre-
sponds to the normal stress on the surface. In this paper, however, we use a different choice
and set

Aαβ
i j = (λ + μ)δiαδ jβ + μδi jδαβ,

or equivalently, we define the conormal derivative

∂u

∂ν
= (λ + μ)(divu)N + μ(∇u)N . (1.5)

It turns out that the double-layer potential corresponding to (1.5) (see the definition (2.13)
below) is more convenient to carry out the approach of [18] to Lamé systems, because,
as we will see, the Green’s identity involving this conormal derivative relates to a bilinear
form that controls the full derivative ∇u, not just its symmetric part ε[u]. The resulted jump
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formulas for the double-layer potential and for the conormal derivative of the single-layer
potential, associated to ∂T , involve non-compact operators in L2(∂T ) even when T has
smooth boundary. We overcome this difficulty following the work of [11,23]. With clear
characterizations of the mapping properties of those operators and of their periodic variants,
we can carry out the quantitative homogenization of (1.1).

The rest of paper is organized as follows. InSect. 2we set up the backgrounds for perforated
domains and for elastostatic layer potentials, and state the main results of the paper. In
Sect. 3 we study the proposed layer potential operators carefully, show that the trace formulas
yield Fredholm operators although compactness is not available, and establish important
invertibility results for them and for their periodic variants. We present sufficient details for
all dimensions d ≥ 2. In Sect. 4 we solve (1.4) using layer potentials, and, taking advantage
of the explicit representation, find their asymptotic behaviors and quantify the convergence
rates for various quantities involving the rescaled cell problems. Those results are then used
in Sects. 5 and in 6, respectively, to establish the qualitative homogenization results and
results on correctors and convergence rates. We emphasize again that, in this paper, the two
dimensional setting is enclosed in the approach, and this is an improvement of [18].
Notations We list some notations and conventions that are used throughout the paper. We
write x = (xi ) for a vector in R

d , and components are always labeled by i, j, k or �. The
standard inner product on R

d is written as x · y or 〈x, y〉. For a vector field u = (ui ), its
derivative ∇u is written as a matrix (∂ j ui ) with row index i and column index j ; hence,
its transpose (∇u)t has elements ∂i u j . We always use the summation convention, unless
otherwise stated, so repeated index is summedover its range.Hence, thematrix-vector product
(∇u)N is given by (N j∂ j ui ). For real matrices A, B of the same dimensions, A : B = ai j bi j
is the Frobenius inner product, and |A| denotes the Frobenius norm of A; the determinant of a
square matrix A is written as det(A). The tensor product of two vectors, a with b, is denoted
by a ⊗ b and has components aib j . For vector fields u, v both in L2(D) or in L2(∂T ), we
use 〈u, v〉L2 to denote their inner product in those functional spaces. Let E be a set with
finite measure, 〈u〉E and

ffl
E u both denote the average of u in E , and the subscript E is often

omitted when the reference is clear from the context. Finally, for r > 0, r E is the rescaled
set {r x : x ∈ E}.

2 Preliminaries andmain results

2.1 Geometric set-ups and assumptions

We first present some details about the perforated domain Dε and lay down some main
assumptions of the paper.

Let D ⊆ R
d be an open set. Let Y = Q1 denote the unit cube (− 1

2 ,
1
2 )

d , and let T be an
open subset of Y . We assume that D and T satisfy the following assumptions.

(A1) The set D is open, bounded and simply connected. T is open and, for simplicity, also
simply connected.

(A2) There is an α ∈ (0, 1), so that the boundaries ∂T and ∂D both are of class C1,α .
(A3) For some r1, r2, satisfying 0 < r1 < r2 < 1/2, the set T satisfies

Br1(0) ⊂ T , T ⊂ Br2(0).
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In the rest of the paper, if not further specified, the bounding constant C in all estimates
depends only on d, λ, μ, and on T and D (through α, r1, r2 and the C1,α characterizations
of the boundaries). As usual, the same C is used although its value may change all the time.

Let Y f = Y \(ηT ), then Y f denotes the perforated cell at the unit scale and it is connected.
We view Y f as the material part and ηT the removed hole. Note that the boundary of the cube
is included in the material. By tessellation, we obtain R

d
f := ∪z∈Zd (z + Y f ), which is Rd

with a periodic array of copies of T removed. We think Rd
f as the perforated whole space at

the unit scale. By rescaling, we get εRd
f which is the perforated whole space at the ε-scale.

Finally, the perforated domain in (1.1) is given by

Dε = Dε,η = D ∩ (εRd
f ). (2.1)

We check that Dε is connected, and ∂Dε consists of (∂D) ∩ D
ε
and ∂(εRd

f ) ∩ D.

Given ε and η, there is a unique weak solution uε ∈ H1
0 (Dε) that solves (1.1), or equiva-

lently, satisfies
ˆ

Dε

μ∇uε : ∇w + (λ + μ)(divuε)(divw) =
ˆ

Dε

f · w, ∀w ∈ H1
0 (Dε). (2.2)

This fact follows from the Lax-Milgram theorem with the help from the usual Poincaré
inequality. For any function w ∈ H1

0 (Dε), we define w̃ be the zero-extension

w̃ = w in Dε, w̃ = 0 in ε(z + ηT ), z ∈ Z
d . (2.3)

We use this notation for extension of functions on other perforated domains as well, e.g. on
Y f , on 1

η
T
d \ T etc., and the extension sets zero values to w̃ inside the holes.

Using w = uε in (2.2), one gets

μ‖∇ũε‖2L2(D)
+ (λ + μ)‖divũε‖2L2(D)

≤ ‖ f ‖L2‖ũε‖L2(D).

By using the usual Poincaré inequality for ũε ∈ H1
0 (D), we can find C > 0 such that

‖∇ũε‖L2(D) + ‖ũε‖L2(D) ≤ C‖ f ‖L2 . (2.4)

On the other hand, by using the Poincaré inequality in Theorem A.1, we also have

‖∇ũε‖L2(D) ≤ Cσε‖ f ‖L2 , ‖ũε‖ ≤ Cσε‖ f ‖2L2 . (2.5)

Here σε is defined by

σ 2
ε :=

{
ε2η−(d−2), d ≥ 3,

ε2| log η|, d = 2.
(2.6)

In fact, σε is precisely the bounding constant in (A.1) when this inequality is applied on each
of the ε-cubes contained in Dε . The special Poincaré inequality will be used frequently, and
it plays an essential role in homogenization of perforated domains with Dirichlet boundary
at the holes.

Remark 2.1 (Asymptotic regimes). We identify several asymptotic regimes according to the
behavior of the hole-cell ratio η = ηε and the factor σε. If η converges to a positive constant
as ε → 0, then we are in the classical homogenization setting and the holes occupy a positive
volume fraction in the limit. On the other hand, if η = ηε → 0, we say the holes are dilute
or their volume fraction is vanishing.

In this dilute setting, we further identify three sub-cases. If σε converges to a positive
number σ0 as ε → 0, we call it the critical setting (of hole-cell ratios). In this setting, the
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size of the holes is critically small compared to the size of cells, which is also the distance of
neighboring holes. It is at this critical setting that the asymptotic effect of the holes emerges.
If σε → ∞, we call it the sub-critical setting; in this case, the holes are of smaller order and
their effects can be neglected in the limit. If σε → 0, we call it the super-critical setting; the
holes are of larger order and their asymptotic effect is more dramatic.

Clearly, (2.5) is a stronger estimate for the super-critical setting, and (2.4) is the better one
for sub-critical holes.

2.2 Elastostatic layer potentials

A main ingredient of our analysis is the layer potential theory for Lamé systems. It not only
provides representations for the solution of (1.4) but also explains the parameters that enter
the effective models for (1.1), for all dilute regimes and for all d ≥ 2.

Let ek , k = 1, 2, . . . , d , denote the standard orthonormal basis of Rd . For each k, the
fundamental solution �k = (�

j
k ) j to the problem

Lλ,μ[�k] = μ��k(x) + (λ + μ)∇∇ · �k(x) = δ0(x)ek, in R
d , (2.7)

subject to decay condition (d ≥ 3) or logarithmic growth condition (d = 2), at infinity, is
given by the following explicit formula:

�
j
k (x) =

⎧⎨
⎩

c1
(2−d)ωd

δ jk

|x |d−2 − c2
ωd

x j xk

|x |d , d ≥ 3,
c1
2π (log |x |)δ jk − c2

ωd

x j xk

|x |d , d = 2,
(2.8)

where c1 and c2 are two constants defined by

c1 = 1

2

(
1

μ
+ 1

λ + 2μ

)
, c2 = 1

2

(
1

μ
− 1

λ + 2μ

)
.

Note c1, c2 are positive. The formulas above provide the unique (for d = 2, up to unimportant
additive constants) solution to (2.7) with conditions at infinity.

Let T ⊆ R
d be an open set satisfying assumptions (A1) and (A2). The standard single-

layer potential for Lamé system, with momentum φ ∈ L2(∂T ), is defined, through its
components, by

(ST [φ])k(x) =
ˆ

∂T
�k(x − y) · φ(y)dy, x ∈ R

d \ ∂T . (2.9)

We denote the exterior domainRd \T by T+, and, also write T− = T sometime to emphasize
the contrast with T+. It can be checked directly that Lλ,μ[ST [φ]] = 0 in T±. Moreover,
w = ST [φ] is smooth in T± and verifies the decay condition:

|w(x)|=O(|x |−d+2) for d ≥ 3, |∇w(x)|=O(|x |−d+1) for d ≥ 2, as |x |→∞.

(2.10)

The decay of |w(x)| does not hold for d = 2 in general, but we have |w(x)| = O(|x |−1) at
infinity if φ ∈ L2

0(∂T ). Here and in the sequel, L2
0(∂T ) denotes the subspace of L2(∂T ) that

consists of mean-zero functions.
As mentioned in the Introduction, to define double-layer potentials, we need to fix a

conormal derivative. Throughout the paper, we adopt (1.5). Then for vector fields u, v in T
with sufficient regularity, we have the Green’s identity

ˆ

∂T
v · ∂u

∂ν
=
ˆ

T
μ∇v : ∇u + (λ + μ)(∇ · v)(∇ · u) +

ˆ

T
v · Lλ,μ[u]. (2.11)
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By switching u and v, we also have
ˆ

∂T
v · ∂u

∂ν
− u · ∂v

∂ν
=
ˆ

T
v · Lλ,μ[u] − u · Lλ,μ[v]. (2.12)

Moreover, (2.11) still holds on T+, if |u(x)||∇v(x)| is of order o(|x |−d+1).
Those Green’s identities suggest us to define the double-layer potential, with momentum

φ, by

(DT [ψ])k(x) =
ˆ

∂T

∂�k(y − x)

∂νy
· ψ(y)dy, x ∈ R

d \ ∂T . (2.13)

The subscript νy emphasizes that the derivatives in (1.5) are taken for the y-variable. Direct
computations on (2.8) show that the integral kernel, written as K (x; y) with components
Kik(x; y), is given by

Kik(x; y) :=
(

∂�k(y − x)

∂νy

)i

= −μc1
ωd

〈Ny, x − y〉δik
|x − y|d − dμc2

ωd

〈Ny, x − y〉(x − y)i (x − y)k

|x − y|d+2

+ μc2
ωd

(x − y)i Nk
y − (x − y)k N i

y

|x − y|d .

Again, DT [ψ] are smooth vector fields and satisfy the homogeneous Lamé systems on T±.
It is also clear that |DT [φ]| = O(|x |−d+1) at infinity, for all d ≥ 2.

We use K (x; y), x, y ∈ ∂T , as the integration kernel and define, for k = 1, . . . , d ,

(KT [ψ])k(x) = p.v.
ˆ

∂T
Kik(x; y)ψ i (y), x ∈ ∂T . (2.14)

We need to take the principal value integral because of the last term in the formula of Kik .
In fact, the the other terms are absolutely integrable in y uniformly in x , because ∂T ∈ C1,α

implies

〈x − y, Nx 〉 ≤ C |x − y|1+α, |Nx − Ny | ≤ C |x − y|α, ∀ x, y ∈ ∂T . (2.15)

Contributions of those terms form a compact operator on L2(∂T ). The last term, however,
is not integrable even for smooth ∂T . As a result, KT is a genuine singular integral. On the
other hand, invoking classical theory on singular integrals, namely [10], we confirm that KT

is a bounded linear operator on L2(∂T ).

Trace formulas. Layer potential operators are useful to solve boundary value problems for
Lamé systems because their traces on ∂T , or more precisely, their non-tangential limits on
∂T from T− or T+, can be computed. In the sequel, for a function F defined on T− and T+,
we use the notation

F |±(x) = lim
t→0+ F(x ± t Nx ), x ∈ ∂T ,

provided that the limit exists. In other words, F |− is the limit from the inside of T , and F |+
is the limit from the exterior of T . For the single-layer potential defined in (2.9) and for the
conormal derivative in (1.5), it is known (see [11]) that

∂i u
j
∣∣±(x) = ±

{
1

2μ
Ni
xφ

j (x) − c2N
i
x N

j
x Nx · φ(x)

}
+ p.v.

ˆ

∂T
∂i�

k
j (x − y)φk(y)dy.

(2.16)
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Plug this formula in the definition of the conormal derivative, we get

∂ ST [φ]
∂ν

∣∣∣±(x)

= ±1

2
φ(x) + p.v.

ˆ

∂T

(
μ∂ j�

i
k(x − y)N j

x + (λ + μ)(div�k)(x − y)Ni
x

)
φk(y)

= ±1

2
φ(x) + K∗

T [φ](x). (2.17)

For the double-layer potential defined in (2.13), we have

DT [φ]|±(x) = (∓1

2
I + KT )[φ](x), in ∂T . (2.18)

In the second line of (2.17), we recognized the integral operator as the adjoint ofKT defined
in (2.14). Indeed, the singular integral operator in the first line of (2.17) can be written as

K∗
T [φ](x) = p.v.

ˆ

∂T
K ∗
ik(x; y)φi (y),

and explicit computation shows

K ∗
ik(x; y) = Kki (y; x).

Both KT and K∗
T are bounded linear transformations on L2(∂T ), but they are not compact.

Nevertheless, we can compute and check that

K ∗
ik(x; y) − Kik(x; y)
= μc1

ωd

〈x − y, Nx + Ny〉δik
|x − y|d + dc2μ

ωd

(x − y)i (x − y)k〈x − y, Nx + Ny〉
|x − y|d+2

+ μc2
ωd

(x − y)i (Nx − Ny)
k − (x − y)k(Nx − Ny)

i

|x − y|d . (2.19)

Thanks to (2.15), the function above is integrable in y over ∂T , uniformly for x ∈ ∂T . As a
result, K∗

T − KT is a compact operator on L2(∂T ). Finally, we also know that ST [φ]|+ and
ST [φ]|− agree on ∂T , and agree with (2.9) with x ∈ ∂T . Moreover, the tangential derivative
of ST on ∂T , i.e. the traces of τx · ∇ST [φ] from T+ and T−, where τx belongs to the tangent
space Xx (∂T ) of ∂T at x ∈ ∂T . This can checked directly from the trace formula (2.16).

In Sect. 3, we will introduce the periodic variants of the above layer potentials, and use
them to solve and analyze (1.4).

2.3 Main results

The first main result of the paper concerns some mapping properties of the operators − 1
2 I +

KT and − 1
2 I + K∗

T , which appear in the trace formula (2.18).

Lemma 2.2 Suppose d ≥ 2, T ⊆ R
d is an open bounded set satisfying (A1) and (A2). Then

the operators − 1
2 I + KT and − 1

2 I + K∗
T , as bounded linear transformations on L2(∂T ),

satisfy the following properties.

(1) The ranges of the operators are closed, and both of their kernels have dimension d.
Moreover, ker(− 1

2 I + KT ) is the subspace of constant vector fields over ∂T .
(2) The direct sum decomposition L2(∂T ) = ran(− 1

2 I + KT ) ⊕ ker(− 1
2 I + KT ) holds.

123
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Those results are proved in Sect. 3.2. It will be shown that we can find vector fields
φ∗
1 , . . . , φ

∗
d in L2(∂T ), and vectors a∗

1 , . . . , a
∗
d in R

d , so that {φ∗
j }dj=1 form a basis for the

kernel of − 1
2 I + K∗

T , and they satisfy
ˆ

∂T
φ∗
j = e j , −ST [φ∗

i ] = a∗
j on T , j = 1, . . . , d.

Let AT be the matrix defined by

AT = ((a∗
j )
i ) = [

a∗
1 a∗

2 · · · a∗
d

]
. (2.20)

We will show that AT is symmetric, and AT is positive definite for d ≥ 3. For d = 2, due to
the abnormal rescaling property of �k in (2.8), the matrix AT could be degenerate; however,
when the homogenization of (1.1) is concerned, we can always assume (see Remark 3.8) that
det AT �= 0. The decomposition in item (2) of Lemma 2.2 is easily done using φ∗

j ’s above;
see Lemma 3.9.

Now we state our main results concerning the homogenization of (1.1). We define the
matrix

M = MT :=

⎧⎪⎪⎨
⎪⎪⎩

A−1
T if d ≥ 3

2π
c1

I if d = 2

}
in the dilute setting,

(ffl
Y χ i

j

)−1
in the classical setting.

(2.21)

In the classical setting, η is essentially a fixed parameter, and the problem is in the super-
critical setting. The cell problem (1.3) does not depend on ε, and no further asymptotic
analysis is needed. Note that M defined above is positive definite (see Proposition 3.7).

Theorem 2.3 Assume d ≥ 2, assume (A1)(A2) and (A3) holds. For each ε ∈ (0, 1), let uε be
the unique solution of (1.1) and ũε be the zero extension, and assume f ∈ L2(D). Let σε be
defined by (2.6). Then the following holds as ε → 0.

(1) In the super-critical setting, i.e. when σε → 0, the zero extension function ũε

σ 2
ε
converges

weakly to u in L2(D), with u = M−1 f .
(2) In the critical setting, i.e. σε → σ0 for some positive real number σ0, the sequence ũε

converges weakly in H1
0 (D) to u, which is given by the unique solution to the problem

− Lλ,μ[u] + M

σ 2
0

u = f in D, u = 0 in ∂D. (2.22)

(3) In the sub-critical setting, i.e. σε → ∞, the sequence ũε converges weakly in H1
0 (D) to

u, which is given by the unique solution to the unperturbed problem

− Lλ,μ[u] = f in D, u = 0 in ∂D. (2.23)

The classical setting (say η = 1) is included in item (1). It can be proved following the
standard arguments in [7]. In fact, we show that results in the other settings can be proved
following the same arguments, except an additional asymptotic analysis for (1.4) is needed.
Those proofs are presented in Sect. 5 below. An advantage of our method is that, it can be
quantified relatively easily. This is addressed by the next main theorem.

Theorem 2.4 Suppose that the assumptions of Theorem 2.3 hold, and η → 0 as ε → 0. Let
vε
k ’s be defined by (4.2). Assume further that the limiting function u of Theorem 2.3, in each

regimes, satisfies: u ∈ W 2,d
0 (D) for d ≥ 3 and u ∈ W 2,∞

0 (D) for d = 2. Then the following,
stated first for d ≥ 3, holds:
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2 Page 10 of 32 W. Jing

(1) In the dilute super-critical setting, there exists C > 0 so that for all ε sufficiently small,

‖ ũ
ε

σ 2
ε

− f k(x)vε
k (x)‖H1(D)+

1

σε

‖ ũ
ε

σ 2
ε

− f k(x)vε
k (x)‖L2(D) ≤ C(σε+ ε

σε

)‖ f ‖W 2,d (2.24)

(2) In the critical setting, and suppose σε → σ0 for some σ0 ∈ (0,∞), then there exists
C > 0 so that for all ε sufficiently small,

‖ũε − σ 2
ε

σ 2
0

(Mu)kvε
k‖H1(D) ≤ C(ε + |σ 2

ε − σ 2
0 |)‖u‖W 2,d . (2.25)

(3) In the sub-critical setting, there exists C > 0 so that for all ε sufficiently small,

‖ũε − (Mu)kvε
k‖H1(D) ≤ C(σ−2

ε + η
d−2
2 )‖u‖W 2,d . (2.26)

For d = 2, the above results hold with W 2,d replaced by W 2,∞, and η
d−2
2 replaced by

| log η|− 1
2 .

The quantitative results above contain corrector informations. Take d ≥ 3 and the sub-
critical setting for example, we may write

ũε − (Mu)kvε
k = ũε − u − rε, rε := (Mu)k

[
vε
k − M−1ek

]
.

We can think rε as the leading order corrector. Indeed, adding it to u, we not only improve the
weak convergence of item (3) in Theorem 2.3 to a strong convergence, but can also control
the approximation error in H1. Of course, using (4.8) below which yields estimates for the
corrector, we also have the quantitative estimate

‖ũε − u‖
L

2d
d−2

≤ Cη
d−2
2 ‖u‖W 2,d

We leave such discussions for the other settings to the reader.
Finally, we remark that the C1,α assumption on ∂T , in (A2), can be relaxed to ∂T being

Lipschitz. We only need to borrow some further techniques of [11,23] to deal with layer
potentials on Lipschitz boundaries. Then results in Sect. 3 and, hence, the main results of
the paper still hold. To simplify the presentations, however, we use the stronger assumption
(A2).

3 Mapping properties for layer-potentials and their periodic variants

In this section, we study the properties of the layer potentials and prove Lemma 2.2. We also
introduce and study their periodic variants, which will be used to analyze (1.4).

3.1 A Rellich’s formula

The scalar version of Lemma 2.2, as in [18], is relatively easy because the Neumann-Poincaré
operator KT associated to the Laplace operator is compact, for ∂T ∈ C1,α , and Fredholm
theory can be invoked. This is not the case forKT in the elastostatic setting, even for smooth
∂T .

To overcome this difficulty, we follow the line of reasoning in [11,23]. An important step
is to establish the closedness of the ranges of − 1

2 I + K∗
T . The key is to show the conormal

derivatives of ST [φ], taken from the two sides of ∂T , can bound each other in L2. To this
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purpose, we need the following elastostatic version of Rellich formula. Note that ∂T ∈ C1,α

implies, we can find a C1,α vector field γ over Rd with compact support, and for some
constant C > 0, γ satisfies

〈γ, N 〉 ≥ C > 0, on ∂T . (3.1)

Proposition 3.1 Let d ≥ 2, and let T ⊆ R
d be an open bounded set satisfying (A1) and (A2).

Then for any u that verifies Lλ,μ[u] = 0 in T and that ∇u has trace on ∂T , we have
ˆ

∂T
〈γ, N 〉 (

(λ + μ)(divu)2 + μ|∇u|2) ∣∣− = 2
ˆ

∂T
〈(γ · ∇)u,

∂u

∂ν

∣∣∣−〉

+
ˆ

T
(∇ · γ )

[
(λ + μ)(divu)2 + μ|∇u|2] − 2

ˆ

T
(∇u∇γ ) : [(λ + μ)(divu)I + μ∇u] .

(3.2)

Similarly, if Lλ,μ[u] = 0 on T+ and ∇u has trace on ∂T , then we have
ˆ

∂T
〈γ, N 〉 (

(λ + μ)(divu)2 + μ|∇u|2) ∣∣+ = 2
ˆ

∂T
〈(γ · ∇)u,

∂u

∂ν

∣∣∣+〉

−
ˆ

T+
(∇ · γ )

[
(λ + μ)(divu)2 + μ|∇u|2] + 2

ˆ

T+
(∇u∇γ ) : [(λ + μ)(divu)I + μ∇u] .

(3.3)

Proof From direct computations, we check that, either in T or in R
d \ T ,

∇ · (γ |∇u|2) = (divγ )|∇u|2 + 2[(γ · ∇)∇u] : ∇u.

where the last term is 2(∂ j uk)γ i∂i (∂ j uk) and the summation convention is envoked. On the
other hand, using the fact that u satisfies the Lamé system, we also have

(λ + μ)∂i [(γ j∂ j u
i )(divu)] + μ∂�[(γ j∂ j u

i )(∂�u
i )]

= μ
[
(∂�γ

j )(∂ j u
i )(∂�u

i ) + (γ j∂ j∂�u
i )(∂�u

i )
]

+(λ + μ)

[
(divu)(∂iγ

j )(∂ j u
i ) + 1

2
∂ j (γ

j (divu)2) − 1

2
(divγ )(divu)2

]
.

The desired equality is then obtained by integrating those identities in T or in Rd \ T , using
the divergence theorem, and combining the resulted integral identities. ��

We can apply the above identities to u = ST [φ] for a vector field φ ∈ L2(∂T ). For such
u, using integration by parts and by the jump formula (2.17), we have

ˆ

∂T

∂u

∂ν

∣∣∣− = 0, and
ˆ

∂T

∂u

∂ν

∣∣∣+ =
ˆ

∂T
φ. (3.4)

For d ≥ 3, in view of the decay condition (2.10), we can apply the Green’s identity and show
ˆ

∂T
u · ∂u

∂ν

∣∣∣− =
ˆ

T
(λ + μ)(divu)2 + μ|∇u|2, (3.5)

and ˆ

∂T
u · ∂u

∂ν

∣∣∣+ = −
ˆ

Rd\T
(λ + μ)(divu)2 + μ|∇u|2. (3.6)

123



2 Page 12 of 32 W. Jing

For d = 2, the identities above still hold provided that φ ∈ L2
0(∂T ). In (3.2) and (3.3), if we

subtract on both sides the twice of the left hand side, and then take negative signs, we obtain:
ˆ

∂T
〈γ, N 〉 (

(λ + μ)(divu)2 + μ|∇u|2) ∣∣± = 2
ˆ

∂T
〈γ, N 〉 [

(λ + μ)(divt u)2 + μ|∇t u|2]

−2
ˆ

∂T
μ(γ‖ · ∇u) · ∂u

∂N

∣∣∣± + (λ + μ)(N · (γ‖ · ∇)u)(N · ∂u

∂N
)

∣∣∣±
±
ˆ

T±
(∇ · γ )

[
(λ + μ)(divu)2 + μ|∇u|2] ∓ 2

ˆ

T±
(∇u∇γ ) : [(λ + μ)(divu)I + μ∇u] .

(3.7)

Here, we used the identity:

∇t u = ∇u(I − N ⊗ N ), divt u = tr(∇t u).

They are, respectively, the tangential gradient of u and the tangential divergence of u. From
the trace formula (2.16), we verify that those terms together with γ‖ · ∇u are continuous
across ∂T , for u = ST [φ]. The main step to derive the formula above is to compute

〈(γ · ∇)u,
∂u

∂ν
〉 − 〈γ, N 〉 [

(λ + μ)(divu)2 + μ|∇u|2] . (3.8)

We use the pointwise decomposition

γ = 〈γ, N 〉N + γ‖, γ‖ ∈ X(∂T ).

Here X(∂T ) is the tangent space of ∂T . Then the term in (3.8) is hence computed as

μ

[
−〈γ, N 〉|∇t u|2 + (γ‖ · ∇u) · ∂u

∂N

]
+ (λ + μ)(divu)

[
(γ‖ · ∇u) · N − 〈γ, N 〉(divt u)

]

= −〈γ, N 〉 [
μ|∇t u|2 + (λ + μ)(divt u)2

] + μ(γ‖ · ∇u) · ∂u

∂N

+(λ + μ)N · (γ‖ · ∇u)N · ∂u

∂N
.

The Rellich’s identities (3.7) allow us to prove the following key results.

Lemma 3.2 Let d ≥ 3, let T ⊆ R
d be an open bounded set satisfying (A1) and (A2). Then

there exists C > 0, and for all φ ∈ L2(∂T ), we have

‖
(

−1

2
I + K∗

)
[φ]‖L2(∂T ) ≤ C

{
‖
(
1

2
I + K∗

)
[φ]‖L2(∂T ) +

∣∣∣∣
ˆ

∂T
ST [φ]

∣∣∣∣
}

, (3.9)

and

‖
(
1

2
I + K∗

)
[φ]‖L2(∂T ) ≤ C

{
‖
(

−1

2
I + K∗

)
[φ]‖L2(∂T ) +

∣∣∣∣
ˆ

∂T
ST [φ]

∣∣∣∣
}

. (3.10)

Moreover, for d = 2, the above inequalities remain valid if φ ∈ L2
0(∂T ) in addition.

Proof We only establish (3.9); the other one can be proved similarly. Let u = ST [φ] in T
and in T+. By the trace formula and the definition in (1.5), we have

‖
(

−1

2
I + K∗

)
[φ]‖2L2(∂T )

=
∥∥∥∥∂u

∂ν

∣∣∣−
∥∥∥∥
2

L2(∂T )

≤ C
ˆ

∂T
〈γ, N 〉[(λ+μ)(divu)2+μ|∇u|2]∣∣−.

(3.11)
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Step 1: Using the Rellich’s identity (3.7), we can deduce

∥∥∥∥∂u

∂ν

∣∣∣−
∥∥∥∥
2

L2(∂T )

≤ C

{ˆ
∂T

|∇t u|2 +
ˆ

T
(λ + μ)(divu)2 + μ|∇u|2

}
. (3.12)

Let us explain how this is done by considering a couple of typical terms on the right hand
side of (3.7). Take the second integral there for example; we can choose c > 0 sufficiently
small so that∣∣∣∣
ˆ

∂T
μ(γ‖ · ∇u) · ∂u

∂N

∣∣∣∣ =
∣∣∣∣
ˆ

∂T
μ(γ‖ · ∇t u) · ∂u

∂N

∣∣∣∣ ≤ c
ˆ

∂T
μ

∣∣∣∣ ∂u

∂N

∣∣∣∣
2

+ 1

4c
μ‖γ ‖L∞‖∇t u‖2∂T .

The goes to (3.12) after the integral term for ∂u
∂N is swallowed. Let us also consider the last

integral on the right hand side of (3.7). By Hölder inequality and Young’s inequality, we can
choose c > 0 sufficiently small so that∣∣∣∣

ˆ

T
(∇u∇γ ) : [(λ + μ)(divu)I + μ∇u]

∣∣∣∣
≤ C‖∇γ ‖L∞‖∇u‖L2

(ˆ
T
(λ + μ)(divu)2 + μ|∇u|2

) 1
2

≤ C‖∇γ ‖L∞
(ˆ

T
(λ + μ)(divu)2 + μ|∇u|2

)
.

This is then controlled by (3.12).
Next, to control (3.12), we observe that

ˆ

T
(λ + μ)(divu)2 + μ|∇u|2 =

ˆ

∂T
u · ∂u

∂ν

∣∣∣− =
ˆ

∂T
(u − 〈u〉∂T ) · ∂u

∂ν

∣∣∣−.

Apply Hölder inequality, Poincaré inequality on ∂T , and Young’s inequality, we deduce that

ˆ

T
(λ + μ)(divu)2 + μ|∇u|2 ≤ c

∥∥∥∥∂u

∂ν

∣∣−
∥∥∥∥
2

L2(∂T )

+ C‖∇t u‖2L2(∂T )
.

Using this estimate in (3.12), we get∥∥∥∥∂u

∂ν

∣∣∣−
∥∥∥∥
L2(∂T )

≤ C‖∇t u−‖L2(∂T ).

Step 2: We control ‖∇t u‖L2(∂T ) by ‖ ∂u
∂ν

∣∣+‖L2 . By continuity of tangential derivative of
ST ,

‖(∇t u)|−‖2L2(∂T )
= ‖(∇t u)|+‖2L2(∂T )

≤ ‖(∇u)|+‖2L2(∂T )
.

Using the Rellich formula (3.3) and the same type of arguments in the previous step, we have

‖(∇u)|+‖2L2(∂T )
≤ C

{∥∥∥∥∂u

∂ν

∣∣∣+
∥∥∥∥
2

L2(∂T )

+
ˆ

T+
(λ + μ)(divu)2 + μ|∇u|2

}
. (3.13)

In view of (3.4), we have the following identity
ˆ

T+
(λ+μ)(divu)2 +μ|∇u|2 = −

ˆ

∂T
u · ∂u

∂ν

∣∣∣+ = −
ˆ

∂T
(u −〈u〉) · ∂u

∂ν

∣∣∣+ − 〈u〉
ˆ

∂T

∂u

∂ν

∣∣∣+.
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Note also, for d = 2 we need φ ∈ L2
0 to apply the Green’s identity. We now apply the

Poincaré inequality on ∂T to get∣∣∣∣
ˆ

∂T
u · ∂u

∂ν

∣∣∣+
∣∣∣∣ ≤ c‖(∇t u)|+‖2L2(∂T )

+ |〈u〉∂T |2 + C

c

∥∥∥∥∂u

∂ν

∣∣∣+
∥∥∥∥
2

.

Using this in (3.13) yields

‖∇t u‖L2(∂T ) ≤ C

{∥∥∥∥∂u

∂ν

∣∣+
∥∥∥∥ +

∣∣∣∣
ˆ

∂T
u

∣∣∣∣
}

.

Combine this with the conclusion of Step 1; we complete the proof of (3.9). ��

3.2 Proof of Lemma 2.2

In this section, without further specifications, the operators ± 1
2 I + KT and ± 1

2 I + K∗
T are

viewed as bounded linear transformations on L2(∂T ). In addition, assumptions in (A1) and
(A2) about T are always invoked. We also denoted by V0 the space of constant fields in ∂T ,
and view e j , j = 1, . . . , d , as a basis for V0.

Lemma 3.3 The inclusion V0 ⊆ ker(− 1
2 I + KT ) holds.

Proof We need to check KT [e j ](x) = 1
2e j for all x ∈ ∂T and for each j = 1, . . . , d . This is

done by using the Green’s identity (2.11) with u = �k and v = e j in T \ Bδ(x), compute the
resulted boundary integral on T ∩ ∂Bδ(x), and compute the limit of this integral as δ → 0.
This is standard and the details are hence omitted. ��
Lemma 3.4 The range of − 1

2 I + K∗
T is contained in L2

0(∂T ) and is closed. Moreover, this
operator restricted to L2

0 is injective.

Proof Step 1: We check that ran(− 1
2 I + K∗

T ) ⊆ L2
0. This is true because, for each � =

1, . . . , d , and for any φ ∈ L2(∂T ) and in view of the previous lemma, we have
ˆ

∂T
e� ·

(
−1

2
I + K∗

T

)
[φ] =

ˆ

∂T

(
−1

2
I + KT

)
[e�] · φ = 0.

Step 2: We show ker(− 1
2 I + K∗

T ) ∩ L2
0 = {0}; in other words, − 1

2 I + K∗
T is injective

from L2
0 to L2

0. Suppose φ is an element in this intersection. Let u = ST [φ]. Then we have

Lλ,μ[u] = 0 in T±,
∂u

∂ν

∣∣∣− = 0,
∂u

∂ν

∣∣∣+ = φ,

ˆ

∂T
φ = 0.

By the Green’s identity and by the continuity of u across ∂T , we first get u is a constant in
T . Since φ ∈ L2

0, the Green’s identity (3.6) holds for all d ≥ 2. The left hand side of (3.6)
vanishes because of the observations above. Hence, u is a constant over Rd . The conormal
of u computed from T+ is then zero, i.e. φ = 0.

Step 3: Since L2
0 has finite codimension d , we confirm ran(− 1

2 I + K∗
T ) is closed by

showing that the restricted operator − 1
2 I + K∗

T : L2
0 → L2

0 has closed range.
Now suppose {g j } ⊆ L2

0(∂T ) that satisfies g j ∈ ran(− 1
2 I +K∗

T ) and g j → g strongly in
L2
0. We need to check that g ∈ ran(− 1

2 I +K∗
T ). By assumption, we can find {h j } ⊂ L2

0(∂T )

such that (
−1

2
I + K∗

T

)
[h j ] = g j , in ∂T .
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If the set {h j } is bounded, then there exists a subsequence still denoted by {h j }, and h j → h
weakly in L2

0(∂T ). For any φ ∈ L2(∂T ), we have

〈g, φ〉L2(∂T ) = lim
j→∞〈g j , ϕ〉L2(∂T ) = lim

j→∞〈h j , (−1

2
I + KT )[φ]〉L2(∂T )

= 〈h,

(
−1

2
I + KT

)
[φ]〉L2(∂T ) = 〈

(
−1

2
I + K∗

T

)
[h], φ〉L2(∂T ). (3.14)

Since φ is arbitrary, we must have g = (− 1
2 I + K∗

T )[h]. The claim of this step follows in
this case.

If {h j } is unbounded, we may assume (by extracting a subsequence if necessary) that
‖h j‖ → ∞. Then define h̃ j = h j/‖h j‖ ∈ L2

0; they satisfy

‖h̃ j‖L2(∂T ) = 1, and

(
−1

2
I + K∗

T

)
[h̃ j ] = g j

‖h j‖ → 0 as j → ∞. (3.15)

We may assume that h̃ j converges weakly to some h̃ ∈ L2
0(∂T ). Very similar to (3.14), we

can conclude that (− 1
2 I + K∗

T )[h̃] = 0. By the injectivity established in Step 2, we confirm
that h̃ = 0, and h̃ j converges weakly in L2

0 to 0. Moreover, we abuse notations and denote
the trace of ST [φ] on ∂T still by ST [φ]. It is clear that, from the properties of (2.8), ST is a
compact linear transform on L2(∂T ), and ST is self-adjoint. In particular, we have

ˆ

∂T
ST [h̃ j ] · ek = 〈h̃ j ,ST [ek]〉L2(∂T ) → 0, as j → ∞.

Now we use Lemma 3.2 (this can be done for d ≥ 2, as h̃ j ∈ L2
0), by the above convergence

and by the strong convergence in (3.15), we deduce that(
1

2
I + K∗

T

)
[h̃ j ] → 0 strongly in L2 as j → ∞.

Combine this with (3.15) again, we have shown that h̃ j converges strongly to 0 in L2. It
should follow that ‖h̃ j‖ → 0, but this is a contradiction with (3.15). Hence, {h j } cannot be
unbounded, and the conclusion of this step holds. ��
Proof of Lemma 2.2 The closedness of ran(− 1

2 I + K∗
T ) is established in Lemma 3.4, and by

duality, ran(− 1
2 I + KT ) is also closed. We prove rest of the conclusions in Lemma 2.2 in

several steps.
Step 1: We show that ker(− 1

2 I + KT ) and ker(− 1
2 I + K∗

T ) both have dimension d , and
characterize the first space.

Since − 1
2 I + K∗

T : L2
0 → L2

0, and since L2
0(∂T ) has codimension d , we deduce that

dim ker(− 1
2 I + K∗

T ) ≤ d . On the other hand, Lemma 3.3 shows dim ker(− 1
2 I + KT ) ≥ d .

Now that both − 1
2 I + K∗

T and − 1
2 I + KT have closed ranges, and their difference forms

a compact operator (see the discussions below formula (2.19)), we conclude, using Lemma
A.2, that

dim ker

(
−1

2
I + KT

)
= dim ker

(
−1

2
I + K∗

T

)
.

Those dimensions then must equal to d . In particular, we have ker(− 1
2 I + KT ) = V0. As a

byproduct, we also have ran(− 1
2 I +K∗

T ) = V
⊥
0 = L2

0(∂T ), and − 1
2 I +K∗

T , when restricted
to L2

0(∂T ), is a bijection.
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Step 3: We establish the direct-sum decomposition (not orthogonal in general)

L2(∂T ) = ran

(
−1

2
I + K∗

T

)
⊕ ker

(
−1

2
I + K∗

T

)
. (3.16)

Since the codimension of the first spacematches the dimension of the second space, it remains
to show their intersection contains only {0}. This is essentially proved by Step 2 in the proof
of Lemma 3.4.

Step 4:We establish the direct-sum decomposition in item (2) of Lemma 2.2, which, again,
is not orthogonal in general. This follows directly from the decomposition in the previous
step, and from the orthogonal decomposition

L2(∂T ) = ran

(
−1

2
I + KT

)
⊕ ker

(
−1

2
I + K∗

T

)

= ran

(
−1

2
I + K∗

T

)
⊕ ker

(
−1

2
I + KT

)
.

This completes the proof. ��
The following fact is a direct consequence of the proofs above.

Corollary 3.5 The operator − 1
2 I + KT : L2

0 → ran(− 1
2 I + KT ) is invertible.

Our next goal is to derive a formula for the decomposition of L2(∂T ) stated in Lemma
2.2.

We have seen ker(− 1
2 I +KT ) and ker(− 1

2 I +K∗
T ) both have dimension d . Following an

argument in [6, Theorem 2.26] which treated layer potentials for the Laplace equation, we
consider a mapping between ker(− 1

2 I +K∗
T )×R

d and ker(− 1
2 I +KT )×R

d . Both of them
are product Hilbert space of dimension 2d , and both are equipped with the standard inner
product. The mapping is:

AT : ker

(
−1

2
I + K∗

T

)
× R

d → ker

(
−1

2
I + KT

)
× R

d ,

(ϕ, a) �→ (ST [ϕ] + a,

ˆ

∂T
ϕ).

Here, the notation ST is abused to denote the trace on ∂T of the single-layer potential. The
mapping is well defined because, if φ ∈ ker(− 1

2 I +K∗
T ), then by the Green’s identity (3.5),

ST [φ] must be a constant in T .
We claim thatAT is a bijection. It suffices to check the injectivity. Suppose (ϕ, a) is such

that ϕ ∈ ker(− 1
2 I + K∗

T ) and a ∈ R
d , and

ˆ

∂T
ϕ = 0, ST [ϕ] + a = 0.

By the decomposition (3.16), we conclude that ϕ = 0, and then a = 0. This proves the claim.

Remark 3.6 A very similar argument actually shows that, for d ≥ 3, the mapping

ST : ker

(
−1

2
I + K∗

T

)
→ V0 = ker

(
−1

2
I + KT

)

φ �→ ST [φ]|∂T .

is also a bijection. This is not true, in general, for d = 2. We will come back to this point.
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Now, for each j = 1, . . . , d , consider the vector (0, e j ) which is in the range of AT , we
can find a unique pair (φ∗

j , a
∗
j ), with φ∗

j ∈ ker(− 1
2 I +K∗

T ) and a∗
j ∈ R

d , as the preimage of
(0, e j ), i.e.

ST [φ∗
j ] = −a∗

j on T , and
ˆ

∂T
φ∗
j = e j . (3.17)

Clearly, {φ∗
j } form a basis for ker(− 1

2 I + K∗
T ). Let AT be the matrix with a∗

j ’s as columns,
i.e. AT is defined by (2.20). It has the following nice properties.

Proposition 3.7 For d ≥ 2, the matrix AT is symmetric. For d ≥ 3, AT is positive definite.

Proof We can write the component of AT as

(a∗
j )
i = −ei · ST [φ∗

j ] = −
(ˆ

∂T
φ∗
i

)
· ST [φ∗

j ] = −〈φ∗
i ,ST [φ∗

j ]〉L2(∂T ).

Using the fact thatST is self-adjoint,we can rewrite the right hand side as−〈ST [φ∗
i ], φ∗

j 〉L2(∂T ),

which is, according to the formula above, (a∗
i )

j . Hence, AT is symmetric.
Now we impose the condition d ≥ 3. To check that AT is positive definite, consider any

vector c = (ci ) ∈ R
d and we compute that

(AT c) · c = −
ˆ

∂T
φ · ST [φ],

where φ = ciφ∗
i which belongs to ker(− 1

2 I +K∗
T ). Let u = ST [φ] in Rd , we can recast the

above identity as

(AT c) · c = −
ˆ

∂T

∂u

∂ν

∣∣∣+ · u.

In d ≥ 3, we can apply the Green’s identity (3.6) and conclude that

(AT c) · c =
ˆ

Rd\T
μ|∇u|2 + (λ + μ)(divu)2.

The right hand side is non-negative, and it vanishes if and only if u = ST [φ] is a constant on
T+, which would imply φ = ciφ∗

i = 0, and finally c = 0. This shows AT is positive definite
for d ≥ 3. ��
Remark 3.8 For d = 2, the matrix AT can be degenerate. In fact, there is an abnormal
rescaling for ST , which is due to the logarithmic term in �k . Indeed, for d = 2, we note from
(2.8) that, for any r > 0,

�
j
k (

x

r
) = �

j
k (x) − c1

2π
(log r)δ jk .

We then have

(ST [φ])(x) =
ˆ

∂T
�

j
k (

x − y

r
)φ j (y)dy + c1

2π
(log r)

ˆ

∂T
φ

= r
ˆ

∂( 1r T )

�
j
k (

x

r
− z)φ j (r z)dz + c1

2π
(log r)

ˆ

∂T
φ

= rS 1
r T

[φ(r ·)]( x
r
) + c1

2π
(log r)

ˆ

∂T
φ.

Consider the φ∗
j ’s in (3.17), and let φ∗

j,r ∈ L2(∂( 1r T )) be the rescaled function

φ∗
j,r (z) = rφ∗

j (r z), z ∈ 1

r
T .
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Then we can check that
ˆ

∂( 1r T )

φ∗
j,r (z)dz =

ˆ

∂T
φ∗
j (y)dy = e j ,

and meanwhile, due to the homogeneity (of degree −1) of the integral kernel K ∗
ik , we also

have (
−1

2
I + K∗

1
r T

)
[φ∗

j,r ](z) = r

(
−1

2
I + K∗

T

)
[φ](r z), z ∈ 1

r
T .

In particular, φ∗
j,r ’s belong to ker(− 1

2 I + K∗
1
r T

). Finally, from the rescaling formula of ST ,

we found that
ArT = AT + c1

2π
(log r)I , r > 0.

From this relation, we can see that, given a shape T , there always exist one or two r > 0
such that ArT can be degenerate, and there are at most two such r .

As a consequence, for d = 2 and when the homogenization of (1.1) is considered for the
dilute case, we can always assume det AT �= 0. Indeed, if this fails, we can replace it by r0T
for r0 slightly less than one so that det Ar0T �= 0. Because we are interested in ε → 0 only,
the geometric set-up of the homogenization problem does not change once we replace η by
η/r0. ��

Finally, the proof above provides a formula for the decomposition.

Lemma 3.9 Suppose d ≥ 2, T ⊆ R
d is an open bounded set satisfying (A1) and (A2).

Let �0 : L2(∂T ) → ker(− 1
2 I + KT ) and �1 := I − �0 be the projection operators to

ker(− 1
2 I + KT ) and to ran(− 1

2 I + KT ). That is, for φ ∈ L2(∂T ), (�0[φ],�1[φ]) be the
unique pair such that

φ = �0[φ] + �1[φ], with �0[φ] ∈ ker(−1

2
I + KT ), �1[φ] ∈ ran(−1

2
I + KT ).

Then we have
(�0[φ])k = 〈φ∗

k , φ〉L2(∂T ).

3.3 Periodic layer potentials

To solve the cell problem, we use periodic layer potentials. They are variants of the afore-
mentioned layer potentials adapted for Lamé systems in the torus Td , or in the rescaled torus
η−1

T
d . In this subsection, assumptions (A1), (A2) and (A3) are all invoked.

We start with the unit torus, and consider the fundamental solution Gk(x) that solves

Lλ,μ[Gk](x) = (δ0(x) − 1)ek, in T
d , (3.18)

with the normalization condition ˆ

Td
Gk(x) = 0.

It is straightforward to check that, for each k = 1, . . . , d , there is a unique solution, Gk is
smooth inTd \{0}. Moreover,Gk can be viewed as a “perturbation” of the free-space solution
�k , in the sense that there exists a unique Rk(x) ∈ C∞([− 1

2 ,
1
2 ]d) ∩ C(Td), such that

Gk(x) = �k(x) + Rk(x), ∀x ∈ T
d \ {0}.
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In fact, derivatives of Rk do not satisfy periodicity, so Rk is not an element of C1(Td). For
rather explicit Fourier representations for Rk , we refer to [6].

On the rescaled torus η−1
T
d , we define the rescaled function

Gη
k (x) = ηd−2Gk(ηx) = �k(x) + ηd−2Rk(ηx). (3.19)

Note that for d = 2, we abuse notations and have subtracted a constant term of the form
c1
2π (log η)ek in the second equality. In view of the scaling property of the Dirac distribution,
we check that Gη

k solves the problem

Lλ,μ[Gη
k ](x) = (δ0(x) − ηd)ek, in η−1

T
d . (3.20)

Using those fundamental solutions, we define the periodic single-layer potential associated
to T , for φ ∈ L2(∂T ), by

(Sη
T [φ])k(x) =

ˆ

∂T
Gη

k (x − y) · φ(y)dy, x ∈ η−1
T
d \ ∂T ,

and define the periodic double-layer potential by

(Dη
T [φ])k(x) = p.v.

ˆ

∂T

∂Gη
k (η(x − y))

∂νy
· φ(y)dy.

It is important to point out that Lλ,μ[Sη
T [φ]] = 0 in T and in 1

η
T
d \ T only for φ ∈ L2

0(∂T );

on the other hand, Lλ,μ[Sη
T [φ]] = 0 away from ∂T for all φ ∈ L2.

In view of the decomposition of Gη
k , we can write

Sη
T = ST + ηd−2Sη

T ,1, Sη
T ,1[φ] =

ˆ

∂T
Rk(η(x − y)) · φ(y)dy.

Because Rk(η(x − y)) is uniformly bounded with respect to η, x and y, the operator Sη
T ,1

is uniformly bounded (in η) and compact on L2(∂T ). Moreover, because ∇Rk is uniformly
bounded, Sη

T ,1 can be differentiated. We then have the following trace formulas

∂Sη
T [φ]
∂ν

∣∣∣±(x) =
(

±1

2
I + Kη,∗

T

)
[φ], x ∈ ∂T ,

where Kη,∗
T = K∗

T + ηd−1Kη,∗
T ,1 and

Kη,∗
T ,1[φ] =

ˆ

∂T
(λ + μ)(∇ · Rk)(η(x − y))〈Nx , φ(y)〉 + μ(Nx · ∇Rk(η(x − y))) · φ(y) dy.

In particular, Kη,∗
T ,1 is a compact operator on L2(∂T ) that is uniformly bounded in η.

Similarly, for the double-layer potential, we also have

Dη
T = DT + ηd−1Dη

T ,1,

where the perturbation operator Dη
T ,1 is defined by

Dη
T ,1[φ](x) = −

ˆ

∂T

[
(λ + μ)(∇ · Rk)(η(x − y))Ny + (μNy · ∇Rk)(η(x − y))

] · φ(y)dy.

The trace formulas are

Dη
T [φ]

∣∣∣±(x) =
(

±1

2
I + Kη

T

)
[φ], x ∈ ∂T ,
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where Kη
T = KT + ηd−1Kη

T ,1 and Kη
T ,1 is simply the restriction of Dη

T ,1 on ∂T . Again,

because ∇Rk is uniformly bounded in [− 1
2 ,

1
2 ]d , the integral kernel above is bounded and

the resulted operator is compact in L2(∂T ) and its operator norm is uniformly bounded.
The trace formulas for Dη

T can be used to solve the Dirichlet boundary value problems,
namely (1.4). The following facts will be useful.

Theorem 3.10 For the operators − 1
2 I + Kη

T and − 1
2 I + Kη,∗

T , the following holds.

(1) For each � = 1, . . . , d, (− 1
2 I + Kη

T )[e�] = −ηd |T |e�.
(2) The operators − 1

2 I + Kη,∗
T and − 1

2 I + Kη
T are bijections in L2(∂T ).

Proof Item (1) is a direct computation and follows from the Green’s identity in the domain
η−1

T
d \ T . To be more precise, note that e� as a function solves the homogeneous Lamé

system in η−1
T
d ; it follows that, for x ∈ T ,

ˆ

∂T

∂Gη
k

∂νy
(x; y) · e� =

ˆ

T
e� · Lλ,μ[Gη

k (x − ·)] =
ˆ

T
(δx (y) − ηd)ek · e� = (1 − ηd)|T |δ j�.

By the trace formula, we get(
1

2
I + Kη

T

)
[e�] = (1 − ηd)|T |e�,

(
−1

2
I + Kη

T

)
[e�] = −ηd |T |e�.

In particular, for any η > 0, non-zero elements in ker(− 1
2 I +KT ) is no longer in ker(− 1

2 I +
Kη
T ).
Suppose φ ∈ ker(− 1

2 I +Kη,∗
T ), then from item (1) it follows that φ ∈ L2

0(∂T ), and hence
Sη
T [φ] solves the homogeneous Lamé system in η−1

T
d \∂T . Green’s identity then shows that

Sη
T [φ] = 0 in η−1

T
d , and it follows that ker(− 1

2 I +Kη,∗
T ) = {0}. On the other hand, in view

of the perturbative relations and the compactness ofKη
T ,1 andK

η,∗
T ,1, the ranges of − 1

2 I +Kη
T

and − 1
2 I + Kη,∗

T are still closed. Then Lemma A.2 shows that ker(− 1
2 I + Kη

T ) = {0}, and
that those operators are bijections on ∂T . ��

4 Asymptotic analysis for the rescaled cell problem

As discussed in the Introduction, to prove homogenization results using the standard oscillat-
ing test function arguments, we need solve the rescaled cell-problem (1.4), which is imposed
on 1

η
T
d . The existence and uniqueness of its solution χ

η
k can be obtained from the standard

elliptic theory. Take the inner product with χ
η
k on both sides of (1.4) and integrate by parts,

we get ˆ

η−1Td\T
μ|∇χ

η
k |2 + (λ + μ)(divχη

k )2 = ηd
ˆ

Td\T
ek · χ

η
k .

Using the Poincaré inequality (A.1), we get

‖∇χ
η
k ‖L2(η−1Td\T ) ≤

{
C, d ≥ 3,

C | log η| 12 , d = 2.
(4.1)

Tomake the oscillation structure of the domain coincide with that of Dε , we define the further
rescaled function

vε
k (x) =

{
χ

η
k ( x

εη
), d ≥ 3,

1
| log η|χ

η
k ( x

εη
), d = 2.

(4.2)
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By the definition vε
k vanishes in the holes of εRd

f , and a direct computation shows that

− Lλ,μ
x [vε

k ](x) = 1

σ 2
ε

ek in εRd
f . (4.3)

We have the following result concerning the asymptotic behavior of vε
k .

Lemma 4.1 Let d ≥ 2. Suppose that the assumptions (A1),(A2) and (A3) in Sect.2 hold. Let
vε
k , k = 1, . . . , d, be defined by (4.2), and let M be defined by (2.21). Then the following
holds.

(1) For all dilute regimes of hole-cell ratios, there exists C > 0 depending only on d and T
such that

‖∇vε
k‖L2(D) ≤ Cσ−1

ε . (4.4)

(2) In the critical setting, i.e. when σε converges to some positive constant σ0 as ε → 0,

∇vε
k = (∂ j (v

ε
k )

j )⇀0 weakly in L2(D). (4.5)

(3) For all dilute settings, i.e. when ηε → 0 as ε → 0, let M be defined by (2.21). Then, for
d ≥ 3 with p ∈ [1, 2d

d−2 ], one has
vε
k → M−1ek in L p

loc(R
d). (4.6)

For d = 2, the above holds for p ∈ [1, 2].
Proof The gradient bound in (4.4) is essentially a rescaling of (4.1) and the proof is omitted.
The proof of (4.6) is postponed to the next lemma where the results are stronger. We only
establish the weak convergence (4.5) here.

We first note that in this critical hole-cell ratio setting, ‖∇vε
k‖L2 is uniformly bounded

and, hence, it suffices to check that for all ϕ ∈ C∞
c (D,R), for all j, � = 1, . . . , d ,

ˆ

D
(∂�v

j )ϕ → 0, as ε → 0. (4.7)

Here and in the rest of the proof, we write (vε
k )

j simply as v j .
Consider the ε-cubes in the definition of εRd

f , i.e. cubes of the form ε(z + (− 1
2 ,

1
2 )

d),

z ∈ Z
d , and label those that have non-empty intersection with D by i ∈ N. Among those

cubes, let Iε denote those contained in D, and let Jε denote those that intersect with ∂D.
For a typical interior cube denoted by Qε,i = zε,i + ε(− 1

2 ,
1
2 )

d , where zε,i ∈ εZd , we
compute
ˆ

Qε,i

(∂�v
j )ϕ =

ˆ

Qε

(∂�v
j )ϕ(zε,i + y)dy = (εη)d−1

ˆ

Q 1
η

(∂�χ
η
k ) j (y)ϕ(zε,i + εηy)dy.

We use Taylor expansion for ϕ, and check that∣∣ϕ(zε,i + εηy) − ϕ(zε,i )
∣∣ ≤ ‖∇ϕ‖L∞ε.

Since replacing ϕ by ϕ(zε,i ) makes the integral vanish because ∂�v
j is periodic, we deduceb∣∣∣∣∣

ˆ

Qε,i

(∂�v
j )ϕ

∣∣∣∣∣ ≤ ‖∇ϕ‖L∞εdηd−1‖∇χ
η
k ‖L2 |Q 1

η
| 12 ≤ Cεdη

d−2
2 .
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The above holds for d ≥ 3. If d = 2, there is a further multiplicative factor | log η|− 1
2 on

the right hand side, in view of the definition (4.2) and the bound (4.1). The above estimate
is uniform for i ∈ Iε. Since the number of interior cubes is of order O(ε−d), the overall
contribution to the left hand side of (4.7) from interior cubes vanishes in the limit.

For a typical boundary cube denoted by Qε,i , i ∈ Jε , we use Hölder inequality to get, for
d ≥ 3, ∣∣∣∣∣

ˆ

Qε,i

(∂�v
j )ϕ

∣∣∣∣∣ ≤ ‖ϕ‖L∞‖∂�v
j‖L2(Qε,i )

ε
d
2

= ‖ϕ‖L∞‖∂�(χ
η
k ) j‖L2(Q 1

η
)ε

d
2 (εη)

d−2
2 ≤ Cεd−1η

d−2
2 .

Again, for d = 2, the right hand side is multiplied by | log η|− 1
2 . BecauseJε has a cardinality

of order ε−d+1, the above estimate shows that the contribution of boundary cubes to the
integral in (4.5) also vanishes in the limit. This proves (4.5). ��
Lemma 4.2 Under the same conditions of the previous lemma, there exists C > 0 depending
only on T , d and D, such that, for ε sufficiently small,

‖vε
k − M−1ek‖L p(D) ≤

{
Cη

d−2
2 , d ≥ 3 and p = 2d

d−2 ,

C | log η|− 1
2 , d = 2 and p = 2.

(4.8)

Proof Our proof is based on an explicit representation of χ
η
k , which is made possible by the

layer potentials developed earlier. Compare the equations (1.4) and (3.20), in the domain
η−1

T
d \ T , we must have

χ
η
k (x) = Gη

k (x) + �
η
k (x), x ∈ η−1

T
d \ T ,

where �
η
k is the unique solution to

Lλ,μ[�η
k ] = 0 in η−1

T
d \ T , �

η
k = −Gη

k on ∂T . (4.9)

This is a Dirichlet boundary problem for the Lamé system on the torus η−1
T
d and exterior

to T . We can solve it using the double-layer potential Dη
T . However, to obtain necessary

estimates, we first perform a decomposition of the boundary data according to Lemma 3.9.
We have

− Gη
k = cη

k + hη
k , (4.10)

with hη
k ∈ ran(− 1

2 I + KT ) and cη
k ∈ R

d . In view of the decomposition formula and the
perturbation relation (3.19), we have

(cη
k )

j = −
ˆ

∂T
Gη

k (y) · φ∗
j (y)dy = −(ST [φ∗

j ])k(0) − ηd−2Sη
T ,1[φ∗

j ](0)
= −(a∗

k )
j − ηd−2Sη

T ,1[φ∗
j ](0).

In particular, the last term is a constant of order O(ηd−2). On the other hand, since− 1
2 I +Kη

T
is invertible on L2(∂T ), we can find a unique g ∈ L2(∂T ) such that

hη
k =

(
−1

2
I + Kη

T

)
[g] = −ηd |T |〈g〉 +

(
−1

2
I + KT

)
[g′] + ηd−1Kη

T ,1[g′], (4.11)

where 〈g〉 := ffl
∂T g is the mean-value of g on ∂T , and g′ ∈ L2

0(∂T ) is the fluctuation, and
g = g′ + 〈g〉.
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Let �1 in Lemma 3.9 operate on both sides of (4.11), we get(
−1

2
I + KT + ηd−1�1Kη

T ,1

)
[g′] = hη

k .

The operator �1Kη
T ,1 is compact on L2(∂T ) and the left hand side is hence a perturbation

to − 1
2 I + KT , which is invertible from L2

0(∂T ) to ran(− 1
2 I + KT ). We conclude that, for η

sufficiently small, the perturbed operator remains invertible and

g′ =
(

−1

2
I + KT + ηd−1�1Kη

T ,1

)−1

[hη
k ].

Both the inversion operator and hη
k can be uniformly bounded in η; we conclude that ‖g′‖L2 ≤

C . Finally, let the projection �0 operate on both sides of (4.11), we get

−ηd |T |〈g〉 + ηd−1�0Kη
T ,1[g′] = 0.

From this we deduce that 〈g〉 = O(η−1).
The the solution to the rescaled cell problem (1.4) is hence represented by

χ
η
k = �k + AT ek + Dη

T [g′] + O(ηd−2). (4.12)

The error term has an L∞ norm of order ηd−2, and it includes the constant error in (4.10),
the perturbation in (3.19) and the constant term in (4.11).

Back to the proof of (4.8). We decompose the integral over D into integrations over
ε-cubes as before, and consider first the case of d ≥ 3. Let p = 2d

d−2 . We compute

‖vε
k − M−1ek‖p

L p(D) ≤
∑
i∈Iε

ˆ

Qε,i

|vε
k (z) − M−1ek |pdz.

Here, Iε is the index set for ε-cubes that has non-empty intersection with D. In each ε-cube,
we estimate the integral by

ˆ

Qε,i

|vε
k (z) − M−1ek |pdz ≤ C

´
Qε,i

|vε − 〈vε〉Qε,i |p + |〈vε
k 〉Qε,i − M−1ek |p

≤ C
(
‖∇vε

k‖p
L2(Qε,i )

+ εd |〈vε
k 〉Qε,i − M−1ek |p

)
. (4.13)

We used the Sobolev embedding L2∗
(rTd) ⊆ H1(rTd), for any r > 0, where rTd is

the rescaled torus; moreover, the bounding constant in the embedding inequality is scaling
invariant and hence independent of r . The constant C above hence depends only on p and d .
We have

‖∇vε
k‖2L2(Qε,i )

= (εη)d−2‖∇χ
η
k ‖2L2(η−1Td )

≤ C(εη)d−2. (4.14)

To control the contribution of 〈vε
k 〉Qε,i − M−1ek , we compute and find that

〈vε
k 〉Qε,i − M−1ek = 〈χη〉η−1Td − M−1ek = 〈χη

k 〉 1
η
Td\T − M−1ek + O(ηd)

From (4.12), we have

〈χη
k 〉 1

η
Td\T − M−1ek = 〈�k〉 1

η
Td\T + 〈Dη

T [g′]〉 1
η
Td\T + O(ηd−2).

We need to estimate the first two terms on the right hand side. For the average of �k , we note
that

|�k(x)| ≤ C

|x |d−2 .
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As a result,∣∣∣∣∣
ˆ

1
η
Td\T

�k(x)dx

∣∣∣∣∣ ≤
ˆ

1
η
Td

C

|x |d−2 ≤ Cη−2, and
∣∣∣〈�k〉 1

η
Td\T

∣∣∣ ≤ Cηd−2.

For the second term, we compute
ˆ

1
η
Td\T

Dη
T [g′](x)dx

=
ˆ

1
η
Td\T

ˆ

∂T

[
(λ + μ)(divyG

η
k (x; y))Ny + μNy · ∇yG

η
k (x; y)

] · g′(y)dydx

= −
ˆ

1
η
Td\T

ˆ

∂T

[
(λ + μ)(divxG

η
k (x; y))Ny + μNy · ∇xG

η
k (x; y)

] · g′(y)dydx

=
ˆ

∂T

ˆ

∂T

[
(λ + μ)(Nx · Gη

k (x; y)Ny + μNy · NxG
η
k (x; y)

] · g′(y)dxdy.

Using the fact

sup
y∈∂T

ˆ

∂T
|Gη

k (x; y)|dx ≤ C,

we deduce that
〈Dη

T [g′]〉 1
η
Td\T ≤ Cηd .

It follows that ∣∣〈vε
k 〉Qε,i − M−1ek

∣∣ ≤ Cηd−2. (4.15)

Use all the estimates above in (4.13), we conclude that

‖vε
k − M−1ek‖p

L p(Qε,i )
≤ Cεdηd .

This estimate is uniform for all the cubes Qε,i ’s, and there are O(ε−d) many of them. We
hence conclude that

‖vε
k − M−1ek‖L p(Qε,i ) ≤ Cη

d
p = Cη

d−2
2 .

This completes the proof for d ≥ 3.
In the two dimensional case, we repeat the argument above but for p = 2. In this case,

we have

vε
k (x) = 1

| log η|χ
η(

x

εη
) = 1

| log η|
[
�k(

x

εη
) + AT ek + Dη

T [g′] + O(1)

]

= 1

| log η|
[
c1
2π

(
log

∣∣∣ x
ε

∣∣∣) ek + c1
2π

log
1

η
ek + Dη

T [g′] + O(1)

]
.

In particular, we note that

vε
k (x) − c1

2π
ek = 1

| log η|
c1
2π

(log
∣∣∣ x
ε

∣∣∣)ek + 1

| log η|D
η
T [g′]( x

εη
) + O

(
1

| log η|
)

.

To compute ‖vε
k − c1

2π ek‖2L2(D)
, we break the integrals into those on the cubes Qε,i ’s. Using

the Poincaré inequality on Qε,i , we get the following analog of (4.13)
ˆ

Qε,i

|vε
k − c1

2π
ek |2 ≤ C | log η|−2ε2‖∇χ

η
k ‖2

L2( 1
η
Td )

+ ε2
∣∣∣〈vε

k 〉 − c1
2π

ek
∣∣∣2 .
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The last term satisfies∣∣∣〈vε
k 〉 − c1

2π
ek

∣∣∣ ≤ | log η|−1
(∣∣∣〈log | x

ε
|〉Qε,i

∣∣∣ + |〈Dη
T [g′]〉 1

η
Td\T |

)
+ C | log η|−1.

The term involvingDη
T [g′] is controlled exactly as before and its average is of order one. We

compute ∣∣∣〈log | x
ε
|〉Qε,i

∣∣∣ = ∣∣〈log |x |〉Q1

∣∣ ≤ C .

We hence conclude that ∣∣∣〈vε
k 〉 − c1

2π
ek

∣∣∣ ≤ C | log η|−1.

Using those estimates together with (4.1) in (4.15), we conclude that

‖vε
k − c1

2π
ek‖2L2(Qε,i )

≤ Cε2| log η|−1.

Again, this estimate is uniform for all cubes Qε,i ’s, and there are O(ε−2) many of them, and
we hence conclude that

‖vε
k − c1

2π
ek‖L2(Qε,i )

≤ C | log η|− 1
2 .

This completes the proof. ��

5 A unified proof for qualitative homogenization

In this section, we prove Theorem 2.3 with a unified method. In view of the estimates (2.4)
and (2.5), the sequence {ũε/(1∧σ 2

ε )} and {∇ũε/(1∧σε)} are uniformly bounded in L2; here
a ∧ b means min{a, b}.

Hence, in the super-critical setting, we can extract a subsequence that is still denoted by
ε → 0, along which

ũε

σ 2
ε

→ u weakly in L2(D).

In the critical and sub-critical settings, we can extract a subsequence along which

ũε → u weakly in H1
0 (D).

The qualitative homogenization results amount to determining the limit u and showing that
the whole sequence converges.

In this section, we establish those results using the standard method of oscillating test
functions. To start, let ϕ ∈ C∞

c (D;R) be a real valued test function with compact support
in D. Along an aforementioned converging subsequence of uε, test ϕvε

k , which belongs to
H1
0 (Dε), against the equation (1.1), we get

ˆ

D
μϕ∇ũε : ∇vε

k + (λ + μ)ϕ(divũε)(divvε
k )

+
ˆ

D
μ∇ũε : (∇ϕ ⊗ vε

k ) + (λ + μ)(divũε)(∇ϕ · vε
k )

=
ˆ

D
ϕ( f · vε

k ).
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On the other hand, since ϕuε belongs to H1(εRd
f ), we can test it against equation (4.3), and

obtain
ˆ

D
μϕ∇vε

k : ∇ũε + (λ + μ)ϕ(divvε
k )(divũ

ε)

+
ˆ

D
μ(∇ϕ ⊗ ũε) : ∇vε

k + (λ + μ)(∇ϕ · ũε)(divvε
k )

=
ˆ

D
ϕ(ek · ũ

ε

σ 2
ε

).

Take the difference between those equations, we get the key identity
ˆ

D
μ∇ũε : (∇ϕ ⊗ vε

k ) +
ˆ

D
(λ + μ)(divũε)(∇ϕ · vε

k ) −
ˆ

D
μ(∇ϕ ⊗ ũε) : ∇vε

k

−
ˆ

D
(λ + μ)(∇ϕ · ũε)(divvε

k ) =
ˆ

D
ϕ( f · vε

k − ek · ũ
ε

σ 2
ε

) (5.1)

Let us name the five integrals in the identity above by I1, I2, . . . , I5 in order of their appear-
ance.We need to find their limits in each asymptotic regimes for σε. The trick of the procedure
above is, the integral terms that involve products of a pair of weakly converging quantities,
namely the integral of ∇ũε : ∇vε, are all eliminated, and integrals that survived in (5.1) only
involve products of a weakly converging function with strongly converging ones.

5.1 The super-critical setting

Weonly address the dilute case. In this setting, σε converges to zero, and along the converging
subsequence, ũε/σ 2

ε → u weakly in L2, and ∇ũε is of order O(σε). Inspecting the integrals
in (5.1), we find, using (2.5), (4.4) and (4.6), as ε → 0,

|I1| ≤ C‖∇ϕ‖L∞‖∇ũε‖L2‖vε
k‖L2 ≤ Cσε → 0,

|I2| ≤ C‖∇ũε‖L2‖∇ϕ‖L∞‖vε
k‖L2 ≤ Cσε → 0,

|I3| + |I4| ≤ C‖ũε‖L2‖ϕ‖L∞‖∇vε
k‖L2 ≤ Cσε,

I5 →
ˆ

D
ϕ(M−1 f − u) · ek .

In the limit of I5, we also used the fact that M−1 is symmetric. As a result, passing ε → 0
in (5.1), we get ˆ

D
ϕ(M−1 f − u) · ek = 0,

which holds for all test function ϕ and for all k = 1, . . . , d . It follows that

u = M−1 f .

The above formula dictates the possible limit of ũε/σ 2
ε . Hence, the whole sequence converges

to this u. This completes the proof in the super-critical setting.

5.2 The critical setting

In this setting, σε → σ0 for some σ0 ∈ (0,∞), and along a converging subsequence,
ũε → u weakly in H1

0 (D). By the Rellich’s lemma, we also have ũε → u strongly in L2,
and ∇ũε → ∇u weakly in L2.
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We examine the integrals in (5.1), and by using the weak convergence of ∇ũε and ∇vε
k ,

together with the strong convergence of ũε and vε
k , we deduce that, by sending ε → 0,

ˆ

D
μ∇u : (∇ϕ ⊗ M−1ek) +

ˆ

D
(λ + μ)(divu)

(
M−1∇ϕ · ek

) =
ˆ

D
ϕ(M−1 f − u

σ 2
0

) · ek .

We emphasize that the limit of I3 and I4 vanishes because ∇vε
k weakly converges to zero.

Using integration by parts, we can recast the above as

−
ˆ

D
ϕ (μ�u + (λ + μ)∇divu) · M−1ek =

ˆ

D
ϕ(M−1 f − u

σ 2
0

) · ek .

Since M−1 is symmetric, we can move M−1 on the left hand side to the front of Lλ,μ[u].
Then we multiply M on both sides to get

−
ˆ

D
ϕ (μ�u + (λ + μ)∇divu) · ek =

ˆ

D
ϕ

(
f − Mu

σ 2
0

)
· ek .

This holds for all test functions ϕ and for all k ∈ {1, . . . , d}. We conclude that

−Lλ,μu + M

σ 2
0

u = f in distribution in D.

Since we already have u ∈ H1
0 (D), u is the unique weak solution to (2.22). This determines

the possible limit of ũε uniquely and, hence, the whole sequence converges.

5.3 The sub-critical setting

In this setting, σε → ∞, and along a converging subsequence, ũε → u weakly in H1
0 (D).

We can argue almost exactly as in the previous setting. We point out two differences. Firstly,
the term in I5 involving σε vanishes in the limit. Secondly, I3 and I4 vanish in the limit for a
reason different from the previous settings, namely due to (4.4). It follows that the only limit
u for ũε is given by the solution to

−Lλ,μ[u] = f , in D

with u ∈ H1
0 . As a result, the whole sequence converges to this limit.

We also emphasize that our approach is uniformwith respect to all the asymptotic regimes
of σε and for all d ≥ 2. The necessary modifications for d = 2 is encoded in the asymptotic
analysis of vε

k ’s, and the matrix M is defined accordingly.

6 Correctors and error estimates

Another feature of our approach is that the method yields natural correctors and error esti-
mates, with inspirations from the informal two-scale expansion method. We prove Theorem
2.4 in this section.

6.1 Super-critical setting

We only consider the dilute case. For the super-critical setting, σε is a small number. By
rescaling the corrector suggested by the formal two-scale expansion, we should consider the

123



2 Page 28 of 32 W. Jing

discrepancy function

ζ ε = uε

σ 2
ε

− f k(x)vε
k (x), x ∈ Dε.

Note that because u = M−1 f vanishes on ∂D, we have ξε ∈ H1
0 (Dε). We set the value of

ζ ε as zero inside the holes. Direct computation shows that

−Lλ,μ[ζ ε] = μ
[
vε
k� f k + 2∂� f

k∂�v
ε
k

]
+ (λ + μ)

[
∂i (v

ε
k )

�∂� f
k + (∂2 f k)vε

k

]

+ (λ + μ)(divvε
k )∇ f k, in Dε.

Here ∂2 f k denotes the second order derivative matrix of f k . By assumption, f ∈ W 2,d(D)

and, hence, the right hand side is an L2 function and the equation is satisfied in the weak
sense. Test ζ ε against this equation, we obtain

μ‖∇ζ ε‖2L2 + (λ + μ)‖divζ ε‖2L2 =
ˆ

D
μζε · vε

k� f k + (λ + μ)ζ ε · [(∂2 f k)vε
k ]

+(λ + μ)

[ˆ
D
div(vε

k − M−1ek)ζ
ε · ∇ f k +

ˆ

D
(ζ ε)i∂i (v

ε
k − M−1ek)

�∂� f
k
]

+2μ
ˆ

D
ζ ε · [∂� f

k(∂�(v
ε
k − M−1ek))]. (6.1)

Let us label the four integrals on the right hand side as I1, . . . , I4. Note that in I2, I3 and
I4 we inserted the constant M−1ek inside some derivatives without violating the equation.
Assume d ≥ 3 for the moment and set p = 2d/(d − 2). The first integral is then controlled
by

|I1| ≤ C‖∂2 f ‖Ld ‖vε‖L p‖ζ ε‖L2 ≤ Cσε‖∂2 f ‖Ld ‖vε‖L p‖∇ζ ε‖L2 . (6.2)

For the rest of the integrals, we need to perform an integration by parts (in Dε , and, note that
ζ ε ∈ H1

0 (Dε)) first to shift the derivatives off vε terms. For I2, the following holds.

I2 = −
ˆ

D
(vε

k − M−1ek)
�
(
∂�(ζ

ε)i∂i f
k + (ζ ε)i∂i∂� f

k
)

= −
ˆ

D
(vε

k − M−1ek) · (∇ζ ε)T∇ f k + (vε
k − M−1ek) · (∂2 f k)ζ ε.

We deduce that

|I2| ≤
∑
k

‖vε
k − M−1ek‖L p

(‖∇ f ‖Ld ‖∇ζ ε‖L2 + ‖∂2 f ‖Ld ‖ζ ε‖L2
)

≤ Cη
d−2
2 (1 + σε)‖ f ‖W 2,d ‖∇ζ ε‖L2 . (6.3)

The integrals I3 and I4 can be treated in the same manner and they satisfy the same bound
above. Using (6.2) and (6.3) in (6.1), we finally get

‖∇ζ ε‖L2 ≤ C
(
σε + η

d−2
2

)
‖ f ‖W 2,d .

By the Poincaré inequality, we also have

‖ζ ε‖L2 ≤ C
(
σ 2

ε + ε
) ‖ f ‖W 2,d .

This is the desired estimate for d ≥ 3.
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In the case of d = 2, we only need to replace p by 2 and use W 2,∞ control on f . The
arguments above then follow and we get

‖∇ζ ε‖L2 ≤ C
(
σε + | log η|− 1

2

)
‖ f ‖W 2,d ,

and
‖ζ ε‖L2 ≤ C

(
σ 2

ε + ε
) ‖ f ‖W 2,d .

This proves Theorem 2.4 in the super-critical setting.

6.2 The critical setting

In this setting, σε is of order one, and σε → σ0 as ε → 0. We consider the discrepancy
function

ζ ε = uε − σ 2
ε

σ 2
0

(Mu)kvε
k .

We emphasize that ζ ε ∈ H1
0 (Dε). This can be seen as an analog of the discrepency used in

the previous setting, except that we replace f by M
σ0
u. Direct computation then shows

−Lλ,μ[ζ ε] = f − M

σ 2
0

u + μ
σ 2

ε

σ 2
0

[
vε
k�(Mu)k + 2∂�(Mu)k∂�v

ε
k

]

+(λ + μ)
σ 2

ε

σ 2
0

[
∂i (v

ε
k )

�∂�(Mu)k + (∂2(Mu)k)vε
k

]

+(λ + μ)
σ 2

ε

σ 2
0

(divvε
k )∇(Mu)k in Dε.

Using (2.22) and by some algebraic manipulations, we can rewrite the above as

−σ 2
0

σ 2
ε

Lλ,μ[ζ ε] =
(

σ 2
0

σ 2
ε

− 1

)
Lλ,μu + μ(�(Mu)k)(vε

k − M−1ek)

+(λ + μ)(∂2(Mu)k)(vε
k − M−1 · ek) + 2μ∂�(Mu)k∂�v

ε
k

+(λ + μ)
[
∂i (v

ε
k )

�∂�(Mu)k + (divvε
k )∇(Mu)k

]
in Dε.

After replacing ∇vε
k by ∇(vε

k − M−1ek), we test ζ ε against the equation and obtain

1

C
‖∇ζ ε‖2L2 ≤

ˆ

D
μζε · (vε

k − M−1ek)�(Mu)k + (λ + μ)ζ ε · [(∂2(Mu)k)(vε
k − M−1ek)]

+(λ + μ)

[ˆ
D
div(vε

k − M−1ek)ζ
ε · ∇(Mu)k +

ˆ

D
(ζ ε)i∂i (v

ε
k − M−1ek)

�∂�(Mu)k
]

+2μ
ˆ

D
ζ ε · [∂�(Mu)k(∂�(v

ε
k − M−1ek))] + |σ 2

ε − σ 2
0 |σ−2

ε

∣∣∣∣
ˆ

Dε

ζ ε · Lλ,μu

∣∣∣∣ . (6.4)

The first four integrals on the right hand side of the inequality above can be controlled as
before, and, for d ≥ 3, they are bounded by

C
∑
k

‖vε
k − M−1ek‖L p‖Mu‖W 2,d‖∇ζ ε‖L2 ≤ Cη

d−2
2 ‖∇ζ ε‖L2 .
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The last integral can be recognized as the bilinear form associated to the Lamé system
evaluated at the pair (ζ ε, u), and hence the last term in (6.4) is bounded by

C |σ 2
ε − σ 2

0 |‖∇u‖L2‖∇ζ‖L2 .

Combine the above estimates, we obtain

‖∇ζ η‖L2 + ‖ζ‖L2 ≤ C
(
ε + |σ 2

ε − σ 2
0 |) ‖u‖W 2,d .

For d = 2, the above estimate still holds if we use W 2,∞ estimate for u instead.

6.3 The sub-critical setting

In this setting, σε → ∞ and hence σ−1
ε is a small number. We consider the discrepancy

function
ζ ε = uε − (Mu)kvε

k ,

which belongs to H1
0 (Dε), and we set its value as zero in the holes. Computation shows

−Lλ,μ[ζ ε] = f − Mu

σ 2
ε

+ μ
[
vε
k�(Mu)k + 2∂�(Mu)k∂�v

ε
k

]
+ (λ + μ)

×
[
∂i (v

ε
k )

�∂�(Mu)k + (∂2(Mu)k)vε
k

]
+ (λ + μ)(divvε

k )∇(Mu)k in Dε.

Using the equation satisfied by u, we rewrite the above as

−Lλ,μ[ζ ε] = −Mu

σ 2
ε

+ μ(�(Mu)k)(vε
k − M−1ek) + (λ + μ)(∂2(Mu)k)(vε

k − M−1 · ek)

+2μ∂�(Mu)k∂�(v
ε
k − M−1ek) + (λ + μ)∂i (v

ε
k − M−1ek)

�∂�(Mu)k

+(λ + μ)div(vε
k − M−1ek)∇(Mu)k in Dε.

Test ζ ε against this equation, we obtain

μ‖∇ζ ε‖2L2 ≤
ˆ

D
μζε · (vε

k − M−1ek)�(Mu)k + (λ + μ)ζ ε · [(∂2(Mu)k)(vε
k − M−1ek)]

+
ˆ

D
(λ + μ)

[
div(vε

k − M−1ek)ζ
ε · ∇(Mu)k + (ζ ε)i (∂i (v

ε
k − M−1ek)

�)∂�(Mu)k
]

+2μ
ˆ

D
ζ ε · [∂�(Mu)k(∂�(v

ε
k − M−1ek))] − 1

σ 2
ε

ˆ

D
ζ ε · Mu. (6.5)

The first three integrals on the right hand side can be analyzed as before and, for d ≥ 3, they
are bounded by

C
∑
k

‖vε
k − M−1ek‖L p‖Mu‖W 2,d ‖∇ζ ε‖L2 ≤ Cη

d−2
2 ‖Mu‖W 2,d ‖∇ζ ε‖L2 .

Note that we also use the usual Poincaré inequality on D as ζ ε ∈ H1
0 (D). Using Hölder

inequality and the usual Poincaé inequality, we can bound the last integral from above by

Cσ−2
ε ‖Mu‖L2‖∇ζ ε‖.

Combine those results, we deduce that, for d ≥ 3,

‖∇ζ ε‖L2 + ‖ζ ε‖L2 ≤
(
η

d−2
2 + σ−2

ε

)
‖u‖W 2,d .

123



Layer potentials for Lamé systems and homogenization Page 31 of 32 2

For d = 2, this estimate holds with η
d−2
2 replaced by | log η|− 1

2 and with W 2,d replaced by
W 2,∞. This completes the proof of Theorem 2.4.
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Appendix A: Some useful lemmas

The following results are very helpful and have been used in the main parts of the paper.

Theorem A.1 (A Poincaré inequality). Let d ≥ 2. Let r , R be two positive real numbers and
r < R. Then there exists a constant C > 0 that depends only on the dimension d, such that
for any u ∈ H1(BR(0)) satisfying u = 0 in Br (0), we have

‖u‖L2(BR) ≤
{
CR( r

R )− d−2
2 ‖∇u‖L2(BR), d ≥ 3,

CR| log( r
R )| 12 ‖∇u‖L2(BR), d = 2.

(A.1)

We refer to [2, Lemma 3.4.1] or [18, TheoremA.1] for the proof. This inequality accounts
for the various asymptotic regimes for (1.1) depending on the relative smallness of η with
respect to ε. Clearly, if we change one or both of the balls to cubes, the above inequality still
holds. In particular, it can be applied on the ε-cubes, ε(z + Y f ), z ∈ Z

d , which form εRd
f

and Dε.

Lemma A.2 Suppose H is a Hilbert space and T : H → H is a bounded linear operator on
H and T ∗ is the adjoint operator. Suppose T has closed range, ker(T ) has finite dimension
k, and, moreover, T − T ∗ is compact. Then dim ker(T ∗) = k as well.

This is rephrased from Lemma 2.3 of [12]. It can be proved directly, or, by using the fact
that T is semi-Fredholm and that semi-Fredholmness and the index of such an operator are
preserved by compact perturbations.
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