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Abstract We investigate the Chern—Ricci flow, an evolution equation of Hermitian
metrics generalizing the Kédhler—Ricci flow, on elliptic bundles over a Riemann surface
of genus greater than one. We show that, starting at any Gauduchon metric, the flow
collapses the elliptic fibers and the metrics converge to the pullback of a Kéhler—
Einstein metric from the base. Some of our estimates are new even for the Kéihler—
Ricci flow. A consequence of our result is that, on every minimal non-Kéhler surface
of Kodaira dimension one, the Chern—Ricci flow converges in the sense of Gromov—
Hausdorff to an orbifold Kihler—Einstein metric on a Riemann surface.

Mathematics Subject Classification 53C44 - 53C55 - 32W20

1 Introduction

The Chern—Ricci flow is an evolution equation for Hermitian metrics on complex
manifolds. Given a starting Hermitian metric g, which we represent as a real (1, 1)
form wy = +/ —l(go)ijdz’ A d7/, the Chern—Ricci flow is given by

0
gw = —Ric(w), ol|i=0 = wg, (1.1)

where Ric(w) := —+/—19 log det g is the Chern-Ricci form of w. In the case when
go is Kihler, namely dwy = 0, (1.1) coincides with the Kédhler—Ricci flow.
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The Chern—Ricci flow was first introduced by Gill [11] in the setting of manifolds
with c]]BC(M ) = 0, where C?C(M ) is the first Bott—Chern class given by

{closed real (1, 1)-forms}

cfC(M) = [Ric(w)] € Hye (M, R) = V=100(C>(M))

for any Hermitian metric w. Making use of an estimate for the complex Monge—
Ampere equation [6,35], Gill showed that solutions to (1.1) on manifolds with
c}fC(M ) = 0 exist for all time and converge to Hermitian metrics with vanishing
Chern—Ricci form. Gill’s theorem generalizes the convergence result of Cao [4] for
the Kihler—Ricci flow (which made use of estimates of Yau [39]).

The first and second named authors investigated the Chern—Ricci flow on more
general manifolds [36,37] and proved a number of further results. It was shown in
particular that the maximal existence time for the flow can be determined from the
initial metric; that the Chern—Ricci flow on manifolds with negative first Chern class
smoothly deforms Hermitian metrics to Kihler—Einstein metrics; that when starting
on a complex surface with Gauduchon initial metric wo (meaning 99wy = 0), the
Chern—Ricci flow exists until the volume of the manifold or a curve of negative self-
intersection goes to zero; and that on surfaces with nonnegative Kodaira dimension the
Chern—Ricci flow contracts an exceptional curve when one exists. There are analogues
of all of these results for the Kdhler—Ricci flow [4,7,27,32].

For the purpose of this discussion it will be useful to make reference to the following
condition:

(%) M is a minimal non-Kahler complex surface and wq is Gauduchon.

Surfaces which satisfy () are of significant interest as they are not yet completely
classified. Recall that a surface is minimal if it contains no (—1)-curves and every
complex surface is birational to a minimal one by via a finite sequence of blow downs.
Every complex surface admits a Gauduchon metric, and the Gauduchon condition is
preserved by the Chern—Ricci flow.

We remark that Streets—Tian [29] earlier proposed the use of a different parabolic
flow, called the Pluriclosed Flow, to study complex non-Kéhler surfaces (see Sect. 2
of [36] for some discussion on how this flow differs from the Chern—Ricci flow).

The Kodaira—Enriques classification (see [1]) tells us that manifolds M satisfying
() fall into one of the following groups:

— Kod(M) = 1. Minimal non-Kihler properly elliptic surfaces.

— Kod(M) = 0. Kodaira surfaces.

— Kod(M) = —o0. Class VII surfaces which have either:
& ba(M) = 0. Hopf surfaces or Inoue surfaces by [15,16,30].
¢ by(M) = 1. These are classified by [18,31].
o by(M) > 1. Still unclassified.

Here Kod(M) is the Kodaira dimension of M. The result of Gill [11] shows that
when Kod(M) = 0 the Chern—Ricci flow exists for all time and converges to a Chern—
Ricci flat metric.
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In [37], explicit examples of solutions to the Chern—Ricci flow were found on all
M with Kod(M) = 1, for all Inoue surfaces and for a large class of Hopf surfaces.
In particular, it was shown that for any M with Kod(M) = 1 there exists an explicit
solution w(¢) of the Chern—Ricci flow for ¢ € [0, 0o) with the property thatas t — oo
the normalized metrics w (¢) /¢ converge in the sense of Gromov—Hausdorff to (C, dkg)
where C is a Riemann surface and dgg is the distance function induced by an orbifold
Kihler—Einstein metric on C.

The main result of this paper is to show that this collapsing behavior on surfaces
of Kodaira dimension one in the examples of [37] actually occurs for every choice
of initial starting Gauduchon metric wg. Combined with Gill’s theorem, our results
mean that the only remaining case (presumably the most difficult!) under assumption
(*) is to understand the behavior of the Chern—Ricci flow on surfaces of negative
Kodaira dimension. We believe that the results of this paper add to the growing body
of evidence that the Chern—Ricci flow is a natural geometric evolution equation on
complex surfaces, whose behavior reflects the underlying geometry of the manifold.

We first consider the case of elliptic bundles over a Riemann surface. Later we will
see that this is sufficient to understand the behavior of the flow on all M satisfying ()
with Kod(M) = 1. Suppose that 7 : M — § is now an elliptic bundle over a compact
Riemann surface S of genus at least 2, with fiber an elliptic curve E. We will denote
by Ey = 7~ 1(y) the fiber over a point y € S and by wga, y the unique flat metric
on Ey in the Kihler class [wo] Ey]. Let wg be the unique Kéhler—Einstein metric on S
with Ric(ws) = —wgs and let wg be a Gauduchon metric on M.

We consider the normalized Chern—Ricci flow

%a) = —Ric(w) — v, o|;=0 = wo, (1.2)
starting at wg. With this normalized flow we will see that the volume of the base
Riemann surface S remains positive and bounded while the elliptic fibers collapse.
One could equally well study the unnormalized flow (1.1) on M (so that our main
collapsing result would apply to w(¢)/t as in [37]) but we choose this normalization
to stay in keeping with the literature on the Kdhler—Ricci flow [24]. From [36] we
know that a smooth solution to (1.2) exists for all time (see Sect. 2 below for more
details). In this paper we prove the following convergence result as t — o0.

Theorem 1.1 Let 7 : M — S be an elliptic bundle over a Riemann surface S of
genus at least 2. Let w(t) be a solution of the normalized Chern—Ricci flow (1.2) on
M starting at a Gauduchon metric wo. Then as t — 00,

w(t) = mrws,

exponentially fast in the CO(M, go) topology, where ws is the unique Kdihler—Einstein
metric on S. In particular, the diameter of each elliptic fiber tends to zero uniformly
exponentially fast and (M, w(t)) convergesto (S, ws) in the Gromov—Hausdorfftopol-
0gYy.

Furthermore, with the notation above, e'w(t)| E, converges to the metric wia,y
exponentially fast in the C' (E v, 80) topology, uniformly in'y € S.
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1226 V. Tosatti et al.

Note that in Theorem 1.1 we do not need to assume that M is non-Kihler. On
the other hand, we do assume that M is an elliptic bundle, so that the fibers are all
isomorphic as elliptic curves. General elliptic surfaces may have singular fibers and
in such cases, the complex structure of the smooth fibers may vary. However, we will
see shortly that this does not arise for the non-Kihler surfaces that are of interest to us.

In the case that M is Kéhler and wq is Kihler, then w(¢) is a solution of the
normalized Kéhler—Ricci flow. There are already a number of results on this, which
we now briefly discuss. On a general minimal Kéhler elliptic surface, and its higher
dimensional analogue, the Kihler—Ricci flow was first investigated by Song—Tian
[24,25]. They showed that the flow converges at the level of potentials to a generalized
Kdhler—Einstein metric on the base Riemann surface. The generalized Kéhler—Einstein
equation involves the Weil-Petersson metric and singular currents. These terms arise
because, unlike in our case, the fibration structure on a Kéhler elliptic surface is not
in general locally trivial and may have singular fibers. When the Kihler surface is a
genuine elliptic bundle over a Riemann surface of genus larger than one, the results of
Song-Tian give C” collapsing of the fibers along the Kihler—Ricci flow, as well as a
uniform scalar curvature bound [26]. These convergence results were strengthened by
Song—Weinkove [28] and Gill [12] in the special case of a product E x S, giving C*
convergence of the metrics to the pull-back of a Kidhler—Einstein metric on the base.
Fong—Zhang [9], adapting a technique of Gross—Tosatti—Zhang [13] on Calabi—Yau
degenerations, established smooth convergence for the Kéhler—Ricci flow on more
general elliptic bundles. In particular, the statement of Theorem 1.1 is known if the
initial metric wq is Kéhler (with the exception of the assertion that the convergence
w(t) — m*wg is exponential - as far as we know, this result is new even in the
Kihler—Ricci flow case).

Of course, we are much more interested in manifolds which do not admit Kihler
metrics. For non-Kihler elliptic surfaces, we make use of the following key fact:

Every minimal non-Kdhler properly elliptic surface is an elliptic bundle or has a
finite cover which is an elliptic bundle.

This is well-known from the Kodaira classification (see for example [3, Lemmas
1, 2] or [38, Theorem 7.4]). Then an immediate consequence of our Theorem 1.1 is
that we can identify the Gromov—Hausdorff behavior of the Chern—Ricci flow on all
minimal non-Kihler surfaces of Kodaira dimension one.

Corollary 1.2 Let w : M — S be any minimal non-Kdhler properly elliptic surface
and let w(t) be the solution of the normalized Chern—Ricci flow (1.2) starting at a
Gauduchon metric wg. Then (M, w(t)) converges to (S, ds) in the Gromov-Hausdorff
topology.

Here dg is the distance function induced by an orbifold Kdihler—Einstein metric
ws on S, whose set Z of orbifold points is precisely the image of the multiple fibers
of . Furthermore, (t) converges to n*ws in the CO(M, go) topology, and for any
y € S\Z the metrics ¢’ w(t)| g, converge exponentially fast in the C W(E v, 80) topology
(and uniformly as y varies in a compact set of S\Z) to the flat Kiihler metric on E,
cohomologous to [wo| E,

As mentioned above, explicit examples exhibiting the behavior of Corollary 1.2
were given in [37].
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We now outline the steps we need to establish Theorem 1.1, and point out some of
the difficulties that arise from the non-Kéhlerity of the metrics.

The first parts of the proof follow quite closely the arguments used by Song—Tian
[24] for the Kdhler—Ricci flow. In Sect. 2, we show that the Chern—Ricci flow can be
written as parabolic complex Monge—Ampere equation

3 e (@ + /—100¢)> 5 _
—p = log ( = O o+ T8 > 0, p(0) = —p, (1.3
where @ = @(t) is a family of reference forms (which are metrics for ¢ large) given
by

®=e¢ o+ (1 —e Hws, with wga = wo + v/—130p,

where p is chosen so that wg, Testricted to the fiber Ey is exactly the metric wpay,y
discussed above. Here 2 is a particular fixed volume form on M with the property
that /=199 log Q2 = wy. If ¢ satisfies (1.3) then w (1) = & + /—13¢ satisfies the
Chern—Ricci flow (1.2).

In Sect. 3 we establish uniform bounds for ¢ and ¢, which imply that the volume
form of the evolving metric w(#) is uniformly equivalent to the volume form of the
reference metric. These follow in the same way as in the case of the Kihler—Ricci flow
[24]. In addition, we prove a crucial decay estimate for ¢,

lp| < CA +1t)e ", (1.4)

using the argument of [28]. This estimate makes use of the Gauduchon assumption on
), and in fact is the only place where we use this condition.

So far, the torsion terms of w(¢) and @ have not entered the picture. They show
up in the next step of obtaining uniform bounds for the metrics w(#). The evolution
equation for trgw, essentially already computed in [36], contains terms involving the
torsion and curvature of the reference metrics @. In Sect. 4 we prove a technical lemma
giving bounds for the torsion and curvature of these metrics. In particular we show:

1Tz <C, [3T|; + IVT|; + [Rmlz < Ce'/>.

To deal with these bounds of order ¢'/2
estimate (1.4) on ¢ to control these terms.

In Sect. 5, we evolve the quantity

, our idea is to exploit the strong decay

=logtrgw — Ae'?p + ————,
0 =logtrzw e ¢+C+e’/2<p

noting that e’/2¢ is bounded by (1.4). The third term of Q is the “Phong—Sturm term”

[20], which was used in [36] to control some torsion terms along the Chern—Ricci
flow. Using the good positive terms arising from the Laplacian landing on e//?¢ we

@ Springer



1228 V. Tosatti et al.

can control the bad terms of order ¢//> coming from the torsion and curvature of &.

We obtain a uniform bound on Q which gives the estimate
C'o<w=<Ca, (1.5)

namely, that the solution w is uniformly equivalent to the reference metric @.

We point out that our argument here differs substantially from that of Song—Tian
[24] where they prove first a parabolic Schwarz Lemma, namely an estimate of the
type w > C~lwg for a uniform C > 0. We were unable to prove this by a similar
direct maximum principle argument, because of troublesome torsion terms arising in
the evolution of tr,ws. However, we still obtain the estimate @ > C~'wg once we
have (1.5).

The next step is to improve the bound (1.5) to the stronger exponential convergence
result

(1=Ce ™o <w<(l+Ce N, (1.6)

for ¢ > 0. To our knowledge, this estimate is new even for the Kéihler—Ricci flow on
elliptic bundles. The idea is to evolve the quantity

0 = e (tr,d — 2) — g,

for a carefully chosen § > 1/24-2¢ and again exploit the decay estimate (1.4). Showing
that Q is bounded from above then gives the estimate

tr,o —2 < Ce™®,

and a similar argument gives the same inequality with tr,@ replaced by trzw. Com-
bining these two estimates gives (1.6).

However, in order to apply the maximum principle to Q we first require an expo-
nential decay estimate for ¢. To prove this, we observe that the evolution equation for

¢ is

J Ro1—d
5’ = ®,
where R is the Chern scalar curvature of g. If we had a uniform bound for the Chern
scalar curvature, an exponential decay estimate for ¢ would follow from this evolution
equation and the decay estimate for ¢. However, we are only able to prove the weaker
estimate

—~C<R=<Ce? (1.7)

Nevertheless, this suffices since the coefficient of 7 in the exponent is strictly less
than 1. The bound (1.7) is the content of Sect. 6. The factor ¢’/2 arises from the bounds
on the curvature and torsion of the reference metrics we obtained in Sect. 4.

The idea for bounding the Chern scalar curvature from above (the lower bound
is easy) is to consider the quantity u = ¢ + ¢ and bound from above —Au =
R + tryws > R. Using an idea that goes back to Cheng—Yau [5], and is used in the
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context of the Kédhler—Ricci flow on Fano manifolds by Perelman (see Sesum-Tian
[22]) and on elliptic surfaces by Song—Tian [24], we first bound the gradient of u by
considering the quantity |Vu |§ /(A —u) for a fixed large A. We then evolve the quantity
—Au + 6|Vu|§, which is almost enough to obtain the estimate we need. There are
some bad terms which we can control by adding large multiples of tr,ws and trgw.
We already know that these terms are bounded from (1.5). Putting this together gives
the upper bound on scalar curvature and the exponential decay estimate for ¢ that we
require.

Now that we have this exponential decay estimate on ¢, we carry out in Sect. 7 the
argument mentioned above for the exponential convergence of the metrics (1.6).

In Sect. 8, we prove a local Calabi type estimate

IVgly < Ce¥P, (1.8)

where V is the connection associated to a local semi-flat product Kéhler metric defined
in a neighborhood U. Note that if we had the better estimate W g |§ < C (as in
[9,12,28] for example) then we could immediately conclude the global convergence
of the metrics w () to m*wg from the estimates (1.4) and (1.5) and the Ascoli-Arzela
Theorem. We do not know whether this stronger estimate W g|§ < C holds or not.

To establish (1.8), we use some arguments and calculations similar to the local
Calabi estimate in [23]. However, akey difference here is that the metrics are collapsing
in the fiber directions and we need to take account of the error terms that arise in this
way. The local Calabi estimate is then used to establish the last part of Theorem 1.1 that
ew() E, converges to wfiat, y exponentially fastin the CY(E v, 8o) topology, uniformly
iny e S.

In Sect. 9 we complete the proofs of Theorem 1.1 (this essentially follows imme-
diately) and Corollary 1.2.

2 Preliminaries
2.1 Hermitian geometry and notation

We begin with a brief recap of Hermitian geometry and the Chern connection (for
more details see for example [36]).

Given a Hermitian metric g, we write = J=1 gd 7! Ad7/ forits associated (1,1
form, which we will also refer to as a metric. Write V for its Chern connection, with
respect to which g and the complex structure are covariantly constant. The Christoffel
symbols of V are given by Ff‘/ = g"9; g ;7. For example, if X = X'9; is a vector field
then its covariant derivative has components V; X¢ = 9; X¢ + Ffl.X J.

The torsion tensor of g has components Tl’; = Ff‘j — F’]‘.i. We will often lower an
index using the metric g, writing

k
Tijr = & lij = 9i8;7 — 9;8;7-
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1230 V. Tosatti et al.

Note that 7; = T’ if g and g’ are Hermitian metrics whose (1, 1) forms w and

o' differ by a closed form The Chern curvature of g is defined to be Rk 7 P — —&F ki
and we will raise and lower indices using the metric g. We have the usual commutation
formulae involving the curvature, such as

xi — R iy
[Vie. Vel X' = R ;1 X7,

Define the Chern—Ricci curvature of g to be R, = ginkiif = —0drdylogdetg,
and we write

Ric(w) = v—1R7dz* A dZ*

for the associated Chern—Ricci form, a real closed (1,1) form. Write R = ngsz for
the Chern scalar curvature.
We write A for the complex Laplacian of g, which acts on a function f by Af =
”81 %f For functions f1, f2, we define (V f1,V f2), = g’f8, S &fz and |Vf|2 =
(VL V) lfa= \/_aljdz A d7/ is areal (1, 1) form and w a Hermitian metric

we write tr,a for g'/ ;5.
A final remark about notation: we will write C, C’, Cy, . . . etc. for a uniform con-

stant, which may differ from line to line.

2.2 Elliptic bundles and semi-flat metrics

We now specialize to the setting of Theorem 1.1. Let w : M — S be an elliptic bundle
over a compact Riemann surface S of genus at least 2, with fiber an elliptic curve E.
Clearly m : M — S is relatively minimal, because there is no (—1)-curve contained
in any fiber. We will denote by Ey, = 77 1(y) the fiber over a point y € S. Let wg be
the unique Kéhler metric on § with Ric(ws) = —ws, let wp be a Gauduchon metric
on M.

Since each fiber E, = 7~ !(y) is a torus, we can find a function p, on Ey with

wol g, + vV—=100py = ofay,

the unique flat metric on Ey in the Kiéhler class [wo| £, ]. Furthermore we can normalize
the functions py by |, E, Py®0 = 0, so that they vary smoothly in y (in general this
follows from Yau’s estimates [39], although in this simple case it can also be proved
directly, see also [8, Lemma 2.1]), and they define a smooth function p on M. We then
let

Oflat = wo + v/ —100p. 2.1)

wfae is a semi-flat form, in the sense that it restricts to a flat metric on each fiber Ey,
but in general it is not positive definite on M. But note that wgy A 7*wy is a strictly
positive smooth volume form on M.
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2.3 The canonical bundle and long time existence for the flow

In the same setting as above, we claim that Kj; = 7*Kg. To see this, start from
Kodaira’s canonical bundle formula for relatively minimal elliptic surfaces without
singular fibers [1, Theorem V.12.1]

Ky =n*(KsQ® L),

where L is the dual of R!7, ;. But since M is an elliptic bundle, it follows that the
line bundle R'7, Oy is trivial (see e.g. [2, Proposition 2.1]), and the claim follows.

Therefore ¢1 (M) = m*c((S) (an alternative more direct proof of this fact is con-
tained in Lemma 3.2), and so there exists a unique volume form €2 with

Ric(2) = —ws and / Q= 2/ wo N ws. 2.2)
M M

Here and henceforth, we are abbreviating 7 *wg by wg, and for any smooth positive
volume form 2 we write Ric(€2) for the globally defined real (1, 1)-form given locally
by —v/—183 log 2.

It follows that the Bott—Chern class of the canonical bundle K,;, which equals
C?C(K M) = —c]13C(M ), is nef. In general this means that given any ¢ > 0 there
exists a real smooth function f. on M such that —Ric(wg) + WASTF) fe > —ewp.
Equivalently, this can be phrased by saying that for any ¢ > O there is a smooth
Hermitian metric A, on the fibers of Kj; with curvature form bigger than —ewy.
The maximal existence theorem for the Chern—Ricci flow [36, Theorem 1.2] has the
following immediate corollary.

Theorem 2.1 Let (M, wq) be any compact Hermitian manifold. Then the Chern—Ricci

Sflow

9
5@ = ~Ric). ol = o, (2.3)

has a smooth solution defined for all t > 0 if and only if the first Bott—Chern class

C]EC(K M) is nef. The exact same statement holds for the normalized Chern—Ricci flow
(1.2).

Since this theorem was not stated explicitly in [36], we provide the simple proof.

Proof An elementary space-time scaling argument [14] allows one to transform a
solution of (1.2) into a solution of (2.3) and vice versa, and one exists for all positive
time if and only if the other one does, so it is enough to consider (2.3).

In this case, we know from [36] that as long as a solution w (7) exists, it is of the form

w(t) = wy — tRic(wg) + ~/—133¢(1),
and therefore

— 1
—Ric(wg) + v/~ 199 (?) > ——on,
so if the solution exists for all # > 0, then we see that cllgc(K M) is nef.
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Conversely, if c]f‘C(K ) is nef, then for every given ¢t > 0 we can find a smooth
function f; with

- 1
—Ric(wp) + v/ —100 f; > —;wo,
which is equivalent to
wo — tRic(wp) + v/ —133(tf;) > 0,

and so the flow exists at least on [0, ¢) by [36, Theorem 1.2]. O

Applying this to the setting of Theorem 1.1, we obtain a smooth solution w (¢) to
the normalized Chern—Ricci flow (1.2) for ¢ € [0, 00).

2.4 The parabolic complex Monge—Ampere equation

From now on, until we get to Sect. 9, we assume we are in the setting of Theorem 1.1.
We will rewrite the normalized Chern—Ricci flow (1.2) as a parabolic complex Monge—
Ampere equation. Define reference (1, 1)-forms @ = @(t) by

o =e "o + (1 —e oy,

where we recall that wgy is defined by (2.1). Note that @ may not necessarily be
positive definite for all 7, but there exists a time 77 such that @ > O forallt > 7;. (On
the other hand, observe that & — e~ */—1 35,0 is positive definite for all + > 0). We
fix this constant 77 now once and for all. By the long time existence result of [36], we
have uniform C*° estimates on w(¢) for ¢ € [0, T;]. Our goal is to obtain estimates on
w(t) for t > T; which are independent of 7.

Define a function ¢(¢) by

9 e w(t)?

—p =1lo
8t¢ g

-, ¢0)=—p,

where we recall tha_t Oflat = 0o + +/ —185,0 and 2 is given by (2.2). We claim that
w(t) = @+ +/—130¢(¢) holds. Indeed,

0

—0 = — @ = —Ric(Q) — o,
E)tw ws — @ (Q) —w

and so,

d _ _
5(e’<w — @& —/=1339)) =0, (¢'(®—&— /—130¢))|;—0 =0,
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Collapsing of the Chern—Ricci flow 1233

which implies that indeed w = & + +/—199¢. Therefore ¢ also satisfies the PDE

0
—¢ = log

5 ¢, @+—100¢ >0, (0) = —p, (2.4

e (@ + /—100¢)? B
Q

and conversely every solution of (2.4) gives rise to a solution w = @ 4 +/—198d¢ of
the normalized Chern—Ricci flow (1.2).

3 Estimates on the potential and its time derivative

We now begin the proof of Theorem 1.1. We assume 7 : M — S is an elliptic bundle
over a Riemann surface S of genus at least 2 and w (¢) is a solution of the normalized
Chern—Ricci flow (1.2) on M starting at a Gauduchon metric wy.

In this section we collect some estimates on the potential function ¢ solving (2.4),
and its time derivative ¢ := d¢/dt. The proofs of these results are almost identical
to the corresponding results for the Kéhler—Ricci flow [24] (see also [28]). For the
reader’s convenience we include here the brief arguments. We also point out the one
place where we use the Gauduchon condition.

Lemma 3.1 There exists a uniform positive constant C such that on M,

G) |le@®)| < Cforallt > 0.
(i) |@@®)| < C forallt > 0.

1
(iii) 55)2 <’ <C&*forallt > Ty.

Proof We follow the exposition in [28]. Since e’ @* = e ™'}, +2(1 — e wpa A ws,
we have fort > Ty,

1 t~2
—Q <@t <CQ. 3.1)
C

If ¢ attains a minimum at a point (xg, fo) with o > T7, then at that point

e (@ + /—100¢)? e'&?
) — ¢ > log

ad
Ozggp:log —¢ = —logC — g,

giving ¢ > —log C and hence a uniform lower bound for ¢. The upper bound for ¢
is similar. This gives (i).
For (ii), we first compute:

(% - A) ¢ =trylws —o) +1—¢. (3.2)

On the other hand, there exists a uniform constant Cy > 1 such that Cow > wg
for t > T;. We apply the maximum principle to Q; = ¢ — (Co — 1)¢. Calculate for
t > 1y,
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(% - A) 01 = tro(@s — @) + 1 — Cog + (Co — Dty (@ — @)

<1—Cop+2(Cop—1),

and the maximum principle shows that Q1 is bounded from above uniformly. This
gives the upper bound for ¢.
Next consider Q> = ¢ + 2¢ and compute

ad
(E_A) 0r =try(ws — @) + 1+ ¢ — 2try(w — ©) > tryo + ¢ — 3.

By the geometric—arithmetic means inequality, we have for r > 77,

1
e [ Q)? P\ _C_ .
e 2 = eth < C p < Etrwa). (33)

Then at a point (xo, fo) with 7o > 77 where Q> attains a minimum, tr,® < 3 — ¢

and so e‘w < C(3 — ¢), which gives a uniform lower bound for ¢. This completes
the proof of (ii).
Part (iii) follows from (i) and (ii) and the equations (2.4) and (3.1). O

Our next result is an exponential decay estimate for ¢. We first need a lemma. Recall
that the volume form €2 is defined by (2.2). This lemma is the only place in the paper
where we make use of the Gauduchon assumption on wy.

Lemma 3.2 We have that
Q = 2wha N wg. (3.4)

Proof Since 2 [}, wfiat A ws =2 [}, w0 A ws = [, 2, it is enough to show that
— Q
V=193 log —— —0. 3.5)
Wflat N\ @W§

Recalling that M is an elliptic bundle with fiber E, we can fix a small ball B C §
over which 7 is holomorphically trivial, so ! (B) = B x E.If weidentify E = C/A,
for some lattice A C C, and call z! the coordinate on C, then dz! descends to a never
vanishing holomorphic 1-form on E. If we call « its pullback to B x E, then v/—la A™
is a smooth semi-flat form on 7z ! (U). Then there is a function u(y) defined on B
such that for any y € B we have

ofiatl £, = u(y)vV—la na.

This is because both wg| E, and «/—1la A @ are flat volume forms on £, and so
their ratio is a constant on E. Integrating this equality over E, we get

/ Wflat =u(y)/ V—la nd.
E, E,
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But on the one hand the integral | B,V la A @ is independent of y by definition,
and on the other hand the function y +— f £. @flat 18 also constant in y, because it
)
equals the pushforward m,.wq, and we have

DT gt = 00wt = 00wy = 0.

Note that the last equality uses the Gauduchon condition. This implies that 7w, wgas
is constant by the strong maximum principle. Therefore u is a constant.

Fix now a point x € M, call y = m(x), and choose local bundle coordinates near x
and y, so that in these coordinates the projection 7 is given by 7 (z!, z?) = z%. Then
write locally

ws = V/—1g(z»dz* Ad7?,
Q=G A W=D AdZ' AdZ? A dZ,

and compute

Q Q
F = = = G(ug)™ ", 3.6
Wflat \ WS u/—la Ao A wg (ug) (36)

and so locally on S we have
V=189 log F = wg + Ric(wg) = 0, 3.7)

because Ric(2) = —ws = Ric(wgs). This proves (3.5).
Incidentally the same calculation proves that the volume form wgy A wg satisfies

Ric(wpar A ws) = —ws,

which gives another proof of the fact that ¢ (M) = 7*c{(S). O

Very similar arguments can be found in the paper of Song—Tian [24], in the Kdhler
case (see also [25,34]).

Remark 3.3 Lemma 3.2 fails if we drop the assumption that 39wy = 0. Indeed,

consider the case when M = § x E, and let wg be a flat Kidhler metric on E (while
wg is as before). If F : S — R is any nonconstant positive function then

wo = Fog + ws,

is a Hermitian metric on M with 99wy # 0. We have that wg = wga, because wy is
already semi-flat. On the other hand, 2 = ¢ - wg A wg, where c is the constant given
by
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_ZIMa)()/\a)s

c= )
Sy @E A ws

Therefore we have

Q #2004 A ws = Fogp A wg.

We can now prove a decay estimate for ¢. The analogous estimate was proved for
the Kéhler—Ricci flow on a product surface in [28, Lemma 6.7]. The proof in this case
is almost identical, given Lemma 3.2.

Lemma 3.4 There exists a uniform constant C > 0 such that on M x [0, 00),
lp] < CA+t)e .
Proof First, we claim that for t > T7,

el ?

¢' log <C. (3.8)

This follows from the argument in [28, Lemma 6.7]. Indeed, using Lemma 3.2, we
see that
t~2

e'w 2ws A Ofiat + e’t(a)ﬁat — 20fat A 0§)

e’ log =¢'log

2w N i
=e'log(1 4+ 0(e™")),

which is bounded.
Define now Q = e’ + At, for A a large positive constant to be determined. Then

ten —199.,\2
Y :e’log(e @+ v/~10dg) )+A. 3.9)

Jt Q

We wish to bound Q from below. Suppose that (xo, 7o) is a point with 7y > 77 at
which Q achieves a minimum. At this point we have

t~2
+A>-C'+A,

0
Oz—Qzetlog
ot

for a uniform C’, thanks to (3.8). Choosing A > C’ gives contradiction. Hence Q
is bounded from below and it follows that ¢ > —C(1 + t)e™" for a uniform C. The
upper bound for ¢ is similar. O
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4 Torsion and curvature of the reference metrics

This section is devoted to proving a technical lemma on estimates for the torsion and
curvature of the reference metrics. These estimates will be needed later in Sects. 5
and 8.

Recall that the reference forms @ = @(¢) are given by

& =e¢ wgar + (1 — e Nws.

For t > Ty, this defines a Hermitian metric which we denote by g. We will use a
tilde to denote quantities with respect to g, such as Tl’/c for the torsion tensor, V for the
Chern connection and Rm for the Chern curvature tensor. We will write 97 for the

R X
tensor 82Tjk = VKTjk'
Denote by (To)i.‘j the torsion tensor of the initial metric g, and Ti(j)'Z = (To)fj (80)47-

: S~ _ _ ,—t70

Then since dw = e 'dwg, we have Tije =e Tlﬂ.
Lemma 4.1 There exists a uniform constant C such that fort > Ty,

() IT|; < C.

(i) [0T1z + IVT|z + Rmlz < Ce'’?.
(i) |VaT|, +|VaT|, < Ce'.
Proof We may choose local product holomorphic coordinates z', z2, independent of
t, with z! in the fiber direction and z?2 in the base direction. Since gfiat 18 flat in the z!

direction, we may assume that derivatives of (gfa),7 in the z! direction vanish. Now
with respect to these coordinates, we may write

g]T = e_[(gﬁat)ﬁ» gﬁ = e_t(gﬂat)li 4.1
ng = e_[(gﬁat)zTa §2§ =e! (gﬂat)2§ + (- €_t)(gs)2§, (4.2)

where we are writing gg for 7*gs. Then a straightforward computation shows that
there exists a uniform constant C > 0 so that

Then
=02 =ij =kl =pg . T =2t 5ij skl 5pg 70 70
ITI; = 88" 8" TugTjep = e '8V 83 M T T

This is uniformly bounded since the only unbounded terms of type g J are the terms
g'!, but by the skew-symmetry of Tz(J)Z in i, j, there can be at most two such terms in
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the above expression, and each is bounded above by Ce’ (since the components Ti%

are all uniformly bounded in the holomorphic coordinates z!, z2). This completes the
proof of (i).

For (ii), note that we may choose the coordinates z!, z> as above with the additional
property that at a fixed point x say, the derivative d,gs vanishes. This implies that at
x we have 09;g; =€ 19, (gfiat) ; it for all 7, j, £. Note that since our coordinates are
independent of ¢ and depend contmuously on the point x € M, we may allow our
constants to depend on this choice of coordinate system.

We first claim that at x,

T/ |2 ~IW"%;,,ql“”l“q < Cé, 4.3)

where f’l";( are the Christoffel symbols of the Chern connection of g. Note that since
l:fk is not a tensor, this quantity depends on our choice of coordinates.
For (4.3) compute,

T2 = 878580, 317058,z = €' 87 8 7 0i (gna)igd7(8na0) o7

But this is bounded from above by Ce’ since each term of type &'/ is bounded from
above by Ce’.

Next note that, at x,
T2 < Cce. (4.4)

Indeed this follows from the skew symmetry of 827;(1)% (again, not a tensor) in the
indices i and j. Then at x, '

a2 _ 2 2
|8T|§_e |V l]k|g
2t|2¥TO _ r Tl(])r@
<2e” 2‘|azT,.‘};|§+2e*2f|sz| T3 13 < 4.5)

where the last inequality follows from (4.3), (4.4) and the fact that |Ti(])7|§ < Ce?.

The bound on I@ﬂg is completely analogous (again we compute at x):

|6T|§2672[|V tjk'é
I 0 _fFra0  F 2
¢ 10Ty FiiTrjE Iy 1rk|g
< 26_2t|8gTi(j).E|§ + 4e_2t|FZk|g|Ti?E|§ <Ce. (4.6)

For the bound on the curvature Iéﬁkz of g, we first compute in our coordinates,
|R75l < Ce™, 4.7
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where by | - | we mean the absolute value as a complex (or real) number. Recall that
the Chern curvature of g is given by

Rijiz = —0i0787 + 8"19i 817958 -

Hence from (4.1) and (4.2) and the fact that 0107(gfa) ;7 and 91 (gfiac) ;7 vanish in
our coordinate system,

Riqi1 = —0107817 + 87791813078 1

e Y £P901(8na) 1707(gha) ,7-
(p.q)#(1,1)

but since each term g9 for (p, g) # (1, 1) is uniformly bounded, this gives (4.7).
Next we show that y
[Ry355] < C. 4.8)

For this note that [0,058,5] < C and
D F 1 0dghd s =8 08nhEn+ D, 871008058
P (p.)#0,1)
but the first term is of order O (e™") and the second is uniformly bounded. This proves
(4.8).
Finally, we show that
|Ri}k2| < Ce™", for (i, j, k, £) not all equal. 4.9
To see this observe that, for 7, j, k, £ not all equal, we have
|a,~aggkz| <Ce . (4.10)
Indeed, this follows immediately from (4.1) and (4.2) unless k = £ = 2. But then

one of 7 or j must equal 1 and we use the fact that d;(g5),5 = 0.
Moreover, for i, j, k, £ not all equal, we claim:

<Ce. .11

D80 3q0:8 7
p.q

Indeed, first assume that neither k nor ¢ is equal to 2. Then
1877 < Ce', 10i8kg] < Ce™ and [3;8 7] < Ce™,
and so
1877 9:8k7078 g < Ce ™.
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Next suppose that k = 2 and £ = 1. Then

D> 803078 7 = D8P 081078 7 + D 877083078 1
P P »

The first term on the right hand side is of order O(e™") by the same argument
as above, and the second is of order O(e™?) since |gP2| < C, [0; 85| < C and
|Eﬁ§pﬂ < Ce™'. This proves (4.11)if k =2 and £ = 1 and the case k = 1, £ = 2 is
similar.

Finally we deal with the case k = ¢ = 2. We wish to bound

> 870223052 -
p.q

If one of p or g is equal to 1 then the summand is of order O(e™") by similar
arguments to the ones given above. Otherwise the summand is

~22a ~ ~
8770i87307823

and then we use that fact that one of i or j mustbe 1, since we are assuming thati, j, k, ¢
are not all equal. But |91g,5| < Ce™! and so the summand is of order O(e™"). This
completes the proof of (4.11).

Combining (4.10) and (4.11) gives (4.9).

To complete the proof of (ii), we note that

Rml% = §'577 58" i3 Ry

Recall that §?° is bounded by C if (a,b) # (1,1) and by Ce' ifa = b = 1.
Wheni = j =k =4¢=p=q =r =s = 1, then we apply (4.7) to see that
the summand is bounded by C. We get the same bound ifi = j =k =4¢ =2 or
p =g =r = s = 2 by applying (4.7), (4.8) and (4.9). Otherwise, both of the terms

I ke and Rq ps7 are bounded by C e~ (or better) by (4.7) and (4.9) (because the term

Ry, does not appear). Moreover, at least one of the metric terms g ! is bounded by a

uniform constant C, while the other three are each bounded from above by Ce'. Thus
in every case we obtain |Rm|2 < Ce'. Combining this with (4.5) and (4.6) gives (ii).
For (iii), compute

e, B
Vﬁ ?Tijﬁ_ P(aqu]k_Fqk th)
P T S S
= 0p0g T — Tjp0pT g — TudpTijz — Tpg 0 Tije — Tpida T
== — .
+F;7q rth]Z-'_ngrngijZ'
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For the first term we observe that

o2 -2 0 12 2
(050 T, 213 = e 004 T 1% < €™, (4.12)

because of the skew symmetry in i, j. And, as in the proof of (ii),

a 2 -2 02
05T, 715 = e ’|3ﬁTijE|§ <Ceé. 4.13)
We claim that
|apf;k|§ = gl g gizo, I 0, TG, < Ce?. (4.14)

To see this note that at x we have

0Ty = 80,087 — 878 0p250; 817
=e'88,0) (gha)yz + (1 — e7)3"0,0;(g5),7

- e_2t§ﬁ§rg ap (gﬂat)rfaj (gﬂat)kZa

and so (with the obvious notation)
10, T2 < Ce™10,0; (2na) g7 3 + 1005 (85)5715 + €19, (8na)r50 (8na)g713)-

But the second term equals C|3232(g5)2§|2|§2§|4, and so is bounded by C, while

the other two terms are bounded by Ce? because each term of type g’/ is bounded
above by Ce’. This establishes the claim (4.14).

Comgining (4.3), (4.12), (4.13), (4.14) and parts (i) and (ii) we have proved the
bound |VaT|, < Ce'.
Finally, calculate

Arguing as above we can bound the | - | of all these terms by Ce’. Indeed, the

only terms which are different are the one involving o pf‘_f;k = —Iéqgkf, which can be
bounded using part (ii) and the one involving d, f‘l 7 which can be bounded by the
same argument as in (4.13). This finishes the proof of (iii). O
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5 Evolution of the trace of the metric

Let w = w(t) solve the normalized Chern—Ricci flow (1.2) in the setting of Theo-
rem 1.1. The main theorem we prove in this section is:

Theorem 5.1 There exists a uniform constant C > 0 such that for t > Ty,
trpow < C.

Hence the metrics w and @ are uniformly equivalent for t > Tj.

For the last assertion, note that we have

. @
trow = Etrd)w, (51)

and the uniform equivalence of the volume forms w? and &> (Lemma 3.1). Then an
upper bound for trzw is equivalent to an upper bound for tr,@ and hence also the
uniform equivalence of w and @.

In [28] a similar estimate is proved using a direct maximum principle argument
and a bound for the potential ¢. Here, as discussed in the Introduction, there are
new unbounded terms arising from the torsion. We will control these terms using the
exponential decay estimate for ¢ (Lemma 3.4).

First we need the following lemma.

Lemma 5.2 Fort > Ty, the following evolution inequality holds:

9 2 ~ze )2, ~
3 A )logtryw < @ w)zR e(g ki797trew) + Ce'/“try. 5.2)
Proof From [36, Proposition 3.1] we have
0 ! D7 T GhTT, o [
3% A)logtryw = P —gtglg ngﬁVngq + fg ktrpwogtrgw
w
—2R€(g”gkeTpvggm) lj ~keTpngpq

+ g”gke(v T je = R,gpjg )gkq - g V

— g7 2V TE + U T T g — oo

Note that there are some differences from the computation in [36] since here we are
evolving w by the normalized Chern—Ricci flow, and our reference metrics @ depend
on time. In particular here we have T]k = Tjk (instead of T]k = (TO)ljk in[36]). Also,
the last two terms above are new: the first arising from the —w term on the right hand
side of (1.2) and the second from the time derivative of @. Fortunately, the contribution
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of these two terms has a good sign. Indeed, observe that %g =gg—g& > —gand
hence

- 0
~il ~k ~
—trgpw — 8'°g jg,-jggkz <0.
Again from Proposition 3.1 in [36], we have

1 c o de e 1 4
| _ opiiagkt Xy Gkt B ;
tr(;)a)( g"'e"e ng,-,-VegpqﬂLtrd)wg I trgwdgtryw

— 2Re(g”gkngVng/) g”gkngT zgpq) < Re(gizgkﬁfkizaqftr@w).

2
T (trpw)?

Hence to complete the proof of the lemma it remains to show that for t > 77 we
have

K 74 _ o _50d Ty gg -V
tr; w(g”g i/ — R, 78" eng — &/ViT/, — 8" 8,5Vl
w

+ gy T Zpg) < Cltrya)e'/.

But this follows easily from Lemma 4.1, the fact that the quantities tr,@ and trgw
are uniformly equivalent and the inequality trzw > C~! > 0 for a uniform constant
C (the geometric—arithmetic means inequality). Indeed,

1 ; 1 = .
18T T g < —— e a1z sV T Isl2ls < Cltry@)e’’?,
trwwlg g e8kgl = tr&)wlg lz1&  151VT ;1815 (trp,m)e

1 -1 12,
@Ig 188 g Ry, = e 1518 plglglRml; < Crod)e

=~ = 1 =~
£ —1 t/2
I8V Til < (18 1V T Iz < Ce'?,
1 L7 ~ o~ 1 ==~
skt > p -1 1112 t/2
—18"/8"8,5 Vel = a8 il 151815IVT |z < Ce'’?,

1 )
ke —1 ~—1 ~ 2
trwwlg”g TT%80 < o8 lslE Il TIE < €

as required. O

We can now prove Theorem 5.1, making use of the decay estimate of ¢ (Lemma 3.4)
and the bound on ¢ (Lemma 3.1).

Proof of Theorem 5.1 We use the fact that e'/?¢ is uniformly bounded, and consider
the quantity

1

t/2
0 =logtrgw — Ae'/“¢ + —C gy
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where C is a uniform constant chosen so that C + ¢!/ 2@ > 1, and A is a large constant

to be determined later. The idea of adding an extra term, of the form of a reciprocal
of a potential function, comes from Phong—Sturm [20] and was used in the context of
the Chern—Ricci flow in [36]. Notice that

<L <
C +ell2¢

We will show that at a point (xg, fp) with #yp > 77 at which Q achieves a maxi-
mum, we have a uniform upper bound of trgw, and the theorem will follow thanks to
Lemma 3.4.

First compute, using the fact that Ap = 2 — tr,@ and the bounds for ¢ and ¢ from

Lemma 3.1,
0 1
(2 8) (a1 )
t C +ell2¢

1 1
——{A _ t/2 t/2
( +(C+e’/2(p)2)( (p+2 Y

(C + e!/2¢)? (C + e'/2¢)3
208 *p)l3

< CAe'? — Ae'*trpyip — ——— 5 (5.3)
(C + e!/2¢)3

At the point (xo, #p), we have d7Q = 0, which implies that

Bqtr,;)a) _

—(A+ ——) 50
trpm ( <C+ef/2¢)2)e ¢

Then at this point,

2 5
(tr~w)2Re(gl£gkq Lidgtrow)
w
= iRe ar, A+ ; e o
= oo g g kit (C+e’/2(p)2 %
CA? = 3Pl
< (C+et/2(ﬂ)3 kg zZT ngT + — 8
(trg) )2 kil q./m (C+et/2(p)3

CAZ |3l
tr(;)w (é + et/2¢)3 ’

IA

(5.4)

where for the last step we have used Lemma 3.4, part (i) of Lemma 4.1, and the fact
that trgw and tr,® are uniformly equivalent.
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Combining (5.2), (5.3) and (5.4), we have, at a point at which Q achieves a maxi-
mum, for a uniform C > 0,

3
(5 — A) 0 < CA? + Ce'*trpd + CAe'? — Ae'*trp®

where we are assuming, without loss of generality, that at this maximum point of Q
we have trgw > 1. Choose a uniform A large enough so that

A>C+H1.
Then we obtain at the maximum of Q,
e'*tr,@ < CA? + CAe'/?,
which implies that tr,@ and hence trgw is uniformly bounded from above at the

maximum of Q. This establishes the estimate tryw < C and completes the proof of
the theorem. O

6 A bound on the Chern scalar curvature

In this section, we establish the following estimate for the Chern scalar curvature.

Theorem 6.1 There exists a uniform constant C such that along the normalized
Chern—Ricci flow (1.2) we have

—C < R < Cé'?,

forallt > 0.

First note that the lower bound for the Chern scalar curvature follows from the same
argument as in the Kihler—Ricci flow (see for example Theorem 2.2 in [28]). Indeed,
from (1.2), we have

50

ke

—g,7=—R —2.
8 atgke

But R = —g"jaifﬁlog det g and hence

AR i 70 d

2 iy, ke Z o ) _f i) 5.

oy =8 81%(g atgk@) (mg )&Wogdetg
= AR + [Ric> + R

1
> AR+ ER2 +R
and then the lower bound for R follows.
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We now establish the upper bound of the Chern scalar curvature. Before we start
the main argument, we need a few preliminary calculations.

Lemma 6.2 There exists a uniform constant C > 0 such that for t > Ty, we have

0 ~
(E - A) traw < —C~'|Vg|} + Ce'’?. 6.1)
and 5
(E - A) trows < |Vgly — C7'|Virpwsl; + Ce'’?. (6.2)

As a consequence, there are uniform positive constants Co, C1 such that fort > Ty,

3 - _
(5 — A) (trpws + Cotrgw) < —|Vgli — C7 ' [Viryws|} + Cre'2. (6.3)

Proof For (6.1), we compute the evolution of trgzw. As in Lemma 5.2 we may modify
[36, Proposition 3.1] to obtain, for t > Ty,

9 P
(5 - A) trow = —g g Mg Vg5 Vg g — 2Re(8" § T Vg 1)

~kl k D ~pq
— g TIT, o7 + 873 VITY, — Rigyi8" gk
- g”VTZ —g g gij Tk + g” kgT‘”Tjegpq trpw

gl[gk]g,j((gS)kg ng)~

Using Theorem 5.1, Lemma 4.1, and the Cauchy—Schwarz inequality in the second
term, we obtain (6.1).

The inequality (6.2) is a parabolic Schwarz Lemma calculation for the map = :
M — § [24,40]. Note that we already know that tr,wgs < C since the metrics w and
@ are uniformly equivalent.

The computation for (6.2) is similar to that of Song—Tian [24], except that of course
here we need to control the extra torsion terms. Given any pointx € M we choose local
coordinates {z'} on M centered at x such that g is the identity at x, and a coordinate
w on § near w(x) € N, which we can assume is normal for the metric gg. In these
coordinates we can represent the map m as a local holomorphic function f. We will
use subscripts like f;, f;;, ... to indicate covariant derivatives of f with respect to g.
For example we have

fi=0f, fij=0ifi — (@908 fi. f7=/f;=0.
We will also write gg for the coefficient of the metric gg in the coordinate w,

so gs(x) = 1 and the pullback of the metric g5 to M is given by fiTng. We use
the shorthand h'/ = g'’gkJ f, f, g5, where h'/ is semipositive definite and satisfies
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|2 := hi/h** g zg,= < C. Then we have (cf. [33])
Atrpws = g/ 0;05(8" fi fegs) = ' & fui fujgs + g”hqu,7,,q
— g [T i TiRs,

for Rg the scalar curvature of gg, and so

9 AT . — -
_ _ — _ olJ gkl ¢ ijy,prq _
(3t A) trpws = tryws — g7 8" fi f@,/gS +g"h (Rpﬁ,'j lepq)

+ 8" X fi fufi fiRs. (6.4)

The Est term can be dropped since Rg < 0. Now at x we have 9;(tr,ws) =
>« fxi fx, and using the Cauchy—Schwarz inequality we have

\Virwwsly = D fui fpi fofi

i.k,p

1/2
< Z|fk||fp|(2|fki|2) D1l
k,p i J

1/2

§|]‘;{|(12|fki|2)1/2 zs(ZmF) §|fki|2

(trows)8" ¢ fui frigs < Cg' g fui Fujgs. (6.5)

Next we claim that given any constant Cp we can find a constant C such that

Py — 1 ~
tjnprq — 1/2 2
18 hP (R 7 = Rijp)| = € 4 5 1Vgl:. (6.6)

In fact, we only need the case Cp = 1 here, but the general case will be useful later.
To prove this claim, we first calculate (see also [23, (2.6)]),

Rijpq = —&rqdTiy, = —8rqd T + &gy = R 57 + &g 05T,
= Ripgi + 87071y = Ryp7 + 8isdp T ; + 8rgd; Ty,
=R 0317 + gzvap 9 + grq&Tpl, 6.7)
and therefore
- .
guhpq(Rlﬁif lqu) = hpqal’qu - ljhpqgrq‘r%Tr (6.8)
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Recall that T

l]K_T

it Differentiating this gives

8[7quj = §58" ap’f;j —&58""g" f;j Vogm =87V, Tyj7 — 878" Tyi7V pgsa,

(6.9)
87Tr< = r;a;j:\&‘ s th.S V _ E~ T ru le V
Tlpi = 8568 0L gsbg 78m =8 —8 8 ib Y j8tu-
(6.10)

Putting together (6.8), (6.9), (6.10) we get

ljhpq(R ) = _hpq r]v Tq]r + hpqgrugtj Tq]rv 8ru

paij lqu
_ hpqglj Vijla + hpqgljgterifvfglﬁ- (611)

Using again that the metrics g and g are equivalent and ||, < C, we can then
bound this by

18 hPT(R o5 — R3] < CIaT |5 + CIT |5 Vgle.
But from Lemma 4.1 we have that |7~"|§ < C and |5T|§ < Ce'/2, and so we have
(6.6) as required.
Then (6.2) follows from (6.4), (6.5) and (6.6). (6.3) follows immediately from (6.1)
and (6.2). O

We can now start the main argument for the proof of Theorem 6.1. Note that since
many of our inequalities require @ to be a metric, we will often assume (without saying
it explicitly) that + > T, which is not a problem since R is bounded on [0, T7]. As
in [24], we consider the quantity u = ¢ + ¢ = lo
we have that —Au = R +tr,ws > R, so our goal is to get an upper bound for —Au.
First compute from (3.2),

3
(5 - A) U = trpws — 1, 6.12)

and

0 -
(E — A) Au = R”ui7 + Au =+ Atrwa)s.

But on the other hand Ri; =—u;— (85)17’ and so

3 _ _
(& — A) Au = —|VVu|} = (g5. VVu)g + Au + Atryos

3
> —§|VVM|§ + Au + Atrpws — C,
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using that |gs|g < C. From (6.2) we have

—Atryws < Ce'’? + |Vg|g — €7 Vir,ws]; — hi7(R,7 +g7)
< Ce'? + Vg2 — €7V Vs 2 + 1 (s + (g9);7)

< Ce'? + |Vgs — 7| Virwsl; + z|vW|2,

where we have used the fact that %trwws — _piid 387 with 4’/ as in the proof of
Lemma 6.2. Therefore

3 _ 3
(E — A) (—Au) < 2|VVul; — Au+ Ce'? + |Vg|} — C7'|Virws];. (6.13)

We need a quantity whose evolution can kill the bad term 2|V Vu |§, and this quantity
is|Vu |§,. Before we compute its evolution, we need formulae to commute two covariant

derivatives of the same type. For any function ¢ and (0, 1) form a = aEde, a short
calculation gives

[V, Vily = =T}, Ve, [V, Vjlagp = =T} Vear.
We will also use the familiar formulae

[Vi. Vslag = g" R zag. R + 8,70 )

itp7 = Rpui7
where the second equation is contained in (6.7). We then compute:

AVul? = g7 gk (v, Vs ViuVgu + ViV V3 Vau + Vi ViuViVau + Vi Veu Vs Vi)
= [VVul? +|VVul? + g7 ¢ (Vi Vi V5uVau + ViV, VgV-u
— VuV; (ﬁvgu))
— |vvu|2 + [V Vul? + 2Re(VAu, Vi) — g7 g TRV, V-uVzu
—}—g” qulZPYV uViu— g”gszkauV Vpu— g”gkea Tp o VikuVpu
= |V§u|§ + |VVu|g + 2Re(VAu, Vu), + g gqupzvaquu
— 2Re(gi7gsz.prVf.uVZu) + gkzgpqi)zT;;i VzuViu
— gijgkéa Tp ViuVpu.
We use again (6.9) and (6.10)

3,‘lez ﬁ6 T g — grpquTjéthgrw &T = gljv T,,,/ - g”g”TPUVZg”,
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and Lemma 4.1 to conclude that

AIVul} = [VVul} + [VVul2 + 2Re(VAu, Vu), + g"ZgP?szvguvku
— C|VVuly|Vulg — Ce'*|Vul} — C|Vgly|Vul;

> L OWul & [9Vul? + 2Re(V AL ¥ KopiR vy
_2| u|g+| u|g+ e u, u>g+g 8 pe Vg Vit

— Ce'?|Vul} = C|Vgl,|Vul;.
Next, using (6.12), we have
9 P
§|Vu|§, = gktgrd R ¢ ViuVau + |Vul; + 2Re(VAu, Vi) + 2Re(Vir,ws, Vi)

and hence

) 1
(E - A) |Vul < —§|VW|§ — |VVul} + 2Re(Vir, s, Vi),

+ Ce'?|Vul} + C|Vgly|Vul}. (6.14)
We will use this evolution inequality to bound |Vu |§.
Proposition 6.3 There is a constant C such that
|Vu|éz, < Ce'l.

Proof We use the method of Cheng—Yau [5], see also [22,24]. We fix a constant A
such that |u| < A — 1 and use (6.14) to compute

9 |Vl 1 (0 ,  IVulz ra
——A = — —A)|IVuls 4+ —=E = - A)u
ot A—u A—u \ ot & (A—u)? \or

2Re(V|Vul?, Vu), |Vul}
O A-wr TA-w?
1
< ( — 5|VW|§, — |VVul} + 2Re(Vir,ws, V)
. |Vul|?
+ Ce'2|Vul} + C|Vglg|Vul} ) + (trpws — H—>=%
(A —u)
~ 2Re(V|Vul2, Vu), ~ |Vul} 6.15)
(A —u)? (A—u)® '
2 /2 2
Note that the term (tr,ws — 1)% can be absorbed in the term CeA—LVdulg. For

& > 0 small (to be fixed soon), write
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2Re(V|Vul?, Vi), 2Re(V|Vul?, Vu),

A-w? T A
2(1 — Vul2 2(1 — &)|Vul*
N ( 8)Rev IVulg AR ( )| Ig’
A—u A—u (A —u)’
8
(6.16)
and use the Cauchy—Schwarz inequality to bound
2 201992 241/2
2Re(V|Vulg, Vu)g 82\/§|vl4|g(|vw|g +VVu2)/
(A —u)? B (A —u)?
e |Vulg 8|v%|§+|vvu|§
~2(A—u)? (A —u)?
€ |Vulg llv%|§+|vw|§ 617
T2(A—-uw? 2 A—u ’ )
provided & < 1/8 (here we fix ¢). We also bound
CIVgle|Vul} -, e |Vul}
— §C|Vg|g+§—(A_u)2. (6.18)

Putting (6.15), (6.16), (6.17), (6.18) together, we get

Vul* 2(1 — Vu|?
L Ve 20 —e)p [o(Me ) g,
(A —u)’ A—u A—u
g

Vuls
T A—u

AN AL (QRe(Vir,ws, Vi), + Ce'2|Vul2) + C|Vg|?
—— ws, Vu e u
ot A—u)=A—u w®s, Villg g 8l

Call now

+ Ch(trpws + Cotryw),

01

where Cy is as in (6.3), and C» is a large uniform constant to be fixed soon. We can
use (6.3) to get

9 A 0, < ! (2Re(Vir,ws, Vi), + Ce'/?|Vu|?)
ot ~A—u 8 8

Vul? 21 — Vul|?
e Yl 20-9p (oY) g,
(A —u)l A—u A—u
8

Cyr -~
— S 1Vsl; = 2Vtrgos]; + Ce'P2, (6.19)
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provided C» is large enough. We now observe that |Vtr5,w|§, < 2|6g|z~,. Indeed, if we
choose local coordinates such that g is the identity at a point, then at that point we
have

Virgol2 =D 1> Viggl> <2 [Vagil> <2 1Vigi 1 = 2IVgl3. (6.20)
k i ik

i i,j.k

Since g and g are uniformly equivalent, we conclude that |Vtrzw|2 < C A% g |§. We
can then assume that C» was large enough (this fixes C») so that

Cy -~
= 5 1Velg = = IVurgol. (621)
Furthermore, we can bound
2\ Vu|? Vul?
s ¢ ¢4 e, (6.22)
A—u 4 (A —u)
2Re(Vtrwa)s, Vu), < vt 24 & |Vu|;t +c 6.23)
I'Hw - , .
A—u = Re®Sle T 1A —u)3

so combining (6.19), (6.21), (6.22), (6.23) we get

9 e IVuly  201—¢) |Vl
——A)o <-= - Re(V » Vu
ot 2 (A —u) A—u A—u

g

— |Virgol; — |Virywsl; + Ce'.

We can write this as

N _ |Vl 2 =9 oo v
(5— )Ql_—E(A_W— ——Re (VO Vi),

2(1 — 6)Cy 2(1—£)CoCs
A—_MRC (Vtrwa)g, Vlzt)g + A——u

- |Vtr5,a)|§, — |Vtrww5|§, +Cé,

Re (Virgw, Vu),

which together with the bounds

Re(V Vu)y < |V >, £ Vil C
e(Viryws, Vu)y < [Viryosly + SA—up +¢,
e |Vulg

Re(Virgw, Vi), < [Virgo|} + STA—uy +C,

2(1 —e)Cy
A—u
2(1 —e)CoCr
A—u
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gives us

9 Vult 201 -
( ) e Vil ( S)Re(VQl,Vu)g+Cet.

— — A < —— —
Y Q=0 A—w A

Now define Q> = e~//2Q1, which satisfies

d 112y, 4 20— ) 2
(E — A) Q2 <-—-C'e i |VM|g — A—_MRC(VQZ, Vl/l)g + Cel/ .

At a maximum of Q> (occurring at a time #y > 77) we conclude that |Vu |2 < Ce,
which implies that Q; < C everywhere. This proves the proposition. O

Now that we know that |Vu|§, < Ce'/?, we can go back to (6.14) and get

0 2 1 ., 12 2 2 < 12 t
(E - A) Vuly < =3 1VVulg = IVVulg + [Virgos|y + Vgl +Ce'. (624)

Finally we can put everything together to prove Theorem 6.1.

Proof of Theorem 6.1 We will show that there is a constant C such that
—Au < Cé'l?.
and this will give R < Ce'/2.

From (6.13) and (6.24), we see that

9 _
(5 - A) (—Au+6|Vu[}) < —|VVul; — Au + C|Virywsl;

+C|Vgl; + Ce'.

Using (6.3) we get

0 _
(5 - A) (—Au + 6|Vu|§, + Gy (trpws + Cotrgw)) < —|VVu|§ — Au+Cé',

provided C; is large enough. Define now
Q3 = e '"*(=Au + 6| Vul; + Ca(tr,ws + Cotrgm)).

Note that Q3 > —Ce~"/2, because —Au > R > —C. Then,

d _
(E - A) 03 < —e_t/ZIVVu@ — e "?Au+ Ce'l?,

—t/2

where we absorbed a term like e into ¢'/?. From the Cauchy—Schwarz inequality

we also have that
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(—Au)* < 2|VVul}.

It follows that at a maximum of Q3 (occurring at #p > 77) we have that (—Au)2 <
Ce', which implies that Q3 < C everywhere. This completes the proof of the theorem.
O

We end this section by applying our Chern scalar curvature bound to obtain an
exponential decay estimate for ¢.

Lemma 6.4 For any n with0 < n < 1/2 and any o with 0 < o < 1/4, there exists
a constant C such that

—Ce™ M <¢<Ce.

Proof We first prove the lower bound by refining an argument in [28]. We have
95— R—1—¢ (6.25)
FrAd @ .
and hence, by Theorem 6.1 and the fact that |¢| is bounded,
J .
E(P(t) = Co, (6.26)

for a uniform Cy. Suppose for a contradiction that we do not have the bound ¢ >
—Ce™ ™ for any C. Then there exists a sequence (xi, t) € M x [0, 00) with ;, — o0
as k — oo such that

@ (xk, k) < —ke Mk,

Put yx = zl‘Toe*"’k. From now on we work at the point x. Then by (6.26), we have
that

, k _
¢ =< —5¢ e on [k, tk + Vi)

Indeed,

tr+a
ot +a) — o(t) =/ 5(& dt < Coyr, fora € [0, yl,

73
and hence ¢(t + a) < ¢(tx) + Coyx < —ke ™M + K=,
Then, using Lemma 3.4,

te+vk k2

k
—C(1+n)e™™ < ot + yi) — () =/ ¢dt < —yrze M = —— ¢ 2,
Ik 2 4C()

But if 25 < 1 then we get a contradiction when k — co and we are done.
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12

For the upper bound of ¢ we use the upper bound R < Ce'/“ of Theorem 6.1. From

(6.25), we have
]
590 = —Coe'”?, (6.27)

for a uniform Cy. Note that we may assume, by increasing Cy, that we have

2
T3P0 = —Coe'? forte[r,f +1], (6.28)
for any time #’. Suppose for a contradiction that we do not have the bound ¢ < Ce™°!

for any C. Then there exists a sequence (x, ) € M x [0, 0c0) with txy — oo as
k — o0 such that

@(xk, tx) > ke %,

Put y; = %e_(”“/ 2% which we assume for the moment satisfies y; < 1. From
now on we work at the point x. Then by (6.28), we have that

—0oly

. k
Y= ¢ on [tg, i + vil.

Indeed, this follows from (6.28) since

tk+a

—¢dt > —yCoe™'?, fora € [0, yl,

Gt +a) — (1) =/ :

123

and hence @ (t; + a) > ¢(tx) — Y Coe'*/? > ke % — %e“”".
Then from Lemma 3.4,

T+ Yk k2

k
CA+1e™ = ot + i) — p(t) = / gdt = y e = ——em GT TN,
179 2 4C()

But since 20 + 1/2 < 1 we get a contradiction when kK — oo and we are done.

It remains to check the case when y; > 1. But then we have ¢ > %e“”’f on [t,
tx + 1] since ¢(tx +a) — ¢(tr) = —yrCoe™*/? fora € [0, 1] and so we get ¢(1x +a) >
Le=o% fora € [0, 1]. Then

tr+1

k
CA+1)e™ = ot +1) — ot =/ gdt z Se™"

3

and we get a contradiction since o < 1. O

7 Exponential decay estimates for the metric

In this section we establish the key estimates which show that w(¢) and @ approach
each other exponentially fast as t — 00. More precisely we prove:
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Theorem 7.1 For any ¢ with 0 < ¢ < 1/8, there exists C such that fort > Ty
(1—-Ce ™o <w() <1+ Ce *Ha.

In this section we will always assume ¢ > T, without necessarily mentioning it
explicitly. First, we have the following evolution inequality for tr,@® which has the
same form as the inequality for trzw given by (6.1). We will make use of both of these
inequalities to prove Theorem 7.1.

Lemma 7.2 We have, for a uniform C > 0,

d N -
(5 - A) tro® < Ce'> — 7 Vg3

Proof We will use the shorthand hii = g"zgkjgkz. Note that we know already that
h, g and g are all uniformly equivalent to each other.
We start by computing a formula for the evolution of tr,@. First of all, we have

Atr,d = gV V(e 8,p) = -8 Vi (""" 8,7V 52,9)
Py k— e 7~ ~ ~ Py — - k7 ~ ~ ~
=8¢ g 18" 87 Vigrs Vg + 8787 ¢ ¢ 87 Vigrs Vg

— &g 8" §7ViVigg.

ViVigpg = 61'(%8;75 - qugps) = 0;058pg — f‘;pafgrﬁ - gpfaiﬁjq

— 18 digps + T1,08 g5 = R7,58" 8p5 — Rig g + &7 VigpsVigig,
and so
Atry® = gV ¢ e g 87Vigrs V807 + 8V 8187 817 Ri7 g — 87 87T Ri7 g
On the other hand

O i L
gtrwa) = try,® + try,(ws — @) + g'/ h?? R 5

Therefore,

d 5 Ry I
(E a A) tro® = trpws + 8" ¢ Rijg + 8 h" (R 75 — Ri5,7)
— g W Vg Vi -
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From Lemma 4.1, we conclude that

9 _ - - = -
(E - A) tro® < Ce'?+ g PI(R s — Ri5 ) — 8 ¢ nPTVigig Vg . (7.1)

We also use the equivalence of g and % to bound
i okl PTG, o) Ty - -1, 12
—87g"h Vtgkqngpg <—-C, |Vg|g. (7.2)
Next we have

Py — 1 ~
2 2
g hPA(R oz — Ris )| < Ce'l? + 2—C0|Vg|g. (7.3)

Indeed, this follows from the same argument as in the proof of (6.6), even though the
tensor A there is different. Combining (7.1), (7.2), (7.3), we get the desired inequality.
(]

Next we use the exponential decay of ¢ (Lemma 3.4) and ¢ (Lemma 6.4) to obtain
an exponential decay bound from above for tr,® — 2 and trgw — 2.

Proposition 7.3 Forany 0 < ¢ < 1/4 there is a constant C > 0 such that fort > Ty,
tro® —2 < Ce™ ' (7.4)

and
trpw —2 < Ce™®. (7.5)

Proof Given 0 < ¢ < 1/4, choose n > ¢ such that ¢ + 1/2 + n < 1 (in particular
0 < n < 1/2), and choose § satisfying 2¢ + 1/2 < 6 < & + 1/2 4 n (in particular
0 < 8 < 1), which we can do because ¢ < 7. For (7.4), we compute the evolution of

01 = e (trpd — 2) — ¥ .

From Lemma 3.4, it suffices to obtain a uniform upper bound for Q. Compute
using Lemma 7.2 and the fact that Ap =2 — try,@,

0
(5 — A) 01 < Ce*TVD 4 g (trpdp — 2) — 8% @ — ¥ — & (trpd — 2)

< CeEHD 4 el — (11,0 — 2), (7.6)
where in the last line we have used the lower bound ¢ > —Ce™" from Lemma‘6.4
(since 0 < n < 1/2), Lemma 3.4 and the fact that tr,» < C.

But we have § — n < ¢ + 1/2 and so at a maximum point of Q1,

0 < Ce*H/2" _ o (tr i — 2),
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and hence
¢! (try® — 2) < Ce®* 0TI < .

since we chose § so that 2¢ — § + 1/2 < 0. This implies that Q1 is bounded from
above at any maximum point, and completes the proof of (7.4).

The proof of (7.5) is slightly more complicated. First recall that (see (6.1)) for
t>1r,

d
(— — A) trym < Ce'/?.
ot

Fix o with 0 < ¢ < 0 < 1/4. From Lemma 6.4 we have
—Ce ™" <gp<Ce. 1.7)

Now choose § with 1 /2+2¢ < § < 1/24 ¢4 o, which we can do because ¢ < o.
Then set

0> = e (trpmw — 2) — .

Compute

3
(5 — A) Q0 < CeEHIt _ g — o (tr,i — 2)

< CetV2t _ ¥t (i i — 2), (7.8)

using (7.7) and the fact that § — o < 1/2 + . We now wish to replace the term tr,
by the sum of trgw and a small error term.

. @ @?
try® = —trew = trgo + | — — 1) trgo. (7.9)
W w

Then from (2.4), (3.8) and Lemma 3.4,
2
¢ =log =5 + 0(e™"),
@
and so using (7.7) again

72

w —o

Py 1‘ =19 — 1] = Ce,
@

which implies that, since trgo is uniformly bounded,

&)2
E —1 troow

< Ce 7. (7.10)
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Then combining (7.8), (7.9), (7.10) and again using the fact that e®=9) < ¢(+1/2)
we obtain for t > Ty,

0 5)2

— —A) 0y < CETVI _ (o —2) — e [ = — 1) trpw

ot @?
< CeTV2t _ ¥ (tr- 0y — 2).

Then at the maximum point of Q> (occurring at a time ¢ > T7) we have

e (trpw — 2) < Ce@et1/2=00 < ¢

since we chose § > 1/2-+2¢. This shows that Q5 is bounded from above and completes
the proof. O

To show that w and @ approach each other exponentially fast we use an elementary
lemma:

Lemma 7.4 Let ¢ > 0 be small. Suppose that
tro@w —2<¢e and trow—2 <e.
Then
(1 =2Ve)d < o < (1 +2/6)d.

Proof We may work at a point at which g is the identity and g is diagonal with
eigenvalues A1, A,. Then the lemma amounts to proving that if 11, Ao > 0 satisfy

1 1
MAA<24+e —4+—=<2+4¢,
A A

then
1 -2 <X <14+2e, fori=1,2.
By symmetry, we only have to prove the estimate for A;. We have

_Qten -1

1
M <2 — Ay, — , 7.11
1524+e—2A e . (7.11)

which implies in particular that (2 + €)A; — 1 > 0. This last inequality implies that

_)\’1
Ay < —
Q+e)r—1
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Then in (7.11),

A

AM<24e——1
'= ‘ 2+e)r —1

Multiplying this by (2 + e)A; — 1 > 0 and simplifying, we get
M —Q+er+1<0.
Completing the square, we obtain
(M — (1 +6/2)% < e+ &2/4.
Then, assuming ¢ > 0 is smaller than some universal constant,

1 —2e <k < 1+2e,
as required. O
Finally, we complete the proof of Theorem 7.1.

Proof of Theorem 7.1 Combine Proposition 7.3 with Lemma 7.4. O

8 A third order estimate

In this section we prove a “Calabi-type” estimate for the first derivative of the evolving
metric. One might guess that the natural quantity to consider is |Vg|2, following the
computation in [28], say. However, we encountered difficulties in obtaining a good
bound for this quantity because of the non-Kéhlerity of the reference metrics @. Our
idea then is to take a Kdhler reference metric. Of course, in general M may not admit a
global Kidhler metric, so we work locally on an open set where the bundle M is trivial.

We obtain a Calabi estimate on this open set, using a cut-off function and a local
reference Kéhler metric. Our computations are based on those in [23]. However, the
situation here is complicated by the fact that the metrics are collapsing in the fiber
directions, and we will need to make careful use of the bounds from Lemma 4.1.

Fix a point y € § and neighborhood B of y over which x is trivial, so U =
771 (B) = B x E. Over U we have wg = i A @ a d-closed semi-flat (1, 1)-form
constructed as in the proof of Lemma 3.2. Therefore, ® = wg + ws is a semi-flat
product Kéhler metric on U. From now on we work exclusively on U, where we
define S = |@g|§,. Fix a smaller open set V CC U.

Theorem 8.1 On V we have
S < Ce2t/37

forallt > 0.

@ Springer



Collapsing of the Chern—Ricci flow 1261

By compactness, we obtain the same bound in any such neighborhood V. Recall
that wgay,y denotes the unique flat metric on the fiber £y, = n_l(y) in the Kihler
class [wo| £, ]. Exactly as in [28, Lemma 6.9] (see also [12], [13, Theorem 1.1], [9,
Proposition 5.8]) we have that:

Corollary 8.2 Forany y € S, we have on E,,

o), = Ofat,y
exponentially fast in the C'(E v, 80) topology. Moreover, the convergence is uniform
inyeS.

Proof We use an idea from [34, p. 440]. Since glE,, is uniformly equivalent to
e~ !¢, = ¢”' gk, we conclude that

Veu(€'8lE) N5, = €' 1Veu(8lE) i1, < Ce™' Vg, (85I

<Ce 'S < Ce_’/3,
using Theorem 8.1. But on Ey, g,y is a constant multiple of gz, and so

IVer (etglEy - gﬂat,y)|§5 =< Ce™'/3.
The rest of the proof follows easily, and exactly as in [28, Lemma 6.9], since e’ g| Ey
and gfia, y lie in the same Kihler class on E. 0

Before we start the proof of Theorem 8.1, we need some preliminary calculations.
Denote by \Il;. = F;. P F} ¢ the difference of the Christoffel symbols of g and g. It

is a tensor which satisfies |\IJ|§ = &S. The evolution of S is computed in [23, (3.4)],
generalizing calculations of [4,19,39], which gives

3 _
(5 — A)S =S— VY[, — VY[

+ gijgrEgab(VrTja + VET *)‘I’fp‘l’_egpqgki

arj sq
+88" g (V, Tyja + VT, )Wy Ve 8" 81

— 8" (ViThsa + V5 Turs) W, W5, ¢ g7

— 2Rel¢" (Vi Vy Tser + Vi V5T, 7

— T{ Ry + &gV Ris ) )6 g g7, ®.1)
where kifpk is the curvature tensor of g. We are going to bound each of these terms

separately. The key difference from the calculation in [23] is that in our case the torsion
T of g does not equal the torsion of g (which here is zero), but rather the torsion

TijZ Ofg
Therefore we let \Il;.k = F;.k — f‘;k and Hji.k = f‘;k — f‘;k = \I/;.k — \i’;.k.
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Lemma 8.3 Forallt > T;, we have that

|H|g < Ce'/? (8.2)
[0H|, < Ce'/?. (8.3)
|VH|, < Cé'. (8.4)

Proof At any given point x € M we can choose local bundle coordinates (z', z%) as
before. Then in this coordinate system (4.3) gives

IFylg < Ce',

where we are using the fact that g and g are uniformly equivalent. Since g is a semi-flat
product Kdhler metric, F’,. ¢ 18 zero except when i = j = k = 2, and so

2
|ij|g§C-

The bound (8.2) follows immediately from these bounds.
Next, note that

OHy = —Rg' + Ry

From Lemma 4.1, part (ii), we have that |I§ ﬂki lg < C e'/2, while the fact that g

is a semi-flat product Kéhler metric implies that the only nonzero component of Ris
Ry5,%, and so

Rzl < C. (8.5)

from which (8.3) follows.
We have that

_ ey i ap a
VpHj = 0pHj —TpiHy — U Hyy + T, H .

Thanks to (4.3) and (8.2), in these coordinates we can bound the | - |, norm of the
last three terms by Ce’. As for the first term, we have

aPH/l'k = al’r;k - aPF;‘k7
and
apr;k = gi[apajgkz - giggreapg’r?ajgk@
which is zero except wheni = j =k = p = 2, and so
0,1 < C.
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On the other hand
0,0 lg < Ce',
thanks to (4.14). This proves (8.4).

We now start bounding the terms in (8.1). We have

VETikj - V Tzkj

‘1’ qu + ng Tikgs
and so thanks to Lemmas 4.1 and 8.3 we have that
VTl < Ce'? + CS'2.
Therefore we can bound
8¢ g (V, Tyja + V; T, VW e g
+ 87" P (V, Tyja + V5T, ) WA WE gt g 7

arj

— P (Vi Ty + V5 Turs) Wh WE 1T gl < C(e'/? 4 8'/%)8.

pJq

Next, we compute

vavhfjg = Va(ﬁbf“ T =V T + Hpy Tir)

= 6 Vle]E - \Ijabv szk ‘y;k@bﬁjf

+ Hgy ¥y Tl,k + Hy Vo Tijr = (VW) Tyr

— W VT + W50, Tijs — Wi HS, Ty

+ (Vo Hj) Tijr + Hp VaTijr — V3, HY T

— WS HE Ty + HY HY T + HE HYL T
Using again Lemmas 4.1 and 8.3 we can bound
IVaViTple < Cle' +¢'282 + 8+ |V¥,),

and so

(8.6)

—2Re(g"* (V;V Tm)\p‘fqg Ighy < C(' S 428+ 8+ |VW|,8'%). (8.7)

Similarly we have

VaViTij7 = Va (VT 7 — ‘I’_Ekﬁ'ﬁ + Hy Tijr)
VaViTip = VoVt — Yo VT g
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irk

— WV Tijr + Wy o T + Y W T
- \I";;kHS ~wr q"ngS Tzvr + (V ku)Tz/r
+ Hp VaTijr — V3 Hpy Tyjr — W3 Hpy Tigr

+ Hy VT + Hoy VT — (Va0 Tijr

+ Hy Hy Tyjr + H;jH_szTisf-
Using again Lemmas 4.1 and 8.3 we can bound
IVaVsTi izl < Cle' + €282 + S+ VW),
and so

—2Re(g"*V; Vs Trﬂqﬂqg Ighty < C(e'S'V? + 2S5 + 8% + [VW[,5'/%). (8.8)

Next, we have
¢ _ p_ L ¢
3ﬁ‘l’qk = Rypk — Rypk
and so we can bound

2Re(g" T asﬂqﬂqg gl < CIVW|,8'? + CIRm[,S'? < C(1 +[VW|,)S' /2,
(8.9)
because of (8.5).
Finally, we have

A

k S p._ k L p _k L H_k kp_ ¢
VrRiEp :erifp _“I’”‘RZEIJ _qupRiFE +qugRi§p-

ut ¢ is a product of Kihler—Einstein metrics on Riemann surfaces, therefore
igpk = 0. Using (8.5) again, we conclude that

— 2Re(g" g, 7V, Rizp* \y‘fq ¢l Py < CS. (8.10)

Putting together (8.1), (8.6), (8.7), (8.8), (8.9) and (8.10), we conclude that

3_ t/2 rcl/2 3/2_1— 2_1 2
(at A)SEC(e S+eS+87%) 2|V‘~I’|g 2|V‘~Il|g. (8.11)

Next, we define Kéhler metrics on U by &, = ¢ 'wg + ws. These are uniformly
equivalent to w independent of ¢ thanks to Theorem 5.1. Furthermore, the covariant
derivative of @, is independent of ¢ and equal to that of @, and we will denote it by v
as before. The same is true for the curvature of @, which equals Iéﬁk” . We use [36,
Proposition 3.1] to compute
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P - o . .
(E—gmmc—H%%ﬂW%W&qgg%ﬂ&ﬁwj
Akl NS —tAil A
gljg Vi T]gk gljg Vi le; try,o+e tg; gt g,J(gE)ke
We have that

ViT, E:VT + HOTop,
and so we can use Lemma 4.1 and (8.2) to bound
IViT lg < Ce'?.

Hence, making use of (8.5), we have

d
(5 - A) try,0 < —C 'S+ Ce'’?, (8.12)

for a uniform C > 0.
We now give the proof of Theorem 8.1, along the lines of [23].

Proof Let K be a large constant such that
K
? < K—tré;)[wf K,

whose value will be fixed later. Let 0 < p < 1 be a smooth nonnegative cutoff function
supported in the open ball B in S, which is identically 1 in a smaller neighborhood of
v, and denote the pullback p o 7 also by p. Consider the quantity

e—Zt/3S
Q=p"——— +1try,0 onsupp(p) CU.
K —trp o
Our goal is to obtain an upper bound for Q, giving the bound S < Ce*/3 on a

smaller neighborhood of U, which we may assume contains V. We will apply the
maximum principle to this function Q, noting that it is equal to trg w, and hence is
bounded, on the boundary of supp(p).

We start with the following observations. Since p is the pullback of a function from
the base S, we have from the estimate Cw > wyg,

IVpl; <C. 1Aplg < C, (8.13)

independent of 7. Furthermore, we have the simple inequalities (see [23, (3.9), (3.10)]),

Virg, 0]} < CS, |VS[; <28(IVV[; + [VV]), (8.14)

where the first one also follows from the argument for (6.20).
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We can now compute

9 2020-2/35 2,-2/3 /4
2 _A)o=-L°¢ + 2 Z_A)s
at (K —trp,w) K —tryow

1 _— — — A try
(1 mmar) (5 =) oo
Re(VS, Vir, o —2/3
2p26—2l/3 < [ >g _ 2,0 e |Vtr&)t(,()|2
(K —try,w)? (K — try,w)3 8
-2t/3g —2t/3
e e
AP ——) -4 —Re(Vp, VS
(P )(K - trL;,Ia)) pK —trp, (Ve s
—2t/3S
(K — trg, )

Re (Vp, Virg, a))g .

Let (x, fp) be a point in supp(p) at which Q achieves a maximum. We may assume
without loss of generality that 7y > 0 and xq lies in the interior of supp(p). We have
at (xo, fo),

8_2’/38 6—21/3 ) e—Zt/3S

20V 2 VS 4 pt 2
PYPE o PR —wge P K — g0

Virg, w + Virg o = 0.

Taking the inner product of this with Vtr, w, we see that, at this point,

3 20262138 2,-2/3 /4
0<(Z-A)o=-2F¢ y L2 2 _A)s
at 3(K —trg,w) K —tryw \0t

+ {1+ 0% 7S 9 —A)try w
PK —ws w2 ) \or Z

—2t/3
— AP (—e S )

K — try,
4" & (Vp, VS), + 2V, o (8.15)
—4p——Re , —_— .
pK — g o P & K — try,

We use (8.11), (8.12), (8.13), (8.14) to obtain at this point,

2020213 1 = 1
0< /0T (C(e;/28+et51/2 +8¥ Z|v\p|§ — Z|V\I/|§)
4p2e=2/38 S
() (erer)
Ce 2BS  ple3 _ 5. CS
VYA Vv —
et T (VY H IV + =,
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where we have used the Young inequality and (8.14):

/3 Co238  p2e=2/3 VS
e e pe VS|
4p—|(Vp,VS),| <
PR —wga VO S T e s
Ce2BS 2B _ )
< VR + Ve ).
< S D (VU V)

Suppose that at (xg, fo) we have e 2/3SK~! > 1, and hence ¢’ < S32K3/2
(otherwise, e=2/3S is bounded and thus so is Q). We may also assume that S is much
larger than K, say S > K*. Then at this point,

S 4'026—2[/382 - CIOZe—ZI/S 87/4 SZ SZ
ct Tk STk KA TR T2
CS3/4 Cp26—21/387/4 Ce—Zt/3S CcS

+ K3/4 + K11/4 + K + K

Choosing K to be much larger than C2, we see that the second term on the left
hand side of this inequality dominates all the terms involving p® on the right hand
side. This gives

—21/3
s(L__€ _cer cy_y
C K3ASUAT K K

a contradiction since we chose K to be much larger than C2. It follows that Q is

uniformly bounded from above at the point (xg, #p). This completes the proof of the
theorem. o

9 Proofs of the main results

In this section we give the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1 The estimate proved in Theorem 7.1 immediately implies that
given any 0 < ¢ < 1/8 there exists a constant C such that

o) = o@llcop, g0 < Ce .
From the definition of @(t) = e 'wga + (1 — e ) *ws we deduce that
() = w* w5l cop.g) < Ce*.
The Gromov—Hausdorff convergence of (M, w(t)) to (S, ws) follows from

Lemma 9.1 below. Finally, given any y € S, the exponential convergence of e’ w (¢)| E,

0 WAty in the C YE y» &0) topology (uniformly in y), follows from Corollary 8.2 and
the compactness of M. O
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We used the following elementary result, which is undoubtedly well-known (cf.
[37, Theorem 8.1]).

Lemma 9.1 Letw : M — S be afiber bundle, where (M, gy) and (S, gs) are closed
Riemannian manifolds. If g(t),t > 0, is a family of Riemannian metrics on M with
llg(t) — n*gsllco(Mng) — Qast — oo, then (M, g(t)) converges to (S, gs) in the
Gromov-Hausdorff sense as t — o0.

Proof For any y € S we denote by E, = 7~ 1(y) the fiber over y. Fix ¢ > 0, denote
by L, the length of a curve in M measured with respect to g(¢), and by d; the induced
distance function on M. Similarly we have L, ds on S. Using the standard formulation
of Gromov—Hausdorff convergence (see e.g. [37]),let F = 7 : M — S and define
amap G : S — M by sending every point y € § to some chosen point in M on the
fiber Ey. The map G will in general be discontinuous, and it satisfies F o G = Id, so

ds(y, F(G(y))) = 0. 0.1

On the other hand since g(#)|g, goes to zero, we have that for any  large and for
anyx e M
di(x, G(F(x))) < e. 9.2)

Next, given two points xy, x; € M let y : [0, L] — S be a unit-speed minimizing
geodesic in S joining F'(x1) and F'(x2). Since the bundle r is locally trivial, we can
cover the image of y by finitely many open sets U;, 1 < j < N, such that () j)1s
diffeomorphic to U; x E (where E is the fiber of the bundle) and there is a subdivision
0=1 <t <--- <ty = Lof[0,L] such that y([t;—1,¢;]) C U;. Fix a point
e € E, and use the trivializations to define y;(s) = (y(s), e), fors € [t; 1, t;], which
are curves in M with the property that

ILi(7)) — Ls(lit,_.e;)| < &/,
as long as ¢ is sufficiently large (because g(1) — m*gs). The points y;(¢;) and
Vj+1(tj) lie in the same fiber of 7, so we can join them by a curve contained in this
fiber with L,-length at most ¢ /2N (for ¢ large). We also join x| with y;(0) and x, with
¥~ (L) in the same fashion. Concatenating these “vertical” curves and the curves y;,

we obtain a piecewise smooth curve y in M joining x| and x,, with 7(y) = y and
|L;(y) —ds(F(x1), F(x2))| < 2¢. Therefore,

di(x1,x2) < Li(y) < ds(F(x1), F(x2)) + 2e. 9.3)

Since F o G = Id, we also have that for all 7 large and for all y;, y» € S,
di(G(y1), G(y2) <ds(y1, y2) + 2e. 9.4
Given now two points x1, xo € M, let y be a unit-speed minimizing g(¢)-geodesic

joining them. If we denote by Ly+g.(y) the length of y using the degenerate metric
m*gs, then we have for ¢ large,
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ds(F(x1), F(x2)) < Ls(F(y)) = Largs(y) < Li(y) + & = di(x1,x2) + &, (9.5)

where we used again that g(r) — 7 *gg. Obviously this also implies that for all ¢ large
and for all yj, y, € S,

ds(y1, y2) <di(G(y1), G(y2)) +&. 9.6

Combining (9.1), (9.2), (9.3), (9.4), (9.5) and (9.6) we get the required Gromov—
Hausdorff convergence. O

Proof of Corollary 1.2 The proof is similar to [37, Theorem 8.2]. From [3, Lemmas 1,
2] or [38, Theorem 7.4] we see that there is a finite unramified covering p : M’ — M
(with deck transformation group I') which is also a minimal properly elliptic surface
7' M — § and 7’ is an elliptic fiber bundle with S" a compact Riemann surface
of genus at least 2. Furthermore, " also acts on S’ (so that 7’ is [-equivariant), with
finitely many fixed points whose union Z is precisely the image of the multiple fibers
of 7, with quotient § = S’/ T, and so that the quotient map ¢ : S’ — S satisfies
gom' =mop.

Denote by wg the orbifold Kdhler-Einstein metric on S with Ric(wg) = —wy .
From the description of M and M’ as quotients of H x C*, where H is the upper half
plane in C (see e.g. [17], [37, Section 8]), it follows that 7"*wg is a smooth real (1, 1)
form on M’, which also equals p*7*ws. Indeed, if we let z € H be the variable in
the upper half plane, w € C*, and y = Imgz, then from the arguments in [37, Section
8] we see that the form 7*wg on M is induced from the form #\/—_ldz A dZ on

H x C*, and the exact same formula holds on M’.

Given any Gauduchon metric wy on M, call w(¢) its evolution under the normalized
Chern—Ricci flow on M, as before. Let w(’) = p*wy, which is a I'-invariant Gauduchon
metric on M. If we call o’ (¢) its evolution under the normalized Chern—Ricci flow on
M’, then &' (¢) is also ['-invariant, and equal to p*w (). Furthermore, T" also acts by
isometries of the distance function dg of wg/, with quotient space (S, ds), the distance
function of the orbifold metric wg.

Now Theorem 1.1 applied to the elliptic bundle 7’ : M’ — §’ shows that
(M', &' (t)) converges to (S’, wg) in the Gromov—Hausdorff topology. But exactly
as in [37, Theorem 8.2] we see that the convergence happens also in the I"-equivariant
Gromov—Hausdorff topology, and therefore by [ 10, Theorem 2.1] or [21, Lemma 1.5.4]
we conclude that (M, w(t)) converges to (S, ds) in the Gromov—Hausdorff topology.

Now we apply Theorem 1.1 again to M’ to see that

/ / —é&t
”C() ([) — 7T *a)S/HCO(M/,p*gQ) < Ce € .

Fix now an open set U of M, small enough so that p~!(U) is a disjoint union of
finitely many copies U; of U. Then p : U; — U is a biholomorphism for each j and
the I'-action on p~ ! (U) permutes the U ;j’s. Therefore foreach j,themap p : U; — U
gives an isometry between o’ (l‘)lu_, and w(¢)|y, and also between (7*wg)|y ; and

(m*ws)|y. Fixing one value of j, from |’ () — 77/$0)S’”C°(U,,p*gg) < Ce ™, we
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conclude that
loo()) = T*wsll o, ) < Ce™.

Covering M by finitely many such open sets U shows that w(t) converges to 7 *wg
in the CO(M, go) topology.

Finally, fix any point y € S\Z, and let V be a small open neighborhood of y such
that 7~1(V) = V x E and ¢! (V) is a disjoint union of finitely many copies Vi
of V with points y; € V; mapping to y and with ¢ : V; — V a biholomorphism.
Then 7/~ 1(V}) = V; x E, and under these identifications the biholomorphism p :
Y v) - 77 HV) equals (¢,1Id) : V1 x E — V x E. Under this map the fiber
E| = 7'~1(y1) is carried to the fiber Ey. Applying Theorem 1.1 to M’, we see that

. . 1
e'w' (1) E}, converges exponentially fast in the C(EY, g) topology to wyp,, . the
flat Kdhler metric on £ ;1 cohomologous to [a)6| E|, ], and the convergence is uniform

when varying y;. But the local biholomorphism p maps o'(#) to w(t), and wg,, 3 to
fat,y> and the result follows. ]

Acknowledgments The authors thank the referee for some suggestions which improved the presentation.
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