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1 Introduction

The study of field theories requires the specification of fall-off or boundary conditions,
which can lead to physical degrees of freedom that reside at the boundary. In this work, we
refer to them as boundary degrees of freedom (BDOF), to be distinguished from the usual
bulk degrees of freedom, such as photon or graviton polarizations. In theories with local
gauge invariance — including gravitational theories — BDOF are labeled and governed by
specific gauge transformations that act non-trivially at the boundary, often called ‘non-
proper gauge transformations’.

The number and type of BDOF depend on the precise boundary conditions. We are
interested in maximizing the number of BDOF, in the sense that for a given bulk theory
there exists no consistent set of boundary conditions that leads to more BDOF than this
maximal number, for a given boundary. If such a set exists, then all other boundary
conditions may be viewed as restrictions or deformations of such a maximal choice. Some
of us argued in [1] that such a set of maximal BDOF exists and made a specific proposal
for it in D-dimensional Einstein gravity when the boundary is a given co-dimension one
null surface N : besides the D(D − 3)/2 graviton polarizations in the bulk, there are up
to D BDOF described by functions over N . The quick counting works as follows: the
metric has D(D + 1)/2 independent components, of which D(D − 3)/2 describe graviton
polarizations. Of the difference, 2D, half of the functions can be gauge fixed so that up
to D BDOF remain. Depending on the precise boundary conditions, some (or even all) of
them can be pure gauge even at the boundary.

A key question in this context that we address in the present work is how to conve-
niently construct, parametrize and label the maximal set of BDOF compatible with our
assumptions about the boundary. We elaborate now a bit on what precisely we mean by
‘conveniently’. To do so, we recall a few basic technicalities.

A common method to label BDOF is to derive the surface charges associated with non-
proper gauge transformations and diffeomorphisms, which may be computed, for instance,
using the covariant phase space formalism [2–5]. For concreteness, we focus on the case
of interest for the present work, D-dimensional Einstein gravity in presence of a boundary
that is a co-dimension one null surface N , though we expect many of our considerations
generalize to gauge theories or Einstein gravity with matter and to timelike surfaces. There
are several reasons why considering null surfaces as boundaries is of interest: they arise
naturally in the asymptotic region of asymptotically flat spacetimes [6–8], in the near
horizon region of black holes [9–12], and in the context of causal patch holography, see for
instance [13–15] and refs. therein. For D < 4 such an analysis was carried through in [16],
see also [17–19]. For generic D there are numerous earlier constructions, see e.g. [9, 20–29],
with a varying number of BDOF.

In the present work, we construct and study the maximal set of BDOF for a given
null hypersurface. This is achieved by solving the Einstein equations without imposing
boundary conditions, leading to a solution space involving D(D−3) functions over N that
correspond to the bulk gravitons and D additional functions over N that specify the BDOF,
in line with the analysis of [1]. The covariant phase space formalism then establishes that
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this solution space is indeed a phase space with a well-defined symplectic structure. The
solution space consists of the boundary phase space plus the bulk phase space.

The construction outlined above does not necessarily lead to a convenient organization
of the BDOF. One key aspect is that the surface charges associated with non-proper diffeo-
morphisms can fail to be integrable on the field space or, equivalently, on the solution space.
Physically, non-integrability of the surface charges is to be expected when bulk gravitons
are allowed to have a non-vanishing flux through the boundary. The non-integrability is also
closely related to non-conservation of these charges. The non-conservation is a consequence
of having an open system, since the BDOF can interact non-trivially with themselves as
well as with the bulk degrees of freedom. This non-conservation is captured by the null
surface balance equation, which schematically is written as

d
dv Q ∼ −F (1.1)

reviewed in more detail in the body of our paper. The left-hand side describes the change
of the surface charge Q as function of advanced time v along the null surface N . The
right-hand side contains the flux through the null surface N .

In practice, however, it can also happen that the surface charges are not integrable in
the absence of any physical fluxes. As mentioned in [1] and made explicit in [16–19, 30],
integrability of the surface charges depends on the slicing used to describe the boundary
phase space. We are going to be more explicit about what we mean by ‘slicing’ in the
body of our paper. For now, the reader can think of a change of slicing as field dependent
redefinition of the symmetry generators.

In our work, we define the news to be the non-integrable part of the surface charges.
It can be separated into ‘genuine news’ and ‘fake news’. The former is news generated by
a graviton flux in the bulk, while the latter is present even in the absence of such a flux.
We call slicings without fake news ‘genuine slicings’, meaning that the surface charges are
integrable in the absence of genuine news. So, when above we stated that we were interested
in a ‘convenient’ parametrization of the BDOF, technically we mean genuine slicings.

The conjecture put forward in [1] and verified for some examples in [16–19, 30] states
that there exist phase space slicings in which there are no fake news, and the non-integrable
part of the surface charges is determined entirely by genuine news. In other words, the
conjecture posits that there always exists at least one genuine slicing. In this work, we verify
this conjecture for D-dimensional Einstein gravity (possibly with cosmological constant)
with a null boundary N .

Having covered the existence of genuine slicings, it is natural to ponder about unique-
ness. An important feature mentioned in [23], expanded more formally in [16] and dis-
cussed for the example of topologically massive gravity in [18] is that genuine slicings are
not unique and the surface charge algebra is slicing dependent. In particular, there exists
a slicing, dubbed ‘Heisenberg slicing’, in which the algebra associated with the boundary
phase space takes the form of a direct sum of the Heisenberg algebra and diffeomorphisms
on co-dimension two surfaces. In this work, we confirm that the same structure appears
generically in D-dimensional Einstein gravity.
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Besides confirming these expectations of earlier studies and generalizing them to arbi-
trary dimensions, we formulate null boundary memory effects. They arise when some bulk
graviton flux passes through the null boundary N . More specifically, we introduce two
different kinds of memories effects, null surface expansion memory and null surface spin
memory where the passage of a gravitational shockwave through the null boundary leaves
an imprint on the surface charges.

This paper is organized as follows. In section 2 we set up the problem by choosing
an adapted coordinate system around a generic null surface N . In section 3 we impose
the Einstein equations near the null boundary and construct the null boundary solution
space. In section 4 we explore null boundary symmetries, i.e., diffeomorphisms that keep
intact the null boundary and move us within the associated solution space. In section 5
we construct surface charge variations associated with the null boundary symmetries using
the covariant phase space formalism and present the charge analysis in different slicings,
the thermodynamic slicing, and a family of genuine slicings, in particular the Heisenberg
slicing where the algebra of surface charges is a direct sum of Heisenberg algebra and D−2
dimensional diffeomorphisms. In section 6 we study the (non-)conservation of our surface
charges and the null surface balance equation (1.1) relating the time variation of the charges
to the flux through the null boundary. In section 7 we discuss two physically relevant cases
where the charges are integrable, namely when the null surface has vanishing expansion and
when the graviton news through the null boundary vanishes. In section 8 we introduce two
types of null surface memory effects, expansion- and spin-memory. In particular, we study
how our surface charges dynamically change when a gravitational wave passes through
the horizon of a stationary black hole. Section 9 is devoted to concluding remarks. In
appendix A we analyze the Einstein equations without expansion near the null boundary.
In appendix B we present a quick review of the covariant phase space formulation adapted
for null boundaries and display the symplectic potential. In appendix C some additional
genuine slicings of the null boundary phase space are presented. In appendix D we rewrite
the Kerr solution in the coordinate system adopted here and discuss its conserved charges.

2 General near null surface metric

Let N be a given smooth co-dimension one null hypersurface in a D dimensional spacetime
of signature (−,+, . . . ,+). In a neighborhood of any such hypersurface one can adopt
Gaussian null-type coordinates that we set up as follows. Let v be the advanced time
coordinate along the null hypersurface such that the null surface is defined by

gµν ∂µv ∂νv = 0 . (2.1)

A ray is defined as the vector tangent to this surface, kµ = η gµν∂νv, where η is an
arbitrary non-zero function and r the affine parameter of the generator kµ such that kµ =
dxµ/ dr = δµr . The remaining D−2 coordinates xA are chosen as constants along each ray,
kµ∂µx

A = 0. These assumptions, while useful for numerous applications, come with some
loss of generality and reduce the number of BDOF. We shall come back to generalizations
and what they imply geometrically in the concluding section.
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Figure 1. Section of null hypersurface N at r = 0 in rv-plane. Infalling null rays traverse N
at different values of advanced time v. Each point on the red line corresponds to a transverse
surface Nv.

Without loss of generality, we take the null surface N to be localized at vanishing
affine parameter, r = 0, as depicted in figure 1. The null surface N is assumed to have the
topology Rv n Nv, where Nv is the D − 2 dimensional constant-v subspace on N which
is spanned by xA. We refer to Nv as transverse surface.1 In these adapted coordinates
inverse metric and metric have the following vanishing components

gvv = gvA = grr = grA = 0 . (2.2)

The line-element

ds2 = −V dv2 + 2η dv dr + gAB
(
dxA + UA dv

) (
dxB + UB dv

)
(2.3)

depends on generic functions of all coordinates, V,UA, gAB, as well as on the function
η = η(v, xA)> 0. (Geodecity, k · ∇k = 0, implies ∂rη = 0.2)

We assume that the locus of the null surface, r = 0, is not singular and that the metric
coefficients admit a Taylor series expansion in powers of r around r = 0.

V = 2
(
ηκ−Dvη

)
r +O(r2) , UA = UA− ηΩΥAr +O(r2) , gAB = ΩAB − 2ηλAB r +O(r2)

(2.4)
where all expansion coefficients are functions of v, xA and

Ω :=
√

det ΩAB ΩAB = Ω2/(D−2)γAB det γAB = 1 , (2.5)

where γAB is an arbitrary unimodular matrix. To have a non-degenerate volume form,√
− det gµν |r=0 = ηΩ, we assume Ω, η > 0. The function η yields the volume of the v, r

1This transverse surface is sometimes called corner [31]. However, the latter terminology is used to
develop a co-dimension two description of gravity while here we elaborate on a co-dimension one point of
view. When describing future null infinity, the transverse surface is the celestial sphere [32, 33].

2A null ray always satisfies the geodesic equation. Demanding that r be an affine parameter along the
ray implies that η must be independent of r.
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vxA

N
Nv

Figure 2. Depiction of co-dimension one null boundary N . N has the topology of Rv nNv where
the transverse surface Nv is typically a D − 2 dimensional spacelike compact surface.

part of the metric. We use the definition3

Dv := ∂v − LU (2.6)

where LU is the Lie derivative along UA. As discussed in section 3, the Einstein equations
specify higher order coefficients in r in terms of the leading order functions.

To decompose the bulk metric adapted to null hypersurfaces, it is standard to define
two null vector fields lµ, nµ (l2 = n2 = 0) such that l · n = −1, lµ is outward pointing and
nµ inward pointing. In adapted coordinates the associated 1-forms read

l := lµ dxµ = −1
2V dv + η dr n := nµ dxµ = − dv (2.7)

and the corresponding vector fields are given by

lµ∂µ = ∂v − UA∂A + V

2η∂r nµ∂µ = −1
η
∂r . (2.8)

From (2.8) we see that Dv defined in (2.6) is the Lie derivative along the vector l evaluated
on N . In terms of l, n, the induced co-dimension two metric

qµν = gµν + lµnν + lνnµ qµν l
µ = qµνn

µ = 0 (2.9)

yields the line-element on N

ds2
N = ΩAB

(
dxA + UA dv

) (
dxB + UB dv

)
. (2.10)

As depicted in figure 2, ΩAB = ΩAB(v, xA) is the metric over Nv. The inverse of the D− 2
dimensional metric ΩAB is denoted by ΩAB, ΩABΩBC = δAC , and A,B indices are raised or
lowered by them.

The deviation tensors,

Bl
µν :=

(
qαµq

β
ν∇βlα

)∣∣
r=0 Bn

µν :=
(
qαµq

β
ν∇βnα

)∣∣
r=0 (2.11)

provide a convenient parametrization. One can decompose them into trace (=expansion),
symmetric trace-less (=shear) and anti-symmetric (=twist) parts,4

B
l

µν = 1
D − 2Θl qµν +Nµν + ωlµν Bn

µν = 1
D − 2Θn qµν + Lµν + ωnµν . (2.12)

3The transversal volume form Ω is a scalar density of weight +1, the quantity ΥA is a vector density of
weight +1, and the induced co-dimension two metric γAB is a tensor-density of weight −2/(D − 2) in the
D − 2 dimensional sense.

4For the shear of l we have used the unusual notation Nµν , because as we shall show later this quantity
is related to the flux (news) of gravitons through the null surface N .
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One can show that the twists ωlµν , ωnµν are zero, the expansions on N are

Θl = (qµν∇µlν)
∣∣
r=0 = DvΩΩ = ∂vΩ

Ω − ∇̄AUA Θn = (qµν∇µnν)
∣∣
r=0 = ΩABλAB (2.13)

and the shears are

NAB = 1
2DvΩAB −

Θl

D − 2ΩAB = 1
2Ω

2
D−2DvγAB LAB = λAB −

Θn

D − 2ΩAB (2.14)

where ∇̄A is the (D − 2)-dimensional covariant derivative with respect to the metric ΩAB

and X(AYB) := (XAYB + XBYA)/2 denotes symmetrization of indices. (We note for later
purposes that NAB = −1

2DvΩ
AB − 1

D−2ΘlΩAB.)
Regarding the expansions (2.13) and shears (2.14) two comments are in order. For sta-

tionary black holes with a bifurcate Killing horizon, both expansions vanish at the bifurca-
tion surface. While it is immediate to see that Θl vanishes in this case, in the coordinate sys-
tem we have adopted Θn is non-zero. This is a well-known artifact of Eddington-Finkelstein
type of coordinate systems, since the bifurcation surface lies at infinite advanced time in
these coordinates. In all physically interesting situations, including black hole formation
and evaporation, the bifurcation surface is absent anyhow and our coordinate system is
adapted to describe such processes. Our second comment concerns the shear NAB, which
is proportional to the Lie derivative of the unimodular metric γAB along v. We shall refer
to this shear as ‘infalling graviton modes’, but note that we are no expanding around any
specific background ΩAB, so NAB need not be some small excitation. Indeed, in our charge
analysis and discussion of memory effects we shall see that non-linear terms in NAB play
an important role. By contrast, the shear LAB will not play a comparable role.

For later use we introduce the Hàjiček one-form

HA := (qAν lλ∇νnλ)
∣∣
r=0 = ΥA

2Ω + ∂Aη

2η (2.15)

and the scalar function Γ,
Γ := −2κ+ 2

D − 2Θl + Dvη
η

(2.16)

that appears in the expressions for the charges in later sections. Note that the scalar κ
appearing in the series expansion of V in (2.4) is the non-affinity of the null hypersurface
generator l · ∇lµ := κ lµ on N .

3 Null boundary solution space

The near null surface metric to leading and next-to-leading order (2.4) is specified by
2 + 2(D − 2) + (D − 1)(D − 2) = D(D − 1) functions of v, xA. The first counting refers
to our original variables used in (2.4), i.e., 2 scalars, κ, η, 2 co-dimension two vectors,
UA,ΥA, and 2 co-dimension two symmetric 2-tensors, ΩAB, λAB. In this section, we use
these quantities as our building blocks, additionally splitting ΩAB into conformal factor Ω
and conformal class γAB, but use additionally the various composite quantities introduced
in the previous section when convenient. The main goal of this section is to count the
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number of free functions available after imposing on-shell conditions, in order to get the
number of bulk and boundary degrees of freedom.

We analyze the Einstein equations (with arbitrary cosmological constant Λ)

Eµν := Rµν −
2Λ

D − 2 gµν = 0 (3.1)

in a Taylor-expansion around r = 0. See appendix A for more details of the analysis
and the construction of the phase space without invoking a perturbative expansion around
r = 0.

The Einstein equations (3.1) may be decomposed in terms of the Raychaudhuri equa-
tion Ell = lµlνEµν = 0, the Damour equation ElA = lµqA

νEµν = 0 and the trace and
trace-less parts of EAB = 0. At zeroth order in r, they respectively lead to

DvΘl − κΘl + 1
D − 2Θ2

l +NABN
AB = 0 (3.2a)

Dv
(
ΥA + Ω∂Aη

η

)
− 2Ω∂A

(
κ+ D − 3

D − 2Θl

)
+ 2Ω∇̄BNAB = 0 (3.2b)

DvΘn + κΘn + ΘlΘn −
(
∇̄CHC +HCHC

)
+ 1

2R̄− Λ = 0 (3.2c)

2DvLAB − 4L(A
CNB)C + ΘnNAB +

(
2κ+ D − 6

D − 2Θl

)
LAB + R̄AB

−2HAHB − 2∇̄(AHB) +
(
2∇̄CHC + 2HCHC − R̄

) ΩAB

D − 2 = 0 (3.2d)

where Dv defined in (2.6) implicitly contains the vector UA, and R̄AB is the intrinsic Ricci
tensor of the co-dimension two metric ΩAB.

The D(D − 1)/2 equations above are dynamical as they involve v-derivatives. Alter-
natively, one may view (3.2a) and (3.2b) as D − 1 non-differential (in v) equations for
κ and UA in terms of the other functions (and their v-derivatives). The last two equa-
tions, (3.2c) and (3.2d) are first order v-derivative equations for λAB and specify it up to
(D − 1)(D − 2)/2 functions over Nv. We denote these functions by λ̂AB(xA).

The remaining Einstein equations, Enn = nµnνEµν , Eln = lµnνEµν , EnA = nµEµA are,
respectively, algebraic equations for the order r2 terms in the expansion of the trace of
gAB, ΩABgAB, V , and UA, and specify these higher order terms through lower order ones.
Since the higher order terms do not appear in the analysis of symmetries and charges we
do not display them.

Even though it is not required for the charges, it is instructive to explore the Einstein
equations to higher order in r. Again, Enn, Enl, Ell, ElA, EnA determine higher order terms
in the expansion of ΩABgAB, V, U

A, whereas EAB yield equations for higher order terms in
the traceless parts of gAB and λ̂

(n)
AB. These are first order differential equations in v and

hence determine λ̂(n)
AB up to functions over Nv, λ̂(n)

AB(xA). One may resum them into a single
function at a constant v surface as ĝ(v)

AB(r, xA) :=
∑∞
n=1 λ̂

(n)
AB(xA)rn, where λ̂(1)

AB = λ̂AB(xA).
To specify a solution in our null boundary solution space one should give D +D(D −

3) + 1 functions over N . This number is just the difference between the original number of
free functions, D(D−1), and the number of non-differential (in v) equations that determine

– 8 –
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κ and UA. The first D of these functions are η,Ω,ΥA. As we shall demonstrate in the
next sections, these functions feature in the boundary charges and thus can be associated
with BDOF. The D(D − 3) functions correspond to γAB and the traceless part of ĝ(v)

AB,
and constitute the bulk degrees of freedom — from a Lagrangian perspective this number
corresponds to the usual D(D − 3)/2 gravitational wave helicities. Finally, the remaining
1 function is Θn, which in our construction does not constitute a degree of freedom. We
shall come back to it in the concluding section.

In summary, our analysis of this section shows that we have D BDOF in addition to
the usual bulk degrees of freedom.

4 Null boundary symmetries

We analyze the diffeomorphisms that preserve our null boundary structure in section 4.1
and then determine their algebra in section 4.2.

4.1 Null boundary preserving diffeomorphisms

Diffeomorphisms generated by the vector field

ξ = T ∂v +
(
r(DvT −W )− r2 η

2

(ΥA

Ω − ∂Aη

η

)
∂AT +O(r3)

)
∂r

+
(
Y A − rη∂AT−r2η2λAB∂BT +O(r3)

)
∂A (4.1)

keep r = 0 as a null surface, where T = T (v, xA), W = W (v, xA) and Y A = Y A(v, xA) are
the symmetry generators. Since the Einstein equations are covariant, these diffeomorphisms
move us in the solution space constructed in the previous section, namely

δξη = 2ηDvT + T∂vη −Wη + Y A∂Aη (4.2a)
δξΩ = TΩΘl + Ω∇̄A(Y A + UAT ) (4.2b)
δξUA = Dv(Y A + TUA) (4.2c)

δξΩAB = L(Y+TU)ΩAB + 2
D − 2 TΘlΩAB + 2TNAB (4.2d)

δξκ = Dv(DvT + Tκ) + (Y A + UAT )∂Aκ (4.2e)
δξΘl = Dv(TΘl) + (Y A + TUA)∂AΘl (4.2f)
δξΥA = TDvΥA + L(Y+TU)ΥA + Ω(∂AW − Γ∂AT − 2NAB∂

BT ) (4.2g)
δξΓ = −Dv(W − ΓT ) + (Y A + UAT )∂AΓ (4.2h)

δξNAB = Dv(TNAB) + L(Y+TU)NAB (4.2i)
δξλAB = Dv

(
TλAB

)
+ L(Y+TU)λAB − 2λABDvT + 2

(
H(A + ∇̄(A

)
∇̄B)T (4.2j)

were LY denotes the Lie derivative along Y A.
The above transformations, when acting on different functions, can be homogeneous

or inhomogeneous. The homogeneous ones are those that remain zero under transforma-
tions if they are zero at some point in the solution space. For example, Θl and NAB

transform homogeneously. On the other hand, functions such as κ, UA and ΥA transform
inhomogeneously under the diffeomorphisms (4.1).

– 9 –
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4.2 Algebra of null boundary symmetries

Using the adjusted Lie bracket5 we have

[ξ(T1,W1, Y
A

1 ), ξ(T2,W2, Y
A

2 )]adj. bracket = ξ(T12,W12, Y
A

12) (4.3)

where

T12 =
(
T1∂v + Y A

1 ∂A
)
T2 − (1↔ 2), (4.4a)

W12 =
(
T1∂v + Y A

1 ∂A
)
W2 − (1↔ 2), (4.4b)

Y B
12 =

(
T1∂v + Y A

1 ∂A
)
Y B

2 − (1↔ 2). (4.4c)

The above algebra is Diff(N ) A Weyl(N ), where Diff(N ) is generated by T, Y A and
Weyl(N ) which denotes the Weyl scaling on N , is generated by W . We refer to it as
null boundary symmetry algebra.

The null boundary symmetry algebra Diff(N ) A Weyl(N ) has several interesting sub-
algebras. If we turn off Y A and W sectors, the generator T forms a Witt algebra (diffeo-
morphisms along v direction) but with an arbitrary dependence in xA. These generators
were called “T-Witt” [25]. Turning off T,W sectors, Y A generate diffeomorphisms of the
transverse surface Nv. Nonetheless, one should note that these diffeomorphisms have ar-
bitrary v dependence. A class of subalgebras arise from the fact that our generators are
generic functions of v. If the v direction has no special points, one may Taylor-expand the
generators around any given point v0 and keep terms up to the order that still close the
algebra. As an example, consider the subalgebra obtained through the following truncation

T = t0 + t1v + t2v
2 W = w0 Y A = yA0 (4.5)

where t0, t1, t2;w0, y
A
0 are only function of xA. The ti form an sl(2,R) algebra and w0

an abelian u(1) algebra, Weyl(Nv). This subalgebra is hence (Diff(Nv) A sl(2,R)Nv)A
Weyl(Nv), which is closely related to the corner algebra discussed in [36, 37]. To be more
precise, the algebra without the Weyl(Nv) part was called corner symmetry algebra and
the one which also includes the translations in r, r → r+R(xA), was called extended corner
algebra. In our case we do not have the latter, as we keep r = 0 a null surface throughout.

5 Surface charge analysis

The surface charge variation6 associated with a symmetry generator ξ

/δQξ :=
∮
∂Σ
Qµνξ dxµν (5.1)

5In computing the Lie bracket of symmetry generators associated with diffeomorphisms that depend on
functions in the solution space, one should adjust for the field dependence and subtract the changes in the
diffeomorphisms due to the change in the fields, viz., [ξ1, ξ2]adj. bracket = [ξ1, ξ2]−δξ1ξ2 +δξ2ξ1. This bracket
was originally called “modified Lie bracket” in [34]. However, as discussed in [35] the name adjusted bracket
seems more appropriate.

6See appendix B for a short review of the covariant phase space method used to derive this result.
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expands in Einstein gravity as

Qµνξ =
√
−g

8πG

(
hλ[µ∇λξν] − ξλ∇[µh

ν]
λ −

1
2h∇

[µξν] + ξ[µ∇λhν]λ − ξ[µ∇ν]h

)
(5.2)

where hµν = δgµν , h = gµνδgµν , and ∂Σ corresponds to the transverse surface Nv. See
appendix B for more details.

Plugging (2.3) and (4.1) into (5.1), yields the surface charge variation

/δQξ = 1
16πG

∫
Nv

dD−2x
(
WδΩ + Y AδΥA + T/δA

)
(5.3)

with
/δA = −2ΩδΘl + ΩΘl

δη

η
− ΓδΩ + UAδΥA − ΩNABδΩAB . (5.4)

The notation /δ is used to stress that the charge variation is not necessarily integrable in field
space. Tackling the question of whether or not the charges are integrable requires specifying
which combinations of the symmetry generators are taken to be field independent, which
amounts to a choice of slicing of the phase space.

By “slicing” we mean a specific choice of the field dependence of the symmetry gener-
ators (including, possibly, the choice that there is none). Changing the slicing means that
one takes symmetry generators to a linear combination thereof while allowing for these
coefficients to have general dependence on the fields in the solution space. Thus, there is
no reason to consider no field dependence of the symmetry generators as more natural than
some other choice, since this notion is not even well-defined.

In such change of slicing one keeps the same bulk theory with the same fall-off condi-
tions, but relabels the state-dependence through redefinitions of the symmetry generators.
Thus, one still describes the same phase space but it is reorganized/sliced differently. In-
equivalent slicings in general will lead to inequivalent symmetry algebras, see section 4
of [16] for more concise formulation of generic change of slicing (which was called change of
basis in that work). The differences can be substantial, in the sense that central extensions,
non-linearities and/or non-integrability may appear in one set of slicings but not in other
sets of slicings, or even a Lie algebra of surface charges may be mapped onto an algebra
which is not of the form of a Lie algebra, e.g. see the example of Heisenberg-type algebra
in [23]. It is thus relevant to find the most suitable (classes of) slicings for a given physical
setup. We shall present pertinent examples below, when discussing differences between
thermodynamical and Heisenberg slicings.

Only after a slicing is specified, one can state whether or not the charges are integrable
for this particular slicing. This implies that integrability of the charges is not solely a
property of the bulk theory or the boundary conditions, but additionally may depend on
the choice how to slice the phase space.

Physically, non-integrable charges are typically related to a non-vanishing flux through
the boundary [34, 38], see more details on this in section 6. Generally, /δQ is non-integrable
over our null boundary solution space since we allow for fluxes through the boundary N .
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This feature prevents us from working with the Poisson bracket of the charges. We use
instead the modified bracket (MB) proposed by Barnich and Troessaert [34],

δξ2Q
I
ξ1 :=

{
QI
ξ1 , Q

I
ξ2

}
MB
−Fξ2(δξ1g) (5.5a){

QI
ξ1 , Q

I
ξ2

}
MB

= QI
[ξ1,ξ2]adj. bracket +Kξ1,ξ2 (5.5b)

where Kξ1,ξ2 is the central term, QI
ξ the integrable part of the charges and Fξ(δg) the

non-integrable part, /δQξ = δQI
ξ + Fξ(δg). The flux term is not necessarily antisymmetric

Fξ2(δξ1g) 6= −Fξ1(δξ2g), which we shall see more explicitly in examples below.
The split into integrable and non-integrable parts is ambiguous and leads to a shift-

ambiguity in the central term Kξ1,ξ2 [34]. To partially fix this ambiguity, we require the
central term Kξ1,ξ2 to be state independent, by which we mean that is does not vary over
the solution space, see e.g. section 5.1 of [25] for a more detailed discussion.

An important aspect discussed, e.g., in [16–19] is that the integrability of the charges
and the presence or absence of fluxes do depend on the slicing. In the following, to shed
new light on this issue, we discuss two classes of slicings.

The first one, studied in section 5.1, is dubbed “thermodynamic slicing”. In this slicing,
W,T, Y A are state independent (δW = δT = δY A = 0). This name will be justified in
section 6.1, see also [39]. The second one is a specific “genuine slicing”. By this we mean
any slicing in which the charges are integrable in the absence of bulk fluxes through the
boundary, i.e., when there is no physical radiation through the boundary [1, 16, 18].

5.1 Thermodynamical slicing

The thermodynamic slicing is defined by state-independence of W,T, Y A in the vector
field (4.1), δW = δT = δY A = 0.

Applying the MB method discussed above and separating the integrable and flux parts,
/δQξ = δQI

ξ + Fξ(δg), yields the integrable part

QI
ξ = 1

16πG

∫
Nv

dD−2x
(
W Ω + Y A ΥA + T (−ΓΩ + UAΥA)

)
(5.6)

and the flux

Fξ(δg; g) = 1
16πG

∫
Nv

dD−2xT

(
−2ΩδΘl+ΩΘl

δη

η
+ΩδΓ−ΥAδUA−ΩNABδΩAB

)
. (5.7)

Straightforward but long computations show that the integrable part of the charges (5.6)
satisfy the same algebra as the symmetry generators (4.3), (4.4), i.e. Diff(N ) A Weyl(N ).
In particular, there is no central extension. Explicitly, if we denote the charges associated
with the symmetry generators ξ(T, 0, 0), ξ(0,W, 0) and ξ(0, 0, Y A) by T (T ),W(W ) and
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J (Y A), respectively, then the MB bracket algebra reads

{T (T1),T (T2)}MB = T (T1∂vT2 − T2∂vT1), (5.8a)
{J (Y A

1 ),J (Y B
2 )}MB = J (Y A

1 ∂AY
B

2 − Y A
2 ∂AY

B
1 ), (5.8b)

{T (T ),J (Y A)}MB = −T (Y A∂AT ) + J (T∂vY A), (5.8c)
{W(W1),W(W2)}MB = 0, (5.8d)
{T (T ),W(W )}MB = W(T∂vW ), (5.8e)
{W(W ),J (Y A)}MB = −W(Y A∂AW ) . (5.8f)

Consistently, in the absence of flux of bulk gravitons, NAB = 0, and in co-rotating
frame, UA = 0, we recover the results of [25]. For D = 3, where the news tensor identi-
cally vanishes, one recovers the results obtained in appendix C of [16]. Moreover, as seen
explicitly above, the MB procedure yields a vanishing central charge.

We close this section by justifying the name thermodynamic slicing. The zero mode
charges associated with symmetry generators ∂v,−r∂r, ∂A, respectively, T (1),W(1),J (1),
recover the usual thermodynamic charges if N is Killing of horizon of a black hole. Ex-
plicitly, T (1) corresponds to energy, W(1) to entropy and J (1) to angular momentum.
These charges commute with each other; moreover, entropy commutes with all other
charges. These points will be discussed in more detail in section 6.1; see also [39] for
more elaborations.

5.2 Genuine and Heisenberg slicing

The expression of the flux in the thermodynamic slicing (5.7) is non-zero even in the absence
of a graviton flux encoded in the tensor NAB. As discussed in [16, 18], this flux depends
on the slicing and one would expect that there should exist genuine slicings such that the
flux is manifestly zero for vanishing genuine flux, by which we mean NAB = 0.

In this section, we present a one-parameter family of genuine slicings with the following
property: its symmetry algebra at each v has the structure of a direct sum of the symmetries
of the transverse surface Nv and the symmetries normal to Nv. This slicing is hence a
direct-sum genuine slicing. In particular, there is one member in this family such that the
algebra is the direct sum of Diff(Nv) and Heisenberg algebra. This is referred to as the
Heisenberg slicing. Reaching such a slicing can be tedious and one may first construct an
intermediate slicing in which the algebra has the form of semi-direct sum of Heisenberg and
Diff(Nv) algebra. This intermediate genuine slicing as well as another example is presented
in appendix C.

Direct-sum genuine slicings. Starting from the thermodynamic slicing, consider a
one-parameter family change of slicings

W̃ = W − ΓT −
(
Y A + TUA

)
∇̄AP, (5.9a)

T̃ (s) = e−sPΩΘlT + e−sP∇̄A(Ω(Y A + TUA)) (5.9b)
Ỹ A = Y A + TUA (5.9c)
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where s is a real number and
P := ln η

Θ2
l

. (5.10)

As we see the change of slicing (5.9) takes the original symmetry generators to a linear
combination thereof with coefficients which depend on the fields on the solution space and
their derivatives. The change of slicing then amounts to taking δW̃ = δT̃ (s) = 0 = δỸ A.
Therefore, the original symmetry generators, W,T, Y A have non-zero variations in the
new slicing, which is dictated by the requirement of new tilde-generators to have vanishing
variations over the solution space. As a result the charges transform to a certain (in general
non-linear) combination of the original charges [16].

The charge variation can be written as /δQξ = δQ̃I
ξ + F̃ξ(δg), with the integrable part

Q̃I
ξ = 1

16πG

∫
Nv

dD−2x
(
W̃Ω + Ỹ AJA + T̃ (s)P(s)

)
(5.11)

and the flux

F̃ξ(δg) = − 1
16πG

∫
Nv

dD−2x
[
esP T̃ (s) − ∇̄C(ΩỸ C)

]
Θ−1
l NABδΩAB (5.12)

where

JA = ΥA + ∇̄A(ΩP) , P(s) =


1
s e

sP = 1
s

(
η

Θ2
l

)s
if s 6= 0

P if s = 0 .
(5.13)

We call Ω,P(s),JA, respectively, entropy aspect, expansion aspect and angular momentum
aspect. The expressions above make manifest that the flux proportional to the traceless
news tensor NAB is not integrable. Therefore, this slicing is in the family of genuine slicings.

The Raychaudhuri and Damour equations can be recast in terms of the charges

DvP(s) − esP
(

Γ + 2NABN
AB

Θl

)
≈ 0 (5.14a)

DvJA + 2Ω∇̄BNAB − 2Ω∇̄A(Θ−1
l NBCN

BC) ≈ 0 . (5.14b)

Moreover, the charges transform as

δξΩ = T̃ (s) esP (5.15a)

δξP(s) ≈ −(δs,0 + sP(s)) W̃ + 2esPT
Θl

NABN
AB (5.15b)

δξJA ≈ LỸ JA − 2∇̄B(e−sPΩTNAB) + 2∇̄A(e−sPΩTΘ−1
l NBCN

BC) . (5.15c)

Using the MB, the charge algebra is

{Ω(v, x),Ω(v, x′)} = 0 (5.16a)
{P(s)(v, x),P(s′)(v, x′)} = 0 (5.16b)

{Ω(v, x),P(s)(v, x′)} = 16πG
(
sP(s)(v, x) + δs,0

)
δD−2 (x− x′) (5.16c)

{JA(v, x),JB(v, x′)} = 16πG
(
JA(v, x′)∂B − JB(v, x)∂′A

)
δD−2 (x− x′) (5.16d)

{JA(v, x),Ω(v, x′)} = {JA(v, x),P(s)(v, x′)} = 0 . (5.16e)
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This algebra is the direct sum C(s)
2 ⊕ Diff(Nv), where C(s)

2 is generated by the Ω(v, x),
P(s)(v, x)-towers of charges and Diff(Nv) by JA(v, x). We call this slicing a direct-sum
genuine slicing. The algebra for s = 0 is qualitatively different from s 6= 0. The former has
a central term while all s 6= 0 have no central terms. For s 6= 0, at any given point on N ,
C(s)

2 is a two-dimensional subalgebra of sl(2,R).7

Heisenberg slicing. For s = 0 case the charge algebra (5.16) takes a simple form of
Heisenberg ⊕ Diff(Nv). The Heisenberg slicing is in a sense a fundamental slicing, since the
other genuine slicings in the s-family (and many others, see, e.g., [16]) may be constructed
from this slicing. Due to its importance as algebraic building block, we display the charges

Q̃I
ξ = 1

16πG

∫
Nv

dD−2x
(
W̃Ω + Ỹ AJA + T̃P

)
, (5.17)

and flux
F̃ξ(δg) = − 1

16πG

∫
Nv

dD−2x
[
T̃ − ∇̄C(ΩỸ C)

]
Θ−1
l NABδΩAB (5.18)

where T̃ = T̃ (0). The associated transformation laws

δξΩ = T̃ (5.19a)

δξP ≈ −W̃ + 2T
Θl
NABN

AB (5.19b)

δξJA ≈ LỸ JA − 2∇̄B(ΩTNAB) + 2∇̄A(ΩTΘ−1
l NBCN

BC) (5.19c)

yield the charge algebra

{Ω(v, x),Ω(v, x′)} = {P(v, x),P(v, x′)} = 0 (5.20a)
{Ω(v, x),P(v, x′)} = 16πGδD−2 (x− x′) (5.20b)
{JA(v, x),Ω(v, x′)} = {JA(v, x),P(v, x′)} = 0 (5.20c)
{JA(v, x),JB(v, x′)} = 16πG

(
JA(v, x′)∂B − JB(v, x)∂′A

)
δD−2 (x− x′) . (5.20d)

The brackets in the first two lines above are the reason why we chose the name Heisenberg
slicing.

We end this section with some additional remarks. Regardless of the slicing, we have
D towers of charges, which is the same number as the BDOF. Each charge is a generic
function over the co-dimension one null boundary N . In particular each charge is given
by an integral over the transverse space Nv and therefore it has v dependence. The bulk
degrees of freedom are encoded in NAB, ĝ

(v)
AB(r, xA) modes (see the discussion in section 3).

The latter do not enter in the charge analysis. By contrast, the news NAB appears in
the flux. This provided the very rationale to call it news. Its transformation in the
thermodynamic slicing (4.2i) is homogeneous, δξNAB = 0 when NAB = 0. While this
statement is slicing-independent, the explicit expression for δξNAB is, in the Heisenberg
slicing,

δξNAB = Dv
[(
T̃ − ∇̄A(ΩỸ A)

) NAB

ΩΘl

]
+ LỸNAB . (5.21)

7The case s = −1/2 is special as P(−1/2) = − 2Θl√
η

is proportional to the expansion Θl. For s < 0, P(s)

has a smooth non-expanding Θl → 0 limit.
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Having a homogeneous transformation means that action of boundary charges will not take
one out of the vanishing genuine flux sector.

We shall make further comments on slicings in the concluding section, but for now
move on to another physically relevant aspect of non-integrable surface charges, the flux
balance equations.

6 Null surface balance equation

In the presence of flux, surface charges are not integrable [34, 38]. Moreover, non-integrabi-
lity and presence of flux are closely related to the charge non-conservation. While inte-
grability is slicing-dependent, as discussed, there are genuine slicings for which the flux is
proportional to the genuine news NAB associated with infalling gravitons. Conservation,
too, depends on the choice of phase space slicing. In some earlier works [16, 18, 25] we
have discussed the relation between charge integrability and conservation is captured by
the generalized conservation equation, which in the more standard null infinity analyses is
called “flux balance equation” [40, 41]. In this section, we briefly discuss the null surface
balance equation for the thermodynamic and Heisenberg slicings discussed in the previous
section.

6.1 Balance equation in thermodynamic slicing

For the thermodynamic slicing in section 5.1, the generator of translations along the ad-
vanced time ∂v is among the symmetry generators ∂v = ξ(T = 1,W = 0, Y A = 0). The
associated integrable part of the charge (5.6) and the flux (5.7)

Hv := QI
∂v=

1
16πG

∫
Nv

dD−2x
(
−ΓΩ + UAΥA

)
(6.1a)

F∂v(δg; g) = 1
16πG

∫
Nv

dD−2x

(
− 2ΩδΘl + ΩΘl

δη

η
+ ΩδΓ−ΥAδUA− ΩNABδΩAB

)
, (6.1b)

obey the null surface energy balance equation
d
dvHv ≈ −F∂v(δ∂vg) (6.2)

where ≈ denotes on-shell equality and F∂v(δ∂vg) := F∂v(δξg; g)|ξ=∂v . This flux receives
two contributions, one from the bulk modes, the NABN

AB term in F , and the other from
boundary modes. The latter is essentially a reflection of the fact that in the thermodynamic
slicing, the coordinate system adopted (2.3) corresponds to a non-inertial frame for the
boundary dynamics. As viewed by the observer adopting the coordinate system v, r, xA,
the quantity Hv = Hv(v) is the boundary Hamiltonian. Thus, a suggestive interpretation
of (6.2) is that it describes an open system, the Hamiltonian of which is time-dependent as
a consequence of leakage. Equation (6.2) is an instance of a null surface balance equation.

Similarly, one may study the time variation of all other charges, in particular of the
zero mode charges, angular momentum, associated with the symmetry generator ∂A =
ξ(T = 0,W = 0, Y A = 1),

JA := QI
∂A

= 1
16πG

∫
Nv

dD−2x ΥA F∂A(δg) = 0 (6.3a)
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and entropy, associated with the symmetry generator −r∂r = ξ(T = 0,W = 1, Y A = 0),

S := 4πQI
−r∂r = 1

4G

∫
Nv

dD−2x Ω F−r∂r(δg) = 0 . (6.3b)

Both obey null surface balance equations
d
dvJA = 1

16πG

∫
Nv

dD−2x ∂vΥA ≈ −F∂v(δ∂Ag) (6.4a)

d
dvS = 1

4G

∫
Nv

dD−2x ΩΘl ≈ −4πF∂v(δ−r∂rg) . (6.4b)

The null surface balance equation for entropy (6.4b) shows that the time derivative of
the area is given by the integral of the expansion, but does not involve any bulk graviton
flux. The time derivative of the angular momentum (6.4a) has a term proportional to the
total angular momentum of the graviton flux through the null surface and some additional
terms. The latter appear because we are in a non-inertial rotating frame.

The algebraic relations (5.8) imply

{Hv, Q
I
ξ}MB = QI

∂vξ {S, QI
ξ}MB = 0 (6.5)

and in particular
{Hv,S}MB = {Hv,JA}MB = {S,JA}MB = 0 . (6.6)

As expected, Hv generates time translations. Moreover, the entropy S commutes with all
the charges. The zero mode charges Hv,S,JA mutually commute.

On can show that balance equations for zero-mode charges (6.2) and (6.4), can be
generalized to all null boundary charges for generic symmetry generator ξ as,

d
dvQ

I
ξ = δ∂vQ

I
ξ +QI

∂vξ ≈ −F∂v(δξg) (6.7)

by virtue of (6.5), where we used the definition of the MB (5.5) and that F∂v(δξg) is given
by F∂v(δg, g) in (6.1) evaluated at δξg.

To derive (6.7) we have used the fact that ∂v is among our field independent symmetry
generators in the thermodynamic slicing. The null surface balance equation (6.1) shows
that the flux F∂v(δξg) receives contributions from the genuine flux, the term proportional
to NAB, as well as from terms only involving boundary fields, referred to as fake flux. Like
for the angular momentum, the latter is generically there because the v, xA coordinates do
not correspond to an inertial observer at the boundary.

6.2 Balance equation in Heisenberg slicing

Unlike the thermodynamic slicing (6.6), the zero mode charges in the Heisenberg slicing

H̃ := Q̃I
T̃=1 = 1

16πG

∫
Nv

dD−2x P (6.8a)

S̃ := 4πQ̃I
W̃=1 = 1

4G

∫
Nv

dD−2x Ω (6.8b)

J̃A := Q̃I
Ỹ A=1 = 1

16πG

∫
Nv

dD−2x JA (6.8c)
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do not commute with each other. Nor does the entropy generically commute with the
remaining charges,

{S̃, QI
ξ̃
} = 1

4G

∫
Nv

dD−2x T̃ (6.9)

implying
{S̃, H̃} = 1

4G

∫
Nv

dD−2x {S̃, J̃A} = {H̃, J̃A} = 0 . (6.10)

Notably, S̃ and H̃ are Heisenberg pairs with an effective ~ proportional to 1/G. One can
therefore change the entropy of the system by injecting H̃ charge. Recall that H̃ is the
charge associated with the symmetry generator W̃ = 0 = Ỹ A and T̃ = ΩΘlT = 1, but
not with unit v-translations, so we do not refer to it as energy. Moreover, there are no
other local combinations of charges playing this role. Thus, in the Heisenberg slicing the
zero-mode charge H̃ should not be viewed as a Hamiltonian, but rather as the Heisenberg
conjugate of the entropy.

Since ∂v is not among the symmetry generators in the Heisenberg slicing, we do not
have a null surface balance equation like in thermodynamic slicing (6.7). The zero-mode
charge dynamics is given by8

DvΩ = ΩΘl (6.11a)

DvP = Γ + 2NABN
AB

Θl
(6.11b)

DvJA = 2Ω∇̄A(Θ−1
l NBCN

BC)− 2Ω∇̄BNAB . (6.11c)

7 Vanishing genuine news

An interesting special case arises when the news NAB vanishes, which is the focus of
this section. Generically, the expansion does not have to vanish, Θl 6= 0. However, if
vanishing expansion is assumed, Θl = 0, then vanishing news is implied as consequences
of the Raychaudhuri equation (3.2a). The main goal of this section is to exhibit the
subtle differences between the generic situation, NAB = 0 6= Θl, and vanishing expansion,
NAB = 0 = Θl.

7.1 Generic situation

Assuming NAB = 0, several of our previous results simplify, like the Raychaudhuri and
Damour equations (5.14)

DvP = Γ DvJA = 0 . (7.1)

There exists a co-rotating frame where the angular momentum aspect JA is v independent,
JA = JA(xB).9

8The middle equation (6.11b) may also be written as Dv ln
(

ΘlΩ
1

D−2

)
= κ+ Θl

−1NABN
AB .

9The entropy aspect Ω and the expansion aspect P still depend on v in this co-rotating frame. Alterna-
tively, one can find a co-expanding frame, through the choice of normalization of the vector normal to the
null surface and appropriate adjustment of the non-affinity parameter κ, such that DvΘl = 0, or a frame
in which DvP = 0. In this frame P can be made v-independent.
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For the analysis of charges, one needs to choose a slicing. Let us start with the direct-
sum genuine slicings introduced in section 5.2 for which the charges

δQξ = 1
16πG

∫
Nv

dD−2x
(
W̃ δΩ + Ỹ AδJA + T̃ (s)δP(s)

)
, (7.2)

are integrable and obey the algebra (5.16).
In non-genuine slicings the situation is more complicated, in general, due to fake news.

Studying particularly the thermodynamics slicing would be a direct extension of the anal-
ysis of [25] to D > 4. Since the physical discussion is going to be very similar to the one
in [25], we refer the reader to that work instead of displaying these results.

7.2 Vanishing expansion

For non-expanding null boundaries, Θl = 0, the Raychaudhuri equation (3.2a) enforces
vanishing news, NAB = 0. We address now three different slicings to highlight some new
features as compared to the generic situation, Θl 6= 0.

Thermodynamic slicing. A careful analysis of the charges reveals that T generates
trivial diffeomorphisms, so we have one tower of charges less. One may use this fact to
gauge fix η = 1, see section 6 of [25] for a similar, but more detailed analysis. Therefore,
the boundary phase space in this case is labeled by Ω and ΥA, only. See [39] for a more
detailed discussion.

Direct-sum genuine slicing. The transformation to the genuine slicing (5.9) and also
the tower of P charges (5.10) are ill-defined for Θl = 0. Revisiting the analysis shows that
the charge associated with T̃ vanishes. Hence, we remain with only two towers of integrable
charges,

δQξ = 1
16πG

∫
Nv

dD−2x
(
W̃ δΩ + Ỹ AδΥA

)
(7.3)

where W̃ = W − ΓT and Ỹ A = Y A + UA T . The Damour equation

DvΥA + ∇̄A(ΩΓ) = 0 (7.4)

fixes the v-dependence of ΥA in terms of Ω, Γ, UA. Moreover, Θl = 0 implies DvΩ = 0
and therefore the v-dependence of Ω is also fixed in terms of UA. Note, however, that the
v-dependences of Γ and UA are still arbitrary. So, in general our charges Ω,ΥA depend
arbitrarily on v through Γ,UA.

The charge transformation laws

δξΩ = Ω∇̄AỸ A δξΥA ≈ LỸ ΥA + Ω∇̄AW̃ (7.5)

yield the charge algebra

{Ω(v, x),Ω(v, x′)} = 0 (7.6a)
{ΥA(v, x),Ω(v, x′)} = −16πGΩ(v, x)∂′AδD−2(x− x′) (7.6b)
{ΥA(v, x),ΥB(v, x′)} = 16πG

(
ΥA(v, x′)∂B −ΥB(v, x)∂′A

)
δD−2(x− x′) . (7.6c)
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The algebra above is isomorphic to the near horizon symmetry algebra in one of the slicings
introduced in [23] with s = 1. This is not surprising, since vanishing expansion was built
into the boundary conditions enforced in that work.

Heisenberg-like slicing. Upon the change of slicing

J H
A = Ω−1ΥA Y A

H = ΩŶ A WH = Ŵ + Ω−1Ŷ AJA (7.7)

the algebra above simplifies further,

{Ω(v, x),Ω(v, x′)} = 0 (7.8a)
{J H

A (v, x),Ω(v, x′)} = 16πG∂AδD−2(x− x′) (7.8b)
{J H

A (v, x),J H
B (v, x′)} = 16πGΩ−1(v, x)FBAδD−2(x− x′) (7.8c)

where FAB := ∂AJ H
B (x) − ∂′BJ H

A (x′). This algebra is the same as the Heisenberg-like
algebra of [23], where our charge Ω is equivalent to their charge P. Again our charges can
depend on v.

Note that the Heisenberg-like algebra (7.8) differs from the Heisenberg algebra dis-
cussed in (5.20). In particular, here we do not have the expansion aspect P among our
generators and the Heisenberg conjugate of Ω is now the exact part of angular momentum
aspect JA (see [23] for more discussion). Another important difference to that work is that
the entropy, the zero mode charge proportional to the integral of Ω, does not generically
commute with the other charges, though it does commute at least with the zero mode
charge of the angular momentum aspect.

As summary, we contrast the generic situation for vanishing news with the special
case of vanishing expansion. Generically, we obtained three towers of integrable charges
for genuine slicings. In the non-expanding case we lost one charge tower, as a consequence
of the Raychaudhuri equation. Technically, this is so because the absence of expansion
renders η pure gauge, and the boundary phase space therefore has one less function in it.

In conclusion, when considering vanishing news it is crucial to additionally specify
whether or not expansion also is assumed to vanish, since the associated boundary phase
spaces have different dimensions, depending on this choice.

8 Null boundary memory effects

In this section, we apply our charge and flux analysis to a physically interesting example.
Suppose that a gravitational shockwave passes through the horizon of a black hole and
the system at late times again settles into another black hole. We expect the information
about the gravitational wave to be encoded in changes in the surface charges. This physical
process is depicted in figure 3.

We call the persistent change of the surface charges due to the absorption of such
a shockwave null boundary memory effect, by analogy to memory effects at the celestial
sphere [42–46]. Historically, imprints of gravitational waves on detectors were discovered
in [47] and the term memory effect coined in [48], see also [49]. The original (displacement)
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i0B

I+

I−H−

H+

H̃+

gravitational
shockwave

Figure 3. Penrose diagram for shockwave entering black hole. Shaded oval denotes absorption
(not in solution space). Dashed orange (green) line is initial (final) horizon H+ (H̃+).

memory effect is a change in the relative position of pairs of detectors after passage of
some burst of gravitational waves. In the recent literature many other memory effects have
been discussed that are mainly associated with asymptotic symmetries and soft gravitons,
see [50, 51].

We start with the Schwarzschild black hole of horizon radius rh,

Θn = −4κ = − 2
rh

η = 1 Θl = UA = JA = LAB = NAB = 0 . (8.1)

See appendix D for a generalization to the Kerr black hole.
We focus on the co-rotating UA = 0 case and consider a burst of gravitational waves

that passes through the null surface around advanced time v = v0; specifically, we design
the news function as

NAB = N̄AB f(v − v0) (8.2)

where N̄AB is a dimensionless symmetric traceless tensor on Nv. The profile function
f(v − v0) specifies the time dependence of the incident shockwave, and we choose it to be
of delta-function type, sharply peaked around v = v0.

f(v − v0) =
√

2
π

ε3/2

ε2 + (v − v0)2 0 < ε� 1 (8.3)

The normalization of f is chosen such that
∫∞
−∞ dv f2 = 1.
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Initially and finally, the system is stationary by assumption and has vanishing expan-
sion, Θl = 0. As a response to the incident wave, the expansion is non-zero for a short
period. In the initial and final stages the system is described by two towers of boundary
charges Ω,JA, as discussed in section 7.2. Specifically, the system is assumed to satisfy the
early- and late-times conditions (|v − v0| � ε)

Ω = Ω± Γ = −2κ± ΩAB = Ω̄±AB Θl = ∂vJA = 0 (8.4)

where Ω±, κ± and Ω̄AB, respectively, denote area density, surface gravity, and metric on
Nv, before (−) and after (+) the passage of the wave (see again figure 3). The area theorem
(see e.g. [52]) implies Ω+ > Ω−.

At early and late times, the system is described by two towers of charges, whereas
during the encounter time |v−v0| = O(ε) all three towers of charges, including P, can take
non-zero values. Since initially Θn 6= 0, the ΘnΘl-term in (3.2c) gives non-trivial dynamics
to Θn. Similarly, the ΘnNAB term in (3.2d) is a source for LAB. Therefore, all modes
are eventually turned on due to the passage of the gravitational wave. We do not solve
these equations here, but merely use them to extract memories imprinted in the boundary
charges after the system settled down in its new stationary point.

8.1 Null surface expansion memory effect

To specify the v-dependence of Ω, we take a closer look at the Raychaudhuri equation (3.2a),

∂vΘl − κΘl + Θ2
l

D − 2 +NABN
AB = 0 Θl = ∂v ln Ω (8.5)

with boundary conditions (8.4). The equation (8.5) differs from the usual focusing equation
by the term κΘl. For early and late times, |v − v0| � ε, the N2 term drops out and (8.5)
has two fixed points, Θl = 0 and Θl = (D − 2)κ. For κ > 0, Θl = 0 is a repulsor and
Θl = (D− 2)κ an attractor. Therefore, the system cannot settle in a stationary black hole
of vanishing Θl and our desired boundary conditions (8.4) cannot be satisfied.

This apparent inconsistency could be resolved as follows. During the absorption pro-
cess the locus r = 0 does not remain a null surface, so our setup in the present work is
insufficient to describe it. Inevitably, we need to consider another mode, switched off by our
assumptions in section 2, namely an O(1) term in V in the expansion (2.4), which relaxes
the condition that our boundary N is null. See [19] for the D = 3 example. This gener-
alization adds an extra freedom and a corresponding new charge. So, to fully follow the
dynamics of the absorption process one should use the generalized form of Raychaudhuri
equation given in (A.12c), where the last term in that equation can resolve the inconsis-
tency discussed above. A full analysis of the absorption process is beyond the scope of
this work.

Instead, we simply assume that the inconsistency can be resolved along the lines above
and study a v-integrated version of (8.5) to extract a memory effect. We treat the inci-
dent gravitational wave as a perturbation of the existing black hole and keep terms up to
O(N2). Multiply (8.5) by Ω and integrate over v. The term Θ2

l is negligible since it is
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suppressed as compared to the linear terms in Θl. The integrated term coming from ∂vΘl

is subleading as well, which can be shown as follows. While Ω = O(1), its first derivative is
subleading, ∂vΩ = O(N2). The expression

∫
Ω∂vΘl =

∫
∂2
vΩ−

∫ 1
Ω (∂vΩ)2 has a first term

that integrates to zero and a second term of order O(N4). The only two remaining terms,
both of order O(N2), integrate to the relation

∆Ω =
∞∫
−∞

dv Ω
κ
NABN

AB . (8.6)

At early and late times, we expect κ to be a constant. For a Schwarzschild black hole of
massM , κ ∼ 1/M , the change in κ during the process is expected to be ∼ ∆M/M2, where
∆M is proportional to N2. Therefore, effects from the v-dependence of κ are expected
to be subleading in N2 so that to a good approximation κ is constant in v and can be
taken out of the integral, which we shall always do below. The result (8.6) captures a
null surface memory effect, describing how the volume form Ω changes from early to late
times, ∆Ω = limv→∞Ω − limv→−∞Ω, depending on the news NAB associated with the
gravitational shockwave. We refer to it as null surface expansion memory effect. Since the
integrand in (8.6) is non-negative (for positive κ), also ∆Ω is non-negative, in accordance
with the area theorem.

This memory effect can be rephrased suggestively as

T ∆S = 1
8πG

∞∫
−∞

dvΩNABN
AB =: EGW (8.7)

where T = κ
2π is the temperature, S = Ω

4G is the entropy aspect, and EGW is the total
energy density carried by the gravitational wave through Nv. The above equation is a
spatially local and temporally non-local energy conservation equation on Nv, in contrast to
usual expressions for gravitational wave energy (see e.g. [53]) which are spatially non-local
and temporally local.

The null surface expansion memory effect (8.7) shows how the boundary degrees of
freedom respond to the passage of the gravitational shockwave. It relates the change in
the entropy aspect S to the energy passed through the surface. Unlike the memory effects
discussed in the recent literature, see e.g. [51], this memory effect involves gravitational
waves that are not soft.

8.2 Null surface spin memory effect

In a similar way one can work out a spin memory effect. Variation of the angular momentum
charge due to passage of the shockwave may be computed integrating (6.11c) over v,

∆JA =
∞∫
−∞

dv 2Ω
(
∇̄A(Θ−1

l NCDN
CD)− ∇̄BNAB

)
. (8.8)

The spin memory effect (8.8) relates the change in black hole angular momentum aspect,
∆JA = limv→∞ JA − limv→−∞ JA, to variations of the news function NAB along the
transverse directions.
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diff

sol3

sol4

sol1

sol2

news+diff

Figure 4. Solution space, schematically. Each point represents a solution, labeled by surface
charges. On the right, a non-trivial diffeomorphism moves along some (coadjoint) orbit of the
symmetry algebra from solution sol3 to solution sol4. On the left, additionally genuine or fake
fluxes are switched on, moving from one orbit (sol1) to another (sol2).

A precise evaluation of the integrand in (8.8) requires again the extension of our anal-
ysis that we addressed already, i.e., to use (A.14b) instead of (6.11c). It is again possible
to work perturbatively in the news by analogy to the previous section; however we do not
present details of such an analysis here. Perturbatively, the dominant contribution to the
spin-memory effect comes from the second term (linear in the news N). For NAB given
in (8.2), (8.3), the null surface spin memory, ∆JA ' 2

√
πε/2 Ω ∇̄BN̄AB, vanishes in the

limit ε→ 0, unless the
√
ε factor is compensated by strong spatial gradients from the ∇̄B

derivative of N̄AB.

9 Discussion and concluding remarks

We constructed a complete solution space for D-dimensional Einstein gravity in presence of
a given null surface N . We studied null boundary symmetries and associated D towers of
charges that are functions over N . This work generalizes our earlier work [25] in three ways:
(1) It is for generic dimension D; (2) we included v-dependence in the Diff(Nv) sector of
the symmetry algebra, and (3) we discussed various different slicings of the solution space,
in particular genuine slicings in which the charges become integrable in the absence of
genuine news. As in other examples [16–19, 23, 25, 30], the algebra of the integrable part
of the charges does depend on the slicing. In particular, there exists a Heisenberg slicing
where the symmetry algebra is Heisenberg ⊕ Diff(Nv), where Nv is the transverse surface,
i.e., a co-dimension two spacelike section on N .

The organization of states in the solution space depends on the slicing. Once the slicing
is specified, a configuration or state is characterized by its D towers of integrable charges
(some of which might be zero). Configurations in the solution space fall into coadjoint orbits
of the algebra of these D charges. When the boundary charges are integrable, one can label
the orbits with charges associated to Killing or exact symmetries as they commute with
boundary charges [35, 54]. Hence, coajdoint orbits are closed and one cannot move from
one orbit to another by the action of symmetries. However, when the charge variation
is not integrable, acting with a symmetry that produces genuine or fake flux can move
between the orbits. See figure 4 for a schematic presentation.
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To obtain the solution space, we left boundary conditions unspecified and also did not
consider the variational principle. As a result, the dynamics of the D− 1 boundary modes
κ,UA or associated surface charges remained unspecified. This latter can be fixed through
an appropriate choice of boundary Lagrangian, which we leave for future work.

As discussed in section 8, the solution space considered here can be extended by the
addition of one extra mode: one can relax N to be a given null surface. This will add
one symmetry generator r → r + µ(v, xA). See [19] for an explicit realization in three
dimensions. Our preliminary analysis shows that adding this freedom would yield D + 1
tower of charges. We plan to present a full analysis of this case in upcoming work.

In section 8 we established two new memory effects, associated with a null hypersurface,
e.g., a black hole horizon: null surface expansion and null surface spin memory effects.
These memory effects involve real gravitons and genuine news passing through a null surface
rather than soft gravitons arriving at null infinity. Moreover, this analysis makes it apparent
that the boundary modes are a substitute for the modes on one side of the boundary, e.g.,
r < 0 region in figure 1, which is cut out for an observer who has only access to r ≥ 0
region. Conceptually, this is the same idea put forward in the membrane paradigm [55–57],
but we formulated it through boundary degrees of freedom and surface charges as outlined
in [58]. This viewpoint deserves to be explored further.

Other interesting generalizations for future work are the inclusion of matter degrees of
freedom and to investigate their interplay with boundary conditions, charges and fluxes.
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A Solution space for Gaussian null-like coordinates

In sections 2 and 3 we constructed the solution space assuming Taylor expandability of the
metric around a null surface at r = 0. In this appendix, we write the Einstein equations
in Gaussian null-like gauge (2.3) without making a Taylor expansion. We discuss solutions
of these equations and show, assuming smoothness around r = 0 of the transverse surface,
that they yield the same solution space discussed in section 3.

Consider the metric (2.3) (µ, ν = {v, r, xA}, A,B = 1, · · · , D − 2),

gµν =

−ηV + gABU
AUB η gBCU

C

η 0 0
gADU

D 0 gAB

 (A.1)
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where we raise and lower indices by the D−2 dimensional metric gAB and gAB, respectively.
Let ∇̃A denote the covariant derivative compatible with gAB and G :=

√
det gAB, such that

Ω := G(r)|r=0.
Consider the two null vectors fields n, l (2.7) and the D − 2 dimensional projected

metric qAB (2.9). We define two two-tensors

B̃l
µν := qαµq

β
ν∇βlα (A.2a)

B̃n
µν := qαµq

β
ν∇βnα . (A.2b)

and decompose them into trace, symmetric trace-less and anti-symmetric parts,

B̃l
µν = 1

D − 2θl qµν + σlµν + ωlµν (A.3a)

B̃n
µν = 1

D − 2θn qµν + σnµν + ωnµν . (A.3b)

Note that (A.2) are defined at arbitrary r, whereas the counterparts in (2.11) are defined
at r = 0. The twist tensors vanish, ωlµν = 0, ωnµν = 0. Therefore, Bl

µν = 1
2q
α
µq

β
νLlgαβ

and Bn
µν = 1

2q
α
µq

β
νLngαβ are, respectively, extrinsic curvatures of null surfaces generated by

vector fields lµ and nµ. Expansions are given as

θl = D̃vG
G

+ V

2
∂rG
G

θn = −1
η

∂rG
G

(A.4)

where D̃v = ∂v−LU . The expansions θl and θn can depend on the radial coordinate r. For
the metric coefficients in (2.4), Θl = θl(r = 0) and Θn = θn(r = 0).

The shear tensors associated with the vector fields lµ, nµ are

σlAB = 1
2LlgAB −

θl
D − 2gAB = 1

2D̃vgAB −
θl

(D − 2)gAB + V

4 ∂rgAB (A.5)

σlvv = UAUBσlAB (A.6)
σlvA = UBσlAB (A.7)

σnAB = − 1
2η∂rgAB −

θn
(D − 2)gAB (A.8)

σnvv = UAUBσ
n

AB (A.9)
σnvA = UBσnAB . (A.10)

The components that are not displayed vanish. For completeness we also evaluate the
Hàjiček one-form H̃µ = qµ

ν lλ∇νnλ,

H̃v = −UAH̃A H̃r = 0 H̃A = 1
2η (−gAB∂rUB + ∂Aη) . (A.11)

The vacuum Einstein equations in D dimension may be decomposed into to four scalar
equations Ell, Eln, Enn, E := gABEAB, two vector equations ElA, EnA, and a traceless tensor
equation EAB − 1

D−2EgAB.
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Scalar equations. We list, respectively, Enn = 0, gABEAB = 0, Ell = 0, Eln = 0,

−1
η
∂rθn + θ2

n

(D − 2) + σ2
n = 0, (A.12a)

1
η
√
G
∂r
(√
G θl

)
+ βAβA + ∇̃AβA −

1
2
√
G

(R̃− 2Λ) = 0, (A.12b)

D̃vθl − κ̃θl + θ2
l

(D − 2) + σ2
l − ηβA∇̃AV −

η

2 2̃V + V

2 ∂rθl = 0 (A.12c)

1
2η∂

2
rV − βA

(
3βA −

2∇̃Aη
η

)
+ (D − 3)

(D − 2)θlθn − σn · σl + R̃

2 −
(D − 4)
(D − 2)Λ = 0 (A.12d)

where R̃AB is the Ricci tensor of gAB, 2̃ = ∇̃2, and

σ2
l := σlABσ

AB
l σ2

n := σnABσ
AB
n σn · σl := σnABσ

AB
l κ̃ = D̃vη

η
+ ∂rV

2 . (A.13)

Vector equations. We list, respectively EnA = 0, ElA = 0,

1√
G
∂r(
√
GβA) + (D − 3)

(D − 2)∂A(ηθn)− ∇̃B(ησnAB) = 0 (A.14a)

D̃vβA + V

2 ∂rβA + ∇̃A
(
∂rV

2 + (D − 3)
(D − 2)θl

)
+ η

2
θn∇̃AV
(D − 2)

−θl∇̃Aη
η
− ∇̃BσlAB + η

2σ
n
AB∇̃BV = 0 (A.14b)

where
βA = 1

2η
(
gAB∂rU

B + ∂Aη
)

= −H̃A + ∂Aη

η
, (A.15)

Symmetric-traceless tensor equation. The final set of equations is

1
η
∂rσ

l
AB + 2σn(A

CσlB)C + βAβB + ∇̃(AβB) −
1
2θlσ

n
AB −

1
2

(D − 6)
(D − 2)θnσ

l
AB −

1
2R̃AB (A.16)

+ 1
(D − 2)

(1
2R̃− βAβ

A − ∇̃AβA
)
gAB = 0 .

We now analyse the above equations assuming Taylor expandability in r for the trans-
verse metric. Separating the transverse metric into its determinant G and a unimodular
metric γ̃AB, (A.12a) implies that coefficients of expansion of the determinant corresponding
to orders strictly bigger than one are specified in terms of the unimodular metric γ̃AB and
lower orders of the determinant. The two unspecified coefficients are encoded in Ω,Θn in
the conventions of section 3. Equations (A.14a) and (A.12d) fix the radial dependence of
UA, V respectively up to 2((D−2) + 1) co-dimension one functions. These can be encoded
in UA,ΥA, κ and the leading order of V0 can be put to zero, enforcing that N is a null
surface. We hence have fixed all the radial dependence of the metric.

Using the r-component of contracted Bianchi identity, ∇µ(Erνgµν) = −1
2∂r

(
gAB

)
EAB,

one deduces that only the leading order of (A.12b) has to be imposed. This corresponds
to (3.2c). Moreover, equations (A.12c), (A.14b) reduce to the Raychaudhuri (3.2a) and
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Nv2

Σ 2

v

r
=

0

N

Nv0

r > 0r < 0

Σ 1

Figure 5. Null boundary N and segments Σ1,Σ2 on it.

Damour (3.2b) equations. The remaining equations, (A.16), constrain the evolution of
γ̃AB, except for its zeroth order component.

To summarize, the results derived in section 3 also apply to the case of Gaussian
null-like gauge (2.3) with a Taylor expandable transverse surface.

B On covariant phase space

In this appendix, we briefly review how to associate a charge to a symmetry, focussing
on cases where we have a null surface N as depicted in figure 5. Then, we specialize the
symplectic potential to Einstein gravity for the coordinate system adopted in (2.3).

Surface charge for a generic null surface. Starting from an action,

S =
∫

dDx L (B.1)

the Lee-Wald symplectic current ωµLW[δ1g, δ2g; g] is defined as

ωµLW[δg1, δ2g; g] = δ1Θµ
LW[δ2g; g]− δ2Θµ

LW[δg1; g] δL ≈ ∂µΘµ
LW[δg; g] (B.2)

where ≈ denotes on-shell equality. From the above one observes that the symplectic current
is conserved on-shell,

∂µω
µ
LW[δ1g, δ2g; g] ≈ 0 . (B.3)

By virtue of the Poincaré lemma, (B.3) implies

ωµLW[δg, δξg; g] ≈ ∂νQµνξ [δg; g] (B.4)

where Qµνξ is a skew-symmetric tensor.
Consider the r ≥ 0 part of spacetime bounded by a null boundary N and let Σv be a

section on N bounded between v0 and v1 or v2, as depicted in figure 5.
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Let ξ be the generator of a symmetry that generates variations δξg over the solution
space, e.g., the ones discussed in section 4. The charge variation associated with the
symmetry generator ξ is defined as

/δQξ|Σv :=
∫

Σ
ωµLW[δg, δξg; g] dD−1xµ . (B.5)

Using (B.4) and Stokes’ theorem, one has

/δQξ|Σv ≈
∫
∂Σv
Qµνξ [δg; g] dD−2xµ (B.6)

where ∂Σv is the boundary of Σv. One then has

/δQξ|Σ2 − /δQξ|Σ1 ≈
∫ Nv2
Nv1

Qµνξ [δg; g] dD−2xµ . (B.7)

In the limit |v2 − v1| → 0 this expression simplifies,

d
dv

(
/δQξ −

∫
Nv
Qvrξ dD−2x

)
≈ 0 . (B.8)

One can therefore consistently define the charge variation as a surface (co-dimension two)
integral,

/δQξ :=
∫
Nv
Qvrξ dD−2x (B.9)

at arbitrary values of v. Our derivation has bypassed any information about the bulk,
about the asymptotia of spacetime, or the requirement of Σ being a Cauchy surface.

The covariant phase space formalism reviewed above for the null boundary has inher-
ent ambiguities of the symplectic potential that arise from using the Poincaré lemma on the
spacetime (W ) or on the phase space (Y ), Θµ → Θµ + ∂νY

µν + δWµ [3]. The Y -ambiguity
affects the charge variation whereas the W -ambiguity is relevant for the boundary La-
grangian, the variational principle and could be relevant for the separation of the charge
into integrable and flux parts [37]. We do not address these issues in our current work.

Explicit expression for the symplectic potential. In our case we take L to be the
Einstein-Hilbert Lagrangian, L = 1

16πG
√
−g(R− 2Λ), and get

Θµ
LW[δg; g] =

√
−g

16πG (∇ν(δg)µν −∇µ(δg)νν) . (B.10)

The r-component of the symplectic potential, relevant to the charge analysis at any constant
r surfaces for the metric (2.3) or (A.1), is given by

16πGΘr
LW = 2

D − 2δ
[
nr
√
−g
(
θl −

ηV

2 θn

)]
+ ∂ν

[
2
√
−g
(
δn[rlν] − n[rδlν]

)]
+ nr

√
−g
[(
σABl − ηV

2 σABn

)
δgAB + 2Hµδlµ + θn δ(ηV )

+ 2δ
(
κ+ D − 3

D − 2

(
θl −

ηV

2 θn

))]
. (B.11)
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In particular, on the null surface N at r = 0, (B.11) takes the form

16πGΘr
LW[δg; g]

∣∣
N =− ΩNABδΩAB − 2ΩHaδla + 2

(
κ+ D − 3

D − 2Θl

)
δΩ

− 2δ
(
Ω(κ+ Θl)

)
+ ∂a

(Ω
η
δ(η la)

)
(B.12)

with a labelling the boundary coordinates v, xA. The quantities (NAB,Ha, κ + D−3
D−2Θl)

and (ΩAB, l
a,Ω) are, respectively, the null equivalent of the usual stress energy tensor and

the boundary metric that we have for timelike boundaries, and η corresponds to a corner
quantity related to the volume of the normal metric and its expansion [20, 59]. The first
line in (B.12) contains the genuine flux, sourced by NAB, and the non-conservation due to
boundary sources ΩHa, κ + D−3

D−2Θl. In our analysis, we have left the dynamics of these
sources unspecified. For completeness, we display the symplectic potential in terms of the
charges P,J A,Ω obtained in the Heisenberg slicing,

16πGΘr
LW[δg; g]

∣∣
N = ∂v(ΩδP)− JAδUA − ΩNABδΩAB + 2Θ−1

l NABN
AB δΩ

− 2δ
(

Ω Θ−1
l NABN

AB + ΘlΩ
D − 2

)
+ ∂a(Ωδla + ΩlaδP) . (B.13)

We close this appendix with the remark that the second line in (B.12) involves terms
that may be respectively absorbed into Y - and W -ambiguities of the symplectic potential.
This point will be further explored elsewhere.

C Other families of genuine slicing

In section 5.2 we worked through a one-parameter family of genuine slicings. This example
already shows that genuine slicings are not unique. Here, we showcase two other families
of such slicings and the associated algebras.

Intermediate family. Starting from the thermodynamic slicing in section 5.1, consider
the following change of slicing

Ŵ = W − ΓT Ŷ
A = Y A + TUA T̂ (s) = e−sPΩΘlT (C.1)

where s is a real number and P is defined in (5.10). Using the adjusted bracket, one can
deduce the algebra of null boundary symmetries for the intermediate slicing,

[ξ(T̂ (s)
1 , Ŵ 1, Ŷ

A
1 ), ξ(T̂ (s)

2 , Ŵ 2, Ŷ
A
2 )]adj. bracket = ξ(T̂ (s)

12 , Ŵ 12, Ŷ
A
12) (C.2)

where

T̂
(s)
12 = s(Ŵ 1T̂

(s)
2 − Ŵ 2T̂

(s)
1 ) + ∇̄A(T̂ (s)

2 Ŷ A
1 − T̂

(s)
1 Ŷ A

2 ) (C.3a)

Ŵ 12 = Ŷ
A
1 ∇̄AŴ 2 − Ŷ

A
2 ∇̄AŴ 1 (C.3b)

Ŷ
A
12 = Ŷ

B
1 ∇̄BŶ

A
2 − Ŷ

B
2 ∇̄BŶ

A
1 (C.3c)
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for all s ∈ R. At a given v, the above algebra is A(s)
2 A Diff(Nv), where Diff(Nv) is generated

by Y A, A(s)
2 is generated by T̂ (s), and Ŵ is an algebra of the form

[T̂ (s)
, T̂

(s′)] ∼ 0 [T̂ (s)
, Ŵ ] ∼ sT̂ (s) [Ŵ, Ŵ ] ∼ 0 . (C.4)

As we see, Ŵ is a scalar under Diff(Nv) whereas T̂ (s) is in a scalar density representation
of Diff(Nv), and (C.3a) implies that A(0)

2 is the abelian u(1)⊕ u(1) algebra.
The charge variation in the intermediate slicing (C.1) reads as

/δQξ = 1
16πG

∫
Nv

dD−2x

(
Ŵ δΩ + Ŷ

A
δΥA + T̂

(s)
δP(s) − T̂

(s)
esP Θ−1

l NABδΩAB

)
(C.5)

with

P(s) =


1
s e

sP = 1
s

(
η

Θ2
l

)s
if s 6= 0

P if s = 0 .
(C.6)

One can split the charge variation (C.5) into integrable and flux parts using the MBmethod,
yielding

Q̂I
ξ = 1

16πG

∫
Nv

dD−2x
(
ŴΩ + Ŷ AΥA + T̂ (s) P(s)

)
(C.7)

F̂ξ(δg) = 1
16πG

∫
Nv

dD−2x ΩT NAB δΩAB . (C.8)

As we see explicitly, in the intermediate slicing the charges are integrable in the absence
of genuine flux. This means it is indeed an example for a genuine slicing.

Also, the intermediate slicing keeps the Weyl charge aspect Ω and angular momentum
aspect ΥA the same as in the thermodynamic slicing. We dub the charge associated with
rescaled v-translations, P(s) “expansion aspect”, since P(s) for s < 0 is proportional to
Θ−2s
l , cf. (C.6). This charge vanishes for Θl = 0, see section 7.2.

The transformations laws for the intermediate slicing

δξΩ = T̂
(s)
esP + ∇̄A(ΩŶ A) (C.9a)

δξΥA = −T̂ (s)∇̄AP(s) + Ω∇̄AŴ + LŶ ΥA − 2∇̄B
(
T̂

(s)
esPΘ−1

l NAB

)
(C.9b)

δξP(s) = −(δs,0 + sP(s)) Ŵ + Ŷ
A∇̄AP(s) + 2T̂ (s)

e2sP

ΩΘ2
l

NABN
AB (C.9c)

together with the definition of the MB yield{
Q̂

I
ξ1 , Q̂

I
ξ2

}
MB

= Q̂
I
[ξ1,ξ2]adj. bracket + δs,0 K̂

(0)
ξ1,ξ2 (C.10)

where
K̂

(0)
ξ1,ξ2 = 1

16πG

∫
Nv

dD−2x

(
Ŵ 1T̂

(0)
2 − Ŵ 2T̂

(0)
1

)
. (C.11)
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Hence, the charge algebra reads as

{Ω(v, x),Ω(v, x′)} = 0 (C.12a)
{P(s)(v, x),P(s′)(v, x′)} = 0 (C.12b)

{Ω(v, x),P(s)(v, x′)} = 16πG
(
sP(s)(v, x) + δs,0

)
δD−2 (x− x′) (C.12c)

{ΥA(v, x),ΥB(v, x′)} = 16πG
(
ΥA(v, x′)∂B −ΥB(v, x)∂′A

)
δD−2 (x− x′) (C.12d)

{ΥA(v, x),Ω(v, x′)} = −16πGΩ(v, x)∂′AδD−2 (x− x′) (C.12e)

{ΥA(v, x),P(s)(v, x′)} = 16πG
(
−P(s)(v, x)∂′A − P(s)(v, x′)∂A

)
δD−2 (x− x′) . (C.12f)

The above algebra, as expected and by construction, is of the form C(s)
2 A Diff(Nv). The

C(s)
2 part is generated by Ω,P(s) and Diff(Nv) by ΥA. This algebra is not of a direct sum

form. Nonetheless, it may be brought to a direct sum form upon another change of slicing,
as discussed in the main text in section 5.2. This explains why we refer to this slicing as
intermediate.

Another family. Just as yet-another example of a genuine slicing, consider alternatively
the following change of slicing

Ŵ = W − ΓT + 2
D − 2ΘlT T̂ (s) = ΩΘl

Ξs T (C.13)

where
Ξ := ηΘ−2

l Ω−
2

D−2 . (C.14)

In this other slicing it is assumed that the hatted quantities are field-independent, δŴ =
δT̂ = δŶ A = 0. The algebra of these symmetry generators is then

[ξ(T̂ (s)
1 , Ŵ1, Ŷ

A
1 ), ξ(T̂ (s)

2 , Ŵ2, Ŷ
A

2 )]adj. bracket = ξ(T̂ (s)
12 , Ŵ12, Ŷ

A
12) (C.15)

where

T̂
(s)
12 = Ŷ A

1 ∇̄AT̂
(s)
2 + D + 2s− 2

D − 2 T̂
(s)
2 ∇̄AŶ

A
1 + sŴ1T̂

(s)
2 − (1↔ 2) (C.16a)

Ŵ12 = Ŷ A
1 ∇̄AŴ2 − Ŷ A

2 ∇̄AŴ1 (C.16b)
Ŷ A

12 = Ŷ B
1 ∇̄BŶ A

2 − Ŷ B
2 ∇̄BŶ A

1 . (C.16c)

The above algebra is A2 A Diff(Nv), where Diff(Nv) is generated by Y A and A2 by T̂ (s)

and Ŵ . As we see, Ŵ is a scalar under Diff(Nv) whereas T̂ (s) is in a scalar density
representation of Diff(Nv). For the special case of s = −D−2

2 , T̂ (s) is also a scalar under
Diff(Nv).

To explore what is the A2 part, we turn off the Diff(Nv) part, where we remain with
an algebra of the form [T, T ] ∼ 0, [W,W ] ∼ 0, [T,W ] ∼ sT . This algebra for s 6= 0 is
closely related to a Heisenberg algebra (upon redefining eT/s as the new generator we get
a Heisenberg algebra). For s = 0 the algebra A2 is u(1)⊕ u(1).

In this slicing the charge variation obtains

/δQξ = 1
16πG

∫
Nv

dD−2x
(
Ŵ δΩ + Ŷ AδΥA + T̂ (s)δP(s) − T̂ (s)ΞsΘ−1

l NABδΩAB

)
(C.17)
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with

P(s) =


1
s Ξs if s 6= 0
ln Ξ if s = 0 .

(C.18)

Integrable and flux parts can be separated using the MB method,

Q̂
(s)I
ξ = 1

16πG

∫
Nv

dD−2x
(
ŴΩ + Ŷ AΥA + T̂ (s) P(s)

)
(C.19)

F̂
(s)
ξ (δg) = − 1

16πG

∫
Nv

dD−2x T̂ (s)ΞsΘ−1
l NABδΩAB . (C.20)

The charge algebra may also be computed, yielding{
Q̂I(ξ1), Q̂I(ξ2)

}
MB

= Q̂I([ξ1, ξ2]adj. bracket) + K̂ξ1,ξ2 (C.21)

where

K̂ξ1,ξ2 = 1
16πGδs,0

∫
Nv

dD−2x

[
Ŵ1T̂2 − Ŵ2T̂1 −

2
D − 2

(
Ŷ A

1 ∂AT̂2 − Ŷ A
2 ∂AT̂1

)]
. (C.22)

More explicitly,

{Ω(v, x),Ω(v, x′)} = 0 (C.23a)
{P(s)(v, x),P(s)(v, x′)} = 0 (C.23b)

{Ω(v, x),P(s)(v, x′)} = 16πG
(
sP(s)(v, x) + δs,0

)
δD−2 (x− x′) (C.23c)

{ΥA(v, x),ΥB(v, x′)} = 16πG
(
ΥA(v, x′)∂B −ΥB(v, x)∂′A

)
δD−2 (x− x′) (C.23d)

{ΥA(v, x),Ω(v, x′)} = −16πGΩ(x, v)∂′AδD−2 (x− x′) (C.23e)

{ΥA(v, x),P(s)(v, x′)} = 16πG
[
− P(s)(v, x)∂′A −

D + 2s− 2
D − 2 P(s)(v, x′)∂A

+ 2δs,0
D − 2∂

′
A

]
δD−2 (x− x′) . (C.23f)

As we see, and as expected, s = 0,−D−2
2 are special values. For s = 0 the algebra is a

semi-direct sum of Heisenberg and Diff(Nv). The Heisenberg part Ω is a scalar and P a
scalar density of weight −1 under Diff(Nv). For s = −D−2

2 the quantities Ω and P fall into
the same representation of Diff(Nv).

D Kerr metric in Gaussian null coordinates

The Kerr black hole in Boyer-Lindquist coordinates is

ds2 = −∆
ρ2 (dt−a sin2 θ dφ̂)2 + ρ2

∆ dr̂2 +ρ2 dθ2 + (r̂2 + a2)2 sin2 θ

ρ2 (dφ̂− a

r̂2 + a2 dt)2 (D.1)

with
∆ = r̂2 − 2Mr̂ + a2 ρ2 = r̂2 + a2cos2θ (D.2)
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where M and J = aM are mass and angular momentum of the black hole, respectively.
The outer and inner horizon radii r± are given by the bigger and smaller roots ∆ = 0,

r± = M ±
√
M2 − a2 . (D.3)

This stationary axisymmetric black hole geometry has a Killing horizon at r̂ = r+ generated
by the Killing vector

ξH = ∂t + ΩH∂φ̂ (D.4)

with horizon angular velocity ΩH and surface gravity κH

ΩH = a

a2 + r2
+

κH = r+ − r−
2r+(r+ + r−) . (D.5)

In the Gaussian null coordinates with horizon located at r = 0 [60],

gµν = g(0)
µν + r g(1)

µν +O(r2) (D.6)

the Kerr metric reads

g(0)
vr = 1 g

(0)
θθ = ρ2

+ (D.7)

g
(0)
φφ =

(r2
+ + a2)2 sin2 θ

ρ2
+

g(1)
vv = −2κH (D.8)

g
(1)
vθ = 2a2 sin θ cos θ

ρ2
+

g
(1)
vφ = a sin2 θ

ρ4
+

[
ρ2

+(r+ − r−) + 2r+(r2
+ + a2)

]
(D.9)

g
(1)
θθ =

2r+(r2
+ + a2)
ρ2

+
g

(1)
φφ =

2r+(r2
+ + a2)2 sin2 θ

ρ6
+

[
2ρ2

+ − (r2
+ + a2)

]
(D.10)

g
(1)
θφ = −

2a3(r2
+ + a2) sin3 θ cos θ

ρ4
+

. (D.11)

In term of our solution space variables of section 3, we have

η = 1 Ωθθ = ρ2
+ Ωφφ =

(r2
+ + a2)2 sin2 θ

ρ2
+

Ω = (r2
+ + a2) sin θ (D.12)

κ = κH Γ = −2κH Θl = Uθ = Uφ = 0 Θn = −2r+
ρ2

+
(D.13)

and

Υθ = −
2r3

+Ω2
H(r+ + r−)3

ρ4
+

sin2 θ cos θ Υφ = −2a
(
κH + r+

ρ2
+

)
sin θ (D.14)

λθθ = −
r2

+(r+ + r−)
ρ2

+
λθφ =

a3(r2
+ + a2) sin3 θ cos θ

ρ4
+

(D.15)

λφφ = −
r+(r2

+ + a2)2 sin2 θ

ρ6
+

[
2ρ2

+ − (r2
+ + a2)

]
. (D.16)

The surface charges (7.3) for the Kerr black hole are

SKerr = 4πQ(0, W̃, 0) = π

G
Mr+ W̃0(v) JKerr = −Q(0, 0, Ỹ A) = aM

G
Ỹ φ

0 (v) (D.17)

where W̃0(v) = W̃ (v, x = 0) and Ỹ φ
0 (v) = Ỹ φ(v, x = 0).
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