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Abstract
Let (X , g) be a compact Riemannian manifold with quasi-positive Riemannian scalar cur-
vature. If there exists a complex structure J compatible with g, then the Kodaira dimension
of (X , J ) is equal to −∞ and the canonical bundle K X is not pseudo-effective. We also
introduce the complex Yamabe number λc(X) for compact complex manifold X , and show
that if λc(X) is greater than 0, then κ(X) is equal to −∞; moreover, if X is also spin, then
the Hirzebruch A-hat genus ̂A(X) is zero.
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1 Introduction

This is a continuation of our previous paper [38], and we investigate the geometry of Rie-
mannian scalar curvature on compact complex manifolds.

The existences of various positive scalar curvatures are obstructed. For instance, it is well-
known that, if a compact Hermitian manifold has positive Chern scalar curvature, then the
Kodaira dimension is −∞. On the other hand, a classical result of Lichnerowicz (e.g. [17,
Theorem 8.12]) says that if a compact Riemannian spin manifold has positive Riemannian
scalar curvature, then the ̂A-genus is zero. We state the first main result of this paper.
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366 X. Yang

Theorem 1.1 Let (X , g) be a compact Riemannian manifold with quasi-positive Riemannian
scalar curvature. If there exists a complex structure J compatible with g, then the canonical
bundle K X is not pseudo-effective and the Kodaira dimension κ(X , J ) is −∞.

Here quasi-positive means non-negative everywhere and strictly positive at some point. As
it is well-known, in general the positivity of the Riemannian scalar curvature of (X , J , g)

can not imply that of the Chern scalar curvature. As a borderline case, we obtain the second
main result of this paper.

Theorem 1.2 Let (X , g) be a compact Riemannian manifold with zero Riemannian scalar
curvature. Suppose there exists a complex structure J compatible with g. Then the Kodaira
dimension κ(X , J ) is either −∞ or 0. Moreover, κ(X , J ) equals 0 if and only if (X , J , ωg)

is a Kähler Calabi–Yau manifold with Ric(ωg) = 0.

The proofs of Theorems 1.1 and 1.2 rely on several observations in our previous paper [38]
and a new scalar curvature relation in Theorem 3.8.

Note that, on Kähler Calabi–Yau surfaces (e.g. K3 surfaces, bi-elliptic surfaces), there is
no Riemannian metrics with quasi-positive scalar curvature (e.g. [18, Theorem A]). How-
ever, by Stolz’s solution to the Gromov–Lawson conjecture ([27, Theorem A]), on a simply
connected Kähler Calabi–Yau manifold with holonomy group SU (2m + 1), there do exist
Riemannian metrics with quasi-positive scalar curvature. On the contrary, as an application
of Theorems 1.1 and 1.2, we show that those Riemannian metrics with quasi-positive scalar
curvature are not compatible with the Calabi–Yau complex structures, and more generally
we obtain the following result.

Corollary 1.3 On a compact complex Calabi–Yau manifold X with torsion canonical bundle
K X , there is no Hermitian metric with quasi-positive Riemannian scalar curvature. Moreover,
if X is also non-Kähler, then there is no Hermitian metric with non-negative Riemannian
scalar curvature.

It iswell-known that all compactKählerCalabi–Yaumanifolds have torsion canonical bundle.
On the other hand, many non-Kähler Calabi–Yau manifolds also have torsion canonical
bundle. For instance, the connected sum #k(S

3 × S
3) with k ≥ 2 ([22]).

On a compact complex manifold X of complex dimension n ≥ 2, we introduce the
complex Yamabe number λc(X):

λc(X) = sup
g is Hermitian

inf
g̃ is conformal to g

∫

X sg̃dVg̃
(∫

X dVg̃
)1− 1

n

, (1.1)

where sg̃ is the Riemannian scalar curvature of g̃. Note that in (1.1), if the supremum is
taken over all Riemannian metrics, then it is the classical Yamabe number λ(X) in conformal
geometry. Hence λ(X) ≥ λc(X).

Theorem 1.4 Let X be a compact complex manifold. If λc(X) > 0, then κ(X) = −∞.
Moreover, if X is also spin, then ̂A(X) = 0.

According to the results of Gromov–Lawson [13] and Stolz [27], on a simply connected
Kähler Calabi–Yau manifold X with dimC X ≥ 3, one has λ(X) > 0 and ̂A(X) = 0.
However, we have λc(X) ≤ 0 by Theorem 1.4.

As motivated by Theorems 1.1, 1.2, 1.4, various conjectures described in [38, Section 4]
and classical works by Schoen–Yau [30–32], Gromov–Lawson [13], Stolz [27] and LeBrun
[18] (see also Zhang [41]), we propose the following conjecture.
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Conjecture 1.5 Let X be a compact Kähler manifold with κ(X) = −∞. If X has a spin
structure, then ̂A(X) = 0.

Note that Conjecture 1.5 holds when dimC X = 2 ([18,39]) or 2m + 1.
Finally, let’s describe some straightforward applications of Theorem 1.1.

Proposition 1.6 Let X be a compact Kähler threefold. If there exists a Hermitian metric with
quasi-positive Riemannian scalar curvature, then X is uniruled, i.e. X is covered by rational
curves.

According to the uniruledness conjecture (e.g. [4, Conjecture]), Proposition 1.6 should be
true on higher dimensional compact Kähler manifolds.

It is a long-standingopenproblem todeterminewhether the six-sphereS6 admits a complex
structure or not. Now assuming X := S

6 has a complex structure J . As pointed out in [16,
p. 122], it is not at all clear whether κ(X , J ) = −∞, and proving this would seem to be
as complicated as to show that there are no divisors on X at all. It is obvious that c1(X) =
0 ∈ H2(X ,Z) and it is also proved in [35] that cBC1 (X , J ) �= 0. In particular, K X is not
holomorphically torsion. For more related discussions, we refer to [1]. Let S be the space
of Riemannian metrics with non-negative scalar curvature.

Theorem 1.7 If there exists a complex structure J which is compatible with some Riemannian
metric g ∈ S , then K X is not pseudo-effective and

κ(X , J ) = −∞.

It is known that there is no complex structure compatiblewithmetrics in a small neighborhood
of the round metric on S6 (e.g. [6,20,24,33]).

2 Preliminaries

2.1 Ricci curvature on complexmanifolds

Let (X , ωg) be a compact Hermitian manifold. Locally, we write ωg = √−1gi j dzi ∧ dz j .

The (first Chern-)Ricci form Ric(ωg) of (X , ωg) has components

Ri j = −∂2 log det(gk�)

∂zi∂z j

which also represents the first Chern class c1(X) of the complexmanifold X (up to a constant).
The Chern scalar curvature sC of (X , ωg) is given by

sC = trωgRic(ωg) = gi j Ri j . (2.1)

The total Chern scalar curvature of ωg is
∫

X
sC · ωn

g = n
∫

Ric(ωg) ∧ ωn−1
g , (2.2)

where n is the complex dimension of X .

123
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2.2 The Bott–Chern classes

The Bott–Chern cohomology on a compact complex manifold X is given by

H p,q
BC (X) := Kerd ∩ �p,q(X)

Im∂∂ ∩ �p,q(X)
.

Let Pic(X) be the set of holomorphic line bundles over X . As similar as the first Chern class
map c1 : Pic(X) → H1,1

∂
(X), there is a first Bott–Chern class map

cBC1 : Pic(X) → H1,1
BC (X). (2.3)

Given any holomorphic line bundle L → X and any Hermitian metric h on L , its curvature
form �h is locally given by −√−1∂∂ log h. We define cBC1 (L) to be the class of �h in

H1,1
BC (X). For a complex manifold X , cBC1 (X) is defined to be cBC1 (K −1

X ) where K −1
X is the

anti-canonical line bundle.

2.3 Special manifolds

Let X be a compact complex manifold.

(1) A Hermitian metric ωg is called a Gauduchon metric if ∂∂ωn−1
g = 0. It is proved by

Gauduchon ([12]) that, in the conformal class of each Hermitian metric, there exists a
unique Gauduchon metric (up to scaling).

(2) A Hermitian metric ωg is called a Kähler metric if dωg = 0.
(3) X is called a Calabi–Yau manifold if c1(X) = 0 ∈ H2(X ,Z).

2.4 Kodaira dimension of compact complexmanifolds

The Kodaira dimension κ(L) of a line bundle L over a compact complex manifold X is
defined to be

κ(L) := lim sup
m→+∞

log dimC H0(X , L⊗m)

logm

and the Kodaira dimension κ(X) of X is defined as κ(X) := κ(K X ) where the logarithm of
zero is defined to be −∞. In particular, if

dimC H0(X , K ⊗m
X ) = 0

for every m ≥ 1, then κ(X) = −∞.

2.5 Spinmanifold and̂A-genus

Let X be a compact oriented Riemannian manifold. It is called a spin manifold, if it admits
a spin structure, i.e. its second Stiefel–Whitney class w2(X) = 0. It is well-known that all
compact Calabi–Yau manifolds are spin.

In the following, we shall briefly describe the definition of the ̂A-genus of a compact
oriented Riemannian manifold for readers’ convenience, and for more necessary background
materials, we refer to [17,23–25,37,38] and the references therein. Let ̂Ai (p1, . . . , pi ) be the
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multiplicative sequence of polynomials in the Pontryagin classes pi of X belonging to the
power series

1
2
√

z

sinh
( 1
2
√

z
) = 1 − 1

24
z + 7

27 · 32 · 5 z2 + · · · .

The first few terms are

̂A1(p1) = − 1

24
p1, ̂A2(p1, p2) = 1

27 · 32 · 5
(−4p2 + 7p21

)

.

The ̂A-genus, ̂A(X) is by definition the real number (
∑

i
̂Ai (p1, . . . , pi ))[X ], where [X ]

means evaluation of the cohomology class on the fundamental cycle of X . Since pi ∈
H4i (X ,Z), ̂A(X) is zero unless dimR X ≡ 0(mod 4). Moreover, if X is a spin manifold,
̂A(X) is an integer. The following result is well-known (for more historical explanations, we
refer to [36, p. 420] and [17, Theorem 8.12] and the reference therein) and we shall use it
frequently in the sequel:

Lemma 2.1 On a compact spin manifold X, if it admits a Riemannian metric with quasi-
positive scalar curvature, then ̂A(X) = 0.

3 The Riemannian scalar curvature and Kodaira dimension

Let (X , ω) be a compact Hermitian manifold. We first give several computational results.

Lemma 3.1 For any smooth real valued function f ∈ C∞(X ,R), we have

∂
∗
( f ω) = f ∂

∗
ω + √−1∂ f . (3.1)

Proof For any smooth (1, 0)-form η ∈ 
(X , T ∗1,0X), we have the global inner product
(

∂
∗
( f ω), η

)

= (

f ω, ∂η
) = (

ω, f ∂η
)

= (

ω, ∂( f η)
) − (

ω, ∂ f ∧ η
)

=
(

f ∂
∗
ω, η

)

− (

ω, ∂ f ∧ η
)

=
(

f ∂
∗
ω, η

)

+ √−1 (∂ f , η)

where the last identity follows from the fact that f is real valued. ��
Lemma 3.2 For any (1, 0) form η and real valued function f ∈ C∞(X ,R), we have

∂∗( f η) = f ∂∗η − 〈η, ∂ f 〉. (3.2)

Proof For any smooth function ϕ ∈ C∞(X), we have
(

∂∗( f η), ϕ
) = ( f η, ∂ϕ) = (η, f ∂ϕ) = (η, ∂( f ϕ) − ∂ f · ϕ)

= (

f ∂∗η, ϕ
) − (〈η, ∂ f 〉, ϕ)

and we obtain (3.2). ��
Let ω f = e f ω for some f ∈ C∞(X ,R). We denote by ∂

∗
f , ∂

∗
f and ∂∗, ∂∗

the adjoint
operators taking with respect to ω f and ω respectively. The local and global inner products
with respect to ω and ω f are indicated by 〈•, •〉, (•, •) and 〈•, •〉 f , (•, •) f respectively.
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370 X. Yang

Lemma 3.3 For any (1, 0) form η and real valued function f ∈ C∞(X ,R), we have

∂∗
f η = e− f [

∂∗η − (n − 1) 〈η, ∂ f 〉] . (3.3)

Proof For any ϕ ∈ C∞(X), we have
(

∂∗
f η, ϕ

)

f
= (η, ∂ϕ) f = (e(n−1) f η, ∂ϕ) =

(

∂∗ (

e(n−1) f η
)

, ϕ
)

where the second identity holds since η is a (1, 0)-form. By (3.2), we obtain
(

∂∗
f η, ϕ

)

f
=

(

e(n−1) f ∂∗η, ϕ
)

−
(

〈η, ∂e(n−1) f 〉, ϕ
)

.

Hence,
(

∂∗
f η, ϕ

)

f
=

(

e− f ∂∗η, ϕ
)

f
−

(

(n − 1)e− f 〈η, ∂ f 〉, ϕ
)

f
,

which verifies (3.3). ��

Lemma 3.4 We have

∂
∗
f ω f = ∂

∗
ω + (n − 1)

√−1∂ f . (3.4)

Proof For any η ∈ 
(X , T ∗1,0X), we have
(

∂
∗
f ω f , η

)

f
= (

ω f , ∂η
)

f =
(

e(n−1) f · ω, ∂η
)

=
(

∂
∗ (

e(n−1) f · ω
)

, η
)

.

Now by (3.1), we have
(

∂
∗
f ω f , η

)

f
=

(

e(n−1) f
[

∂
∗
ω + (n − 1)

√−1∂ f
]

, η
)

=
(

∂
∗
ω + (n − 1)

√−1∂ f , η
)

f

since η is a (1, 0) form. Therefore, we obtain (3.4). ��

Lemma 3.5 We have
√−1∂∗

f ∂
∗
f ω f = e− f

(√−1∂∗∂∗
ω − (n − 1)

(

�d f + trω
√−1∂∂ f

)

+(n − 1)2|∂ f |2) . (3.5)

Proof By formulas (3.2) and (3.4), we have

√−1∂∗
f ∂

∗
f ω f = √−1∂∗

f

(

∂
∗
ω + (n − 1)

√−1∂ f
)

= e− f
(√−1∂∗∂∗

ω − √−1(n − 1)〈∂∗
ω, ∂ f 〉 − (n − 1)∂∗∂ f + (n − 1)2|∂ f |2

)

.

We also observe that
√−1〈∂∗

ω, ∂ f 〉 = ∂
∗
∂ f + trω

√−1∂∂ f . (3.6)
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Indeed, for any text function ϕ ∈ C∞(X), we have
(√−1〈∂∗

ω, ∂ f 〉, ϕ
)

= √−1
(

∂
∗
ω, ϕ∂ f

)

= √−1
(

ω, ∂ϕ ∧ ∂ f + ϕ∂∂ f
)

= (∂ f , ∂ϕ) + (ω, ϕ · √−1∂∂ f )

= (∂
∗
∂ f , ϕ) + (trω

√−1∂∂ f , ϕ)

which gives (3.6). Since �d f = d∗d f = ∂
∗
∂ f + ∂∗∂ f , we obtain (3.5). ��

The following observation is one of the key ingredients in the curvature computations.

Lemma 3.6 Let (X , ω) be a compact Hermitian manifold. Then

〈∂∂
∗
ω,ω〉 = |∂∗

ω|2 − √−1∂∗∂∗
ω. (3.7)

In particular, if ω is a Gauduchon metric, we have

〈∂∂
∗
ω,ω〉 = |∂∗

ω|2. (3.8)

Proof For any smooth real valued function ϕ ∈ C∞(X ,R), we have
(

〈∂∂
∗
ω,ω〉, ϕ

)

=
(

∂∂
∗
ω, ϕω

)

=
(

∂
∗
ω, ∂

∗
(ϕω)

)

=
(

∂
∗
ω, ϕ∂

∗
ω + √−1∂ϕ

)

=
(

|∂∗
ω|2, ϕ

)

+
(

−√−1∂∗∂∗
ω, ϕ

)

wherewe use formula (3.1) in the second identity. Sinceϕ is an arbitrary smooth real function,
we obtain (3.7). Ifω isGauduchon, i.e. ∂∂ωn−1 = 0,we have ∂∗∂∗

ω = 0, and so (3.8) follows
from (3.7). ��
Corollary 3.7 On a compact Hermitian manifold (X , ω), the Riemannian scalar curvature s
and the Chern scalar curvature sC are related by

s = 2sC − 2
√−1∂∗∂∗

ω − 1

2
|T |2. (3.9)

where T is the torsion tensor of the Hermitian metric ω.

Proof By Lemma 6.2 in the Appendix, we have

s = 2sC +
(

〈∂∂
∗
ω + ∂∂∗ω,ω〉 − 2|∂∗

ω|2
)

− 1

2
|T |2.

Hence, by formula (3.7) we obtain (3.9). ��
Let ω f = e f ω be a smooth Gauduchon metric (i.e. ∂∂ωn−1

f = 0) in the conformal class
of ω for some smooth function f ∈ C∞(X ,R).

Theorem 3.8 The total Chern scalar curvature of the Gauduchon metric ω f is

n
∫

X
Ric(ω f ) ∧ ωn−1

f =
∫

X
e(n−1) f ·

(

s

2
+ |T |2

4

)

ωn + (n − 1)2‖∂ f ‖2ω f
. (3.10)
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Proof Indeed, since ω f satisfies ∂∂ωn−1
f = 0, we have

n
∫

X
Ric(ω f ) ∧ ωn−1

f = n
∫

X
Ric(ω) ∧ ωn−1

f

= n
∫

X
e(n−1) f · Ric(ω) ∧ ωn−1 =

∫

X
e(n−1) f · sC · ωn

=
∫

X
e(n−1) f

(

s

2
+ |T |2

4

)

ωn +
∫

X
e(n−1) f · √−1∂∗∂∗

ω · ωn,

where we use the scalar curvature relation (3.9) in the third identity. Since ω f is Gauduchon,
we have ∂∗

f ∂
∗
f ω f = 0. By formula (3.5), we have

√−1∂∗∂∗
ω = (n − 1)

(

�d f + trω
√−1∂∂ f

)

− (n − 1)2|∂ f |2. (3.11)

It is easy to show that
∫

X
e(n−1) f trω

√−1∂∂ f · ωn = n
∫

X

√−1∂∂ f ∧ ωn−1
f = 0

and
∫

X
e(n−1) f |∂ f |2ωn = ‖∂ f ‖2ω f

.

Moreover,
∫

X
e(n−1) f �d f ωn =

(

d∗d f , e(n−1) f
)

= (n − 1)
(

d f , e(n−1) f d f
)

= (n − 1) (d f , d f ) f

since d f is a 1-form. Finally, we obtain
∫

X
e(n−1) f · √−1∂∗∂∗

ω · ωn = (n − 1)2‖d f ‖2ω f
− (n − 1)2‖∂ f ‖2ω f

= (n − 1)2‖∂ f ‖2ω f
.

Putting all together, we get (3.10). ��
The proof of Theorem 1.1 Letω be theHermitianmetric of (g, J ). Letω f = e f ω be a smooth
Gauduchon metric in the conformal class of ω. If the Riemannian scalar curvature s of ω

is quasi-positive, then by formula (3.10), the total Chern scalar curvature of the Gauduchon
metric ω f is strictly positive, i.e.

n
∫

X
Ric(ω f ) ∧ ωn−1

f > 0.

By [38, Theorem 1.1] and [38, Corollary 3.3], K X is not pseudo-effective and κ(X , J ) =
−∞. ��
The following result follows from the proofs of Theorem 1.1 and [38, Lemma 3.2].

Corollary 3.9 Let (X , ω) be a compact Hermitian manifold such that the background Rie-
mannian metric has quasi-positive Riemannian scalar curvature, then there exists a (possible
different) Hermitian metric ω̃ with positive Chern scalar curvature.
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The proof of Theorem 1.2 Suppose κ(X , J ) ≥ 0. If ωg is not a Kähler metric, i.e. the torsion
|T |2 is not identically zero, then by formula (3.10), there exists a Gauduchon metric with
positive total Chern scalar curvature. Hence, by [38, Corollary 3.3] we have κ(X , J ) = −∞
which is a contradiction. Therefore, ωg is a Kähler metric and so in formula (3.10), f is a
constant and T = 0. That means, ωg is a Kähler metric with zero scalar curvature. Since
κ(X , J ) ≥ 0, by [38, Corollary 1.6], X is a Calabi–Yau manifold and κ(X , J ) = 0. By the
Calabi–Yau theorem ([40]), there exists a Kähler Ricci-flat metric ωCY, i.e. Ric(ωCY) = 0.
Hence,

Ric(ωg) = Ric(ωg) − Ric(ωCY) = √−1∂∂ F

where F = log
(

ωn
CY
ωn

g

)

. Since ωg has zero scalar curvature, we have

�ωg F = trωg

√−1∂∂ F = 0,

which implies F = const and Ric(ωg) = 0.
If (X , J , ωg) is a Kähler Calabi–Yaumanifoldwith Ric(ωg) = 0, it is well-known that K X

is a holomorphic torsion, i.e. K ⊗�
X = OX for some positive integer �. Hence, κ(X , J ) = 0. ��

As an application of Theorems 1.1 and 1.2, we have the following result.

Corollary 3.10 Let (X , g) be a compact Riemannian manifold with nonnegative Riemannian
scalar curvature. If there exists a complex structure J which is compatible with g, then either

(1) κ(X , J ) = −∞; or
(2) κ(X , J ) = 0 and (X , J , g) is a Kähler Calabi–Yau.

Proposition 3.11 Suppose X is a compact complex manifold with cBC1 (X) ≤ 0. Then

(1) there exists a Hermitian metric with non-positive Riemannian scalar curvature;
(2) there is no Hermitian metric with quasi-positive Riemannian scalar curvature.

Moreover, X admits a Hermitian metric g with zero Riemannian scalar curvature if and only
if (X , g) is a Kähler Calabi–Yau.

Proof Note that by definition there exists a d-closed non-positive (1, 1) form η which repre-
sents cBC1 (X). By [28, Theorem 1.3], there exists a non-Kähler Gauduchon metric ωG such
that

Ric(ωG) = η ≤ 0.

Hence, for any Gauduchon metric ω,
∫

X
Ric(ω) ∧ ωn−1 =

∫

X
Ric(ωG) ∧ ωn−1 ≤ 0. (3.12)

(1). Since ωG is Gauduchon, by formula (3.9), we have

s = 2sC − 1

2
|T |2 = 2trωGRic(ωG) − 1

2
|T |2 ≤ 0.

(2). If there exists a Hermitian metric with quasi-positive Riemannian scalar curvature, then
it induces a Gauduchon metric with positive total Chern scalar curvature which is a contra-
diction.

Suppose X admits a Hermitian metric g with zero Riemannian scalar curvature, then by
formulas (3.10) and (3.12), we have T = 0 and f = 0, i.e. (X , ωg) is a Kähler manifold
with zero scalar curvature. Since cBC1 (X) = c1(X) ≤ 0, we have Ric(ωg) = 0. ��
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374 X. Yang

The proof of Corollary 1.3 If K X is a torsion, i.e. K ⊗m
X = OX for somem ≥ 1, then κ(X) = 0.

The first part of Corollary 1.3 follows from Theorem 1.1, and the second part follows from
Theorem 1.2. ��
The proof of Proposition 1.6 By Theorem 1.1, K X is not pseudo-effective and κ(X) = −∞.
Hence by [7, Corollary 1.2] or [15, Corollary 1.4], we conclude X is uniruled. ��
The proof of Theorem 1.7 Since H2(X ,R) = 0, the Hermitian metric (g, J ) is not Kähler.
Then Theorem 1.7 follows from Theorem 1.1 and Theorem 1.2. ��

4 The Yamabe number,̂A-genus and Kodaira dimension

Let (X , g0)be a compactRiemannianmanifoldwith real dimension 2n. TheYamabe invariant
λ(X , g0) of the conformal class [g0] is defined as

λ(X , g0) = inf
g=e f g0, f ∈C∞(X ,R)

∫

X sgdVg
(∫

X dVg
)1− 1

n

(4.1)

where sg is the Riemannian scalar curvature of g. Moreover, one can define the Yamabe
number

λ(X) = sup
all Riemannian metric g

λ(X , g). (4.2)

As analogous to (4.2), on a compact complexmanifold X , one can define the complex version

λc(X) = sup
all Hermitian metric g

λ(X , g). (4.3)

Theorem 4.1 Let X be a compact complex manifold. If λc(X) > 0, then κ(X) = −∞.
Moreover, if X is also spin, then ̂A(X) = 0.

Proof Suppose λc(X) > 0, then there exists a Hermitian metric g0 such that

λ(X , g0) = inf
g∈[g0]

∫

X sgdVg
(∫

X dVg
)1− 1

n

> 0.

Let ω f = e f ωg0 be a Gauduchon metric in the conformal class of ωg0 . Hence, ω f has
positive total Riemannian scalar curvature

∫

X
s f · ωn

f > 0.

Moreover, by formula (3.9), the total Chern scalar curvature of ω f is
∫

X
(sC) f · ωn

f =
∫

X

s f

2
· ωn

f + 1

4

∫

X
|T f |2f · ωn

f > 0, (4.4)

where we use the fact that ω f is Gauduchon, i.e. ∂∗
f ∂

∗
f ω f = 0. Therefore, the Gauduchon

metricω f has positive total Chern scalar curvature, and by [38, Corollary 3.2], κ(X) = −∞.
We also have λ(X) ≥ λc(X) > 0. On the other hand, by a straightforward calculation ([29,
Lemma 1.2]), one can show that λ(X) > 0 if and only if there exists a Riemannianmetric with
positive Riemannian scalar curvature. Hence, by Lichnerowicz’s result (e.g. Lemma 2.1), if
X is spin and λc(X) > 0, then ̂A(X) = 0. ��
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Note that on a simply connected Kähler Calabi–Yau manifold X with dimC X = 2m + 1,
one has λ(X) > 0 and ̂A(X) = 0. However, λc(X) ≤ 0.

Question 4.2 On a compact Kähler (or complex) manifold X , find sufficient and necessary
conditions such that λ(X) and λc(X) have the same sign, or λ(X) = λc(X).

A result along this line is

Corollary 4.3 Let X be a simply connected compact complex manifold with dimC X ≥ 3. If
λc(X) has the same sign as λ(X), then κ(X) = −∞.

Proof ByGromov–Lawson [13] and Stolz [27], if X is a simply connected complexmanifold
with dimC X ≥ 3, then X has a Riemannian metric with positive scalar curvature, hence
λ(X) > 0 and so λc(X) > 0. By Theorem 4.1, we obtain κ(X) = −∞. ��
Finally, we want to present a nice result of LeBrun, which answers Conjecture 1.5 affir-
matively when X is a compact spin Kähler surface (for related works, see also [14] and
[20]):

Theorem 4.4 [18, Theorem A] Let X be a compact Kähler surface, then
⎧

⎪

⎨

⎪

⎩

λ(X) > 0 if and only if κ(X) = −∞;
λ(X) = 0 if and only if κ(X) = 0 or 1;
λ(X) < 0 if and only if κ(X) = 2.

(4.5)

According to Theorems 1.1, 1.2, 1.4 and [38, Theorem 1.1], there should be some analogous
results for λc(X) on compact Kähler manifolds, which will be addressed in future studies.
For some related settings, we refer to [2,3,8,21] and the references therein.

5 Examples on compact non-Kähler Calabi–Yau surfaces

In this section, we discuss two special Calabi–Yau surfaces of class VII. One is the diagonal
Hopf surface S1 × S

3 and the other one is the Inoue surface. It is well-known, they are non-
Kähler Calabi–Yau surfaces with Kodaira dimension −∞, b1(X) = 1 and b2(X) = 0. We
show by the following example that the converses of Theorems 1.1 and 1.4 are not valid in
general:

Proposition 5.1 For every Inoue surface X, it has κ(X) = −∞ and ̂A(X) = 0. However,
it can not support a Hermitian metric with non-negative Riemannian scalar curvature. In
particular, λc(X) ≤ 0.

Proof Since X is a non-Kähler Calabi–Yau manifold with b2(X) = 0, one can see c21 = 0
and c2 = 0 (e.g. [5, Proposition 19.2 in Chapter V]). Hence, by the index theorem, we have

̂A(X) = −1

8
τ(X) = − 1

24
(c21 − c2) = 0.

On the other hand, on each Inoue surface, there exists a smooth Gauduchon metric with non-
positive Ricci curvature. Indeed, let (w, z) ∈ H × C be the holomorphic coordinates, then
by the precise definition of each Inoue surface ([9,10,25,34]), it is easy to see that the metric
h−1 = [Im(w)]−1(dw ∧ dz) ⊗ (dw ∧ dz) (resp. h−1 = [Im(w)]−2(dw ∧ dz) ⊗ (dw ∧ dz))

123



376 X. Yang

is a globally defined Hermitian metric on the anti-canonical bundle of SM (resp. S+
N ,p,q,r;t )

(e.g. [9, Section 6]). Hence, the Chern Ricci curvature of SM is

−√−1∂∂ log h−1 = √−1∂∂ log[Im(w)] = −
√−1

4

dw ∧ dw

[Im(w)]2 ,

which also represents cBC1 (X). By Theorem [28, Theorem 1.3], there exists a Gauduchon
metric ωG with

Ric(ωG) = −
√−1

4

dw ∧ dw

[Im(w)]2 ≤ 0.

(Note also that the Riemannian scalar curvature of ωG is strictly negative according to (3.9).)
Hence, for any Gauduchon metric ω, the total Chern scalar curvature

2
∫

X
Ric(ω) ∧ ω = 2

∫

X
Ric(ωG) ∧ ω < 0.

If X admits a Hermitian metric ω with non-negative Riemannian scalar curvature, then by
formula (3.10), there exists a Gauduchon metric with positive total Chern scalar curvature.
This is a contradiction. We can deduce similar contradictions for S±

N ,p,q,r;t . ��

A straightforward computation shows that on diagonal Hopf surfaces S1 × S
3, there exist

Hermitian metrics ω+, ω−, ω0 with positive, negative and zero Riemannian scalar curvature
respectively ([24, Section 6]). However, their Chern scalar curvatures are all positive.

Acknowledgements The author would like to thank Bing-Long Chen, Fei Han, Tian-Jun Li, Ke-Feng Liu,
Jian-Qing Yu, Bai-Lin Song, Song Sun, Valentino Tosatti, Shing-Tung Yau and Fang-Yang Zheng for valuable
comments and discussions.

6 Appendix: The scalar curvature relation on compact complex
manifolds

Let’s recall someelementary settings (e.g. [24, Section 2]). Let (M, g,∇)be a 2n-dimensional
Riemannian manifold with the Levi–Civita connection ∇. The tangent bundle of M is also
denoted by TRM . The Riemannian curvature tensor of (M, g,∇) is

R(X , Y , Z , W ) = g
(∇X∇Y Z − ∇Y ∇X Z − ∇[X ,Y ] Z , W

)

for tangent vectors X , Y , Z , W ∈ TRM . Let TCM = TRM ⊗ C be the complexification.
We can extend the metric g and the Levi–Civita connection ∇ to TCM in the C-linear way.
Hence for any a, b, c, d ∈ C and X , Y , Z , W ∈ TCM , we have

R(aX , bY , cZ , dW ) = abcd · R(X , Y , Z , W ).

Let (M, g, J ) be an almost Hermitian manifold, i.e., J : TRM → TRM with J 2 = −1, and
for any X , Y ∈ TRM , g(J X , JY ) = g(X , Y ). The Nijenhuis tensor NJ : 
(M, TRM) ×

(M, TRM) → 
(M, TRM) is defined as

NJ (X , Y ) = [X , Y ] + J [J X , Y ] + J [X , JY ] − [J X , JY ].
The almost complex structure J is called integrable if NJ ≡ 0 and then we call (M, g, J )

a Hermitian manifold. We can also extend J to TCM in the C-linear way. Hence for any
X , Y ∈ TCM , we still have g(J X , JY ) = g(X , Y ). By Newlander–Nirenberg’s theorem,
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there exists a real coordinate system {xi , x I } such that zi = xi + √−1x I are local holomor-
phic coordinates on M . Let’s define a Hermitian form h : TCM × TCM → C by

h(X , Y ) := g(X , Y ), X , Y ∈ TCM . (6.1)

By J -invariant property of g,

hi j := h

(

∂

∂zi
,

∂

∂z j

)

= 0, and hi j := h

(

∂

∂zi
,

∂

∂z j

)

= 0 (6.2)

and

hi j := h

(

∂

∂zi
,

∂

∂z j

)

= 1

2

(

gi j + √−1gi J

)

. (6.3)

It is obvious that (hi j ) is a positive Hermitian matrix. Let ω be the fundamental two-form
associated to the J -invariant metric g:

ω(X , Y ) = g(J X , Y ). (6.4)

In local complex coordinates,

ω = √−1hi j dzi ∧ dz j . (6.5)

In the local holomorphic coordinates {z1, . . . , zn}on M , the complexifiedChristoffel symbols
are given by


C
AB =

∑

E

1

2
gC E (∂gAE

∂zB
+ ∂gB E

∂z A
− ∂gAB

∂zE

)

=
∑

E

1

2
hC E (∂h AE

∂zB
+ ∂h B E

∂z A
− ∂h AB

∂zE

)

(6.6)

where A, B, C, E ∈ {1, . . . , n, 1, . . . , n} and z A = zi if A = i , z A = zi if A = i . For
example


k
i j = 1

2
hk�

(

∂h j�

∂zi
+ ∂hi�

∂z j

)

, 
k
i j

= 1

2
hk�

(

∂h j�

∂zi
− ∂h ji

∂z�

)

. (6.7)

We also have 
k
i j

= 
k
i j = 0 by the Hermitian property h pq = hi j = 0. The complexified

curvature components are

RD
ABC =

∑

E

RABC E hE D = −
(

∂
D
AC

∂zB
− ∂
D

BC

∂z A
+ 
F

AC
D
F B − 
F

BC
D
AF

)

. (6.8)

By the Hermitian property again, we have

Rl
i jk

= −
⎛

⎝

∂
l
ik

∂z j
−

∂
l
jk

∂zi
+ 
s

ik

l
js

− 
s
jk


l
is − 
s

jk

l

is

⎞

⎠ . (6.9)

It is computed in [24, Lemma 7.1] that

Lemma 6.1 On the Hermitian manifold (M, h), the Riemannian Ricci curvature of the Rie-
mannian manifold (M, g) satisfies

Ric(X , Y ) = hi�
[

R

(

∂

∂zi
, X , Y ,

∂

∂z�

)

+ R

(

∂

∂zi
, Y , X ,

∂

∂z�

)]

(6.10)
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for any X , Y ∈ TRM. The Riemannian scalar curvature is

s = 2hi j hk�
(

2Ri�k j − Ri jk�

)

. (6.11)

The following result is established in [24, Corollary 4.2] (see also some different versions in
[11]). For readers’ convenience we include a straightforward proof without using “normal
coordinates”.

Lemma 6.2 On a compact Hermitian manifold (M, ω), the Riemannian scalar curvature s
and the Chern scalar curvature sC are related by

s = 2sC +
(

〈∂∂∗ω + ∂∂
∗
ω,ω〉 − 2|∂∗ω|2

)

− 1

2
|T |2, (6.12)

where T is the torsion tensor with

T k
i j = hk�

(

∂h j�

∂zi
− ∂hi�

∂z j

)

.

Proof For simplicity, we denote by

sR = hi j hk� Ri�k j and sH = hi j hk� Ri jk�.

Then, by formula (6.11), we have s = 4sR − 2sH. In the following, we shall show

sH = sC − 1

2
〈∂∂∗ω + ∂∂

∗
ω,ω〉 − 1

4
|T |2 (6.13)

and

sR = sC − 1

2
|∂∗ω|2 − 1

4
|T |2. (6.14)

It is easy to show that

∂
∗
ω = 2

√−1
k
ik

dzi (6.15)

and so

− ∂∂∗ω + ∂∂
∗
ω

2
= √−1

⎛

⎝

∂
k
jk

∂zi
+ ∂
k

ik

∂z j

⎞

⎠ dzi ∧ dz j . (6.16)

On the other hand, by formula (6.9), we have

Rk
i jk

= −∂
k
ik

∂z j
+

∂
k
jk

∂zi
+ 
s

jk

k

is . (6.17)

A straightforward calculation shows

hi j
s
jk


k
is = −1

4
|T |2.

Moreover, we have
⎛

⎝−∂
k
ik

∂z j
+

∂
k
jk

∂zi

⎞

⎠ −
⎛

⎝

∂
k
jk

∂zi
+ ∂
k

ik

∂z j

⎞

⎠ = −∂
k
ik

∂z j
− ∂
k

ik

∂z j
= −∂2 log det(g)

∂zi∂z j

(6.18)
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where the last identity follows from (6.7). Indeed, we have


k
ik + 
k

ik
= hk� ∂hk�

∂zi
= ∂ log det(g)

∂zi
.

Hence, we obtain

sH +
〈

∂∂∗ω + ∂∂
∗
ω

2
, ω

〉

= sC − 1

4
|T |2

which proves (6.13). Similarly, one can show (6.14). ��
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