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In this paper, we study smooth complex projective varieties X such that some 
exterior power 

∧r TX of the tangent bundle is strictly nef. We prove that such 
varieties are rationally connected. We also classify the following two cases. If TX

is strictly nef, then X isomorphic to the projective space Pn. If 
∧2 TX is strictly 

nef and if X has dimension at least 3, then X is either isomorphic to Pn or a 
quadric Qn.
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r é s u m é

Dans ce papier, nous étudions les variétés complexes projectives lisses X telles 
que certain produit extérieur 

∧r TX du fibré tangent est strictement nef. Nous 
démontrons que ces variétés sont rationnellement connexes. De plus, nous classifions 
les deux cas suivants. Si TX est strictement nef, alors X est isomorphe à l’espace 
projective Pn. Si 

∧2 TX est strictement nef et si la dimension de X est au moins 3, 
alors ou bien X est isomorphe à Pn, ou bien elle est isomorphe à une quadrique Qn.

© 2019 Published by Elsevier Masson SAS.

1. Introduction

Throughout this paper, we will study projective varieties defined over C, the field of complex numbers. 
We recall that a line bundle L over a smooth projective variety X is said to be strictly nef if there is

L · C > 0
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for any curve C ⊂ X, while the Nakai-Moishezon-Kleiman criterion asserts that L is ample if and only if 
there is

Ldim Y · Y > 0

for every positive-dimensional subvariety Y ⊂ X. In particular, ampleness implies strict nefness. However, 
the converse is not true in general, as shown in an example of Mumford (see [1, Section 10, Chapter I]). 
Nevertheless, one might expect more for the canonical bundle ωX of X. Indeed, on the one hand, since a 
strictly nef semi-ample line bundle must be ample, the abundance conjecture suggests that if ωX is strictly 
nef, then it should be ample. On the other hand, Campana and Peternell proposed in [2, Problem 11.4] the 
following conjecture.

Conjecture 1.1. Let X be a smooth projective variety. If ω−1
X is strictly nef, then ω−1

X is ample, that is, X
is a Fano variety.

This conjecture is only verified by Maeda for surfaces (see [3]) and by Serrano for threefolds (see [4], also 
[5] and [6]). In this paper, we prove the following theorem, which provides some evidence for this conjecture 
in all dimensions.

Theorem 1.2. Let X be a smooth projective variety of dimension n, and let TX be its tangent bundle. If ∧r
TX is strictly nef for some 1 � r � n, then X is rationally connected. In particular, if ω−1

X is strictly 
nef, then X is rationally connected.

We recall that a vector bundle E is said to be strictly nef if the tautological line bundle OE(1) on the 
projective bundle ProjE of hyperplanes is strictly nef.

One of the key ingredients for the proof of Theorem 1.2 relies on the recent breakthrough of Cao and 
Höring on the structure theorems for projective varieties with nef anticanonical bundle (see [7] and [8]). 
Actually, based on their work, we prove the following result, which is essential for Theorem 1.2.

Theorem 1.3. Let X be a smooth projective variety with nef anticanonical bundle ω−1
X . Then, up to replacing 

X with some finite étale cover if necessary, the Albanese morphism f : X → A has a section σ : A → X

such that σ∗ωX is numerically trivial.

As an application of Theorem 1.2, we prove the following analogue of Mori’s characterization of projective 
spaces (see [9]).

Theorem 1.4. Let X be a smooth projective variety of dimension n. If TX is strictly nef, then X is Pn.

In another word, this theorem states that the tangent bundle TX is strictly nef if and only if it is ample. 
Along the same lines as Theorem 1.4, we obtain the following characterization as well.

Theorem 1.5. Let X be a smooth projective variety of dimension n ≥ 3. Suppose that 
∧2

TX is strictly nef, 
then X is isomorphic to Pn or a quadric Qn.

There are also other characterizations of projective spaces or quadrics, see, for example, [10], [11], [12], 
[13], [14], [15,16], [17], [18], [19], [20], [21], [22], [23], [24], etc.
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2. Basic properties of strictly nef vector bundles

In this section, we collect some basic results on strictly nef vector bundles. The following proposition is 
analogous to the Barton-Kleiman criterion for nef vector bundles (see for example [25, Proposition 6.1.18]).

Proposition 2.1. Let E be a vector bundle on a smooth projective variety X. Then the following conditions 
are equivalent.

1. E is strictly nef.
2. For any smooth projective curve C with a finite morphism ν : C → X, and for any line bundle quotient 

ν∗(E) → L, one has

deg L > 0.

Proof. For a fixed smooth projective curve C, we know that any non-constant morphism μ : C → ProjE
whose image is horizontal over X corresponds one-to-one to a finite morphism ν : C → X with a line bundle 
quotient ν∗E → L. Moreover, we have the following commutative diagram

C
μ

ν

ProjE

X

(2.1)

such that L = μ∗OE(1), where OE(1) is the tautological line bundle of ProjE (see for example [26, Propo-
sition II.7.12]).

(1) =⇒ (2). Let ν : C → X be a finite morphism, where C is a smooth projective curve. Assume that 
there is a line bundle quotient ν∗E → L. Let μ : C → ProjE be the induced morphism as in diagram (2.1). 
Then we have

deg L = deg μ∗OE(1) = OE(1) · μ(C).

Since OE(1) is strictly nef, we obtain that deg L > 0.
(2) =⇒ (1). Let B be a curve in ProjE. Let f : B̃ → ProjE be its normalization. If B is vertical over X, 

then we have OE(1) · B > 0. If B is horizontal over X, then the natural morphism g : B̃ → X is finite. In 
this case, there is an induced line bundle quotient g∗E → Q such that Q ∼= f∗OE(1). We note that

OE(1) ·B = deg Q,

which is positive by hypothesis. Thus E is strictly nef. �
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We also have the following list of properties of strictly nef vector bundles.

Proposition 2.2. Let E and F be two vector bundles on a smooth projective variety X. Then we have the 
following assertions.

1. E is a strictly nef if and only if for every smooth projective curve C and for any non-constant morphism 
f : C → X, f∗E is strictly nef.

2. If E is strictly nef, then any non-zero quotient bundle Q of E is strictly nef.
3. If E ⊕ F is strictly nef, then both E and F are strictly nef.
4. If the symmetric power Symk E is strictly nef for some k ≥ 1, then E is strictly nef.
5. Let f : Y → X be a finite morphism such that Y is a smooth projective variety. If E is strictly nef, then 

so is f∗E.
6. Let f : Y → X be a surjective morphism such that Y is a smooth projective variety. If f∗E is strictly 

nef, then E is strictly nef.
7. If E is strictly nef, then h0(X, E∗ ⊗ L) = 0 for any numerically trivial line bundle L.

Proof. (1) follows directly from Proposition 2.1. For (2), we note that there is a natural embedding ι :
ProjQ → ProjE such that ι∗OE(1) ∼= OQ(1). Hence if E is strictly nef, then so is Q. (3) follows from (2). 
For (4), we note that there is a Veronese embedding v : ProjE → Proj (Symk E) such that v∗OSymk E(1) ∼=
OE(k). This implies (4).

For (5), we notice that for any smooth projective curve C with a finite morphism ν : C → X, the 
composition f ◦ ν : C → X is also finite. The assertion then follows from Proposition 2.1.

Now we consider (6). We note that for every curve in X, there is a curve in Y which maps onto it. Hence 
by (1), we only need to prove the case when X and Y are smooth curves. In this case, there is a natural 
finite surjective morphism g : Proj (f∗E) → ProjE induced by f . Moreover, we have Of∗E(1) ∼= g∗OE(1). 
By assumption, Of∗E(1) is a strictly nef line bundle. Since g is finite surjective, this implies that OE(1) is 
also strictly nef. Therefore, E is strictly nef.

It remains to prove (7). We remark that E⊗L−1 is still strictly nef for L−1 is numerically trivial. Thus, by 
replacing E with E⊗L−1, we may assume that L is trivial. Assume by contradiction that h0(X, E∗) > 0. By 
[27, Proposition 1.16], there exists a nowhere vanishing section σ ∈ H0(X, E∗). Then σ induces a subbundle 
OX → E∗ as well as a quotient bundle E → OX . This contradicts Proposition 2.1. �
3. Strictly nef bundles on curves

In this section, we will look at strictly nef vector bundle E on a smooth projective curve C. If C is 
rational, then E is a direct sum of line bundles. Hence E is strictly nef if and only if E is ample in 
this case. However, on a smooth curve C of genus at least 2, there exists a strictly nef vector bundle E
which is also a Hermitian flat stable vector bundle (see [1, Section 10 in Chapter I]). In particular, this 
bundle E is not ample. Now it remains to look at the case when C is elliptic. We observe the following 
fact.

Theorem 3.1. Let E be a vector bundle on an elliptic curve C. If E is strictly nef, then E is ample.

For the proof of this theorem, we will first prove the following lemma. Recall that a vector bundle E is 
called numerically flat if both E and E∗ are nef, or equivalently, if both E and det (E∗) are nef (see [27, 
Definition 1.17]).

Lemma 3.2. Let E be a strictly nef vector bundle on smooth projective variety X whose Kodaira dimension 
κ(X) satisfies 0 � κ(X) < dimX. Then det E is not numerically trivial.



144 D. Li et al. / J. Math. Pures Appl. 128 (2019) 140–151
Proof. We will first prove the case when the Kodaira dimension of X is 0. Assume by contradiction that 
det E is numerically trivial. Then E is numerically flat, and so is E∗. By [27, Theorem 1.18], E∗ admits a 
filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ Ep = E∗

of subbundles such that the quotients Ek/Ek−1 are Hermitian flat. In particular, E1 is Hermitian flat, 
and is defined by a unitary representation of the fundamental group π1(X). By [28, Corollary 1], such a 
representation splits into a direct sum of one-dimensional representations. Hence E1 is a direct sum of flat 
line bundles. Let Q be one of them. Then there is a line bundle quotient E → L with L = Q−1. Moreover, 
since L is also flat, it is numerically trivial. This contradicts Proposition 2.1.

Now we study the general case. Let ϕ : X ��� Y be the Iitaka fibration for ωX . Let F be the closure 
of a general fiber of ϕ. Then the Kodaira dimension of F is 0. Moreover, F has positive dimension as 
κ(X) < dimX. Hence, from the first paragraph, the restriction of det E on F is not numerically trivial. 
Thus det E is not numerically trivial. �

Now we can conclude Theorem 3.1.

Proof of Theorem 3.1. The vector bundle E can be decomposed as E = ⊕Ei so that each Ei is an inde-
composable bundle. By Proposition 2.2, each Ei is strictly nef. Hence we have deg (Ei) > 0 by Lemma 3.2. 
This implies that E is ample (see [29, Theorem 1.3] or [30, Theorem 2.3]). �
Remark 3.3. From Proposition 2.2 and Theorem 3.1, we can obtain that if a projective variety X contains 
the image of an elliptic curve (or a rational curve) which is not a point, then the determinant of every 
strictly nef vector bundle E on X is not numerically trivial. As a consequence, if E is strictly nef over 
a projective variety X with pseudo-effective ω−1

X , then detE is not numerically trivial. Indeed, if ωX is 
not pseudo-effective, then by [31, Corollary 0.3], X is covered by rational curves. If both ωX and ω−1

X are 
pseudo-effective, then ωX is numerically trivial. Then the Kodaira dimension of X is zero by Beauville’s 
decomposition theorem (see [32, Théorème 1]), and we can apply Lemma 3.2 to conclude.

4. Sections of Albanese morphisms

In this section, we shall prove Theorem 1.3. We will divide this section into two parts. In the first one, 
we will prove a theorem on periodic points for group actions on projective schemes. By using this theorem, 
we will conclude Theorem 1.3.

4.1. Periodic points for linear actions of abelian groups

The goal of this subsection is to prove the following theorem.

Theorem 4.1. Let G be a finitely generated abelian group. Assume that G acts on a projective scheme Z such 
that there is a G-equivariant ample line bundle L on Z. Then the action of G on Z has a periodic point.

We recall that if G acts on a projective scheme Z, then a line bundle L on Z is said to be G-equivariant 
if there is an isomorphism g∗L ∼= L for any element g ∈ G which is compatible with the group structure of 
G. A (closed) point z ∈ Z is said to be a periodic point for an element g ∈ G if gk.z = z for some positive 
integer k. A point z is called a periodic point for the action of G if there is a positive integer k such that 
gk.z = z for all elements g ∈ G.
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Proof of Theorem 4.1. By replacing L with some positive power of it if necessary, we can assume that L is 
very ample. Then there is a nature linear action of G on W = H0(Z, L), which induces a natural action of 
G on ProjW . Moreover, there is a G-equivariant embedding Z → ProjW . The theorem is then equivalent 
to the following proposition. �
Proposition 4.2. Let G be a finitely generated abelian group. Let V be a linear representation of G. Assume 
that Z ⊆ P (V ) is a closed subscheme which is stable under the induced action of G on P (V ), where P (V )
is the projective space of lines in V . Then the action of G on Z has a periodic point.

We will first prove Proposition 4.2 in the case when G is generated by one element.

Lemma 4.3. With the notations in Proposition 4.2, if we assume that G is generated by one element, then 
the action of G on Z has a periodic point.

Proof. Assume that G is generated by an element g. Then it is enough to prove that some positive power 
of g has a periodic point in Z. Hence during the proof, we will replace g with some positive power of it if 
necessary. Let (x0, ..., xm) be a coordinates system of V such that the vector with coordinates (1, 0, ..., 0) in 
V is an eigenvector for g. Let [x0 : · · · · : xm] be the induced homogeneous coordinates system of P (V ).

We will prove the lemma by induction on the dimension m of P (V ). If m = 1, then Z is either a finite 
set or the whole P (V ). If Z is a finite set, then all of its points are periodic. If Z = P (V ), then the point 
[1 : 0] belongs to Z and is fixed by g. Hence the lemma is true in this case.

Assume that the lemma is true in dimensions smaller than m � 2. If the point y with coordinates 
[1 : 0 : · · · : 0] is in Z, then it is a fixed-point for g and we are done. Assume that y does not belong to 
Z. Let H ⊆ P (V ) be the hyperplane of points whose 0-th coordinates are 0. Then the rational projection 
ϕ : P (V ) ��� H such that

ϕ : [x0 : · · · : xm] �→ [0 : x1 : · · · : xm]

is a well-defined morphism on Z. We also note that ϕ|Z is proper, and hence the image Z ′ = ϕ(Z) is a closed 
subscheme of H ∼= Pm−1. Since (1, 0, ..., 0) ∈ V is an eigenvector for g, the action of G on P (V ) descends 
naturally to an action of G on H and the rational projection ϕ is G-equivariant. Thus Z ′ is stable under 
the action of G on H. By induction hypothesis, there is a point z′ ∈ Z ′ which is a periodic point for the 
action of G. By replacing g with some positive power if necessary, we may assume that z′ is a fixed-point. 
Let L ⊆ P (V ) be the line joining y and z′. Then L ∩ Z is non-empty and stable under the action of G. 
Since we have assumed that y /∈ Z, the intersection L ∩Z is a proper subset of L. Thus it is a finite set. In 
particular, every point in Z ∩ L is a periodic point for g. This completes the proof. �

Now we can conclude Proposition 4.2.

Proof of Proposition 4.2. We first note that it is enough to prove that some subgroup of G of finite index 
has a periodic point. Hence during the proof we may replace G by some subgroup of finite index of it if 
necessary. In particular, we may assume that G is torsion-free. Moreover, without loss of generality, we may 
assume that the representation V of G is faithful. We will prove by induction on the rank of G. If the rank 
is one, then the theorem follows from Lemma 4.3.

Assume that the theorem holds for ranks smaller than k � 2. Assume that G has rank k. Let {g1, ..., gk}
be a set of generators of G. Let F be the subgroup generated by g1 and let H be the subgroup generated 
by {g2, ..., gk}. Then by Lemma 4.3, the action of F on Z has a periodic point. By replacing g1 with some 
positive power of it and G by some subgroup of finite index if necessary, we may assume that the action of F
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on Z has a fixed-point. In particular, the set ZF is not empty. We note that ZF is also a closed subscheme 
of Pm. Moreover, it is stable under the actions of H since G is an abelian group. By induction hypothesis, 
the action of H on ZF has a periodic point z. Then z is a periodic point for the action of G on Z. This 
completes the proof. �
4.2. Proof of Theorem 1.3

We will finish the proof of Theorem 1.3 in this subsection. We will need the following two lemmas.

Lemma 4.4. Let B be a smooth projective variety and let π : B̃ → B be the universal cover with Galois group 
G = π1(B). Let V be a linear representation of G and let E be the corresponding flat vector bundle over 
B. Then there is a one-to-one correspondence between the set of G-fixed-points y ∈ ProjV and the set of 
codimension one flat subbundles F → E.

Proof. There is a one-to-one correspondence between the set of G-fixed-points y and the set of codimen-
sion one subrepresentations W ⊆ V . Moreover, the set of codimension one subrepresentations W ⊆ V is 
one-to-one correspondent to the set of codimension one flat subbundles F → E. �

In the next lemma, we consider the following situation. Let Y be a projective variety and let H be a very 
ample line bundle on Y . Let B be a smooth projective variety with fundamental group G = π1(B). Let 
B̃ → B be the universal cover. Assume that there is an action of G on Y such that H is G-equivariant. Let G
act on Y × B̃ diagonally and let X be the quotient (Y × B̃)/G. Then there is a natural fibration f : X → B, 
and H descends to a line bundle L on X. Moreover, the natural linear action of G on V = H0(Y, H) induces 
a flat vector bundle structure on E = f∗L.

Lemma 4.5. With the notation in the paragraph above, we assume that there is a G-fixed-point y ∈ Y . Then 
on the one hand, y induces a section σ : B → X of f . On the other hand, y also induces a short exact 
sequence of flat vector bundles

0 → F → E → Q → 0

such that Q ∼= σ∗L.

Proof. Let P = ProjE and let p : P → B be the natural projection. We note that there is a G-equivariant 
embedding Y → ProjV , which induces a closed embedding X → P . Moreover, we have OE(1)|X ∼= L.

Since y ∈ Y ⊆ ProjV is a G-fixed-point, it corresponds to a codimension one flat subbundle F → E by 
Lemma 4.4. Let Q be the quotient E/F . Then the quotient map E → Q induces a section μ : B → P of 
p such that μ∗OE(1) ∼= Q. Moreover, for every b ∈ B, μ(b) ∈ Pb corresponds exactly to y ∈ ProjV . Since 
y ∈ Y , the section μ factors through a section σ : B → X of f . Since OE(1)|X = L, we have Q ∼= σ∗L. This 
completes the proof of the lemma. �
Remark 4.6. We note that the section σ : B → X in the lemma above depends only on the fixed-point y, 
and is independent of the choice of the line bundle H. Indeed, σ(B) is the quotient ({y} × B̃)/G.

Now we can prove Theorem 1.3.

Proof of Theorem 1.3. As in [7, Corollary 4.16], by replacing X with some finite étale cover, we may assume 
that the fibers of f are simply connected. If A is a point or if f is an isomorphism, then there is nothing to 
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prove. Assume that A has positive dimension and that f is not an isomorphism. Let L be an f -relatively very 
ample divisor and let E = f∗L. Assume that rankE = m + 1 with m � 0. There is an isogeny p : A′ → A

such that p∗(detE) is divisible by m + 1. Since we have assumed that the fibers of f are simply connected, 
the natural morphism X ×A A′ → A′ is still the Albanese morphism. Hence, by replacing X with X ×A A′, 
we may assume that detE = Nm+1 for some line bundle N . By replacing L with L − f∗N , we may then 
assume that detE is trivial.

Let π : Ã → A be the universal cover with Galois group G = π1(A). Let X̃ be the fiber product X ×A Ã

and let p : X̃ → X be the natural morphism. By [7, Lemma 4.15], f∗(kL) is a numerically flat vector bundle 
on A for any positive integer k. In particular, E is numerically flat and hence is a flat vector bundle (see 
[33, Lemma 6.5 and Corollary 6.6]). Let (V, ρ) be the corresponding representation of G. Then there is a 
G-equivariant isomorphism

(ProjE) ×A Ã ∼= (ProjV ) × Ã,

where the action of G on ProjV is the one induced by ρ. By [7, Proposition 2.8], there is a G-stable subvariety 
Y ⊆ ProjV such that there is a G-equivariant isomorphism X̃ ∼= Y × Ã which makes the following diagram 
commute

Y × Ã (ProjV ) × Ã

X ProjE

Let H = OProj V (1)|Y . Then, on X̃, we have p∗L ∼= pr∗1H, where pr1 : X̃ → Y is the natural projection 
induced by the isomorphism X̃ ∼= Y × Ã. After all, we have X ∼= (Y × Ã)/G, and we are in the same 
situation as in Lemma 4.5.

We note that G is an abelian group. By Theorem 4.1, the action of G on Y has a periodic point for H is 
a G-equivariant ample line bundle. Hence there is a subgroup G′ of G of finite index such that the action of 
G′ on Y has a fixed-point y ∈ Y . The quotient X̃/G′ is a finite étale cover of X, and the natural morphism 
X̃/G′ → Ã/G′ is the Albanese morphism for we have assumed that the fibers of f are simply connected. 
Hence, by replacing X with X̃/G′ if necessary, we may assume that the action of G on Y has a fixed-point 
y ∈ Y . This fixed-point induces a section σ : A → X of the Albanese morphism f by Lemma 4.5.

We note that the anticanonical bundle ω−1
Y of Y is nef for ω−1

X is nef. Moreover, ω−1
Y is canonically 

G-equivariant. Hence ω−a
X ⊗H is a G-equivariant ample line bundle for any positive integer a. On X̃, we 

have

p∗(ω−a
X/A ⊗ L) ∼= ω−a

X̃/Ã
⊗ p∗L ∼= pr∗1(ω−a

Y ⊗H).

Let ra be some large enough positive integer such that (ω−a
Y ⊗H)ra is very ample. Then there is a natural 

linear action of G on H0(Y, (ω−a
Y ⊗H)ra), which induces a flat vector bundle structure on Ea = f∗(ω−a

X/A ⊗
L)ra . By Lemma 4.5, the G-fixed-point y induces a short exact sequence of flat vector bundles

0 → Fa → Ea → Qa → 0,

such that Qa
∼= σ∗(ω−a

X/A⊗L)ra . Since Qa is flat, it is numerically trivial. Thus σ∗(ω−a
X/A⊗L) is numerically 

trivial. Since this is true for all positive integer a, we obtain that σ∗ωX/A is numerically trivial. This 
completes the proof of the theorem for ωA is trivial. �
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5. Projective manifolds with strictly nef tangent bundles

In this section, we will prove Theorem 1.2, Theorem 1.4 and Theorem 1.5. At first, we observe the 
following fact.

Lemma 5.1. Let X = Y ×Z be a variety of dimension n which is a product of two smooth projective varieties 
of positive dimensions. If 

∧r
TX is strictly nef for some 1 � r � n, then both Y and Z are uniruled.

Proof. We have TX
∼= E ⊕ F , where E and F are the pullbacks of the tangent bundles of Y and Z

respectively. Then we have

r∧
TX

∼=
⊕

a+b=r

a∧
E ⊗

b∧
F.

Let s be the dimension of Y . We will first show that r > s. Suppose by contradiction that r � s. On the 
one hand, 

∧r
E is a direct summand of 

∧r
TX . On the other hand, for any y ∈ Y , the restriction of 

∧r
E on 

the fiber Xy is trivial. Hence, (
∧r

TX)|Xy
cannot be strictly nef by Proposition 2.2. This is a contradiction.

As a consequence, we obtain that N =
∧s

E ⊗
∧r−s

F is a direct summand of 
∧r

TX . In particular, N
is strictly nef by Proposition 2.2. Let z be a point in Z. Since (

∧r−s
F )|Xz

is trivial and since N |Xz
is still 

strictly nef, we conclude that (
∧s

E)|Xz
is strictly nef. This implies that ω−1

Y is strictly nef for Xz
∼= Y . 

Hence Y is uniruled by [34, Corollary 2]. By symmetry, we can also show that Z is uniruled. �
Now we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. We note that ω−1
X is nef. We will first show that the augmented irregularity q̃(X) is 

zero. Assume the opposite. By replacing X with some finite étale cover if necessary, we may assume that the 
irregularity q(X) is equal to q̃(X) > 0. Let f : X → A be the Albanese morphism. Then dimA = q(X) > 0. 
Thanks to Theorem 1.3, by replacing X with some finite étale cover if necessary, we may assume that 
there is a section σ : A → X such that σ∗ωX is numerically trivial. On the one hand, we remark that 
det (σ∗ ∧r

TX) ∼= σ∗ω−t
X is numerically trivial, where t is the binomial number 

(
n−1
r−1

)
. On the other hand, 

since σ∗ ∧r
TX is strictly nef, det (σ∗ ∧r

TX) cannot be numerically trivial by Lemma 3.2. We obtain a 
contradiction.

Therefore, we have q̃(X) = 0. In particular, X has finite fundamental group. Let X̃ → X be the universal 
cover. Then by [8, Theorem 1.2], we have X̃ ∼= Y × F such that ωY is trivial and that F is rationally 
connected. By Lemma 5.1, Y must be a point for 

∧r
T
X̃

is strictly nef. Hence X̃ is rationally connected and 
so is X. �

The following corollary is a direct consequence of Theorem 1.2.

Corollary 5.2. Let f : Y → X be a smooth surjective morphism between projective manifolds. If ω−1
Y is 

strictly nef, then X is rationally connected.

In the following, we will present two applications of Theorem 1.2 on characterizations of projective spaces 
and quadrics. We will prove Theorem 1.4 and Theorem 1.5 successively.

Proof of Theorem 1.4. By Theorem 1.2 and the structure theorem for smooth projective varieties with 
nef tangent bundles (see [27, Main Theorem]), we deduce that X is a Fano variety. For any rational curve 
f : P 1 → X, the bundle f∗TX is ample by Proposition 2.1. Moreover, since there is a non-zero morphism 
from TP1 ∼= OP1(2) to f∗TX , we obtain that deg f∗ω−1

X ≥ n + 1. Hence X ∼= Pn by [19, Corollary 0.3]. �
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Proof of Theorem 1.5. We know that X is rationally connected from Theorem 1.2. For a rational curve 
f : P 1 → X, we can write

f∗TX
∼=

( ⊕
ai>0

OP1(ai)
)⊕( ⊕

bj≤0

OP1(bj)
)
.

Since 
∧2

TX is strictly nef, so is f∗(
∧2

TX) by Proposition 2.1. Hence 
{bj} ≤ 1. If 
{bj} is 0, then f∗TX is 
ample, and deg f∗ω−1

X ≥ n + 1 by the same argument as in the proof of Theorem 1.4.
If 
{bj} is 1, then we can assume that

f∗TX
∼=

(
n−1⊕
i=1

OP1(ai)
)⊕

OP1(−c)

with 0 < a1 ≤ a2 ≤ · · · ≤ an−1 and c ≥ 0. Since f∗(
∧2

TX) is strictly nef, we must have a1 − c > 0. 
Moreover, since there is a natural non-zero morphism from TP1 to f∗TX , there exists some i such that 
ai ≥ 2. If c > 0, then a1 is at least 2 and we have

deg f∗ω−1
X = (a1 − c) + a2 + · · · + an−1 ≥ 1 + 2(n− 2) = 2n− 3 ≥ n.

If c = 0, we also have

deg f∗ω−1
X = a1 + a2 + · · · + an−1 ≥ (n− 2) + 2 = n.

After all, we always have deg f∗ω−1
X ≥ n. By [23, Corollary D], X is isomorphic to Pn, or a quadric 

Qn, or a projective bundle over some smooth curve. It remains to rule out the case of projective bundles. 
Assume by contradiction that X ∼= ProjV , where V is a vector bundle over a smooth projective curve B. 
We note that B is isomorphic to P 1 for X is rationally connected. We may assume that V =

⊕n
i=1 OB(di)

with 0 = d1 ≤ d2 ≤ · · · ≤ dn. If π : X → B is the natural projection, then we have

ω−1
X = (π∗ω−1

B ) ⊗ ω−1
X/B

∼= (π∗OB(2)) ⊗ (OV (n) ⊗ π∗(detV )−1)

= OV (n) ⊗
(
π∗OB

(
2 −

n∑
i=1

di

))
.

We note that the quotient morphism V → OB(d1) induces a section σ : B → X of π such that σ∗OV (1) ∼=
OB(d1) = OB . Thus we have

σ∗ω−1
X

∼= OB

(
2 −

n∑
i=1

di

)
.

This shows that deg σ∗ω−1
X ≤ 2 < n, which is a contradiction. �

Remark 5.3. We note that if a vector bundle E is strictly nef, then det E is not necessarily strictly nef in 
general (see [1, Section 10 in Chapter I]). However, inspired by Theorem 1.4 and Theorem 1.5, we expect 
that if 

∧r
TX is strictly nef for some r > 0, then so is −KX . We then extend the conjecture of Campana 

and Peternell: if 
∧r

TX is strictly nef for some r > 0, then X is a Fano variety.
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