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Abstract Let M and N be two compact complex manifolds. We show that if the tautological line bundle

OT ∗M
(1) is not pseudo-effective and OT ∗N

(1) is nef, then there is no non-constant holomorphic map from

M to N . In particular, we prove that any holomorphic map from a compact complex manifold M with
RC-positive tangent bundle to a compact complex manifold N with nef cotangent bundle must be a

constant map. As an application, we obtain that there is no non-constant holomorphic map from a
compact Hermitian manifold with positive holomorphic sectional curvature to a Hermitian manifold

with non-positive holomorphic bisectional curvature.
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1. Introduction

The classical Schwarz–Pick lemma states that any holomorphic map from the unit disc

in the complex plane into itself decreases the Poincaré metric. This was extended by
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Ahlfors [1] to maps from the disc into a hyperbolic Riemann surface and by Chern [9] and

Lu [18] to higher-dimensional complex manifolds. A major advance was Yau’s Schwarz

lemma [39], which says that a holomorphic map from a complete Kähler manifold with

Ricci curvature bounded below into a Hermitian manifold with holomorphic bisectional

curvature bounded above by a negative constant is distance-decreasing up to a constant

depending only on these bounds. In particular, there is no non-trivial holomorphic map

from compact Kähler manifolds with positive Ricci curvature to Hermitian manifolds with

non-positive holomorphic bisectional curvature. Later generalizations were mainly in two

directions: relaxing the curvature hypothesis or the Kähler assumption. In philosophy,

holomorphic maps from ‘positively curved’ complex manifolds to ‘non-positively curved’

complex manifolds should be constant. For more details, we refer to the recent paper [29]

of Tosatti and the references therein. There are also some other generalizations along this

line, for instance, on complex analyticity of harmonic maps (e.g. [14, 28]).

In this paper, we obtain a rigidity theorem on holomorphic maps between complex

manifolds, which recovers many classical rigidity theorems along this line in differential

geometry. The curvature condition of the domain manifold is only required to be

RC-positive. This curvature notion was introduced in our previous paper [33], and it

is significantly weaker than the positivity of Ricci curvature. For instance, a complex

manifold with positive holomorphic sectional curvature is RC-positive. One of the

key ingredients in our proofs relies on the Leray–Grothendieck spectral sequence and

isomorphisms of various cohomology groups, which is quite different from classical

methods in differential geometry. As it is well known, the latter is based on various

maximum principles (e.g. [38]).

In [33], we introduced a terminology called ‘RC-positivity’. A Hermitian holomorphic

vector bundle (E , hE ) over a complex manifold X is called RC-positive (resp.

RC-negative) if for any q ∈ X and any non-zero vector v ∈ Eq , there exists some non-zero

vector u ∈ Tq X such that

RE (u, u, v, v) > 0 (resp. < 0).

It is easy to see that for a Hermitian line bundle (L , hL ), it is RC-positive if and

only if its Ricci curvature −
√
−1∂∂ log hL has at least one positive eigenvalue at each

point of X . This terminology has many nice properties. For instance, quotient bundles

of RC-positive bundles are also RC-positive; subbundles of RC-negative bundles are still
RC-negative. On the other hand, it is obvious that a compact complex manifold with

positive holomorphic sectional curvature has RC-positive tangent bundle. By using the

Calabi–Yau theorem [40], we proved in [33, Corollary 3.8] that the holomorphic tangent

bundles of Fano manifolds can admit RC-positive Kähler metrics. This curvature notion

should be closely related to the pseudo-effectiveness of vector bundles defined by Păun

and Takayama in [24] (see also [10, 23] and Theorem 2.4). Moreover, it can also be

regarded as a differential geometric interpretation of the positive α-slope investigated

by Campana and Păun in [7]. The properties of RC-positive vector bundles are studied

in [33] and § 2.

The geometry of vector bundles is usually characterized by their tautological line
bundles. Let E be a holomorphic vector bundle and P(E ∗) be its projective bundle.
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The tautological line bundle is denoted by OE (1). For instance, E is called ample (resp.

nef) if the tautological line bundle OE (1) is ample (resp. nef) over P(E ∗) [13]. There

are many methods to construct Hermitian metrics on line bundles (e.g. on OE (1))
with various weak positivities. However, it is still a challenging problem to construct

Hermitian metrics on vector bundles with desired curvature properties. For instance, it

is a long-standing open problem [11] to construct positive Hermitian metrics on ample

vector bundles.

The main result of this paper is the following rigidity theorem.

Theorem 1.1. Let M and N be two compact complex manifolds. If the tautological line

bundle OT ∗M
(−1) is RC-positive and OT ∗N

(1) is nef, then any holomorphic map from M to

N is constant.

Theorem 1.1 has an equivalent algebraic version.

Theorem 1.2. Let M and N be two compact complex manifolds. If the tautological line

bundle OT ∗M
(1) is not pseudo-effective and OT ∗N

(1) is nef, then any holomorphic map from

M to N is constant.

Let us explain the curvature conditions in Theorems 1.1 and 1.2. A line bundle is called

pseudo-effective if it possesses a (possibly) singular Hermitian metric whose curvature is

semi-positive in the sense of current. When M is a Riemann surface, OT ∗M
(1) is not

pseudo-effective if and only if T ∗M is not pseudo-effective, i.e. M ∼= P1. In this case,

Theorem 1.2 is classical. In a higher-dimensional case, OT ∗M
(1) is not pseudo-effective

if and only if OT ∗M
(1) is RC-negative or, equivalently, the dual line bundle OT ∗M

(−1) is

RC-positive (Theorem 2.4). Roughly speaking, it says that TM has a ‘positive direction’

at each point of M . As we discussed before, the RC-positivity of OT ∗M
(−1) is a very weak

curvature condition. For example, it can be implied by the positivity of holomorphic

sectional curvature (e.g. Proposition 2.4). Moreover, a compact complex manifold with

RC-positive OT ∗M
(−1) is not necessarily Kähler. For the curvature requirement on the

target manifold N , OT ∗N
(1) is nef if and only if the cotangent bundle T ∗N is nef. For

instance, all submanifolds of abelian varieties have nef cotangent bundles. The proofs of

Theorems 1.1 and 1.2 rely on vanishing theorems for twisted vector bundles (Theorem 3.1)

which are established by using the Le Potier isomorphism (Leray–Grothendieck spectral

sequence) and characterizations of RC-positive vector bundles obtained in [32, 33], which

are significantly different from classical methods in differential geometry.

We say that M has RC-positive tangent bundle if M admits a smooth Hermitian

metric ωg such that (TM , ωg) is RC-positive. We show in Proposition 2.6 that if TM is

RC-positive, then OT ∗M
(−1) is RC-positive. As an application of Theorem 1.1, we obtain

the following result.

Theorem 1.3. Let f : M → N be a holomorphic map between two compact complex

manifolds. If M has RC-positive tangent bundle and N has nef cotangent bundle, then f
is a constant map.
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There are many Kähler and non-Kähler complex manifolds with RC-positive tangent

bundles. We just list some of them for readers’ convenience.

• Fano manifolds [33, Corollary 3.8];

• manifolds with positive second Chern–Ricci curvature [33, Corollary 3.7];

• Hopf manifolds S1
× S2n+1 ([16, formula (6.4)]);

• complex manifolds with positive holomorphic sectional curvature.

The following differential geometric version of Theorem 1.3 is of particular interest, which

recovers several classical rigidity theorems in complex differential geometry.

Corollary 1.4. Let M be a compact complex manifold with RC-positive tangent bundle and

N be a Hermitian manifold with non-positive holomorphic bisectional curvature, then any

holomorphic map from M to N is a constant map.

Remark 1.5. A compact complex manifold with RC-positive tangent bundle can contain

no rational curves. For instance, Hopf manifolds S1
×S2n+1.

Remark 1.6. As we pointed out before, one of the key ingredients in the proofs is

the Leray–Grothendieck spectral sequence. In Appendix A, we include a discussion on

classical methods for readers’ convenience.

As a special case of Corollary 1.4, we obtain the following.

Corollary 1.7. Let (M, ωg) be a compact Hermitian manifold with positive holomorphic

sectional curvature and (N , h) be a Hermitian manifold with non-positive holomorphic

bisectional curvature. Then there is no non-constant meromorphic map from M or its

blowing-up to N .

Remark 1.8. The notion of positive holomorphic sectional curvature is very natural in

differential geometry, but it seems to be mysterious in literature. Recently, we proved

in [33, Theorem 1.7] that a compact Kähler manifold with positive holomorphic sectional

curvature must be projective and rationally connected, which confirms a well-known

conjecture [41, Problem 47] of Yau. However, the geometry of compact complex manifolds

with positive holomorphic sectional curvature is still not clear. For some related topics,

we refer to [2, 5, 6, 8, 17, 19–22, 25, 30, 31] and the references therein. A project on the

geometry of complete non-compact complex manifolds with RC-positive curvature is also

carried out and we have obtained some results analogous to Yau’s classical work [39].

2. Background materials

Let (E , h) be a Hermitian holomorphic vector bundle over a complex manifold X with

Chern connection ∇. Let {zi
}
n
i=1 be the local holomorphic coordinates on X and {eα}rα=1

be a local frame of E . The curvature tensor RE
∈ 0(X,31,1T ∗X ⊗End(E )) has components
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RE
i jαβ
= −

∂2hαβ
∂zi∂z j + hγ δ

∂hαδ
∂zi

∂hγ β
∂z j . (2.1)

(Here and henceforth, we sometimes adopt the Einstein convention for summation.) If

(X, ωg) is a Hermitian manifold, then (TX , g) has Chern curvature components

Ri jk` = −
∂2gk`

∂zi∂z j + g pq ∂gkq

∂zi

∂gp`

∂z j . (2.2)

The Chern–Ricci curvature Ric(ωg) of (X, ωg) is represented by

Ri j = gk`Ri jk`

and the second Chern–Ricci curvature Ric(2)(ωg) has components

R(2)
k`
= gi j Ri jk`.

Definition 2.1. A Hermitian holomorphic vector bundle (E , h) over a complex manifold

X is called Griffiths positive at point q ∈ X if for any non-zero vector v ∈ Eq and any

non-zero vector u ∈ Tq X , we have

RE (u, u, v, v) > 0. (2.3)

(E , h) is called Griffiths positive if it is Griffiths positive at every point of X .

As analogous to Griffiths positivity, we introduced in [33] the following concept.

Definition 2.2. A Hermitian holomorphic vector bundle (E , h) over a complex manifold

X is called RC-positive at point q ∈ X if for each non-zero vector v ∈ Eq , there exists

some non-zero vector u ∈ Tq X such that

RE (u, u, v, v) > 0. (2.4)

(E , h) is called RC-positive if it is RC-positive at every point of X .

Remark 2.3. Similarly, one can define semi-positivity, negativity, etc.

In [32, Theorem 1.4], we obtained an equivalent characterization for RC-positive line

bundles, which plays a key role in this paper.

Theorem 2.4. Let X be a compact complex manifold and L be a holomorphic line bundle

over X . Then the following statements are equivalent:

(1) L is RC-positive;

(2) the dual line bundle L ∗ is not pseudo-effective.

As an application of Theorem 2.4, we have the following.
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Corollary 2.5. Let X be a compact complex manifold. If L is an RC-positive line bundle

over X , then

H0(X,L ∗) = 0. (2.5)

Proof. Suppose H0(X,L ∗) 6= 0, then L ∗ is Q-effective, and so it is pseudo-effective. By

Theorem 2.4, this is a contradiction.

The points of the projective bundle P(E ∗) of E → X can be identified with the

hyperplanes of E . Note that every hyperplane V in Ez corresponds bijectively to the line

of linear forms in E ∗z which vanish on V . Let π : P(E ∗)→ X be the natural projection.

There is a tautological hyperplane subbundle S of π∗E such that

S[ξ ] = ξ
−1(0) ⊂ Ez

for all ξ ∈ E ∗z \ {0}. The quotient line bundle π∗E /S is denoted by OE (1) and is called

the tautological line bundle associated with E → X . Hence, there is an exact sequence of

vector bundles over P(E ∗)

0→ S → π∗E → OE (1)→ 0. (2.6)

A holomorphic vector bundle E → X is called ample (resp. semi-ample, nef ) if the line

bundle OE (1) is ample (resp. semi-ample, nef) over P(E ∗).
Suppose dimC X = n and r = rank(E ). Let π be the projection P(E ∗)→ X and L =

OE (1). Let (e1, . . . , er ) be the local holomorphic frame on E and the dual frame on E ∗ is

denoted by (e1, . . . , er ). The corresponding holomorphic coordinates on E ∗ are denoted

by (W1, . . . ,Wr ). If (hαβ) is the matrix representation of a smooth Hermitian metric hE

on E with respect to the basis {eα}rα=1, then the induced Hermitian metric hL on L can

be written as

hL
=

1∑
hαβWαWβ

. (2.7)

The curvature of (L , hL ) is

RL
=
√
−1∂∂ log

(∑
hαβWαWβ

)
, (2.8)

where ∂ and ∂ are operators on the total space P(E ∗). We fix a point p ∈ P(E ∗), then

there exist local holomorphic coordinates (z1, . . . , zn) centered at point q = π(p) and

local holomorphic basis {e1, . . . , er } of E around q such that

hαβ = δαβ − RE
i jαβ

zi z j
+ O(|z|3). (2.9)

Without loss of generality, we assume that p is the point (0, . . . , 0, [a1, . . . , ar ]) with

ar = 1. On the chart U = {Wr = 1} of the fiber Pr−1, we set wA
= WA for A = 1, . . . , r − 1.

By formulas (2.8) and (2.9),

RL (p) =
√
−1

∑
RE

i jαβ

aβaα
|a|2

dzi
∧ dz j

+ωFS, (2.10)

where |a|2 =
∑r
α=1 |aα|

2 and ωFS =
√
−1

∑r−1
A,B=1

(
δAB
|a|2 −

aB a A
|a|4

)
dwA
∧ dwB is the

Fubini–Study metric on the fiber Pr−1. The following result is one of the key ingredients

in this paper.
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Proposition 2.6. Let X be a compact complex manifold. If (E , hE ) is an RC-positive vector

bundle over X , then OE ∗(−1) is an RC-positive line bundle over P(E ).

Proof. By (2.10), the induced metric on OE ∗(−1) over P(E ) has curvature form

ROE ∗ (−1)
= −

(
√
−1

∑
RE ∗

i jαβ

aβaα
|a|2

dzi
∧ dz j

+ωFS

)
.

On the other hand, RE ∗
= −(RE )t and so

ROE ∗ (−1)
=
√
−1

∑
RE

i jαβ

aαaβ
|a|2

dzi
∧ dz j

−ωFS.

Hence, OE ∗(−1) is RC-positive as long as (E , hE ) is RC-positive.

Remark 2.7. We also have the following results:

(1) If L1 is an RC-positive line bundle and L2 is a pseudo-effective line bundle, then

L1⊗L2 is RC-positive.

(2) Let (E , hE ) be an RC-positive vector bundle and (F , hF ) be a Griffiths

semi-positive vector bundle. The Hermitian vector bundle (E ⊗F , hE
⊗ hF ) is not

necessarily RC-positive unless rank(E ) = 1.

Remark 2.8. It is easy to see that if (E , hE ) is Griffiths positive (resp. semi-positive), then

the tautological line bundle OE (1) is positive (resp. semi-positive). Whether the converse

is valid is a long-standing open problem (the so-called Griffiths conjecture). In the same

vein, we wonder whether the RC-positivity of OE ∗(−1) can imply the RC-positivity of E .

The following well-known lemma is called the Le Potier isomorphism [15]. Its proof

relies on the Leray–Grothendieck spectral sequence, and we refer to [27, Theorem 5.16]

and the references therein.

Lemma 2.9. Let E be a holomorphic vector bundle over a complex manifold X and F be

a coherent sheaf on X . Then for all p, q > 0

Hq(X, �p
X ⊗E ⊗F ) ∼= Hq

(
P(E ∗),�p

P(E ∗)⊗OE (1)⊗π
∗F

)
, (2.11)

where π : P(E ∗)→ X is the projection. In particular,

H0(X,E ) ∼= H0(P(E ∗),OE (1)). (2.12)

By using the Le Potier isomorphism, we obtain vanishing theorems for vector bundles.

Lemma 2.10. Let E be a holomorphic vector bundle over a compact complex manifold X .

If OE ∗(−1) is RC-positive, then

H0(X,E ∗) = 0. (2.13)

In particular, if E is RC-positive, then E ∗ has no non-trivial holomorphic sections.
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Proof. It follows from Corollary 2.5, Proposition 2.6 and Lemma 2.9.

The following concept is a generalization of the RC-positivity for line bundles, which

is also well known in literatures.

Definition 2.11. Let L be a holomorphic line bundle over a complex manifold X . L
is called k-positive if there exists a smooth Hermitian metric hL such that the Chern

curvature RL
= −
√
−1∂∂ log hL has at least (dim X − k) positive eigenvalues at every

point on X .

It is easy to see that L is (dim X − 1)-positive if and only if it is RC-positive.

In [3, Theorem 14], Andreotti and Grauert proved the following fundamental vanishing

theorem.

Lemma 2.12. Let L be a k-positive line bundle over a compact complex manifold X .

Then for any vector bundle F over X , there exists a positive integer m0 = m0(F ) such

that

Hq(X,L ⊗m
⊗F ) = 0 (2.14)

for all q > k and m > m0.

3. Vanishing theorems for tensor product of vector bundles

The main result of this section is the following vanishing theorem.

Theorem 3.1. Let E and F be two holomorphic vector bundles over a compact complex

manifold X . If OE ∗(−1) is RC-positive over P(E ) and OF (1) is nef over P(F ∗), then

H0(X,E ∗⊗F ∗) = 0. (3.1)

By Theorem 2.4, we have a variant of Theorem 3.1.

Theorem 3.2. Let E and F be two holomorphic vector bundles over a compact complex

manifold X . If OE ∗(1) is not pseudo-effective and OF (1) is nef, then

H0(X,E ∗⊗F ∗) = 0. (3.2)

Remark 3.3. Theorem 3.1 does not hold in general if OF (1) is pseudo-effective and

rank(F ) > 1. It should hold if we refine this notion a bit more (e.g. [10, 24]).

By using Proposition 2.6, we obtain another application of Theorem 3.1.

Theorem 3.4. Let E and F be two holomorphic vector bundles over a compact complex

manifold X . If E is RC-positive and F is nef, then

H0(X,E ∗⊗F ∗) = 0. (3.3)

Before giving the proof of Theorem 3.1, we need several lemmas.
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Lemma 3.5. Let f : X → Y be a holomorphic submersion between two complex manifolds.

If L is an RC-positive line bundle over Y , then f ∗(L ) is also RC-positive.

Proof. Suppose dim X = m and dim Y = n. Let {zi
}
m
i=1 and {wα}nα=1 be the local

holomorphic coordinates on X and Y , respectively. Let h be a smooth RC-positive metric

on L and R = −
√
−1∂∂ log h. It is easy to see that the curvature tensor of ( f ∗(L ), f ∗h)

is given by

Rαβ
∂ f α

∂zi
∂ f

β

∂z j dzi
∧ dz j . (3.4)

Since (L , h) is RC-positive, at any point p ∈ Y , there exists a non-zero local vector

v = (v1, . . . , vn) such that
∑

Rαβv
αvβ > 0. Since f is a smooth submersion, the rank

of the matrix
(
∂ f α

∂zi

)
is equal to n = dim Y . Therefore, there exists a non-zero vector

u = (u1, . . . um) such that
(
∂ f α

∂zi

)
u = v. Hence, ( f ∗(L ), f ∗h) is RC-positive.

Remark 3.6. Lemma 3.5 also holds for k-positive line bundles.

Lemma 3.7. Let f : X → Y be a holomorphic map between two compact complex

manifolds. If L is a nef line bundle over Y , then f ∗(L ) is also nef.

Proof. It follows from the definition of nefness and formula (3.4).

Lemma 3.8. Let f : X → Y be a holomorphic map between two compact complex

manifolds. If E is a holomorphic vector bundle over Y such that OE (1) is nef, then

O f ∗E (1) is also nef.

Proof. We have the following commutative diagram:

O f ∗E (1)
( f #)∗

−−−−→ OE (1)y y
P( f ∗(E ∗))

f #

−−−−→ P(E ∗)y y
X

f
−−−−→ Y.

Lemma 3.8 follows from the above diagram and Lemma 3.7.

Lemma 3.9. Let E be a holomorphic vector bundle over a compact complex manifold X .

If OE (1) is (dim X − 1)-positive over P(E ∗), then

H0(X,E ∗) = 0. (3.5)

Proof. If OE (1) is (dim X − 1)-positive over P(E ∗), then by Lemma 2.12, for any vector

bundle F on P(E ∗), there exists some positive integer m0 = m0(F ) such that

Hq(P(E ∗),OE (m)⊗F ) = 0
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for all q > dim X − 1 and m > m0. In particular, if we take q = n = dim X and F =
�n

P(E ∗), by Lemma 2.9 and the Serre duality,

Hn(P(E ∗),OE (m)⊗�
n
P(E ∗))

∼= Hn(X,Sym⊗mE ⊗�n
X )
∼= H0(X,Sym⊗mE ∗) = 0.

In particular, for large m, we have

H0(P(E ),OE ∗(m)) = 0.

Hence, H0(P(E ),OE ∗(1)) = 0 and H0(X,E ∗) = 0.

Theorem 3.10. Let X be a compact complex manifold. If (L , hL ) is an RC-positive line

bundle and E is a holomorphic vector bundle with nef tautological line bundle OE (1),
then

H0 (X,E ∗⊗L ∗
)
= 0.

Proof. Let π : P(E ∗)→ X be the natural projection. Since π is a submersion, by

Lemma 3.5, π∗L is RC-positive.

Claim 1. π∗L ⊗OE (1) is a (dim X − 1)-positive line bundle over P(E ∗).

Fix a smooth Hermitian metric hE on E and a smooth Hermitian metric ω on P(E ∗). The

induced metric on OE (1) is denoted by hOE (1). Since the restriction of hOE (1) on each

fiber Pr−1 is a Fubini–Study metric, by curvature formula (2.10), there exist a Hermitian

metric ωX on X and two positive constants c1, c2 such that

−
√
−1∂∂ log hOE (1)+ c1π

∗(ωX ) > c2ω. (3.6)

Let λ(x) be the largest eigenvalue function of the curvature tensor −
√
−1∂∂ log hL of

(L , hL ) with respect to the Hermitian metric ωX on X and

c3 = min
x∈X

λ(x). (3.7)

Since X is compact and −
√
−1∂∂ log hL is RC-positive, we deduce c3 > 0. Moreover, at

any point q ∈ X , there exists a non-zero vector u0 ∈ Tq X such that(
−
√
−1∂∂ log hL

)
(u0, u0) > c3|u0|

2
ωX
. (3.8)

Since π : P(E ∗)→ X is a holomorphic submersion, by Lemma 3.5, h1 = π
∗(hL ) is an

RC-positive metric on π∗L . Moreover, for any point p ∈ P(E ∗) with π(p) = q ∈ X , there

exists a non-zero vector u1 ∈ TpP(E ∗) such that π∗(u1) = u0 ∈ Tq X and(
−
√
−1∂∂ log h1

)
(u1, u1) =

(
−
√
−1∂∂ log hL

)
(u0, u0) > c3|u0|

2
ωX
> 0. (3.9)

We fix a small number ε > 0 such that
c3

2
− c1ε > 0. (3.10)

On the other hand, since OE (1) is nef, there exists a smooth Hermitian metric h0 on

OE (1) such that the curvature of (OE (1), h0) satisfies

−
√
−1∂∂ log h0 > −εc2ω (3.11)
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over P(E ∗). Let h =
(
hOE (1)

)ε
· h(1−ε)0 be a smooth Hermitian metric on OE (1). Then(
π∗L ⊗OE (1), h1⊗ h

)
is (dim X − 1)-positive, i.e. the curvature tensor R = −

√
−1∂∂ log(h1h) has at least

r -positive eigenvalues at each point of P(E ∗). Indeed,

R = ε
(
−
√
−1∂∂ log hOE (1)

)
+ (1− ε)

(
−
√
−1∂∂ log h0

)
+

(
−
√
−1∂∂ log h1

)
. (3.12)

By (3.6), (3.9), (3.10), (3.11) and (3.12), we have

R(u1, u1) > ε(c2|u1|
2
ω− c1|u1|

2
π∗ωX

)− (1− ε)εc2|u1|
2
ω+ c3|u1|

2
π∗ωX

>
c3

2
|u1|

2
π∗ωX

=
c3

2
|u0|

2
ωX
> 0.

Along the fiber Pr−1 direction, for any u2 ∈ TpP(E ∗) with π∗(u2) = 0 ∈ Tq X , we have

R(u2, u2) > ε(c2|u2|
2
ω− c1|u2|

2
π∗ωX

)− (1− ε)εc2|u2|
2
ω+ c3|u2|

2
π∗ωX

> c2ε
2
|u2|

2
ω.

Since the map π∗ : TpP(E )→ Tq X is surjective, dim ker(π∗) = r − 1 and u1 /∈ ker(π∗), we

deduce that the curvature tensor R = −
√
−1∂∂ log(h1h) has at least r positive eigenvalues

at each point of P(E ∗).

Claim 2. The tautological line bundle OL⊗E (1) is (dim X − 1)-positive over P(L ∗⊗E ∗).
Indeed, it follows from the fact that i : P(L ∗⊗E ∗)→ P(E ∗) is an isomorphism and

OL⊗E (1) = i∗
(
OE (1)⊗π

∗(L )
)
. (3.13)

By Lemma 3.9, we obtain H0 (X,E ∗⊗L ∗) = 0. The proof of Theorem 3.10 is completed.

The proof of Theorem 3.1. Let π : P(E )→ X be the projection. By Lemma 2.9,

H0(X,E ∗⊗F ∗) ∼= H0 (X, π∗ (OE ∗(1)⊗π
∗F ∗

))
∼= H0 (Y,OE ∗(1)⊗π

∗F ∗
)
, (3.14)

where Y = P(E ). Since OF (1) is nef, by Lemma 3.8, Oπ∗F (1) is nef. Let L = OE ∗(−1),
W = π∗F and π̃ : P(W )→ Y . Since L is an RC-positive line bundle and OW (1) is nef,

by Lemma 2.9 and Theorem 3.10,

H0(X,F ∗⊗E ∗) ∼= H0 (Y, π∗F ∗⊗OE ∗(1)
)
= H0(Y,W ∗⊗L ∗) = 0. (3.15)

The proof of Theorem 3.1 is completed.

4. RC-positivity and rigidity of holomorphic maps

In this section, we prove the main results of this paper, i.e. Theorem 1.1 (= Theorem 4.1),

Theorem 1.3 (= Theorem 4.2) and Corollary 1.7 (= Corollary 4.3).

Theorem 4.1. Let M and N be two compact complex manifolds. If OT ∗M
(−1) is an

RC-positive line bundle and OT ∗N
(1) is nef, then any holomorphic map from M to N

is constant.
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Proof. Let E = TM ⊗ f ∗(T ∗N ) and {zi }, {wα} be the local holomorphic coordinates on M
and N , respectively. Let

s = ∂ f = f αi dzi ⊗ eα ∈ 0(M,E ∗),

where eα = f ∗ ∂
∂wα

. Since f is a holomorphic map, s is a holomorphic section of E , i.e.

s ∈ H0(M,E ∗). Since OT ∗N
(1) is nef, by Lemma 3.8, we know O f ∗(T ∗N )

(1) is also nef. By

Theorem 3.1, H0(M,E ∗) = 0. Hence, f is a constant map.

In particular, we have the following.

Theorem 4.2. Let M be a compact complex manifold with RC-positive tangent bundle TM
and N be a compact complex manifold with nef cotangent bundle. Then any holomorphic

map from M to N is constant.

Proof. By Proposition 2.6, if TM is RC-positive, then OT ∗M
(−1) is RC-positive.

Theorem 4.2 follows from Theorem 4.1.

Let M, N be compact complex manifolds of complex dimensions m and n, respectively.

Recall that a meromorphic map f : M → N is given by an irreducible analytic subset (the

graph of f ) 0 ⊂ M × N together with a proper analytic subset S ⊂ M and a holomorphic

map f : M \ S→ N such that 0 restricted to (M − S)× N is exactly the graph of f .

Corollary 4.3. Let (M, ωg) be a compact Hermitian manifold with positive holomorphic

sectional curvature and (N , h) be a Hermitian manifold with non-positive holomorphic

bisectional curvature. Then there is no non-constant meromorphic map from M or its

blowing-up to N .

Proof. Let f : M → N be a meromorphic map. By a theorem of Griffiths [12, Theorem II]

and Shiffman [26, Theorem 2], when the target manifold has non-positive holomorphic

sectional curvature, then f is holomorphic. It is easy to see that if ωg has positive

holomorphic sectional curvature, then (TM , ωg) is RC-positive. By Theorem 4.2, there is

no non-constant holomorphic map from M to N .

Let M̃ be a blowing-up of M along some submanifold and π : M̃ → M be the canonical

map. If f̃ : M̃ → N is a meromorphic map, then it is holomorphic. Moreover, it induces a

meromorphic map f : M → N . Hence, f is a constant map. By Aronszajin’s principle [4],

f̃ is also constant.

We have shown in [33, Corollary 3.7] that if a complex manifold has positive second

Chern–Ricci curvature, then it is RC-positive.

Corollary 4.4. Let f : M → N be a holomorphic map between two compact complex

manifolds. If (M, g) has positive second Chern–Ricci curvature Ric(2)(g) and N has nef

cotangent bundle, then f is a constant.

Hence, the following classical result is a special case of Corollary 4.4 (e.g. [37]).

Corollary 4.5. Let (M, g) be a compact Hermitian manifold with positive second

Chern–Ricci curvature Ric(2)(g) and (N , h) be a Hermitian manifold with non-positive

holomorphic bisectional curvature, then f is a constant.

https://doi.org/10.1017/S1474748019000471 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000471


RC-positivity, vanishing theorems and rigidity of holomorphic maps 1035

We need to point out that, as a straightforward consequence of [33, Theorem 1.7], one

has the following.

Theorem 4.6. Let (M, ωg) be a compact Kähler manifold with positive holomorphic

sectional curvature and N be a complex manifold without any rational curve (e.g. N has a

Hermitian metric with non-positive holomorphic sectional curvature, or N is hyperbolic).

Then any holomorphic map from M to N is a constant map.

Proof. It is proved in [33, Theorem 1.7] that if (M, ωg) is a compact Kähler manifold

with positive holomorphic sectional curvature, then M is rationally connected, i.e. any

two points of M can be connected by a rational curve. Since N contains no rational curve,

the image of a holomorphic map f : M → N must be a point.

We would like to propose questions on rigidity results in a general setting. For instance,

we have the following.

Question 4.7. Let f : M → N be a holomorphic map between two compact complex

manifolds. If TM is RC-positive and N is Kobayashi hyperbolic, is f necessarily a constant

map?
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Appendix A. Yau’s Schwarz calculation and rigidity of holomorphic maps

In this section, we review classical differential geometric methods (a model version of

Yau’s Schwarz calculation) on the proof of rigidity of holomorphic maps. We shall see

clearly that the main results in this paper (e.g. Corollary 1.4) cannot be proved by

using purely differential geometric methods. The following result is essentially well known

(e.g. [9, 18, 39]).

Lemma A.1. Let f : (M, g)→ (N , h) be a holomorphic map between two Hermitian

manifolds. Then in the local holomorphic coordinates {zi
} and {wα} on M and N ,

respectively, we have the identity

∂∂u = 〈∇d f,∇d f 〉+
(

Rg
i jk`

gkq g p`hαβ f αp f βq − Rh
αβγ δ

(
f αi f βj

)(
g pq f γp f δq

))
dzi
∧ dz j

and

1gu = |∇d f |2+
(

gi j Rg
i jk`

)
gkq g p`hαβ f αp f βq − Rh

αβγ δ

(
gi j f αi f βj

)(
g pq f γp f δq

)
,

where u = trωg ( f ∗ωh), f αi =
∂ f α

∂zi , where f is represented by wα = f α(z) locally, ∇ is the

induced connection on the bundle E = T ∗M ⊗ f ∗(TN ).
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To simplify the formulations, at a given point p ∈ M and q = f (p) ∈ N , we choose

gi j = δi j and hαβ = δαβ . Hence, we have

∂∂u = 〈∇d f,∇d f 〉+

∑
k,`,α

Rg
i jk`

f αk f α` −
∑

α,β,γ,δ,k

Rh
αβγ δ

(
f αi f βj

)(
f γk f δk

) dzi
∧ dz j

(A 1)

and

1gu = |∇d f |2+
∑
k,`,α

R(2)
k`

f αk f α` −
∑

α,β,γ,δ,k,i

Rh
αβγ δ

(
f αi f βi

)(
f γk f δk

)
, (A 2)

where R(2)
k`
= gi j Rg

i jk`
. If M is compact, by applying the standard maximum principle to

(A 2), we obtain Corollary 4.5. One may wonder whether Corollary 1.4 can be obtained by

applying a similar maximum principle to equation (A 1). Suppose u attains a maximum

at some point p ∈ X . Then for any vector v = (v1, . . . vn), by formula (A 1), at point

p ∈ X , we have

0 >
∑
i, j

∂2u

∂zi∂z j v
iv j >

∑
i, j

∑
k,`,α

Rg
i jk`

f αk f α`

 viv j . (A 3)

Recall that if (TM , g) is RC-positive, then for any non-zero vector ξ = (ξ1, . . . , ξn),

there exists some non-zero vector η = (η1, . . . , ηn) (it may depend on ξ !) such that

Rg
i jk`

ηiη jξ kξ
`
> 0. Apparently, in (A 3), there are many vectors indexed by α, and,

in general, there does not exist a uniform vector v such that the right-hand side of

(A 3) is positive. A refined notion called ‘uniform RC-positivity’ would work for this

analytical proof. By using similar ideas, we also investigated rigidity of harmonic maps

into Riemannian manifolds in [35] (see also [34, 36]).

The relationship between the Leray–Grothendieck spectral sequence in algebraic

geometry and maximum principles in differential geometry will be systematically

investigated.
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