On Euler characteristic and fundamental groups of compact manifolds

Bing-Long Chen ${ }^{1} \cdot$ Xiaokui Yang ${ }^{2}$

Received: 16 April 2020 / Revised: 23 July 2020 / Published online: 25 September 2020
© Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract

Let M be a compact Riemannian manifold, $\pi: \widetilde{M} \rightarrow M$ be the universal covering and ω be a smooth 2-form on M with $\pi^{*} \omega$ cohomologous to zero. Suppose the fundamental group $\pi_{1}(M)$ satisfies certain radial quadratic (resp. linear) isoperimetric inequality, we show that there exists a smooth 1 -form η on \widetilde{M} of linear (resp. bounded) growth such that $\pi^{*} \omega=d \eta$. As applications, we prove that on a compact Kähler manifold (M, ω) with $\pi^{*} \omega$ cohomologous to zero, if $\pi_{1}(M)$ is $\mathrm{CAT}(0)$ or automatic (resp. hyperbolic), then M is Kähler non-elliptic (resp. Kähler hyperbolic) and the Euler characteristic $(-1)^{\frac{\mathrm{dim}_{\mathbb{R}} M}{2}} \chi(M) \geq 0$ (resp. >0).

Contents

1 Introduction 1724
2 Hyperbolic fundamental groups 1728
3 General fundamental groups 1734
4 Quadratic radial isoperimetric inequality 1738
References 1742

[^0]
1 Introduction

In differential geometry, there is a well-known conjecture due to H. Hopf (e.g. [32, Problem 10]):

Conjecture 1.1 (Hopf) Let M be a compact, oriented and even dimensional Riemannian manifold of negative sectional curvature $K<0$. Then the signed Euler characteristic $(-1)^{\frac{n}{2}} \chi(M)>0$, where n is the real dimension of M.

For $n=4$, Conjecture 1.1 was proven by Chern [8] (who attributed it to Milnor). Not much has been known in higher dimensions. This conjecture can not be established just by use of the Gauss-Bonnet-Chern formula (see [13,22]). Singer suggested that in view of the L^{2}-index theorem an appropriate vanishing theorem for L^{2}-harmonic forms on the universal covering of M would imply the conjecture (e.g. [10]). In the work [18], Gromov introduced the notion of Kähler hyperbolicity for Kähler manifolds which means the Kähler form on the universal cover is the exterior differential of some bounded 1-form. He established that the L^{2}-cohomology groups of the universal covering of a Kähler hyperbolic manifold are not vanishing only in the middle dimension. Combining this result and the covering index theorem of Atiyah, Gromov showed $(-1)^{\frac{n}{2}} \chi(M)>0$ for a Kähler hyperbolic manifold M. One can also show that a compact Kähler manifold homotopic to a compact Riemannian manifold of negative sectional curvature is Kähler hyperbolic and the canonical bundle is ample [7].

When the sectional curvature of the manifold is non-positive, it is natural to consider whether $(-1)^{\frac{n}{2}} \chi(M) \geq 0$ holds. It should be noted that when the sectional curvature of a compact Kähler manifold is nonpositive [9,20] proved independently that the vanishing theorem of Gromov type still holds and the Euler characteristic satisfies $(-1)^{\frac{n}{2}} \chi(M) \geq 0$. Actually, they proved that the results also hold if the pulled-back Kähler form on the universal covering is the exterior differential of some 1 -form with linear growth, and such manifolds are called Kähler non-elliptic [20] and Kähler parabolic [9] respectively. In the sequel, for simplicity, we shall use one of these notions, e.g., Kähler non-elliptic. Moreover, Jost and Zuo proposed an interesting question in [20, p. 4] that whether there are some topological conditions to ensure the manifolds to be Kähler non-elliptic. One can also propose the following

Question 1.2 Let M be a compact Riemannian manifold, $\pi: \hat{M} \rightarrow M$ a Galois covering and G the group of covering transformations. Let ω be a closed q-form $(q \geq 2)$ on M such that $\left[\pi^{*} \omega\right]=0$ in $H_{\mathrm{dR}}^{q}(\hat{M})$. Find a $(q-1)$-form η on \hat{M} of least growth order (in terms of the distance function on \hat{M}) such that $\pi^{*} \omega=d \eta$.

It is clear that the growth order of η does not depend on the choices of the metrics on M, and it should depend on the geometry of the covering transformation group G. Recall that by a theorem of Gromov, a discrete group G is hyperbolic if and only if it satisfies a linear isoperimetric inequality. An expected answer for Question 1.2 would be a relation between certain isoperimetric inequality of the covering transformation group G and the least growth order of η.

We need some well-known notions of discrete groups to formulate an isoperimetric inequality in our setting. Suppose $G=\langle S \mid R\rangle$ is a finitely presented group, where S is
a finite symmetric set generating $G, S=S^{-1}$, and R is a finite set (relator set) in the free group F_{S} generated by S. The word metric on G with respect to S is defined as

$$
\begin{equation*}
d_{S}(a, b)=\min \left\{n: b^{-1} a=s_{1} s_{2} \ldots s_{n}, s_{i} \in S\right\} \tag{1.1}
\end{equation*}
$$

For a word $w=s_{1} s_{2} \ldots s_{n}$, its length $L(w)$ is defined to be n. If the word $w=$ $s_{1} \ldots s_{n} \in F_{S}$ representing the identity e in G, there are reduced words v_{1}, \ldots, v_{k} on S such that

$$
\begin{equation*}
w=\prod_{i=1}^{k} v_{i} r_{i} v_{i}^{-1}, \quad r_{i} \quad \text { or } \quad r_{i}^{-1} \in R \tag{1.2}
\end{equation*}
$$

as elements in F_{S}. The combinatorial area $\operatorname{Area}(w)$ of w is the smallest possible k for Eq. (1.2).

Definition 1.3 We say a finitely presented group $G=\langle S \mid R\rangle$ satisfies a radial isoperimetric inequality of degree p, if there is a constant $C>0$ such that for any word $w=s_{1} \ldots s_{n} \in F_{S}$ of length $L(w)=n$ representing the identity e in G, we have

$$
\begin{equation*}
\operatorname{Area}(w) \leq C \sum_{i=1}^{n}\left(d_{S}(\bar{w}(i), e)+1\right)^{p-1} \tag{1.3}
\end{equation*}
$$

where $w(i)=s_{1} \ldots s_{i}$ is the i-th subword of w and $\bar{w}(i) \in G$ is the natural image (from F_{S} to G) of the word $w(i)$.

It is easy to see that the above definition is independent of the choice of the generating set S. For $p=1$, this definition is the same as the usual linear isoperimetric inequality

$$
\operatorname{Area}(w) \leq C L(w)
$$

For $p>1$, Definition 1.3 is stronger than the usual isoperimetric inequality. Actually, the radial isoperimetric inequality (1.3) can imply

$$
\begin{equation*}
\operatorname{Area}(w) \leq C(\operatorname{diam}(w)+1)^{p-1} L(w) \leq C L(w)^{p} \tag{1.4}
\end{equation*}
$$

We obtain in Theorem 3.1 a complete answer to Question 1.2 for $q=2$. For simplicity, we only formulate the polynomial growth case which has many important applications.

Theorem 1.4 Let M be a compact Riemannian manifold, $\pi: \hat{M} \rightarrow M$ a Galois covering with covering transformation group G and $H_{\mathrm{dR}}^{1}(\hat{M})=0$. Let ω be a closed 2 -form on M such that $\left[\pi^{*} \omega\right]=0 \in H_{\mathrm{dR}}^{2}(\hat{M})$. Assume that the group G satisfies the radial isoperimetric inequality (1.3) of degree $p \geq 1$. Then there exists a smooth 1 -form η on \hat{M} such that $\pi^{*} \omega=d \eta$ and

$$
\begin{equation*}
|\eta|(x) \leq C\left(d_{\hat{M}}\left(x, x_{0}\right)+1\right)^{p-1} \tag{1.5}
\end{equation*}
$$

for all $x \in \hat{M}$ where C is a positive constant and $x_{0} \in \hat{M}$ is a fixed point.

Let's explain briefly the key ingredients in the proof of Theorem 1.4 and demonstrate the significance of the radial isoperimetric inequality (1.3). Let $G=\langle S \mid R\rangle$ be the finitely presented covering transformation group. The condition $\left[\pi^{*} \omega\right]=0$ implies $\pi^{*} \omega=d \eta$ for some smooth 1-form η on \widetilde{M}.
(i) We show that there exists a constant C such that for any closed curve α on \tilde{M}, we can construct a word $w \in F_{S}$ representing the identity and approximating α such that

$$
\begin{equation*}
\left|\int_{\alpha} \eta\right| \leq C(L(\alpha)+\operatorname{Area}(w)) \tag{1.6}
\end{equation*}
$$

(ii) By using the radial isoperimetric inequality (1.3), we prove

$$
\begin{equation*}
\int_{\alpha} \eta \leq C \int_{\alpha}\left(d_{\hat{M}}\left(x, x_{0}\right)+1\right)^{p-1} d s \tag{1.7}
\end{equation*}
$$

for any closed curve α.
(iii) η can be regarded as a "bounded linear functional" L on the space of closed curves with a suitably defined norm. Then we use the Hahn-Banach theorem and Whitney's local flat norm [31] to find another bounded linear functional \widetilde{L} whose restriction on the space of closed curves is L. Moreover, \widetilde{L} is represented by a differential form $\widetilde{\eta}$ with measurable coefficients with $\pi^{*} \omega=d \widetilde{\eta}$ (in the current sense) and

$$
\begin{equation*}
|\widetilde{\eta}|(x) \leq C\left(d_{\hat{M}}\left(x, x_{0}\right)+1\right)^{p-1}, \quad \text { a.e. } \tag{1.8}
\end{equation*}
$$

(iv) We use the heat equation method to deform $\tilde{\eta}$ to a smooth one with the desired bound in (1.5).

The radial isoperimetric inequality (1.3) is the key ingredient in step (ii), and it could not work for usual isoperimetric inequality for degree $p>1$. With the inequality (1.7) in hand, step (iii) is classical (e.g. [16,19,29,30]). The smoothing process in step (iv) is natural in the view point of PDE since $\omega=d \eta$ is preserved under the specified heat equation (3.16) and the estimate (1.5) follows from standard apriori estimate of heat equations.

As an application of Theorem 1.4, we obtain
Theorem 1.5 Let (M, ω) be a compact Kähler manifold and $\pi: \widetilde{M} \rightarrow M$ be the universal covering. Suppose $\left[\pi^{*} \omega\right]=0 \in H_{\mathrm{dR}}^{2}(\tilde{M})$. If $\pi_{1}(M)$ satisfies the radial isoperimetric inequality (1.3) of degree $p=2$, then M is Kähler non-elliptic and $(-1) \frac{\mathrm{dim}_{\mathbb{R}} M}{2} \chi(M) \geq 0$.

It is a natural question to ask whether Theorem 1.5 can hold for the usual quadratic isoperimetric inequality. It is well-known that the automatic groups and CAT(0) groups are important examples satisfying the usual quadratic isoperimetric inequality. Recall that CAT(0)-groups are groups which can act properly discontinuously and cocompactly by isometries on proper geodesic CAT(0)-metric spaces. Typical examples of CAT(0)-groups are fundamental groups of compact manifolds with non-positive sectional curvature. Automatic groups are finitely generated groups whose operations are governed by automata. For instances, hyperbolic groups and mapping class groups are
automatic [27]. These groups have been studied extensively in geometric group theory (e.g. [3]). We prove in Theorems 4.1 and 4.2 that CAT(0) groups and automatic groups do satisfy the radial isoperimetric inequality (1.3) for $p=2$. Hence, we obtain the following result, which also gives an answer to the aforementioned question proposed by Jost-Zuo:

Theorem 1.6 Let (M, ω) be a compact Kähler manifold and $\pi: \tilde{M} \rightarrow M$ be the universal covering. Suppose $\left[\pi^{*} \omega\right]=0 \in H_{\mathrm{dR}}^{2}(\tilde{M})$. If $\pi_{1}(M)$ is $\mathrm{CAT}(0)$ or automatic, then M is Kähler non-elliptic and the Euler characteristic $(-1)^{\frac{\operatorname{dim}_{\mathbb{R}} M}{2}} \chi(M) \geq 0$.

One can also deduce the following result easily from the special case for $p=1$ in Theorem 1.4.

Corollary 1.7 Let (M, ω) be a compact Kähler manifold and $\pi: \widetilde{M} \rightarrow M$ be the universal covering. Suppose $\left[\pi^{*} \omega\right]=0 \in H_{\mathrm{dR}}^{2}(\tilde{M})$. If $\pi_{1}(M)$ is a hyperbolic group, then M is Kähler hyperbolic and the Euler characteristic $(-1)^{\frac{\operatorname{dim}_{\mathbb{R}} M}{2}} \chi(M)>0$.

Remark 1.8 Note that the condition $\left[\pi^{*} \omega\right]=0$ is equivalent to the fact that $\pi^{*} \omega=d \eta$ for some 1-form η, which holds trivially on Kähler hyperbolic or Kähler non-elliptic manifolds. It is not hard to see that this condition holds if $\pi_{2}(M)$ is torsion. In particular, one gets the following fact pointed out by Gromov [18, p. 266]: if $\pi_{1}(M)$ is hyperbolic and $\pi_{2}(M)=0$, then M is Kähler hyperbolic.

Remark 1.9 When (M, ω) is a symplectic manifold, one can obtain the corresponding hyperbolicity or non-ellipticity from Theorem 1.4 for $p=1$ or 2 as in the Kähler case. See [21, Corollary 1.12] for the former case.

Remark 1.10 It worths to point out that, every finitely generated nilpotent group of class p satisfies the usual isoperimetric inequality of degree $p+1$ [15]. On the other hand, Cheeger-Gromov proved in [5] that if the fundamental group $\pi_{1}(M)$ of a compact aspherical manifold M contains an infinite normal amenable subgroup, then the Euler characteristic $\chi(M)=0$. Hence it would be very interesting to ask: whether $\pi_{1}(M)$ satisfies the radial isoperimetric inequality for $p=2$ if $\pi_{1}(M)$ does not contain an infinite normal amenable subgroup. If this were true, then any compact Kähler aspherical manifold M has non-negative signed Euler characteristic, i.e. $(-1)^{\frac{\operatorname{dim}_{\mathbb{R}} M}{2}} \chi(M) \geq 0$. This is a special case of more general conjecture proposed by Singer :

Conjecture: any compact aspherical manifold M has non-negative signed Euler characteristic.
When X is an algebraic manifold, there is an algebraic surface Y such that $\pi_{1}(X)=$ $\pi_{1}(Y)$ by Lefschetz hyperplane theorem. It is not hard to see that, in this case we only need to consider the question for algebraic surfaces of general type thanks to the Enriques-Kodaira classification (e.g. [2, Chapter V]).

In some sense, the present paper is to build up one relationship between the geometry of the fundamental groups $\pi_{1}(X)$ and the geometry/topology of the space X itself. There are many important works when the fundamental group $\pi_{1}(X)$ admits a finite
dimensional representation with infinite image. We refer to [1,4,11, 18,20,23,26,33,34] and the references therein.

The paper is organized as follows. In Sect. 2, to exhibit the key ingredients in the proof of Theorem 1.4, we show a special case when the covering transformation group G is hyperbolic. In Sect. 3, we deal with more general G in Theorem 3.1 and establish Theorems 1.4 and 1.5. In Sect. 4, we show that CAT(0) groups and automatic groups satisfy the radial isoperimetric inequality (1.3) for $p=2$ and prove Theorem 1.6.

2 Hyperbolic fundamental groups

Let G be a finitely generated group with a finite set S generating G, where $S=S^{-1}$. The Cayley graph $\Gamma(G, S)$ of G with respect to S is a graph satisfying
(1) The vertices of $\Gamma(G, S)$ are the elements of G;
(2) Two vertices $x, y \in G$ are joined by an edge if and only if there exists an element $s \in S$ such that $x=y s$.

We define a metric $d_{\Gamma(G, S)}$ on a Cayley graph $\Gamma(G, S)$ by letting the length of every edge be 1 and defining the distance between two points to be the minimum length of arcs joining them. This metric $d_{\Gamma(G, S)}$ is actually the word metric d_{S} on G defined in (1.1). We say the group G is hyperbolic if (G, d_{S}) is a hyperbolic metric space in the sense of Gromov ([17], or [28, Proposition 2.6]), i.e. there is a positive number $\delta>0$ such that for any four points $x_{1}, x_{2}, x_{3}, x_{4} \in G$, we have
$d_{S}\left(x_{1}, x_{2}\right)+d_{S}\left(x_{3}, x_{4}\right) \leq \max \left\{d_{S}\left(x_{1}, x_{3}\right)+d_{S}\left(x_{2}, x_{4}\right) ; d_{S}\left(x_{1}, x_{4}\right)+d_{S}\left(x_{2}, x_{3}\right)\right\}+2 \delta$.
One can check that the hyperbolicity of G is independent of the finite generating set S. It can be shown that if the group (G, d_{S}) is hyperbolic, then G is finitely presented, i.e. $G=\langle S \mid R\rangle$ where $R \subset F_{S}$ is a finite relator set. It is well-known [17] that G is hyperbolic if and only if it satisfies the linear isoperimetric inequality:

$$
\begin{equation*}
\operatorname{Area}(w) \leq C L(w) \tag{2.1}
\end{equation*}
$$

for any word w in the free group F_{S} representing the identity e in G. For more comprehensive introductions, we refer to $[17,28]$ and the references therein.

Theorem 2.1 Let M be a compact manifold and $\pi: \tilde{M} \rightarrow M$ be a Galois covering such that $H_{\mathrm{dR}}^{1}(\tilde{M})=0$. Let ω be a smooth closed 2 -form on M such that $\left[\pi^{*} \omega\right]=0$ in $H_{\mathrm{dR}}^{2}(\tilde{M})$. If the covering transformation group G is hyperbolic, then there exists a bounded smooth 1 -form $\tilde{\eta}$ on \widetilde{M} such that $\pi^{*} \omega=d \widetilde{\eta}$.

Fix a smooth reference metric on M and endow \widetilde{M} with the induced metric. Since $\left[\pi^{*} \omega\right]=0$ in $H_{\mathrm{dR}}^{2}(\tilde{M})$, there is a smooth 1-form η on \widetilde{M} such that $\pi^{*} \omega=d \eta$. If η is bounded, we are done. If it is not bounded, we shall show that there exists another bounded smooth 1-form $\widetilde{\eta}$ on \widetilde{M} such that $\pi^{*} \omega=d \widetilde{\eta}=d \eta$. The proof of Theorem 2.1 is divided into the following steps.

Lemma 2.2 For any $L>0$, there is a constant $D=D(L)$ depending on L such that for any smooth closed curve α in \widetilde{M} with length $L(\alpha) \leq L$, we have

$$
\begin{equation*}
\left|\int_{\alpha} \eta\right| \leq D \tag{2.2}
\end{equation*}
$$

Proof Let $\Omega \subset \tilde{M}$ be a fundamental domain of the group of deck transformations G. If α passes through Ω, then the inequality (2.2) can be derived from the smoothness of η. If α does not pass though Ω, there exists some $g \in G$ such that $g^{-1}(\alpha)$ passes through Ω. Hence,

$$
\left|\int_{g^{-1}(\alpha)} \eta\right| \leq D
$$

as in the previous case. Since $g^{*}(\omega)=\omega$, we know

$$
d\left(g^{*} \eta-\eta\right)=0
$$

On the other hand, since $H_{\mathrm{dR}}^{1}(\tilde{M})=0$, there exists a smooth function f such that $g^{*} \eta-\eta=d f$. Now (2.2) follows from

$$
\left|\int_{\alpha} \eta\right|=\left|\int_{g^{-1}(\alpha)} g^{*} \eta\right|=\left|\int_{g^{-1}(\alpha)} \eta+d f\right|=\left|\int_{g^{-1}(\alpha)} \eta\right| \leq D
$$

since α is closed and $\int_{g^{-1}(\alpha)} d f=0$.
Lemma 2.3 There exists a constant $C>0$ such that for any smooth closed curve α on \widetilde{M}, we have

$$
\begin{equation*}
\left|\int_{\alpha} \eta\right| \leq C \cdot L(\alpha) \tag{2.3}
\end{equation*}
$$

Note that in the sequel the constant C can vary from line to line.
Proof By perturbations, we may assume $\alpha:[0, L] \rightarrow \tilde{M}$ is parameterized by the arclength, where $L=L(\alpha)$ and $\left|\alpha^{\prime}(s)\right| \equiv 1$. Without loss of generality, we assume $L \geq 1$. Fix a base point x_{0} in the fundamental domain Ω. Let [L] be the integer part of L. For each $i=0,1,2 \ldots,[L]$, we choose $g_{i} \in G$ such that $\alpha(i) \in g_{i}(\Omega)$. If L is an integer, we choose $g_{L}=g_{0}$. Otherwise, we set $g_{[L]+1}=g_{0}$. For simplicity, we set N to be L if L is an integer, otherwise N is $[L]+1$. Connecting $g_{i}\left(x_{0}\right)$ and $g_{i+1}\left(x_{0}\right)$ with a geodesic segment $\widetilde{\gamma}_{i}$, and $\widetilde{\gamma}=\widetilde{\gamma}_{0} \cup \widetilde{\gamma}_{1} \cup \cdots \cup \widetilde{\gamma}_{N-1}$ is a closed curve of length

$$
L(\widetilde{\gamma}) \leq C L(\alpha)
$$

for some C independent of the curve α. We claim

$$
\begin{equation*}
\left|\int_{\alpha} \eta-\int_{\widetilde{\gamma}} \eta\right| \leq C L(\alpha) \tag{2.4}
\end{equation*}
$$

Connecting $\alpha(i)$ and $g_{i}\left(x_{0}\right)$ with a geodesic segment β_{i}, we get N closed curves $\hat{\gamma}_{i}=\left.\alpha\right|_{[i, i+1]} \cup \beta_{i+1} \cup \tilde{\gamma}_{i}^{-1} \cup \beta_{i}^{-1}, i=0,1, \ldots, N-1$. Hence,

$$
\begin{equation*}
\int_{\alpha} \eta-\int_{\widetilde{\gamma}} \eta=\sum_{i=0}^{N-1} \int_{\hat{\gamma}_{i}} \eta \tag{2.5}
\end{equation*}
$$

By our construction, there is a constant C such that $L\left(\hat{\gamma_{i}}\right) \leq C$. The claim (2.4) follows from the estimate (2.2) and (2.5).

Let $G=\langle S \mid R\rangle$, where the generator set $S=S^{-1}$ and relator set R are all finite. Let $\Gamma(G, S)$ be the Cayley graph of G. Then it is a standard fact that $\Gamma(G, S)$ is quasi-isometric to \widetilde{M}, and this implies that there are constants $C_{1}, C_{2}>0$ such that

$$
\begin{equation*}
C_{1}^{-1} d_{\widetilde{M}}\left(a\left(x_{0}\right), b\left(x_{0}\right)\right)-C_{2} \leq d_{\Gamma(G, S)}(a, b) \leq C_{1} d_{\widetilde{M}}\left(a\left(x_{0}\right), b\left(x_{0}\right)\right)+C_{2} \tag{2.6}
\end{equation*}
$$

for any $a, b \in G$. From this, we know $d_{\Gamma(G, S)}\left(g_{i}, g_{i+1}\right)$ are uniformly bounded by some constant C. Hence, for each $i, g_{i+1}=g_{i} s_{1}^{i} \ldots s_{n_{i}}^{i}$ where $s_{j}^{i} \in S, n_{i} \leq C$. Connecting $g_{i}\left(x_{0}\right),\left(g_{i} s_{1}^{i}\right)\left(x_{0}\right), \ldots,\left(g_{i} s_{1}^{i} \ldots s_{n_{i}}^{i}\right)\left(x_{0}\right)$ with geodesic segments γ_{1}^{i}, \ldots, $\gamma_{n_{i}}^{i}$ successively. It is clear the closed curve $\widetilde{\gamma}_{i} \cup\left(\gamma_{1}^{i} \cup \cdots \cup \gamma_{n_{i}}^{i}\right)^{-1}$ has uniformly bounded length. By similar arguments as in (2.4) and (2.5), we conclude that

$$
\begin{equation*}
\left|\int_{\alpha} \eta-\int_{\gamma} \eta\right| \leq C L \tag{2.7}
\end{equation*}
$$

where $\gamma=\left(\gamma_{1}^{0} \cup \cdots \cup \gamma_{n_{0}}^{0}\right) \cup \cdots \cup\left(\gamma_{1}^{N-1} \cup \cdots \cup \gamma_{n_{N-1}}^{N-1}\right)$. Consider the word

$$
w=s_{1}^{0} \ldots s_{n_{0}}^{0} \ldots s_{1}^{N-1} \ldots s_{n_{N-1}}^{N-1}
$$

representing the identity in G. It has length

$$
\begin{equation*}
L(w)=n_{0}+\cdots+n_{N-1} \leq C L \tag{2.8}
\end{equation*}
$$

Let $k_{0}=\operatorname{Area}(w)$ be the combinatorial area of w and w_{0} be a word equal to w as elements of F_{S} with the form

$$
\begin{equation*}
w_{0}=\prod_{i=1}^{k_{0}} v_{i} r_{i} v_{i}^{-1} \tag{2.9}
\end{equation*}
$$

for reduced words $v_{1}, \ldots, v_{k_{0}}$ on S and r_{i} or $r_{i}^{-1} \in R, i=1, \ldots, k_{0}$. Note that w_{0} is obtained from w by inserting several subwords of the form $a a^{-1}$, where a is a word on S. According to the previous construction of the curve γ from the word w, one can construct a curve γ_{0} from the word w_{0} by inserting several loops into γ of the form $\delta \delta^{-1}$ corresponding to the inserted subwords $a a^{-1}$. It is clear that

$$
\int_{\gamma_{0}} \eta=\int_{\gamma} \eta .
$$

Note that each subword $v_{i} r_{i} v_{i}^{-1}$ in w_{0} represents the identity in the group G. In the correspondence of γ_{0} and the word w_{0}, the subword $v_{i} r_{i} v_{i}^{-1}$ represents a closed curve δ_{i} based on $g_{0}\left(x_{0}\right)$, and r_{i} represents a closed curve ϵ_{i} based on the end points of a curve η_{i} which corresponds to v_{i}. Then $\delta_{i}=\eta_{i} \cup \epsilon_{i} \cup \eta_{i}^{-1}$ and

$$
\int_{\delta_{i}} \eta=\int_{\epsilon_{i}} \eta .
$$

Since the relator set R is finite, by Lemma 2.2, there is a constant $C>0$ such that $\left|\int_{\epsilon_{i}} \eta\right| \leq C$ and

$$
\begin{equation*}
\left|\int_{\gamma} \eta\right|=\left|\sum_{i=1}^{k_{0}} \int_{\delta_{i}} \eta\right| \leq C \operatorname{Area}(w) \tag{2.10}
\end{equation*}
$$

Therefore, by (2.7) and (2.10), we obtain

$$
\begin{equation*}
\left|\int_{\alpha} \eta\right| \leq C(L(\alpha)+\operatorname{Area}(w)) \tag{2.11}
\end{equation*}
$$

From the linear isoperimetric inequality (2.1), there is a constant $C_{1}>0$ such that

$$
\begin{equation*}
\operatorname{Area}(w) \leq C_{1} \cdot L(w) \leq \widetilde{C} \cdot L(\alpha) \tag{2.12}
\end{equation*}
$$

where the second inequality follows from (2.8). By (2.11), we obtain the estimate (2.3).

Note that, from (2.3), we can not deduce the norm of η is bounded by C, since (2.3) holds only for closed curves. If we regard η as a linear functional on the space of general curves, η is not necessarily bounded. We shall use the Hahn-Banach theorem to find another bounded $\widetilde{\eta}$ whose restriction on the space of closed curves is η. The following result is inspired by the classical results [19, Proposition 4.35] and [12, Section 4.10] which are based on [31].

Lemma 2.4 There exists a 1-form $\tilde{\eta}$ on \tilde{M} with bounded measurable coefficients such that $\pi^{*} \omega=d \tilde{\eta}$ in the sense of currents.

Proof We follow the framework of [31, Chapter V and Theorem 5A]. By the classical triangulation theorem (e.g. [31, Chapter IV]), there is a simplicial complex K and a homomorphism $T:|K| \rightarrow \widetilde{M}$ with the following property. For each n-simplex σ of K (n is the real dimension of \widetilde{M}), there is a coordinate system χ in M such that χ^{-1} is defined in a neighborhood of $T(\sigma)$ in \widetilde{M} and $\chi^{-1} T$ is affine in σ. Let $K^{(1)}$ be the first barycentric subdivision of K, and $K^{(2)}$ be the second, For each $p>0$, consider the chain groups (over \mathbb{R}), $C_{p}(K), C_{p}\left(K^{(1)}\right), C_{p}\left(K^{(2)}\right)$, and etc. We regard a simplex σ as the sum of its subdivisions. Then there are natural inclusions $C_{p}(K) \subset C_{p}\left(K^{(1)}\right) \subset \cdots$. Denote $C_{p}\left(K^{\infty}\right)=\cup C_{p}\left(K^{(i)}\right)$, and equip $C_{p}\left(K^{\infty}\right)$ a norm (mass) in the following manner: if $c=\sum a_{i} \sigma_{i} \in C_{p}\left(K^{(j)}\right)$ is a p-chain such
that σ_{i} are mutually disjoint (i.e. the interiors of σ_{i} are mutually disjoint), then

$$
\|c\|=\sum_{i}\left|a_{i}\right| \times \operatorname{Area}_{\tilde{M}}\left(T\left(\sigma_{i}\right)\right) .
$$

Now $\left(C_{p}\left(K^{\infty}\right),\|\cdot\|\right)$ is a normed vector space. It can be shown that for $c \in C_{p}\left(K^{\infty}\right)$,

$$
\|c\|=\sup \left\{\left|\int_{c} \theta\right|: \theta \text { is a } p-\text { form with }\|\theta\| \leq 1\right\}
$$

The norm (comass) of a differential form θ of degree p is defined as

$$
\begin{equation*}
\|\theta\|=\sup _{\widetilde{M}} \sup \left|\theta\left(e_{1}, \ldots, e_{p}\right)\right| \tag{2.13}
\end{equation*}
$$

where the inside supremum is taken over all the orthonormal frames $\left(e_{1}, \ldots, e_{p}, \ldots, e_{n}\right)$ in $T \widetilde{M}$. See [19, p. 245-246] for more details. To invoke the main result in [31, Theorem 5 A$]$, we need to recall the flat norm $|\cdot|^{b}$ defined over $C_{1}\left(K^{\infty}\right)$ by

$$
\begin{equation*}
|c|^{b}=\inf \{\|c-\partial D\|+\|D\|\} \tag{2.14}
\end{equation*}
$$

where D ranges over all 2-chains. For any differential 1-form θ, one can show

$$
\begin{equation*}
|\theta|^{b}=\sup \left\{\left|\int_{c} \theta\right|:|c|^{b} \leq 1\right\}=\max \{\|\theta\|,\|d \theta\|\} \tag{2.15}
\end{equation*}
$$

Let $Z_{1}\left(K^{\infty}\right)=\cup Z_{1}\left(K^{i}\right) \subset C_{1}\left(K^{\infty}\right)$ be the subspace of all closed 1-chains (cycles). We define a linear functional \widetilde{L} on $Z_{1}\left(K^{\infty}\right)$ in the following way:

$$
\begin{equation*}
\widetilde{L}(c)=\int_{c} \eta . \tag{2.16}
\end{equation*}
$$

According to Lemma 2.3, we have $|\widetilde{L}(c)| \leq C\|c\|$ for any $c \in Z_{1}\left(K^{\infty}\right)$. Moreover, by using

$$
\int_{c} \eta=\int_{c-\partial D} \eta+\int_{D} \pi^{*} \omega
$$

we get

$$
\begin{equation*}
|\widetilde{L}(c)| \leq C(\|c-\partial D\|+\|D\|) \tag{2.17}
\end{equation*}
$$

for any 2-chain D since ω is bounded. We conclude that

$$
|\widetilde{L}(c)| \leq C|c|^{b}
$$

for any $c \in Z_{1}\left(K^{\infty}\right)$.

By Hahn-Banach theorem, \tilde{L} can be extended to a linear functional L on $C_{1}\left(K^{\infty}\right)$ satisfying

$$
\begin{equation*}
|L|^{b}=|\widetilde{L}|_{Z_{1}\left(K^{\infty}\right)}^{b} \leq C \tag{2.18}
\end{equation*}
$$

Since the flat norm of the cochain L is bounded, by [31, Theorem 5A], we conclude that L and $d L$ can be represented by differential forms $\widetilde{\eta}$ and $\widetilde{\omega}$ with measurable coefficients, i.e.

$$
L(c)=\int_{c} \tilde{\eta}, \quad(d L)(D)=\int_{D} \widetilde{\omega} .
$$

According to the explanation in [31, p. 260-261], the integration $\int_{c} \widetilde{\eta}$ is well-defined since $\tilde{\eta}$ is measurable with respect to the 1-dimensional measure on c. For the same reason, $\int_{D} \widetilde{\omega}$ is also well-defined. Actually, [31, Theorem 5A] is stated in a domain of the Euclidean space, and we can apply the theorem on each coordinate chart and find a set of bounded differential forms coinciding on the intersections of these coordinate charts, which give us global bounded forms $\widetilde{\eta}$ and $\widetilde{\omega}$. Note that

$$
\int_{D} \pi^{*} \omega=\int_{\partial D} \eta=\int_{\partial D} \tilde{\eta}=L(\partial D)=(d L)(D)=\int_{D} \widetilde{\omega}
$$

holds for any 2 -chain D, and it follows that $\widetilde{\omega}=\pi^{*} \omega$. Hence, we find a bounded 1 -form $\tilde{\eta}$ such that $\pi^{*} \omega=d \tilde{\eta}$ in the sense of currents.

To complete the proof of Theorem 2.1, we shall deform $\widetilde{\eta}$ in Lemma 2.4 to a bounded smooth one so that $\pi^{*} \omega=d \widetilde{\eta}$ still holds. Indeed, such a form can be obtained by using the heat equation method. Consider the following heat equation for differential forms on \widetilde{M}

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-\Delta\right) \widetilde{\eta}(t)=\pi^{*} d^{*} \omega, \tag{2.19}\\
\widetilde{\eta}(0)=\widetilde{\eta}
\end{array}\right.
$$

where $-\Delta=\left(d d^{*}+d^{*} d\right)$ is the Hodge Laplacian operator. Since \tilde{M} has bounded geometry, the initial data $\widetilde{\eta}$ is bounded, and $\pi^{*} d^{*} \omega$ is a bounded smooth form on \widetilde{M}, it is well-known that Eq. (2.19) admits a unique bounded short time solution $\widetilde{\eta}(t)$, $t \in\left[0, T_{0}\right], T_{0}>0$. Moreover, $\widetilde{\eta}(t)$ is smooth when $t>0$. This can be done by solving the equation on a sequence of bounded domains exhausting \widetilde{M} and obtaining a priori estimates via applying the maximum principle. Actually, the solution of (2.19) exists for all time $[0, \infty)$, but we do not need this. We claim $d \widetilde{\eta}(t) \equiv \omega$ for all $t \in\left[0, T_{0}\right]$ and so we can take $\widetilde{\eta}\left(T_{0}\right)$ as the desired bounded smooth form $\widetilde{\eta}$ in Theorem 2.1.

By applying the standard Bernstein trick and the maximum principle (localized version), one can show $|\nabla \widetilde{\eta}(t)| \leq \frac{C}{\sqrt{t}}$ for all $t \in\left(0, T_{0}\right]$. Taking exterior differential of (2.19), we get

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-\Delta\right) \bar{\omega}(t)=0, \tag{2.20}\\
\left.\bar{\omega}(t)\right|_{t=0}=0
\end{array}\right.
$$

where $\bar{\omega}(t):=d \widetilde{\eta}(t)-\pi^{*} \omega$. Let $\hat{\omega}(t)=\int_{0}^{t} \bar{\omega}(s) d s$, then by straightforward computations, we obtain

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-\Delta\right) \hat{\omega}(t)=0, \tag{2.21}\\
\left.\hat{\omega}(t)\right|_{t=0}=0
\end{array}\right.
$$

A simple calculation shows the estimate $|\nabla \widetilde{\eta}(t)| \leq \frac{C}{\sqrt{t}}$ implies that $\hat{\omega}(t)$ is uniformly bounded on $\tilde{M} \times\left[0, T_{0}\right]$. By standard Bochner formula, we obtain

$$
\left(\frac{\partial}{\partial t}-\Delta\right)\left(e^{-C t}|\hat{\omega}|^{2}\right) \leq 0
$$

for some large C depending on the curvature bound of \tilde{M}. Since the maximum principle of the heat equation on such manifolds holds when the subsolution grows not faster than $C e^{C d\left(x, x_{0}\right)^{2}}$ ([24, Theorem 15.2] or [6, Lemma 2.5]), we obtain $\hat{\omega}(t) \equiv 0$, i.e., $d \widetilde{\eta}(t) \equiv \pi^{*} \omega$. The proof of Theorem 2.1 is completed.

3 General fundamental groups

In this section, we deal with a Galois covering $\pi: \tilde{M} \rightarrow M$ of a compact manifold M with a finitely presented covering transformation group $G=\langle S \mid R\rangle$.

Theorem 3.1 Let M be a compact manifold, $\pi: \tilde{M} \rightarrow M$ a Galois covering with $H_{\mathrm{dR}}^{1}(\tilde{M})=0$. Let ω be a smooth closed 2 -form on M such that $\left[\pi^{*} \omega\right]=0$ in $H_{\mathrm{dR}}^{2}(\tilde{M})$. Let $f: \mathbb{R}_{+} \rightarrow[1,+\infty)$ be a non-decreasing function. Suppose the covering transformation group G is finitely presented and satisfies the following radial isoperimetric inequality: for any word $w=s_{1} \ldots s_{m}$ in the free group F_{S} representing the identity e in G, we have

$$
\begin{equation*}
\operatorname{Area}(w) \leq C \sum_{i=1}^{m} f\left(d_{S}(\bar{w}(i), e)\right) \tag{3.1}
\end{equation*}
$$

where $w(i)=s_{1} \ldots s_{i}$ and $\bar{w}(i)$ is its image in G. Then there exists a 1 -form $\tilde{\eta}$ on \tilde{M} with measurable coefficients satisfying

$$
\left\{\begin{array}{l}
\pi^{*} \omega=d \widetilde{\eta} \tag{3.2}\\
|\widetilde{\eta}|(x) \leq C f\left(C d\left(x, x_{0}\right)\right)
\end{array}\right.
$$

for some constant $C>0$ where x_{0} is a fixed point in \tilde{M}. Moreover, if $f(\lambda) \leq C e^{C \lambda^{2}}$, one can choose $\tilde{\eta}$ to be smooth.

Proof We shall use a similar strategy as in the proof of Theorem 2.1. Let $\pi^{*} \omega=d \eta$ hold for some smooth 1 -form η on \widetilde{M}. As in the proof of Lemma 2.3, there exists a
constant C such that for any closed curve α on \widetilde{M}, we can construct a word $w \in F_{S}$ representing the identity and approximating α such that

$$
\begin{equation*}
\left|\int_{\alpha} \eta\right| \leq C(L(\alpha)+\operatorname{Area}(w)) \tag{3.3}
\end{equation*}
$$

Since $f \geq 1$ and it is non-decreasing, by (3.1), we have

$$
\begin{aligned}
\operatorname{Area}(w) & \leq C \sum_{i} f\left(d_{S}(\bar{w}(i), e)\right) \\
& \leq C \sum_{i} f\left(C d\left(x_{0}, \bar{w}(i)\left(x_{0}\right)\right)+C\right) \\
& \leq C \int_{0}^{L(\alpha)} f\left(C d\left(x_{0}, \alpha(s)\right)\right) d s
\end{aligned}
$$

where the second inequality follows from the quasi-isometry between G and \tilde{M}, and the last inequality follows from the construction in the proof of Lemma 2.3. Note also that the constant C varies from line to line. As in Lemma 2.4, we define the same linear functional \widetilde{L} on the subspace of closed 1-chains $Z_{1}\left(K^{\infty}\right)$ by (2.16). However, \widetilde{L} is not necessarily a bounded linear functional in the original norm. We shall define a new norm $\|\cdot\|_{\check{g}}$ on $C_{1}\left(K^{\infty}\right)$ by choosing a conformal Riemannian metric $\check{g}(x)=f\left(C d\left(x_{0}, x\right)\right)^{2} g(x)$ on \tilde{M}. In terms of this new norm,

$$
\begin{equation*}
\|\alpha\|_{\check{g}}=\int_{0}^{L} f\left(C d\left(x_{0}, \alpha(s)\right)\right) d s \geq \frac{1}{C} \operatorname{Area}(w) \tag{3.4}
\end{equation*}
$$

Combining (3.3) and (3.4), we get

$$
\begin{equation*}
\left|\int_{\alpha} \eta\right| \leq C\|\alpha\|_{\check{g}} \tag{3.5}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
|\widetilde{L}(c)| \leq C\left(\|c-\partial D\|_{\check{g}}+\|D\|_{g}\right) \tag{3.6}
\end{equation*}
$$

for any 2-chain D and closed 1-chain c. Now define a new flat norm

$$
|c|_{\check{g}}^{b}=\inf _{D}\|c-\partial D\|_{\check{g}}+\|D\|_{g}
$$

on $C_{1}\left(K^{\infty}\right)$. It is not difficult to show that the dual flat norm $|\theta|^{b}=\max \left\{\|\theta\|_{\check{g}},\|d \theta\|_{g}\right\}$ for any 1 -form θ on \tilde{M}. We have shown $\|\widetilde{L}\|_{Z_{1}\left(K^{\infty}\right)}^{b} \leq C$ from (3.6). As before, \widetilde{L} can be extended to a bounded linear functional L on the whole space $C_{1}\left(K^{\infty}\right)$. By [31, Theorem 5A] again, L is represented by a differential form $\widetilde{\eta}$ with measurable coefficients such that $\pi^{*} \omega=d \widetilde{\eta}$ and

$$
\|\tilde{\eta}\|_{\check{g}} \leq C
$$

which is equivalent to

$$
|\widetilde{\eta}|_{g}(x) \leq C f\left(C d\left(x, x_{0}\right)\right)
$$

This completes the first part of Theorem 3.1.
When $f(\lambda) \leq C e^{C \lambda^{2}}$, we use the heat equation method again to deform the 1-form $\tilde{\eta}$ to a smooth one. We first construct a solution $v(x, t)$ to the following equation:

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-\Delta\right) v=0 \tag{3.7}\\
\left.v\right|_{t=0}=d^{*} \widetilde{\eta}
\end{array}\right.
$$

It is well-known that the heat kernel $H(x, y, t)$ (for functions) on \widetilde{M} exists for all $t \geq 0$, and it satisfies the Gaussian type estimates

$$
\left\{\begin{array}{l}
H(x, y, t) \leq C t^{-\frac{n}{2}} e^{-\frac{d(x, y)^{2}}{C t}} \tag{3.8}\\
\left|\nabla_{y} H\right|(x, y, t) \leq C t^{-\frac{n+1}{2}} e^{-\frac{d(x, y)^{2}}{C t}}
\end{array}\right.
$$

for all $t \in[0,1]$. Combining with (3.8), there exists a small $T_{0}>0$ such that for all $x \in \widetilde{M}, 0<t \leq T_{0}$, the function

$$
\begin{equation*}
v(x, t)=\int_{\widetilde{M}}\left\langle d_{y} H(x, y, t), \widetilde{\eta}(y)\right\rangle d y \tag{3.9}
\end{equation*}
$$

solves (3.7) and satisfies

$$
\begin{equation*}
\left.|v|(x, t) \leq C t^{-\frac{1}{2}} f\left(C d\left(x, x_{0}\right)\right)\right) \tag{3.10}
\end{equation*}
$$

Indeed, for $d\left(x, x_{0}\right)>1$, we have

$$
\begin{align*}
|v|(x, t) \leq & \int_{B\left(x, 2 d\left(x, x_{0}\right)\right)} C t^{-\frac{n+1}{2}} e^{-\frac{d(x, y)^{2}}{C t}} f\left(C\left(d\left(x_{0}, y\right)\right) d y\right. \\
& +\sum_{k=1}^{\infty} \int_{B\left(x, 2^{k+1} d\left(x, x_{0}\right)\right) \backslash B\left(x, 2^{k} d\left(x, x_{0}\right)\right)} C t^{-\frac{n+1}{2}} e^{-\frac{d(x, y)^{2}}{C t}} f\left(C\left(d\left(x_{0}, y\right)\right) d y .\right. \tag{3.11}
\end{align*}
$$

The first term is dominated by

$$
C f\left(C d\left(x_{0}, x\right)\right) t^{-\frac{1}{2}} \int_{B\left(x, 2 d\left(x, x_{0}\right)\right)} t^{-\frac{n}{2}} e^{-\frac{d(x, y)^{2}}{C t}} \leq C t^{-\frac{1}{2}} f\left(C d\left(x_{0}, x\right)\right) .
$$

Note also that $f\left(C\left(d\left(x_{0}, y\right)\right)\right) \leq C e^{C 4^{k} d\left(x_{0}, x\right)^{2}}$ on $B\left(x, 2^{k+1} d\left(x, x_{0}\right)\right)$ and

$$
\operatorname{vol}\left(B\left(x, 2^{k+1} d\left(x, x_{0}\right)\right)\right) \leq e^{C 2^{k+1} d\left(x, x_{0}\right)}
$$

by volume comparison theorem since the Ricci curvature is bounded from below. Hence, the second term of (3.11) can be dominated by
$C d\left(x_{0}, x\right)^{-(n+1)}\left(\frac{d\left(x, x_{0}\right)}{\sqrt{t}}\right)^{n+1} \sum_{k=1}^{\infty} e^{-4^{k} \frac{d\left(x_{0}, x\right)^{2}}{C t}} \cdot e^{C 4^{k} d\left(x, x_{0}\right)^{2}} \leq C d\left(x_{0}, x\right)^{-(n+1)} \leq C$
when $t<T_{0}$, where T_{0} is a suitable small constant. If $d\left(x, x_{0}\right) \leq 1$, we have $d\left(x_{0}, y\right) \leq$ $d(x, y)+1$, and

$$
\begin{equation*}
|v|(x, t) \leq \int_{\widetilde{M}} C t^{-\frac{n+1}{2}} e^{-\frac{d(x, y)^{2}}{C t}} e^{C d(x, y)^{2}} d y \leq C t^{-\frac{1}{2}} \tag{3.12}
\end{equation*}
$$

which completes the proof of (3.10).
Let $u(x, t)=\int_{0}^{t} v(x, t-s) d s$, then by (3.7), it is easy to verify that u is a weak solution to the following heat equation on \widetilde{M} :

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-\Delta\right) u=d^{*} \tilde{\eta} \tag{3.13}\\
\left.u\right|_{t=0}=0
\end{array}\right.
$$

and u satisfies

$$
|u|(x, t) \leq C \sqrt{t} f\left(C d\left(x, x_{0}\right)\right)
$$

Multiply both sides of the above equation with $u \xi$, where ξ is a standard cutoff function which is 1 on $B(x, 1)$ and 0 outside of $B(x, 2)$. An integration by part shows

$$
\begin{equation*}
\int_{0}^{T_{0}} \int_{B(x, 1)}|d u|(y, t)^{2} d y d t \leq C \int_{0}^{T_{0}} \int_{B(x, 2)} u^{2}(y, t)+|\tilde{\eta}|(y)^{2} d y d t \tag{3.14}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\int_{0}^{T_{0}} \int_{B(x, 1)}|d u|(y, t)^{2}+|\widetilde{\eta}|^{2}(y) d y d t \leq C f^{2}\left(C\left(d\left(x, x_{0}\right)\right)\right. \tag{3.15}
\end{equation*}
$$

It is easy to verify that $\tilde{\eta}(t)=\widetilde{\eta}-d u$ is a weak solution of the following equation on $\widetilde{M} \times\left(0, T_{0}\right]$:

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-\triangle\right) \widetilde{\eta}(t)=\pi^{*} d^{*} \omega \tag{3.16}\\
\widetilde{\eta}(0)=\widetilde{\eta}
\end{array}\right.
$$

Similar to Eq. (2.19) in the proof of Theorem 2.1, we know $\widetilde{\eta}(x, t)$ is a smooth solution on $\widetilde{M} \times\left(0, T_{0}\right]$. A standard computation shows

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\Delta\right)|\widetilde{\eta}(t)|^{2} \leq-2|\nabla \widetilde{\eta}|(t)^{2}+C|\widetilde{\eta}|(t)^{2}+C \tag{3.17}
\end{equation*}
$$

Hence, we obtain

$$
\left(\frac{\partial}{\partial t}-\Delta\right)\left(|\widetilde{\eta}(t)|^{2}+1\right) e^{-C t} \leq 0
$$

By the well-known result [25, Theorem 1.2] for non-negative subsolution of heat equation, we obtain

$$
\begin{aligned}
|\widetilde{\eta}|^{2}(x, t) & \leq 2 \sup _{y \in B(x, 1)}|\tilde{\eta}|^{2}(y, 0)+C \int_{0}^{T_{0}} \int_{B(x, 1)}|\tilde{\eta}|^{2}(y, t) d y d t+C \\
& \leq C f^{2}\left(C d\left(x, x_{0}\right)\right),
\end{aligned}
$$

where the second inequality follows from (3.15). On the other hand, a local gradient estimate on $\tilde{\eta}$ implies

$$
\begin{equation*}
|\nabla \widetilde{\eta}|(x, t) \leq C t^{-\frac{1}{2}} f\left(C d\left(x, x_{0}\right)\right) \tag{3.18}
\end{equation*}
$$

As in the previous section, let $\hat{\omega}(t)=\int_{0}^{t}\left(d \widetilde{\eta}(s)-\pi^{*} \omega\right) d s$, then $\hat{\omega}(t)$ satisfies

$$
\left\{\begin{array}{l}
\left(\frac{\partial}{\partial t}-\Delta\right) \hat{\omega}(t)=0 \tag{3.19}\\
\hat{\omega}(0)=0
\end{array}\right.
$$

The estimate (3.18) implies $|\hat{\omega}|(x, t) \leq C e^{C d^{2}\left(x, x_{0}\right)}$. As in the proof of Theorem 2.1, by maximum principle ([24, Theorem 15.2$]$ or [6, Lemma 2.5]), we obtain $\hat{\omega}(t) \equiv 0$. Therefore $\widetilde{\eta}\left(T_{0}\right)$ is the desired smooth 1-form. The proof of Theorem 3.1 is completed.

The proof of Theorem 1.4. For $p \geq 1$, we choose $f(t)=(1+t)^{p-1}$ in Theorem 3.1. Hence, there exists a smooth 1-form η on \hat{M} such that $\pi^{*} \omega=d \eta$ and

$$
|\eta|(x) \leq C\left(d_{\hat{M}}\left(x, x_{0}\right)+1\right)^{p-1}
$$

for all $x \in \hat{M}$ where C is a positive constant and $x_{0} \in \hat{M}$ is a fixed point.
The proof of Theorem 1.5. By Theorem 1.4, there exists a smooth 1-form η on the universal covering \widetilde{M} with linear growth such that $\pi^{*} \omega=d \eta$, i.e., M is Kähler non-elliptic. By [9,20], the Euler characteristic $(-1)^{\frac{\operatorname{dim}_{\mathbb{R}} M}{2}} \chi(M) \geq 0$.

4 Quadratic radial isoperimetric inequality

In this section, we prove that automatic groups and CAT(0) groups satisfy the radial isoperimetric inequality (1.3) for $p=2$ and establish Theorem 1.6.

Theorem 4.1 Automatic groups satisfy the quadratic radial isoperimetric inequality (1.3) for $p=2$.

The notion of automatic groups was first introduced by Epstein. Automatic groups are finitely generated groups whose operations are governed by automata. Many interesting groups are automatic, e.g. hyperbolic groups and mapping class groups [27]. We only give a brief description of the necessary notions used in the proof of Theorem 4.1, and for more details, we refer to $[3,14,28]$ and the references therein.

We shall follow the presentation in [14, Section 8]. Let S be a finite set and $S^{*}=$ $\left\{w=s_{1} \ldots s_{n} \mid s_{i} \in S\right\}$ be the set of finite sequences of letters over S. A subset $L \subset S^{*}$ is called a language. A finite state automaton \mathcal{A} over S is a 5-tuple $\mathcal{A}=\left(\Gamma, i_{o}, S, \lambda, Y\right)$ satisfying
(1) Γ is a finite directed graph with vertex set $V(\Gamma)$ (states) and edge set $E(\Gamma)$ (transitions);
(2) i_{o} is a distinguished vertex of Γ called "initial state";
(3) $\lambda: E(\Gamma) \rightarrow S$ is a map labelling $E(\Gamma)$ by S;
(4) $Y \subset V(\Gamma)$ is a set of states, called "final states".

For a finite state automaton \mathcal{A}, the language $L(\mathcal{A})$ is the set of labels $\lambda(p)$ of all directed paths p of Γ which begin at i_{o} and end at any state of Y. A language $L \subset S^{*}$ is said to be regular if there is a finite state automaton \mathcal{A} with alphabet S such that $L=L(\mathcal{A})$.

Let G be a group with a finite symmetric generator set $S=S^{-1}$. Let $\mu: S^{*} \rightarrow G$ be the evaluation map. A pair (S, L) is called an automatic structure on G if $L \subset S^{*}$ is a regular language satisfying
(1) $\mu: L \rightarrow G$ is surjective;
(2) there exists a number $k>0$ such that if $w, w^{\prime} \in L$ satisfy

$$
d_{\Gamma(G, S)}\left(\mu(w), \mu\left(w^{\prime}\right)\right) \leq 1,
$$

then w, w^{\prime} satisfy the k-fellow traveler property:

$$
\begin{equation*}
d_{\Gamma(G, S)}\left(\mu(w(i)), \mu\left(w^{\prime}(i)\right)\right) \leq k \tag{4.1}
\end{equation*}
$$

for all i where $w(i)=s_{1} \ldots s_{i}$ is the i-th subword of $w=s_{1} \ldots s_{n}$.
A group is called automatic if it admits an automatic structure. It is well-known that (e.g. [3, Theorem 2.5.1] or [14, Section 9]), for any automatic structure (S, L) on G, there exists another automatic structure (S, L^{\prime}), where $L^{\prime} \subset L$ can be mapped bijectively onto G by the evaluation map μ and L^{\prime} is also a regular language for a possibly different finite state automaton. Moreover, there exists a constant $K>0$ such that for any $w, w^{\prime} \in L^{\prime}$ with $d_{S}\left(\mu(w), \mu\left(w^{\prime}\right)\right)=1$ one has

$$
\begin{equation*}
\left|L(w)-L\left(w^{\prime}\right)\right| \leq K \tag{4.2}
\end{equation*}
$$

where $L(w)$ and $L\left(w^{\prime}\right)$ are the word lengths.
It is well-known that the automatic groups satisfy the classical quadratic isoperimetric inequality (e.g. [14, Theorem 9.7]). In the following, we shall use a similar strategy to prove that automatic groups also satisfy the stronger radial isoperimetric inequality (1.3) for $p=2$.

The proof of Theorem 4.1. Let (S, L) be an automatic structure on G such that the evaluation map $\mu: L \rightarrow G$ is bijective. Let $w=s_{1} s_{2} \ldots s_{n}$ be a reduced word in the free group F_{S} representing the identity e of G. For $i=1, \ldots, n$, let $w(i)=s_{1} \ldots s_{i}$ and $\bar{w}(i)=\mu(w(i))$. Let p_{i} be the element in L satisfying $\mu\left(p_{i}\right)=\bar{w}(i)$. We claim

$$
\begin{equation*}
L\left(p_{i}\right) \leq K d_{S}(\bar{w}(i), e) \tag{4.3}
\end{equation*}
$$

Indeed, let $a_{1} a_{2} \ldots a_{\ell(i)}$ be a reduced word representing a minimal geodesic connecting e and $\bar{w}(i)$ where $a_{j} \in S$ and $\ell(i)=d_{S}(\bar{w}(i), e)$. Let $p_{j}^{\prime} \in L$ satisfy $\mu\left(p_{j}^{\prime}\right)=$ $\mu\left(a_{1} \ldots a_{j}\right)$ for $j=1, \ldots, \ell(i)$. From (4.2), we know $\left|L\left(p_{j}^{\prime}\right)-L\left(p_{j+1}^{\prime}\right)\right| \leq K$. This implies

$$
L\left(p_{\ell(i)}^{\prime}\right) \leq K \ell(i)=K d_{S}(\bar{w}(i), e)
$$

Note that $p_{\ell(i)}^{\prime}=p_{i}$ since $\mu\left(p_{\ell(i)}^{\prime}\right)=\mu\left(p_{i}\right)=\bar{w}(i)$ and μ is bijective from L to G. Hence, we obtain (4.3).

From the k-fellow traveler property (4.1), we get $d_{S}\left(\mu\left(p_{i+1}(t)\right), \mu\left(p_{i}(t)\right)\right) \leq k$ for all t where $p_{i}(t)$ is the t-th subword of p_{i}. For fixed i and $t \leq \max \left\{L\left(p_{i}\right), L\left(p_{i+1}\right)\right\}$, connecting the five points

$$
\mu\left(p_{i}(t)\right), \quad \mu\left(p_{i}(t+1)\right), \quad \mu\left(p_{i+1}(t+1), \quad \mu\left(p_{i+1}(t), \quad \mu\left(p_{i}(t)\right)\right.\right.
$$

successively with 4 minimal geodesics, we get a closed loop γ_{t}^{i} of length $\leq 2 k+2$. The total number of the loops γ_{t}^{i} is bounded by

$$
\sum_{i=1}^{L(w)}\left(\max \left\{L\left(p_{i}\right), L\left(p_{i+1}\right)\right\}+1\right) \leq 2 K \sum_{i=1}^{L(w)}\left(d_{S}(\bar{w}(i), e)+1\right)
$$

We assume that the set R of relators consists of all words in F_{S} representing e with length $\leq 2 k+2$. We obtain the radial isoperimetric inequality (1.3) for $p=2$, i.e.

$$
\begin{equation*}
\operatorname{Area}(w) \leq 2 K \sum_{i=1}^{L(w)}\left[d_{S}(\bar{w}(i), e)+1\right] \tag{4.4}
\end{equation*}
$$

The proof of Theorem 4.1 is complete.
Theorem 4.2 CAT(0)-groups satisfy the quadratic radial isoperimetric inequality (1.3) for $p=2$.

Recall that a CAT(0)-group is a group which can act properly discontinuously and cocompactly by isometries on a proper geodesic CAT(0)-metric space (X, d). A geodesic metric space (X, d) is called a $\operatorname{CAT}(0)$-metric space if it satisfies the following properties. For any geodesic triangle $\triangle_{A B C}$ in X, let $\triangle_{\bar{A} \bar{B} \bar{C}}$ be the comparison triangle in the Euclidean plane with the same side lengths as $\triangle_{A B C}$, i.e. $d(A, B)=d(\bar{A}, \bar{B}), d(B, C)=d(\bar{B}, \bar{C}), d(C, A)=d(\bar{C}, \bar{A})$. The triangle $\triangle_{A B C}$
is at least as thin as $\triangle_{\bar{A} \bar{B} \bar{C}}$, i.e., for any point D on the side $B C$, let \bar{D} be the corresponding point on $\overline{B C}$, with $d(B, D)=d(\bar{B}, \bar{D})$, we must have $d(A, D) \leq d(\bar{A}, \bar{D})$. Typical examples of CAT(0)-groups are fundamental groups of compact manifolds with non-positive sectional curvatures.

The proof of Theorem 4.2. Let (X, d) be the proper geodesic CAT(0)-metric space on which G acts properly discontinuously and cocompactly. Fix a point $p \in X$ and let $\Omega=B(p, 4 D)$ be an open ball of radius $4 D$ centered at p, where D is the diameter of the quotient space X / G. It is clear that for any $q \in X$, there exists some $g \in G$ such that $g(q) \in B(p, 2 D)$. Let $S=\{g \in G \mid g(\Omega) \cap \Omega \neq \emptyset\}$. It is obvious that S is a finite symmetric subset of G. Moreover, S is a generating set of G. Indeed, for any $g \in G$, let

$$
\gamma:[0, d(p, g(p))] \rightarrow X
$$

be a minimal geodesic connecting p and $g(p)$. We may assume $d(g(p), p)>2 D$, otherwise $g \in S$. For each $i=1,2, \ldots, k=\left[\frac{d(g(p), p)}{D}\right]$, we can choose $p_{i} \in B(p, 2 D)$ and $g_{i} \in G$ such that $g_{i}\left(p_{i}\right)=\gamma(i D)$. Since $d\left(g_{i}^{-1} g_{i+1}\left(p_{i+1}\right), p_{i}\right) \leq D$, we know $g_{i}^{-1} g_{i+1}\left(p_{i+1}\right) \in B(p, 3 D) \subset \Omega$ and so $s_{i}:=g_{i}^{-1} g_{i+1} \in S$, and $s_{k}:=g_{k}^{-1} g \in S$. Then $g=g_{k} s_{k}=g_{k-1} s_{k-1} s_{k}=\cdots=g_{1} s_{1} s_{2} \ldots s_{k}$. It is obvious $g_{1} \in S$. Hence G is generated by S.

Let $\Gamma(G, S)$ be the Cayley graph of G over S. For any $g_{1}, g_{2} \in G$, we have

$$
\begin{equation*}
\frac{d\left(g_{1}(p), g_{2}(p)\right)}{12 D} \leq d_{S}\left(g_{1}, g_{2}\right) \leq\left[\frac{d\left(g_{1}(p), g_{2}(p)\right)}{D}\right]+1 \tag{4.5}
\end{equation*}
$$

The second inequality has been proved by the above argument. The first inequality follows from the triangle inequality: let $g_{2}^{-1} g_{1}=s_{1} \ldots s_{k}$ with $s_{i} \in S$, then

$$
\begin{align*}
d\left(s_{1} \ldots s_{k}(p), p\right) & \leq d\left(s_{1} \ldots s_{k}(p), s_{1} \ldots s_{k-1}(p)\right)+\cdots+d\left(s_{1}(p), p\right) \\
& =d\left(s_{k}(p), p\right)+\cdots+d\left(s_{1}(p), p\right) \tag{4.6}\\
& \leq k \cdot 12 D
\end{align*}
$$

where the last inequality follows from the fact that $d\left(s_{i}(p), p\right) \leq 4 D+4 D+4 D=$ $12 D$ for each i. Let $w=s_{1} s_{2} \ldots s_{k} \in F_{S}$ be a word representing the identity e in G, $w(i)=s_{1} \ldots s_{i}$ be the i-th subword of $w, i=1,2, \ldots, k$ and $\bar{w}(i)$ the natural image in G. Connecting p and $\bar{w}(i)(p)$ with a minimal geodesic

$$
\gamma_{i}(s):[0, d(p, \bar{w}(i)(p)] \rightarrow X
$$

We choose $\left[\frac{d(p, \bar{w}(i) p}{D}\right]+1$ points on γ_{i} as above. Let $p_{i}^{j}=\gamma_{i}(j D)$ for $j \leq$ $\left[\frac{d(p, \bar{w}(i)(p))}{D}\right]$, and $p_{i}^{\left[\frac{d(p, w(i)(p))}{D}\right]+1}=\bar{w}(i)(p)$. Note that
$d(\bar{w}(i)(p), \bar{w}(i+1)(p))=d\left(s_{1} \ldots s_{i}(p), s_{1} \ldots s_{i+1}(p)\right)=d\left(p, s_{i+1}(p)\right) \leq 12 D$.

Applying CAT(0) inequality, we obtain

$$
\begin{equation*}
d\left(p_{i}^{j}, p_{i+1}^{j}\right) \leq d(\bar{w}(i)(p), \bar{w}(i+1)(p)) \leq 12 D \tag{4.7}
\end{equation*}
$$

for all $j>0$. Actually, this can be seen from the following simple fact: for any triangle $\triangle_{A B C}$ on the plane \mathbb{R}^{2} with $|A B| \leq|A C|$, let E and E^{\prime} lie on the sides $A B$ and $A C$ respectively and $|A E|=\left|A E^{\prime}\right|$, then $\left|E E^{\prime}\right| \leq|B C|$. Note that if $E=B$ and $|A B| \leq\left|A E^{\prime}\right|$, we still have $\left|B E^{\prime}\right| \leq|B C|$. If we choose $g_{i}^{j} \in G$ such that $d\left(g_{i}^{j}(p), p_{i}^{j}\right) \leq 2 D$, then by (4.7), we have

$$
d\left(g_{i}^{j}(p), g_{i+1}^{j}(p)\right) \leq 16 D
$$

By (4.5), we have $d_{S}\left(g_{i}^{j}, g_{i+1}^{j}\right) \leq 17$. Similarly, one has $d_{S}\left(g_{i}^{j}, g_{i}^{j+1}\right) \leq 6$. On the Cayley graph $\Gamma(G, S)$, connecting the five points

$$
g_{i}^{j}, g_{i}^{j+1}, g_{i+1}^{j+1}, g_{i+1}^{j}, g_{i}^{j}
$$

successively with 4 minimal geodesics, we get a closed loop σ_{i}^{j} of length ≤ 46. Let w^{\prime} be the word representing the union $\sigma_{1}^{1} \cup \sigma_{1}^{2} \ldots$ of closed loops, then $w=w^{\prime}$ as elements in F_{S}. Define the relator set $R=\left\{r \in F_{S} \mid \bar{r}=e, L(w) \leq 46\right\}$, then R is a finite set. From the above argument, we obtain

$$
\operatorname{Area}(w) \leq 2 \sum_{i=1}^{L(w)}\left(\left[\frac{d(p, \bar{w}(i)(p))}{D}\right]+1\right) \leq 24 \sum_{i=1}^{L(w)}\left[d_{S}(\bar{w}(i), e)+1\right]
$$

where the second inequality follows from (4.5). This completes the proof of Theorem 4.2.
The proof of Theorem 1.6. If $\pi_{1}(G)$ is automatic or CAT(0), then by Theorems 4.1 and 4.2, we know G satisfies the radial isoperimetric inequality (1.3) for $p=2$. Hence, by Theorem $1.5, M$ is Kähler non-elliptic and the Euler characteristic $(-1) \frac{\operatorname{dim}_{\mathbb{R}} M}{2} \chi(M) \geq$ 0 .

Acknowledgements The first author wishes to thank Hao Liang for helpful discussions, and he was partially supported by Grants NSFC11521101, 11025107. The second author was partially supported by China's Recruitment Program of Global Experts and NSFC 11688101.

References

1. Amorós, J., Burger, M., Corlette, K., Kotschick, D., Toledo, D.: Fundamental groups of compact Kähler manifolds. Mathematical Surveys and Monographs, 44. (1996)
2. Barth, W.P., Hulek, K., Peters, C., Van de Ven, A.: Compact Complex Surfaces. Springer (2003)
3. Cannon, J.W., Epstein, B.A., Holt, D.F., Levy, S.V.F., Paterson, M.S., Thurston, W.P.: Word processing in groups. Jones and Bartlett Publishers, Boston, MA (1992)
4. Brunebarbe, Y., Klingler, B., Totaro, B.: Symmetric differentials and the fundamental group. Duke Math. J. 162(14), 2797-2813 (2013)
5. Cheeger, J., Gromov, M.: L^{2}-cohomology and group cohomology. Topology 25, 189-215 (1986)
6. Chen, B.-L.: Smoothing positive currents and the existence of Kähler-Einstein metrics. Sci. China Math. 55, 893-912 (2012)
7. Chen, B.-L., Yang, X.-K.: Compact Kähler manifolds homotopic to negatively curved Riemannian manifolds. Math. Ann. 370, 1477-1489 (2018)
8. Chern, S.S.: On curvature and characteristic classes of Riemannian manifolds. Abh. Math. Sem. Univ. Hamburg 20, 117-126 (1955)
9. Cao, J.-G., Xavier, F.: Kähler parabolicity and the Euler number of compact manifolds of non-positive sectional curvature. Math. Ann. 319, 483-491 (2001)
10. Dodziuk, J.: L^{2}-harmonic forms on rotationally symmetric Riemannian manifolds. Proc. Amer. Math. Soc. 77(3), 395-400 (1979)
11. Eyssidieux, P., Kähler hyperbolicity and variations of Hodge structures, New trends in algebraic geometry (Warwick, : 71-92, p. 264. London Math, Soc. Lecture Note Ser. (1996)
12. Federer, H.: Real flat chains, cochains and variational problems, Indiana Univ. Math. J. 24 (1974/75), 351-407
13. Geroch, R.: Positive sectional curvature does not imply positive Gauss-Bonnet integrand. Proc. Amer. Math. Soc. 54, 267-270 (1976)
14. Gersten, S.M.: Introduction to hyperbolic and automatic groups. CRM Proc. Lecture Notes 17, 45-70 (1999)
15. Gersten, S.M., Holt, D.F., Riley, T.R.: Isoperimetric inequalities for nilpotent groups. GAFA 13, 795814 (2003)
16. Gromov, M.: Hyperbolic manifolds, groups and actions. Ann. of Math. Stud. 97, 183-213 (1981)
17. Gromov, M.: Hyperbolic groups, Essays in group theory, 75-263, Math. Sci. Res. Inst. Publ.,8, Springer, New York, (1987)
18. Gromov, M.: Kähler hyperbolicity and L^{2}-Hodge theory. J. Differential Geom. 33, 263-292 (1991)
19. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, Progress in Mathematics, 152. (1999)
20. Jost, J., Zuo, K.: Vanishing theorems for L^{2}-cohomology on infinite coverings of compact Kähler manifolds and applications in algebraic geometry. Comm. Anal. Geom. 8, 1-30 (2000)
21. Kȩdra, J.: Symplectically hyperbolic manifolds. Differential Geom. Appl. 27(4), 455-463 (2009)
22. Klembeck, P.: On Geroch's counter-example to algebaic Hopf conjecture. Proc. Amer. Math. Soc. 59, 334-336 (1976)
23. Klingler, B.: Symmetric differentials, Kähler groups and ball quotients. Invent. Math. 192(2), 257-286 (2013)
24. Li, P.: Geometric analysis. Cambridge University Press (2012)
25. Li, P., Tam, L.-F.: The heat equation and harmonic maps of complete manifolds. Invent. Math. 105(1), 1-46 (1991)
26. Mok, N.: Factorization of semisimple discrete representations of Kähler groups. Invent. Math. 110(3), 557-614 (1992)
27. Mosher, L.: Mapping class groups are automatic. Ann. of Math. (2) 142(2), 303-384 (1995)
28. Ohshika, K.: Discrete Groups, Iwanami Series in Modern Mathematics. (2002)
29. Sikorav, J.-C.: Growth of a primitive of a differential form. Bull. Soc. Math. France 129(2), 159-168 (2001)
30. Sikorav, J.-C.: Bounds on primitives of differential forms and group cocycles, arXiv:math/0501089
31. Whitney, H.: Geometric Integration Theory, Princeton University Press 1957. Dover Publications Inc., Mineola, New York (2005)
32. Yau, S.-T.: Problem section. In Seminar on Differential Geometry, volume 102 of Ann. of Math Stud. 669-706. (1982)
33. Zuo, K.: Factorizations of nonrigid Zariski dense representations of π_{1} of projective algebraic manifolds. Invent. Math. 118(1), 37-46 (1994)
34. Zuo, K.: Representations of fundamental groups of algebraic varieties. Lecture Notes in Mathematics, vol. 1708. Springer-Verlag, Berlin (1999)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

[^0]: Communicated by Ngaiming Mok.
 \boxtimes Xiaokui Yang
 xkyang@mail.tsinghua.edu.cn
 Bing-Long Chen
 mcscbl@mail.sysu.edu.cn
 1 Department of Mathematics, Sun Yat-sen University, Guangzhou 510275, China
 2 Department of Mathematics and Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

