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1 Introduction

In many physically relevant situations one needs to formulate physics on spacetime with
boundaries. A boundary is a codimension one surface which cuts spacetime into two parts or
it marks the asymptotic regions where spacetime resides only in one side of this codimension
one surface. A boundary can be a physical object or be a hypothetical surface in the
spacetime with prescribed features. In general it can be spacelike (like Cauchy surfaces),
null (like asymptotic region of a flat spacetime or horizon of a stationary black hole) or
timelike (like AdS causal boundary or a codimension one brane in the spacetime or walls of
a cubic box in the spacetime). Depending on the physical problem and the properties of
the boundary we deal with different situations which may be formulated quite differently.

In presence of a boundary we typically need to add boundary degrees of freedom
(BDOF), degrees of freedom which reside on the boundary and do not propagate into
the bulk. For the case of a spacelike boundary, the boundary data is fully encoded in
the Cauchy (initial) data. In the case of a causal boundary, which will be the focus of
our study here, the BDOF can be dynamical ones, have their own independent dynamics
while interact with the bulk degrees of freedom. The role of BDOF is in part to ensure a
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Figure 1. Depiction of a causal boundary at an arbitrary r = r0. We want to formulate physics in
the ‘outside’ r ≥ r0 region and excise the r < r0 part. Unlike the null boundary case of [1], here
we can have both infalling and outgoing null rays passing through the causal boundary. In our
setting we allow for ‘local boosts’ which encode fluctuations of the causal boundary Cr0 , this adds
one more surface charge compared to the null boundary case. For the 2d and 3d cases we consider
here, however, we do not have bulk modes and hence there are no infalling or outgoing null rays.

prescribed boundary condition on the bulk fields. This, however, is not generically enough
to completely fix the BDOF and their dynamics. The first step in formulating the boundary
dynamics is to identify the BDOF. In gauge or gravity theories this identification for
hypothetical boundaries can be done through gauge or diffeomorphisms which nontrivially
act on the boundary.

Here, we will be interested in 2 and 3 dimensional gravity theories and causal (timelike or
null) boundaries, and consider cases where the boundary is a hypothetical surface which cuts
the spacetime into two parts; we will not consider the asymptotic boundaries, see figure 1.
Mainly motivated by questions regarding black holes, in a series of previous papers we have
analyzed a similar problem for null boundaries which model horizons: in [2] we considered
2 dimensional Einstein dilaton gravity and 3 dimensional Einstein-Λ theory, in [3] studied
3 dimensional topologically massive gravity and in [1] we considered generic D dimensional
pure Einstein gravity. In these settings we do not impose specific boundary conditions
on the null surface and allow for all possible fluctuations which leave the boundary a null
surface. Through a thorough boundary symmetry analysis within covariant phase space
formalism, we established that D surface charges as functions over the D − 1 dimensional
null boundary. These charges label the BDOF, which are one D − 1 vector and one scalar
field, on the null boundary. These charges satisfy an algebra which depends on the slicing
used for the solution phase space, and the BDOF fall into representations of this algebra.
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For the generic causal boundary where the boundary is allowed to fluctuate along
the transverse directions, here we establish that for D = 2, 3 dimensions, there are D + 1
charges, associated with two scalar fields and a vector field along the D − 1 dimensional
boundary. The extra scalar compared to the null boundary case is associated with the
fluctuations transverse to the boundary; in the figure 1 this corresponds to ‘transverse
supertranslations’ which encode fluctuations of the causal codimension 1 boundary Cr0 . We
work out boundary symmetry algebras and charges and the associated central terms. While
the algebra of charges generically depend on the slicing of the phase space, we show that
there exists a slicing in which the two scalar charges satisfy a Heisenberg algebra.

At a technical level to perform the analysis we need to address various issues within
the covariant phase space formalism, most notably the so-called W and Y ambiguities,
which as we discuss, we prefer to call them “freedom” in the definition of charges instead
of ambiguities. In particular, we fix the Y -freedom to fulfill the physical expectation that
the symplectic form, surface charges and their algebra are independent of the position of
the causal boundary.1 The covariant phase space method yields charge variations over the
solution space. We use Barnich-Troessaert (BT) method [6] to separate the charge variation
into an integrable part and a non-integrable “flux” part. We fix the W -freedom such that
the integrable charges obtained from the BT method to be identical to the Noether charge.
We argue that this should always be possible and is not limited to the specific examples
we analyse. This is compatible with and confirms the proposal made in [7]. Moreover, as
conjectured in [2] and established in [1], integrability of charges in general depends on the
phase space slicing. In particular, for the D = 2, 3 cases where there is no propagating bulk
degree of freedom, we expect there should be slicings of the phase space in which charges
are integrable. We present integrable slicings for the D = 2, 3 examples and discuss the
charge algebra in these slicings.

This paper is organized as follows. In section 2, we present a quick review of the
basic computational tools. We review covariant phase space formalism and computation of
symplectic form, charge variations, the Barnich-Troessaert method, computation of Noether
charges and the W and Y freedoms, the notion of adjusted bracket and the change of slicing
over the solution space. In section 3, we analyze solution space and boundary symmetries,
charges and algebra for a 2d scalar-tensor gravity theory in presence of a causal (null or
timelike) boundary. In section 4, we study a similar problem for the 3d Einstein-Λ theory.
In section 5, we discuss further our results and give an outlook.

2 Boundary charges analysis toolkit, a quick review

We use covariant phase space formalism [8–10] to compute surface charges associated with
the boundary symmetries. After a quick review of the formalism, in subsection 2.1 we
discuss the freedoms (also called ambiguities) in this formulation in the derivation of the

1In [4, 5] a similar problem for the 2d dilaton gravity and the AdS3 gravity with asymptotic boundary is
studied. It was shown in [5] that one can get 4 codimension 1 charges and the charges can be made finite
(and essentially independent of the AdS3 radial coordinate) upon an appropriate choice for Y -freedom.
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surface charges. In subsection 2.2 we discuss two other technical issues, namely adjusted
bracket and change of slicing within the formalism.

2.1 Charges and their freedoms in covariant phase space formalism

Consider a covariant Lagrangian together with a boundary term

L[ϕ] = L0[ϕ] + ∂µL
µ
bdy[ϕ], (2.1)

where ϕ denotes generic fields we have in the problem. One can read symplectic potential,

Θµ[δϕ;ϕ] = Θµ
LW [δϕ;ϕ] + δLµbdy[ϕ] + ∂νY

µν [δϕ;ϕ], (2.2)

where Θµ
LW [ϕ; δϕ] is the Lee-Wald symplectic potential [8] and Y µν is a skew-symmetric

tensor density of weight +1. This Y -term is not specified from the first principles of the
covariant phase space formulation [9] and is a freedom (ambiguity) in the analysis and one
should fix it through other physical requirements, as we will do for 2d and 3d examples in
the next sections. The boundary Lagrangian may also be chosen freely. It is usually fixed
through requirement of variational principle plus adopting certain boundary conditions.
In our analysis we primarily imposed neither and hence there remains another freedom
(ambiguity) in reading the symplectic potential, the W -freedom.2 We have to fix this
freedom upon another physical requirement.

Using the symplectic potential one can define the symplectic form (see [9] and appendix B
of [1])

Ω[δ1ϕ, δ2ϕ;ϕ] :=
∫
Cr

dD−1xµ ω
µ[δ1ϕ, δ2ϕ;ϕ],

ωµ[δ1ϕ, δ2ϕ;ϕ] := δ1Θµ[δ2ϕ,ϕ]− δ2Θµ[δ1ϕ,ϕ].
(2.3)

where Cr is a (partial) Cauchy surface which is the codimension 1 boundary of our spacetime.
In our examples we will parameterize the spacetime by coordinates r, v, xa and Cr is a
constant r surface.

Let us suppose that the symmetry generators ξ (which are just a subset of diffeomor-
phisms in our setting) map a given set of solutions, the solution space, onto itself. That is,
for any field configuration φ in the solution space, φ+δξφ is also in the solution space. Given
the symplectic potential one can compute the Hamiltonian generators (charge variations)
associated with the symmetry generators ξ [9]:

/δQξ[δϕ, δξϕ;ϕ] :=
∫
Cr

dD−1xµ ω
µ[δϕ, δξϕ;ϕ]. (2.4)

By the fact that the symplectic current is conserved on-shell, ∂µωµ ≈ 0, and by virtue of
the Poincaré lemma, ωµ[δϕ, δξϕ;ϕ] = ∂νQµνξ [δϕ;ϕ], we get

/δQξ =
∮
Cr,v
Qµνξ [δϕ;ϕ] dxµν (2.5)

2Here we have used the terminology of [10] for this kind of ambiguity/freedom. In other words, Lµbdy = Wµ.
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where Cr,v is a codimension 1 section on the boundary of Cr, i.e. a codimension 2 surface in
spacetime; Cr,v is the codimension two surface at constant r, v, i.e. a constant v slice at the
causal boundary, and

Qµνξ = Qµν
LW ξ + Yµνξ ,

Yµν [δϕ, δξϕ;ϕ] := δY µν [δξϕ;ϕ]− δξY µν [δϕ;ϕ]− Y µν [δδξϕ;ϕ] .
(2.6)

Qµν
LW ξ can be directly read from the Lagrangian we start with. We note that the above

formula for the surface charge variation which involves an integration over Cr,v is written
for generic dimension D. For the 2d case Cr,v is a point and hence there is no integral. As
such the charge variation /δQξ in general is a function of v and r. Note that the charge
variation involve δΘµ, the boundary term Lµbdy (and hence W -freedom) do not contribute
to the charge variation computed within the covariant phase space formalism, while Y -term
affects it.

Barnich-Troessaert (BT) charge-flux splitting. The charge variation (2.5) may not
be integrable, i.e. there may not be charges Qξ(ϕ) such that /δQξ = δQξ(ϕ). While the
(non)integrability in general depends on the adopted phase space slicing, e.g. see [1–3, 5, 11],
one may try to split the charge variation /δQξ into an integrable part and a flux part,

/δQξ = δQI
ξ + Fξ(δϕ). (2.7)

The right-hand-side in the above has clearly an ambiguity/freedom in the charge-flux
separation, one can shift QI

ξ by an arbitrary function Aξ and shift Fξ by −δAξ. To fix this
freedom, Barnich and Troessaert made the following proposal [6]: QI

ξ, Fξ(δϕ) should be
such that they satisfy,

δξ2Q
I
ξ1 :=

{
QI
ξ1 , Q

I
ξ2

}
BT
−Fξ2(δξ1ϕ) (2.8a){

QI
ξ1 , Q

I
ξ2

}
BT

= QI
[ξ1,ξ2]adj. bracket

+Kξ1,ξ2 (2.8b)

where Kξ1,ξ2 is a possible central term and the “adjusted bracket” is a Lie bracket of
symmetry generators ξ which is adjusted for possible field dependence of the generators,
see [12].

Noether charge. One may also compute the Noether charge. Noether method, as
compared to the ones discussed above, yields the charge itself and not the charge variation.
While not having the integrability issue, it is prone to W -freedom as well as the Y -
freedom. From the standard Noether analysis we can read the following Noether current
for diffeomorphisms

Jµξ [ϕ] := Θµ[δξϕ;ϕ]− ξµL[ϕ]. (2.9)
It is easy to show that the Noether current is conserved on-shell, ∂µJµξ ≈ 0, and by using
the Poincaré lemma we get, Jµξ = ∂νNµνξ . Considering possible contribution of W and Y
terms, the Noether charge takes the form

Nξ :=
∫
Cr,v

dxµν Nµνξ with Nµνξ = NµνLW ξ + Y µν [δξϕ;ϕ]−2ξ[µWν] (2.10)

where Wµ is a vector density of weight +1.

– 5 –



J
H
E
P
0
5
(
2
0
2
2
)
1
8
9

2.2 Adjusted bracket and change of slicing

In this subsection we review the notion of adjusted bracket [6, 12] and the change of slicing
over the solution space [2], see also [1, 3, 13, 14].

Adjusted bracket. Let ξ = ξµ∂µ denote the set of diffeomorphisms which nontrivially
act at the boundary and hence rotate us within the solution phase space of the theory.
The vector field ξ (and its components ξµ can in general depend on dynamical fields ϕ and
parameters µa which label the solution space, ξ = ξ[µa;ϕ]. As we will review below, such
field dependence naturally arise in change of slicings. Since ξ move us on the solution space
taking ϕ to ϕ+ δξϕ, when making two successive transformations one needs to account for
the variation of fields in the argument of ξµ(ϕ) and “adjust” for it. In particular, to read
the algebra of symmetry generators we need to define a new, adjusted bracket [12, 15],

[ξ1, ξ2]adj. bracket = [ξ1, ξ2]− δ̂ξ1ξ2 + δ̂ξ2ξ1 (2.11)

where the first term is the standard Lie bracket and δ̂ denotes variation due to field
dependence of ξ. It is easy to show that the adjusted bracket satisfies the basic properties
of a bracket. It also reduces to the usual Lie bracket when diffeomorphisms are field
independent, δ̂ξ = 0.

Change of slicing. From the covariant phase space formalism, one can get the following
expression for the surface charge variation associated with the symmetry generator ξ,

/δQξ =
∫

dD−2xGiδQi . (2.12)

where Gi are a linear combination of symmetry generators µa with field dependent coefficients,
Gi = ∑

µ Giaµa,Gia = Gia(ϕ). A change of slicing, a change of coordinate on the solution
phase space, amounts to redefining Qi as

Q̃i = Q̃i[Qj , ∂nQj ] , (2.13)

such that the total charge variation /δQξ remains intact. To ensure this requirement, one
should transform Gi accordingly,

/δQξ =
∫

dD−2xGiδQi =
∫

dD−2x G̃iδQ̃i. (2.14)

This requirement is fulfilled if

G̃i =Mi
j Gj , Mi

j δQ̃j
δQk

:= δi
k (2.15)

Some comments are in order:

1. Change of phase space slicing, as defined above, should not change physical observables
over the solution phase space, while in general it is expected to change the algebra of
charges. That is, the algebra of charges Qi and that of Q̃i are generically different.
However, there could be certain changes of slicing which amount just to a change of
basis of the charge algebra and does not change the Lie algebra of charges.

– 6 –
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2. Upon a change of slicing the algebra of charges need not remain a Lie algebra. That is,
commutator of charges in a new slicing may lead to a function of charges which is not
a linear combination of charges. Put differently, structure ‘constants’ of the algebra
may also be field dependent. In such cases the associated symmetry generators (with
the adjusted bracket) form an algebriod and not an algebra.

3. All deformations of the algebra, see [16–19] for discussion and analysis, are examples
of changes of slicings.

4. A change of slicing not only can change the algebra, but it may also change the central
charge.

5. More importantly, a change of slicing may take a non-integrable charge to an integrable
one. This is possible if there exists a change of slicing in which G̃i is field independent.
In the next sections we have given some examples of such integrable slicings.

6. Existence of integrable slicings amounts to the absence of ‘genuine fluxes’, fluxes
associated with the bulk modes passing through the boundary [1–5, 5, 20]. One should
also note that integrable slicing, if it exists, is not unique and there exists many
integrable slicings.

3 Causal boundary symmetries, 2d case

The two dimensional dilaton gravity we consider is described by the action3

S = 1
16πG

∫
d2x
√
−g [ΦR−X(Φ)] (3.1)

where R is Ricci scalar, Φ is the scalar field and X(Φ) is the potential term. The field
equations for this action are given by

0 = ∇µ∇νΦ− 1
2gµν�Φ, (3.2a)

0 = �Φ +X, (3.2b)

0 = R− dX
dΦ . (3.2c)

The Jackiw-Teitelboim (JT) gravity is within this family with X(Φ) = 2ΛΦ , where Λ is a
constant. Another member of this 2d gravity family is the one obtained from dimensional
reduction of D dimensional Einstein-Λ gravity over an SD−2. Explicitly, consider the
reduction ansatz,

ds̃2 = Φ−
D−3

(D−2) gµν dxµ dxν + Φ
2

(D−2) dΩ2
D−2, (3.3)

where µ, ν = 0, 1 and dΩ2
D−2 is the metric of a round unit radius SD−2. Upon reduction

one obtains a 2 dimensional action (3.1) with X(Φ) = 2 Λ Φ1/(D−2) − R̄Φ−1/(D−2), where
Λ is the cosmological constant and R̄ is Ricci scalar of round unit sphere SD−2. For the
particular case of D = 3 which will be discussed in section 4.5, X(Φ) = 2ΛΦ.

3See [21] for more general class of 2d gravity theories and surface charge analysis.
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3.1 Solution phase space

There are three components of the metric and one scalar field. Two diffeomorphisms can be
used to fix two of these functions. Two independent components of equations of motion (3.2)
can then be used to determine two functions among four. One can solve these equations
directly, but it would be easier to use diffeomorphisim to construct solution phase space.
Let us choose one of the coordinates x such that Φ = x. One can show that a generic
solution admits a Killing vector field k = εµν∂µΦ∂ν , where εµν is the Levi-Civita tensor.
We can choose the other coordinate y to be affine parameter along the curve generated by
Killing vector field. In the x, y coordinate system, therefore, k = ∂/∂y. The most general
solution in this coordinate system takes the form

ds2 = 2 dx dy + (X +m) dy2 (3.4)

where X = dX/ dΦ and m is an integration constant and we choose X such that X (0) = 0.
The Killing vector field k is timelike if X +m > 0. While m is a constant over spacetime we
allow it to vary over the solution phase space (i.e. m has parametric variations, δm 6= 0).

The most general solution phase space can be obtained by setting

x = Φ(v, r), y = Ψ(v, r), (3.5)

with non-zero Jacobian, i.e ∂rΨ∂vΦ− ∂rΦ∂vΨ 6= 0. Starting from metric (3.4) with (3.5),
we get

ds2 = ∂vΨ [2∂vΦ + (X +m)∂vΨ] dv2 + ∂rΨ [2∂rΦ + (X +m)∂rΨ] dr2

+ 2 [∂vΨ∂rΦ + ∂rΨ∂vΦ + (X +m)∂vΨ∂rΨ] dv dr.

In our analysis here, we restrict ourselves to a subset of the above metrics obtained by the
gauge fixing,

grr = 0 , gvr = η(v) , (3.6)

which may be obtained through diffeos,

Φ(v, r) = Ω + η λ r , dΨ = dv
λ
, (3.7)

where Ω , λ are functions of v. In this case the metric can be written as

ds2 = −V dv2 + 2η dv dr , V = − 1
λ2 (2λ∂vΦ + X +m) . (3.8)

In our analysis we place the boundary at an arbitrary constant r slice and restrict ourselves
to a region of spacetime where V ≥ 0, that is a region where the normal vector to the
boundary is spacelike or null, or equivalently the boundary is causal. That is how we choose
the r coordinate. We therefore excise the spacetime at the boundary and analyse 2d gravity
on a part of spacetime bounded by a causal boundary. In this gauge the solution is specified
by three functions of v, η, λ,Ω and a parameter m. For later convenience, instead of η we
use function Π defined as

Π = ln
(
ηλ

Ω

)2
. (3.9)
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One can recover the null boundary solution space of [2] by the extra requirement that
V vanishes at the boundary. Recalling (3.8), this may be achieved by solving λ in terms of
the other two functions Ω, η and the parameter m.

3.2 Boundary symmetry generators

The vector fields preserving the form of metric (3.8) is

ξ = T (v)∂v +
[
Z(v)−r2W (v)

]
∂r , (3.10)

where T (v), Z(v) and W (v) are respectively v-supertranslation, r-supertranslation and
superscaling in r-direction. The Lie bracket of two vectors of the form (3.10) is

[ξ(T1, Z1,W1), ξ(T2, Z2,W2)] = ξ(T12, Z12,W12) (3.11)

where

T12 = T1∂vT2 − (1↔ 2) (3.12a)

Z12 = T1∂vZ2−
1
2Z1W2 − (1↔ 2) (3.12b)

W12 = T1∂vW2 − (1↔ 2). (3.12c)

As we see v-supertranslations form a Witt algebra and r-supertranslations and superscal-
ings form a Heisenberg algebra. The above symmetry generators induce the following
transformation laws on fields parameterizing the solution space

δξη = ∂v(Tη)− 1
2ηW

δξΩ = T∂vΩ + ηλZ

δξΠ = −W + T∂vΠ− 2eΠ/2Z

δξλ
−1 = ∂v(λ−1T )

δξm = 0

(3.13)

The last variation ensures that m only captures the parametric variation. The exact Killing
vector in this gauge takes the form

k = λ∂v −
1
η

[∂vΩ + r∂v(ηλ)]∂r . (3.14)

As we see the vector k is not among the symmetry generators (3.10) in the chosen slicing
where T,W,Z are taken to be state independent. In particular, one can show that the
adjusted Lie bracket [6, 12] of k and the symmetry generators ξ vanishes, [k, ξ]adj. bracket = 0,
see section 2.2 for the definition of adjusted bracket.

Compared to the null boundary case studied in [2], we are allowing for the r su-
pertranslations Z∂r that generate fluctuations in the one-form dr direction. These are
transformations which generate fluctuations parametrized by λ.4

4The asymptotic symmetry analysis for 2d dilaton gravity has been considered in many previous papers,
see in particular [21, 22] and references therein. In these cases, as in our case, they allow for the dilaton Φ
also fluctuate along the boundary. We thank Daniel Grumiller for a comment on this point.
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3.3 Boundary charges, 2d analysis

Having the symmetry generators, in this section we apply the general analysis of section 2
to the 2d gravity case.

Symplectic form. The Lee-Wald symplectic potential for the 2d Einstein dilaton gravity
is given by

Θµ
LW[δg, δΦ; g,Φ] =

√
−g

16πG [Φ (∇νhµν −∇µh) + h∂µΦ− hµν∂νΦ] (3.15)

whose component for the given solution are obtained as

16πGΘv
LW = λδη ,

16πGΘr
LW = ∂v

[
δΠΩ + δ

(
Φ
√
−g
)
εvr
]

+ δm

λ
+ δ

(
∂vΦ + ΦX − 2(X +m)

λ

)
.

(3.16)

For the JT gravity, 2X = XΦ and the second term in the total variation term becomes Φ
independent. We fix the Y -freedom upon the physical requirement that the symplectic form
(and hence the charge variations computed upon that) are independent of the position of
the causal boundary, i.e. they are r-independent. This physical requirement is well-justified
because the boundary is not a special place in the spacetime5 and that in our analysis we are
including the Z transformation which generates displacements in r. The expression (3.16)
suggests the Y -term,

Y µν [δg, δΦ; g,Φ] = δ (Φ√−g)
16πG εµν (3.17)

eliminates the r dependence of the symplectic potential. As discussed in section 2, W -
freedom (and the boundary Lagrangian) do not contribute to the symplectic form. With
this choice for Y -term, the symplectic form on the causal boundary is obtained as

Ω[δϕ, δϕ;ϕ] = 1
16πG

∫
dv
[
∂v (δΠ ∧ δΩ) + δλ−1 ∧ δm

]
(3.18)

where ϕ = {Ω ,Π , λ ;m} is the collection of fields appeared in symplectic form. We
stress that (3.18) is r-independent and hence we need not specify at which r the integral
is computed.

Charge variation. One can compute the charge variation using (2.5), to obtain

/δQξ = 1
16πG

[
WδΩ + 2Z δ(Ω eΠ/2) + T

( 1
λ
δm− ∂vΠδΩ + ∂vΩδΠ

)]
. (3.19)

In presence of a non-vanishing m, we have three surface charges.

5Noting (3.7), Ω = Φ(r = 0) and therefore, the choice of Ω is marking r = 0.
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Barnich-Troessaert (BT) charge-flux splitting. Using the BT method, we find

16πGQI
ξ = WΩ + 2Z Ω eΠ/2 + T

(
m

λ
− Ω∂vΠ

)
, (3.20a)

16πGFξ = T
[
−mδ(λ−1) + ∂v(ΩδΠ)

]
(3.20b)

with a vanishing central extension term, Kξ1,ξ2 = 0. Let us suppose that the integrable part of
charges admit a Laurent expansion in power of v and denote the modes of charges associated
with the symmetry generators ξ(−vn+1, 0, 0), ξ(0, vn, 0) and ξ(0, 0, vn) respectively by
T n,Zn,Wn, n ∈ Z, explicitly,

Wn = vnΩ(v) , Zn = 2vn Ω(v) eΠ(v)/2 , T n = −vn+1
(
m

λ(v) − Ω(v)∂vΠ(v)
)
. (3.21)

The charge algebra is then,6

{T n,T m} = (n−m)T m+n, (3.22a)
{T n,Zm} = −mZn+m, (3.22b)
{T n,Wm} = −mWm+n, (3.22c)

{Wm,Zn} = 1
2Zm+n, (3.22d)

{Zn,Zm} = {Wn,Wm} = 0. (3.22e)

The three integrable part of charges and also the flux Fξ we get from the BT charge-flux
separation equation (3.20), namely Ω, 2ΩeΠ/2,m/λ−Ω∂vΠ, are composed of three functions
in the solution space, Ω, η, λ as well as the parameter m. Recalling (3.20), one may verify
that commutators in (3.22d), (3.22e) are satisfied if {Ω(v),Π(v)} = 16πG.

Noether charge. The Lee-Wald Noether potential for the Einstein-Dilaton gravity is
given by

NµνLW ξ = −
√
−g

8πG
[
Φ∇[µξν] + 2ξ[µ∇ν]Φ

]
. (3.23)

To compute the Noether charge, we should add the adopted Y -term (3.17) to the expression
for the Noether charge (2.10). Doing so, one may see that the expression of the Noether
charge and the integrable part of the charge QI

ξ obtained in (3.20) do not match. However,
we note that there is still a W -freedom in the Noether charge. One can fix this W -freedom
upon the requirement that the Noether and BT integrable charge to become identical. One
can verify that a W -term of the form

Wµ =
√
−g

[
kµ + 1

λ
(ΦX − 2X −m)nµ

]
(3.24)

where nµ dxµ := − dv is a null co-vector field, does the job and yields Nξ = Nvrξ = QI
ξ. We

note that a very closely related discussion and analysis for fixing the W and Y freedoms
has also appeared in [7, 23–27].

6This algebra can be obtained as a deformation from twisted double Heisenberg algebra, cf. [19].
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Balance equation. The three integrable part of charges discussed above are functions
of v, and in particular, there is one of them associated with vector ∂v, T = 1,W = Z = 0,
which may be viewed as Hamiltonian (generator of translation along v direction). One may
then rewrite (2.8a) for ξ2 = ∂v and generic ξ1 = ξ, as follows,7

d
dvQ

I
ξ = δ∂vQ

I
ξ +

{
QI
∂v , Q

I
ξ

}
= −F∂v (δξg; g) . (3.25)

This equation tells us how non-conservation of charges is related to the fluxes. Or al-
ternatively, it specifies how charges balance themselves due to the passage of the flux
through the boundary. We note that the flux 16πGF∂v (δξg; g) = ∂v(ΩδξΠ)− δξ(m/λ), is
not a ‘genuine flux’ [1, 2], as in 2d theory we are studying there are no propagating modes
with nonvanishing flux through the boundary. To understand this ‘fake news’ an analogy
with usual Newtonian mechanics can be helpful. In non-inertial frames there are Coriolis
type forces which are analogous to the fake new here. In our case, as we will see in the
next subsection, there are integrable slicing which could be viewed as ‘inertial frame’ in
our analogy.

In a similar way one may choose ξ2 = ∂r with generic ξ1 = ξ. This yields d
drQ

I
ξ =

δ∂rQ
I
ξ + QI

[∂r,ξ] = 0. This is of course compatible with the fact that the charges are
r independent.

3.4 Integrable slicing

As reviewed in the introduction, the absence of propagating degrees of freedom in the 2d
gravity signals existence of slicings in which charges are integrable. To this end, consider
the slicing

Ŵ = W − ∂vΠ T + 2eΠ/2 Z , Ẑ = ΩeΠ/2 Z + ∂vΩT , T̂ = T

λ
, (3.26)

in which we assume that Ŵ, Ẑ, T̂ are field-independent, while W,Z, T are field-dependent
in the hatted-slicing. The surface charges in the hatted slicing become integrable:

16πG/δQξ = Ŵ δΩ + ẐδΠ + T̂ δm. (3.27)

The charge variation in this slicing takes the form,

δξΩ = Ẑ, δξΠ = −Ŵ, δξλ
−1 = ∂vT̂, δξm = 0, (3.28)

We note that the Killing vector k (3.14) in the hatted slicing takes a very simple
form: T̂ = 1, Ŵ = Ẑ = 0 and hence k is among symmetry generators in the hatted slicing.
One can directly check that m is the charge associated with exact Killing vector field k,
Q(k) = M = m/(16πG). Note also that the hatted slicing is not the only integrable slicing
and there are many other such slicings.

7The charge variation and all the associated equations are on-shell. However, since we have explicitly
solved the equations of motion functions Ω, Π are independent, so for the balance equation usual and on-shell
equality are identical.
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The slicing employed in the charge expression (3.27) besides integrability of the charge
exhibits another notable feature: λ does not appear in the expression of the charge. One
may show that this feature is not limited to the above slicing; there is no integrable
slicing in which λ appears. Despite this fact, λ is not a pure gauge, as it appears in the
symplectic form over the solution phase space (3.18) and also in the charge variation (3.19).
Nevertheless, recalling (3.18), we note that the canonical conjugate to λ−1 is m which is a
number and not a function of v.8 To understand this point better, we note that the most
general solution space of the 2d dilaton gravity has four functions in it9 and the solution
space with three functions and a number we discussed here, is a reduction of that phase
space where m is reminiscent of the fourth function of v we have fixed. A similar feature
appears once we consider the 2d case as a reduction of 3d theory over a circle, see next
section and in particular subsection 4.5. As another related comment, one may further
reduce the phase space by fixing λ to a given constant, e.g. λ0, then λ−1

0 is the canonical
conjugate to m. In this reduced phase space, only the zero mode of T , associated with ∂v
remains as a symmetry generator.

Symmetry algebra. The symmetry algebra in the integrable slicing is given by[
ξ
(
T̂1, Ẑ1, Ŵ1

)
, ξ
(
T̂2, Ẑ2, Ŵ2

)]
adj. bracket

= ξ
(
T̂12, Ẑ12, Ŵ12

)
(3.29)

where
T̂12 = 0, Ŵ12 = 0, Ẑ12 = 0 (3.30)

Surface charge algebra. In the integrable slicing and in the absence of flux, one may
read surface charge algebra as

δξ2Qξ1 = {Qξ1 , Qξ2} = Q[ξ1,ξ2] +Kξ1,ξ2 (3.31)

where the central extension term is

Kξ1,ξ2 = 1
16πG

(
Ŵ1Ẑ2 − Ẑ1Ŵ2

)
. (3.32)

The above charge algebra implies

{Ω(v),Π(v)} = 16πG. (3.33)

The mass parameter m commutes with all charges, as [k, ξ]adj. bracket = 0. This is in accord
with general arguments in [28] that all exact symmetry (Killing) charges commute with
charges associated with non-trivial diffeomorphisms.

8We note that our charge expression is exactly the same as the one appeared in section 6 of [21]. However,
the difference is exactly the fact that in our case the phase space is governed by 3 functions of v and one
parameter m, whereas in their case by 2 functions of v and one parameter.

9See [22] for a similar study in AdS2 gravity and its asymptotic symmetries.
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4 Causal boundary symmetries, 3d case

In this section we study the causal boundary charges for the 3d Einstein-Λ theory, described
by the action,

S = 1
16πG

∫
d3x
√
−g (R− 2Λ) (4.1)

where R is Ricci scalar and Λ is the cosmological constant. In our analysis we do not fix
the sign of Λ, Λ Q 0. The field equations for this action are

Rµν = −2Λgµν . (4.2)

4.1 Causal surface solution phase space

We adopt Gaussian null-type coordinate system in which v, r, φ are respectively advanced
time, radial and angular coordinates. The three dimensional line-element in Gaussian
null-type coordinate system is [1, 2, 11]

ds2 = −V dv2 + 2η dv dr +R2 (dφ+ U dv)2 . (4.3)

where V,R, U are generic functions on spacetime and η depends only on v and φ. We also
assume φ ∼ φ+ 2π and that all metric components are periodic functions of φ. While v
generically ranges in R, we restrict the r coordinate to be larger than an arbitrary value r
at which we place our boundary, see figure 1. We assume that in the half of the spacetime
we consider V ≥ 0, so that ∂v is a causal vector and ∂r is a null vector, and without loss of
generality we take Ω, η, λ > 0.

The gauge we adopt here to describe solution space is different from the ones that
has been widely used in the literature for the asymptotic symmetry analysis. Bondi gauge
introduced in seminal works [29–31] leads to the Bondi-van der Burg-Metzner-Sachs (BMS)
algebra as the asymptotic symmetries of asymptotically flat spacetimes. The BMS algebra is
enlarged in [6, 15] to include superrotations. Other extensions of BMS or Virasoro algebras
can be found in [4, 5, 32–34].

Equations of motion (4.2) specify the r dependence of fields as [2]

R = Ω + λ η r (4.4a)

U = U + 1
λR

∂φη

η
+ Υ

2λR2 (4.4b)

V = 1
λ2

(
−ΛR2 −M+ Υ2

4R2 −
2R
η
Dv(ηλ) + Υ

R
∂φη

η

)
(4.4c)

where Ω, λ, η,Υ,U ,M are functions of v, φ. Moreover, (4.3) with (4.4) solve Einstein field
equations if,

EM̂ := DvM̂+ Λλ∂φ
(

Υ̂
λ2

)
+ 2∂3

φU = 0 (4.5a)

EΥ̂ := DvΥ̂− λ∂φ
(
M̂
λ2

)
+ 2∂3

φ(λ−1) = 0 (4.5b)
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w = −1 U , Y
w = 0 η, T , W , Z, Π, ∂v
w = 1 Ω, λ, ∂φ
w = 2 M̂, Υ̂

Table 1. Weight w for various quantities defined and used in this section.

where

Υ̂ = Υ + Ω∂φΠ , Π := ln
(
ηλ

Ω

)2
,

M̂ =M+ λΩDvΠ +
(
∂φη

η

)2
+ 3

(
∂φλ

λ

)2
− 2

∂2
φλ

λ

(4.6)

and the differential operators Dv and LU which act on a codimension one function Ow(v, φ)
of weight w is defined through

DvOw = ∂vOw − LUOw , (4.7a)
LUOw = U∂φOw + wOw∂φU , (4.7b)

where U is a function of weight −1. Weights of different functions can be found in table 1.
We remark that with the above conventions, R = Ω(1 + eΠ/2r) and the third order φ
derivative terms in (4.5) come from substitution of other field equations to simplify these
equations. We also note that if f :=

∫
φ λ then the last two terms are −2S(f, φ), where S is

the Schwarzian derivative. One can treat these equations as equations for U and λ which
only involve φ (and not v) derivatives of these functions. Finally, up to some functions of
only v, the solution space is spanned by four codimension one functionsM,Υ,Ω,Π.

4.2 Causal boundary symmetry

Let the boundary be an arbitrary constant r surface, Cr. Cr is a causal (timelike or null)
surface and we are interested in formulating physics in one side of the boundary which
contains r →∞, see figure 1. The vector field

ξ = T∂v +
[
Z − r

2 W −
Υ

2ηλ2R
∂φT −

1
η2λ

∂φ

(
η∂φT

λ

)]
∂r +

(
Y + ∂φT

λR

)
∂φ (4.8)

preserves the form of metric (4.3) and hence moves us in the solution space constructed above.
This vector field is parametrized by supertranslation in v-direction T (v, φ), supertranslation
in r-direction Z(v, φ), superscaling W (v, φ), and superrotation Y (v, φ). Under the action
of ξ, functions in the metric have the following variations

δξη = Dv(Tη) + Ŷ ∂φη −
1
2ηW (4.9a)

δξλ = TDvλ− λDvT + ∂φ(λŶ ) (4.9b)

δξU = DvŶ + Λ∂φT
λ2 (4.9c)
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δξΩ = T DvΩ + ∂φ(ΩŶ ) + ηλZ (4.9d)
δξΥ̂ ≈ T̂ ∂φM̂+ 2M̂∂φT̂ + Ŷ ∂φΥ̂ + 2Υ̂∂φŶ − 2∂3

φT̂ (4.9e)
δξM̂ ≈ Ŷ ∂φM̂+ 2M̂∂φŶ − Λ(T̂ ∂φΥ̂ + 2Υ̂∂φT̂ )− 2∂3

φŶ (4.9f)
δξΠ = −W + TDvΠ−2eΠ/2Z + Ŷ ∂φΠ (4.9g)

where Ŷ = Y + UT and T̂ = T/λ and ≈ indicates on-shell equality in which equations of
motion (4.5) are used.

Causal boundary symmetry algebra. Since the causal boundary symmetry genera-
tors (4.8) depend on the field in solution space to compute their solution phase space Lie
bracket we need to adjust for the field variations [6, 12] (see section 2.2 for more details).
Using the adjusted Lie bracket we have

[ξ(T1, Z1,W1, Y1), ξ(T2, Z2,W2, Y2)]adj. bracket = ξ(T12, Z12,W12, Y12) (4.10)

where

T12 = (T1∂v + Y1∂φ)T2 − (1↔ 2) (4.11a)

Z12 = (T1∂v + Y1∂φ)Z2 + 1
2W1Z2 − (1↔ 2) (4.11b)

W12 = (T1∂v + Y1∂φ)W2 − (1↔ 2) (4.11c)
Y12 = (T1∂v + Y1∂φ)Y2 − (1↔ 2) (4.11d)

One may wonder how we have fixed the quite non-trivial field dependence in the vector
fields (4.8). In fact, there are (infinitely) many other choices for symmetry generators and
their field dependence which rotate us within the solution space. The specific form (4.8) has
the feature that it leads to an algebra; there is no field dependence in (4.11). Other choices
typically lead to algebroids, where the expression in T12, Z12,W12, Y12 are field dependent.
One should also note that the specific field dependence in (4.8), while special, is not the
only one which yields the algebra (and not algebriod) structure.

4.3 Surface charge analysis

Consider the Einstein-Hilbert Lagrangian L0 = LEH[g]. The Lee-Wald symplectic poten-
tial [8] can be read as

Θµ
LW [g; δg] =

√
−g

8πG∇
[α
(
gµ]βδgαβ

)
, (4.12)

For the Einstein gravity theory

Qµν
LW ξ =

√
−g

8πG

(
hλ[µ∇λξν] − ξλ∇[µh

ν]
λ −

1
2h∇

[µξν] + ξ[µ∇λhν]λ − ξ[µ∇ν]h

)
(4.13)

is the ordinary Lee-Wald charge variation density. We are interested in surface charges
computed on a codimension 2 transverse surface Σ with binormal εµν . The surface element
hence is dSµν = 1

2 εµνR dφ. The surface charge variation on transverse surface can be
defined as /δQξ :=

∫
ΣQ

µν
ξ dSµν where Qµνξ = Qµνξ /

√
−g is a skew-symmetric tensor.
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In our case Σ may be taken a constant v slice on the boundary Cr. Therefore, in our
case Σ is a constant v, r surface Cr,v. The Lee-Wald surface charge variation reads

/δQLW(ξ) = 1
16πG (4.14)

×
∮
Cr,v

dφ
(
−δξΠδΩ+δξΩδΠ+(Y +UT )δΥ̂+ T

λ
δM̂+δξn

rδ
√
−g−δnrδξ

√
−g
)
.

The last two terms in the Lee-Wald surface charge variation (4.14) depend on the radial
coordinate and they diverge at infinity. As in the 2d case, we fix the Y -freedom such that
the symplectic form and surface charges do not depend on the arbitrary r at which the
causal boundary resides. This can be achieved by adding the covariant Y -term,

Y µν [g; δg] = δ
√
−g

16πG εµν . (4.15)

Upon addition of this Y -term, surface charge variation in the slicing defined by δT = δY =
δW = δZ = 0 becomes r-independent and takes the form

/δQξ = 1
16πG

∮
Cr,v

dφ
[
WδΩ + 2Zδ(Ω eΠ/2) + Y δΥ

+T
(
−DvΠ δΩ + UδΥ +DvΩ δΠ + λ−1δM̂

)]
. (4.16)

BT integrable-flux splitting. The charge variation (4.16) in the adopted slicing is
clearly non-integrable. One may use the adjusted bracket method of Barnich and Troes-
saert [6] to separate integrable QI

ξ and flux Fξ(δg; g) parts, see section 2. Applying the
adjusted bracket to the charge variation (4.16) yields,

QI
ξ = 1

16πG

∫
dφ
[
W Ω + 2Z Ω eΠ/2 + Y Υ + T

(
DvΠΩ + U Υ + λ−1 M̂

)]
, (4.17a)

Fξ(δg; g) = 1
16πG

∫
dφT

[
−M̂δ(λ−1)−Υ δU+ΩδDvΠ + δΠDvΩ

]
. (4.17b)

The central term reads as

Kξ1,ξ2 = 1
8πG

∫
dφ 1

λ

[
T2∂

3
φ(Y1 + UT1)− T1∂

3
φ(Y2 + UT2)

]
. (4.18)

While with the field dependence of (4.8) has been chosen such that the adjusted bracket
of symmetry generators (4.10) are field independent, the “central term” Kξ1,ξ2 (4.18) is
field-dependent, as it depends on λ and U . Therefore, the BT bracket of charges form an
algebroid, rather than an algebra. Despite of this fact, as we will see, one may use this
slicing for the balance equation.

The above charge-flux separation works for generic values of Λ. For a vanishing
cosmological constant Λ = 0, however, one can use the A-freedom, cf. section 2, to remove
the field dependence of the central term. In particular, for

QI
ξ = 1

16πG

∫
dφ
[
W Ω + 2Z Ω eΠ/2 + Y Υ + T

(
DvΠΩ + U Υ

)]
, (4.19a)

Fξ(δg; g) = 1
16πG

∫
dφT

[
λ−1δM̂ −Υ δU+ΩδDvΠ + δΠDvΩ

]
. (4.19b)
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we getKξ1,ξ2 = 0 for Λ = 0. Let us assume that the integrable part of charges admit a Laurent
expansion in power of v and perform a Fourier transformation in φ and denote the modes
of charges associated with the symmetry generators ξ(−vn+1eimφ, 0, 0, 0), ξ(0, vneimφ, 0, 0),
ξ(0, 0, vneimφ, 0) and ξ(0, 0, 0, ivneimφ) respectively by T n,m,Zn,m,Wn,m,Yn,m, n,m ∈ Z,
explicitly,

Wn,m = 1
2π

∫ 2π

0
dφ vneimφΩ(v, φ),

Zn,m = 1
2π

∫ 2π

0
dφ vneimφ Ω(v, φ) eΠ(v,φ)/2,

Yn,m = 1
2π

∫ 2π

0
dφ ivneimφΥ(v, φ),

T n,m = − 1
2π

∫ 2π

0
dφ vn+1eimφ

(
DvΠ(v, φ)Ω(v, φ) + U(v, φ) Υ(v, φ)

)
.

(4.20)

The charge algebra yields,

{T n,m,T k,l}MB = (n− k)T n+k,m+l , {Yn,m ,Yk,l}MB = (m− l)Yn+k,m+l , (4.21a)
{T n,m,Zk,l}MB = −kZn+k,m+l , {Yn,m ,Zk,l}MB = −lZn+k,m+l , (4.21b)
{T n,m,Wk,l}MB = −kWn+k,m+l , {Yn,m ,Wk,l}MB = −lWn+k,m+l , (4.21c)

{Wn,m,Zk,l}MB = 1
2Zn+k,m+l , {Yn,m ,T k,l}MB = lT n+k,m+l + nYn+k,m+l .

(4.21d)

The T n,m,Yn,m part of the algebra is diffeomorphisms on the 2d cylinder spanned by v, φ,
AC2 and Zk,l,Wk,l are in vector representation of the AC2 algebra. This result coincides
with the fact that in the flat limit of two Virasoro algebras at the Brown-Henneaux central
charge, we lose one of central charges [35].

Noether charge. The Lee-Wald contribution to the Noether charge, which is nothing
but the Komar charge density, is given as

NµνLW ξ = −
√
−g

8πG ∇
[µξν] . (4.22)

As discussed, the Noether charge receives contributions from both W and Y terms. By
fixing the Y -freedom as in (4.15), and W -freedom as

16πGWv = 3∂rR , 16πGWr = −M̂
λ
− 2Λ
λ
R2−3DvR+3∂φ (RU −RU) , Wφ = 0 ,

(4.23)
the Noether charge becomes identical to the integrable part of charge (4.17a).

Balance equation. The BT charge-flux splitting (4.17) written for ξ1 = ∂v and generic
ξ2 yields the balance equation:

d
dvQ

I
ξ = δ∂vQ

I
ξ +QI

[∂v ,ξ] ≈ −F∂v(δξg; g) +Kξ,∂v . (4.24)

– 18 –



J
H
E
P
0
5
(
2
0
2
2
)
1
8
9

Let us denote the charges as
QI
ξ

:=
∫

dφ QI
ξ.

Considering time derivative of surface charges associated with ξ = ξ(T, 0, 0, 0) and ξ =
ξ(0, Y, 0, 0) we find

d
dvQ

I
T

=
∫

dφDvQI
T
− 1

16πG

∫
dφT

(
UEΥ̂ + λ−1EM̂

)
(4.25a)

d
dvQ

I
Y

=
∫

dφDvQI
Y
− 1

16πG

∫
dφY EΥ̂. (4.25b)

and for ξ = ξ(0, 0, Z, 0) and ξ = ξ(0, 0, 0,W ) the balance equation yields two identities

d
dvQ

I
Z

=
∫

dφ DvQI
Z
,

d
dvQ

I
W

=
∫

dφ DvQI
W
, (4.26)

The above, especially (4.25), makes it clear that the balance equation is a manifestation of
the equations of motion projected and computed at the boundary, EΥ̂ = 0 EM̂ = 0.

Thanks to the Y -freedom, we also have a simple balance equation in the radial direction

d
drQ

I
ξ = δ∂rQ

I
ξ +QI

[∂r,ξ] = 0. (4.27)

The above is a consequence of r-independence of surface charges, as we had in the 2d analysis.

4.4 Surface charges in integrable Heisenberg slicing

There is no bulk propagating degree of freedom in 3d gravity and hence there should exist
slicings in which the surface charge variation is integrable. To see this, consider the change
of slicing,

Ẑ = δξΩ , Ŵ = −δξΠ , Ŷ = Y + UT , T̂ = T

λ
, (4.28)

in which the surface charge variation takes the form

δQξ := 1
16πG

∮
Cr,v

dφ
(
Ŵ δΩ + ẐδΠ + Ŷ δΥ̂ + T̂ δM̂

)
. (4.29)

The above is manifestly integrable if we take the new symmetry generators (4.28) to be
field independent, i.e. if we assume δẐ = δŶ = δŴ = δT̂ = 0.

Causal boundary symmetry algebra. Using the adjusted Lie bracket we have

[ξ(T̂1, Ẑ1, Ŵ1, Ŷ1), ξ(T̂2, Ẑ2, Ŵ2, Ŷ2)]adj. bracket = ξ(T̂12, Ẑ12, Ŵ12, Ŷ12) (4.30)

where

T̂12 = T̂1∂φŶ2 − Ŷ2∂φT̂1 − (1↔ 2) (4.31a)
Ŷ12 = Ŷ1∂φŶ2 − ΛT̂1∂φT̂2 − (1↔ 2) (4.31b)
Ẑ12 = 0 (4.31c)
Ŵ12 = 0 (4.31d)
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Surface charge algebra. The charge algebra in the Heisenberg slicing is{
QI
ξ1 , Q

I
ξ2

}
MB

= QI
[ξ1,ξ2]adj. bracket

+Kξ1,ξ2 (4.32)

where

Kξ1,ξ2 = 1
8πG

∮
Cr,v

dφ (T̂2∂
3
φŶ1 − T̂1∂

3
φŶ2) + 1

16πG

∮
Cr,v

dφ (Ẑ2Ŵ1 − Ẑ1Ŵ2) (4.33)

The explicit form of the algebra is given by

{Ω(v, φ),Π(v, φ′)} = 16πG δ
(
φ− φ′

)
(4.34a)

{Υ̂(v, φ), Υ̂(v, φ′)} = 16πG
(
Υ̂(v, φ′)∂φ − Υ̂(v, φ)∂φ′

)
δ
(
φ− φ′

)
(4.34b)

{M̂(v, φ),M̂(v, φ′)} = −16πGΛ
(
Υ̂(v, φ′)∂φ − Υ̂(v, φ)∂φ′

)
δ
(
φ− φ′

)
(4.34c)

{Υ̂(v, φ),M̂(v, φ′)} = 16πG
(
M̂(v, φ′)∂φ − M̂(v, φ)∂φ′ − 2∂3

φ

)
δ
(
φ− φ′

)
(4.34d)

Brackets not displayed vanish. For flat case, Λ = 0, the algebra (4.34) is direct sum of the
Heisenberg and the bms3 algebra. The main deference between the bms3 subalgebra and
the bms3 algebra obtained as the symmetry structure of asymptotically flat spacetimes in
3d [36, 37] is that the charges here have explicit v dependence while the structure constants
are still v independent. Put differently, for any constant v slice we find the same algebra
Heisenberg ⊕ bms3 algebra. For the Λ < 0, for any constant v slice, we get a direct sum
of Heisenberg and two copies of Virasoro algebras at Brown-Henneaux central charge (see
below). This matches the result found in [5] at asymptotic infinity for AdS3 case. For the
Λ > 0, at any constant v slice, we get a direct sum of Heisenberg and the algebra obtained
in [38].

Pre-symplectic form. The r-component of symplectic potential (4.12) for our solution
space (4.3) is

16πGΘr[δg, g] = λ−1δM̂−Υ̂δU+∂v(ΩδΠ)+δ

[2Λ
λ
R2 +3∂vR

]

+∂φ

{
1
λ
∂φ

(2δλ
λ

)
−R

[
3δU+U δ(ηλ

2)
ηλ2

]
+ η

R
δ

( Υ
2ηλ+R∂φη

λη2

)}
.

(4.35)

Hence the pre-symplectic form [8] can be written as

Ω[δg, δg; g] = 1
16πG

∫
Cr

dv dφ
[
δ(λ−1) ∧ δM̂+ δU ∧ δΥ̂ +Dv(δΩ ∧ δΠ)

]
(4.36)

The pre-symplectic form (4.36) still involves off-shell quantities and should be computed
over solutions of (4.3). The charge analysis shows that in 3d we can have at most four
co-dimension one charges, namely {M̂, Υ̂,Ω,Π}, in the adopted coordinate system. λ and
U do not lead to independent charge variations but the symplectic form assure that they
do not correspond to degeneracy directions on the phase space.

The last term in (4.36) involves Ω and its canonical conjugate Π is a total v derivative.
We note that this part involves charges which form the Heisenberg algebra in the algebra
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of charges.10 Therefore, this term may be absorbed into a Y -term. Such Y -terms were
dubbed as ‘corner term’ [7, 23–27].

Direct sum Virasoro slicing. For (A)dS3 spacetimes for which Λ = − 1
`2 6= 0 (dS3 can

be achieved by analytic continuation of ` to imaginary numbers, `→ i`) one can consider a
simple change of basis,

L±(v, φ) := 1
16G

(
`M̂(v,±φ)± Υ̂(v,±φ)

)
, S := Ω

8G , P = Π
8G , (4.37)

and rewrite the pre-symplectic form (4.36) in terms of these new variables,

Ω[δg, δg; g] = 1
2π

∫
Cr

dv dφ
[
δU+ ∧ δL+ + δU− ∧ δL− + 8G∂v (δS ∧ δP)

]
. (4.38)

The pre-symplectic form indicates that chemical potentials conjugate to L± are

U±(v, φ) := 1
`λ(v,±φ) ± U(v,±φ) . (4.39)

In the new slicing the surface charge variation is

δQ(ξ) := 1
2π

∮
Cr,v

dφ
(
Ŵ δS + ẐδP + ε+δL+ + ε−δL−

)
. (4.40)

where
ε±(v, φ) = 1

`
T̂ (v,±φ)± Ŷ (v,±φ) (4.41)

Transformation laws reads

δξL± = ε±∂φL± + 2L±∂φε± −
`

8G∂
3
φε
±. (4.42)

Equations of motion yield

∂vL± − U±∂φL± − 2∂φU± L± + `

8G∂
3
φU± = 0, (4.43)

and transformation laws for chemical potentials U± are

δξU± = ∂vε± + ε±∂φU± − U±∂φε± (4.44)

and finally the charge algebra becomes

{S(v, φ),P(v, φ′)} = π

4Gδ
(
φ− φ′

)
(4.45a)

{L±(v, φ),L±(v, φ′)} = 2π
(
L±(v, φ′)∂φ − L±(v, φ)∂φ′ + `

8G∂
3
φ

)
δ
(
φ− φ′

)
(4.45b)

This algebra at any constant v slice is Heisenberg ⊕ Vir ⊕ Vir where Virasoros are at the
Brown-Henneaux central charge [39]. Using different change of slicing one could construct
several interesting algebra such as two copies of Heisenberg algebra or four copies of
Virasoro algebra.

10The same is also true for the 2d case, (3.18).
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4.5 Reduction to 2d

In this section we discuss how the 2d results may be obtained upon reduction of the 3d
over the circle parametrized by φ. To this end, we start with metric (4.3) and suppress the
φ dependence of all metric coefficients and rename R by Φ(v). To get a 2d Einstein-dilaton
theory we need to turn off the off-diagonal vφ term, i.e. U = 0, which in turn yields
U = 0 = Υ̂. Upon this reduction the 3d theory (4.1) reduces to 2d JT theory, i.e. (3.1) with
X = 2ΛΦ. In this case, (4.4) reduces to (3.7), (3.8) and the 3d equations of motion (4.5)
yield ∂vM̂ = 0 and is compatible with Υ̂ = 0. One can therefore replace M̂ = m =constant.
So, we recover the 2d solution space upon the reduction of the 3d solution space.

One may also directly check that the 3d symmetry generators (4.8) and likewise the
symplectic potential (4.36) and the Y -term (4.15) reduce to the 2d expression, respec-
tively (3.10), (3.18), (3.17). Therefore, the expression for the charge variations, associated
changes of slicing and the charge algebras are mapped on the 2d expressions.

5 Discussion and concluding remarks

We constructed solution space of 2d and 3d gravity theories in presence of a causal boundary
and thereby analysed symplectic form and charge variations over the solution space. We
fixed the Y -freedom in the charge variation and the symplectic form upon the physical
requirement that they should be independent of where we place the causal boundary.
Explicitly, we showed there exists a covariant Y -term which makes the symplectic form
and charge variation r-independent. This feature was also observed in [5] in an asymptotic
symmetry analysis in a similar 3d setting. Compared to the previous null boundary
analysis [2], we have an extra charge associated with r-supertranslations, we denoted this
charge by Π. In particular, recalling (3.7) (or (4.4a)), a shift in r by δr amounts to a shift
in Ω by ηλδr. Therefore, Π and the charge associated with superscaling in r generated by
the W term in (3.10) (or (4.8)), as expected, form a Heisenberg algebra.

Our analysis also uncovered the following technical points about the covariant phase
space formalism and associated charge analysis. Importantly, there are two W and Y

freedoms in the computation of charges as well as the freedom in choosing field dependence
of symmetry generators; these are not fixed by this formalism. The field dependence freedom
leads to a freedom in the definition of charges and their algebra but not the symplectic form,
while the Y freedom also affects the symplectic form. These freedoms may be fixed upon
other physical requirements. To analyze the field dependence freedom, we have formulated
changes of slicings (see section 2.2). While we discussed these features in our 2d and 3d
examples, we expect them to be generic to the formalism and not the specific problem
analyzed here:

• W -freedom fixing.

The W -freedom can be used to adjust the Noether charge to become equal to the
integrable part of the charges obtained through the BT formalism. This has also been
discussed by Freidel et al. [7].
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• Y -freedom fixing.

As mentioned, Y -freedom affects the symplectic form and the charge variation while
W -freedom does not affect the two. One may fix Y -freedom upon requirement that
symplectic form becomes r independent or to remove “unwanted” parts of the charge,
e.g. the divergences and to regularize the charges [5, 33, 40].

• Algebraic slicing.

Adjusted Lie bracket guarantees the closure of symmetry generators algebra. Nonethe-
less, the results could be algebriod instead of a Lie algebra. At the level of charge
analysis, even if symmetry generators form a Lie algebra, the central term may in gen-
eral be field dependent and therefore, in general the BT bracket may yield algebriods
rather than usual Lie algebras. However, these algebriods may turn into Lie algebras
upon a change of slicing. In this work we showed that one can find such algebraic
slicings in 2d and 3d gravity settings. The existence of algebraic slicing seems to be
more general. It is desirable to establish this beyond specific examples.

• Genuine and integrable slicings.

Among algebraic slicings there always exist a subset where the flux computed using
BT method vanishes in the absence of genuine news (e.g. flux of bulk gravitons
through the boundary). For the 2d, 3d cases which we studied here there is no genuine
news, the genuine slicing is hence an integrable slicing. One should however note
that integrable slicings need not necessarily be algebraic slicings: starting from a Lie
algebra of integrable charges one can make change of slicing into an algebriod.

One may extend the above analysis to higher dimensions, i.e. extending the analysis
of [1] to causal boundaries. Moreover, given that the null boundary thermodynamics [14]
only relies on diffeomorphism invariance of the setting and not other details, it is plausible
that there exists a thermodynamic description for generic causal boundary in D dimensions.
We hope to explore these directions in future publications.
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