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Abstract We investigate the Chern–Ricci flow, an evolution equation of Hermitian
metrics generalizing the Kähler–Ricci flow, on elliptic bundles over a Riemann surface
of genus greater than one. We show that, starting at any Gauduchon metric, the flow
collapses the elliptic fibers and the metrics converge to the pullback of a Kähler–
Einstein metric from the base. Some of our estimates are new even for the Kähler–
Ricci flow. A consequence of our result is that, on every minimal non-Kähler surface
of Kodaira dimension one, the Chern–Ricci flow converges in the sense of Gromov–
Hausdorff to an orbifold Kähler–Einstein metric on a Riemann surface.

Mathematics Subject Classification 53C44 · 53C55 · 32W20

1 Introduction

The Chern–Ricci flow is an evolution equation for Hermitian metrics on complex
manifolds. Given a starting Hermitian metric g0, which we represent as a real (1, 1)
form ω0 = √−1(g0)i j dzi ∧ dz j , the Chern–Ricci flow is given by

∂

∂t
ω = −Ric(ω), ω|t=0 = ω0, (1.1)

where Ric(ω) := −√−1∂∂ log det g is the Chern–Ricci form of ω. In the case when
g0 is Kähler, namely dω0 = 0, (1.1) coincides with the Kähler–Ricci flow.
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1224 V. Tosatti et al.

The Chern–Ricci flow was first introduced by Gill [11] in the setting of manifolds
with cBC1 (M) = 0, where cBC1 (M) is the first Bott–Chern class given by

cBC1 (M) = [Ric(ω)] ∈ H1,1
BC (M, R) = {closed real (1, 1)-forms}√−1∂∂(C∞(M))

,

for any Hermitian metric ω. Making use of an estimate for the complex Monge–
Ampère equation [6,35], Gill showed that solutions to (1.1) on manifolds with
cBC1 (M) = 0 exist for all time and converge to Hermitian metrics with vanishing
Chern–Ricci form. Gill’s theorem generalizes the convergence result of Cao [4] for
the Kähler–Ricci flow (which made use of estimates of Yau [39]).

The first and second named authors investigated the Chern–Ricci flow on more
general manifolds [36,37] and proved a number of further results. It was shown in
particular that the maximal existence time for the flow can be determined from the
initial metric; that the Chern–Ricci flow on manifolds with negative first Chern class
smoothly deforms Hermitian metrics to Kähler–Einstein metrics; that when starting
on a complex surface with Gauduchon initial metric ω0 (meaning ∂∂ω0 = 0), the
Chern–Ricci flow exists until the volume of the manifold or a curve of negative self-
intersection goes to zero; and that on surfaces with nonnegative Kodaira dimension the
Chern–Ricci flow contracts an exceptional curve when one exists. There are analogues
of all of these results for the Kähler–Ricci flow [4,7,27,32].

For the purpose of this discussion it will be useful tomake reference to the following
condition:

(∗) M is a minimal non-Kähler complex surface and ω0 is Gauduchon.

Surfaces which satisfy (∗) are of significant interest as they are not yet completely
classified. Recall that a surface is minimal if it contains no (−1)-curves and every
complex surface is birational to a minimal one by via a finite sequence of blow downs.
Every complex surface admits a Gauduchon metric, and the Gauduchon condition is
preserved by the Chern–Ricci flow.

We remark that Streets–Tian [29] earlier proposed the use of a different parabolic
flow, called the Pluriclosed Flow, to study complex non-Kähler surfaces (see Sect. 2
of [36] for some discussion on how this flow differs from the Chern–Ricci flow).

The Kodaira–Enriques classification (see [1]) tells us that manifolds M satisfying
(∗) fall into one of the following groups:

– Kod(M) = 1. Minimal non-Kähler properly elliptic surfaces.
– Kod(M) = 0. Kodaira surfaces.
– Kod(M) = −∞. Class VII surfaces which have either:

� b2(M) = 0. Hopf surfaces or Inoue surfaces by [15,16,30].
� b2(M) = 1. These are classified by [18,31].
� b2(M) > 1. Still unclassified.

Here Kod(M) is the Kodaira dimension of M . The result of Gill [11] shows that
when Kod(M) = 0 the Chern–Ricci flow exists for all time and converges to a Chern–
Ricci flat metric.
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Collapsing of the Chern–Ricci flow 1225

In [37], explicit examples of solutions to the Chern–Ricci flow were found on all
M with Kod(M) = 1, for all Inoue surfaces and for a large class of Hopf surfaces.
In particular, it was shown that for any M with Kod(M) = 1 there exists an explicit
solution ω(t) of the Chern–Ricci flow for t ∈ [0,∞) with the property that as t → ∞
the normalizedmetricsω(t)/t converge in the sense ofGromov–Hausdorff to (C, dKE)

where C is a Riemann surface and dKE is the distance function induced by an orbifold
Kähler–Einstein metric on C .

The main result of this paper is to show that this collapsing behavior on surfaces
of Kodaira dimension one in the examples of [37] actually occurs for every choice
of initial starting Gauduchon metric ω0. Combined with Gill’s theorem, our results
mean that the only remaining case (presumably the most difficult!) under assumption
(∗) is to understand the behavior of the Chern–Ricci flow on surfaces of negative
Kodaira dimension. We believe that the results of this paper add to the growing body
of evidence that the Chern–Ricci flow is a natural geometric evolution equation on
complex surfaces, whose behavior reflects the underlying geometry of the manifold.

We first consider the case of elliptic bundles over a Riemann surface. Later we will
see that this is sufficient to understand the behavior of the flow on all M satisfying (∗)

with Kod(M) = 1. Suppose that π : M → S is now an elliptic bundle over a compact
Riemann surface S of genus at least 2, with fiber an elliptic curve E . We will denote
by Ey = π−1(y) the fiber over a point y ∈ S and by ωflat,y the unique flat metric
on Ey in the Kähler class [ω0|Ey ]. Let ωS be the unique Kähler–Einstein metric on S
with Ric(ωS) = −ωS and let ω0 be a Gauduchon metric on M .

We consider the normalized Chern–Ricci flow

∂

∂t
ω = −Ric(ω) − ω, ω|t=0 = ω0, (1.2)

starting at ω0. With this normalized flow we will see that the volume of the base
Riemann surface S remains positive and bounded while the elliptic fibers collapse.
One could equally well study the unnormalized flow (1.1) on M (so that our main
collapsing result would apply to ω(t)/t as in [37]) but we choose this normalization
to stay in keeping with the literature on the Kähler–Ricci flow [24]. From [36] we
know that a smooth solution to (1.2) exists for all time (see Sect. 2 below for more
details). In this paper we prove the following convergence result as t → ∞.

Theorem 1.1 Let π : M → S be an elliptic bundle over a Riemann surface S of
genus at least 2. Let ω(t) be a solution of the normalized Chern–Ricci flow (1.2) on
M starting at a Gauduchon metric ω0. Then as t → ∞,

ω(t) → π∗ωS,

exponentially fast in the C0(M, g0) topology, where ωS is the unique Kähler–Einstein
metric on S. In particular, the diameter of each elliptic fiber tends to zero uniformly
exponentially fast and (M, ω(t)) converges to (S, ωS) in the Gromov–Hausdorff topol-
ogy.

Furthermore, with the notation above, etω(t)|Ey converges to the metric ωflat,y

exponentially fast in the C1(Ey, g0) topology, uniformly in y ∈ S.
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1226 V. Tosatti et al.

Note that in Theorem 1.1 we do not need to assume that M is non-Kähler. On
the other hand, we do assume that M is an elliptic bundle, so that the fibers are all
isomorphic as elliptic curves. General elliptic surfaces may have singular fibers and
in such cases, the complex structure of the smooth fibers may vary. However, we will
see shortly that this does not arise for the non-Kähler surfaces that are of interest to us.

In the case that M is Kähler and ω0 is Kähler, then ω(t) is a solution of the
normalized Kähler–Ricci flow. There are already a number of results on this, which
we now briefly discuss. On a general minimal Kähler elliptic surface, and its higher
dimensional analogue, the Kähler–Ricci flow was first investigated by Song–Tian
[24,25]. They showed that the flow converges at the level of potentials to a generalized
Kähler–Einstein metric on the baseRiemann surface. The generalizedKähler–Einstein
equation involves the Weil–Petersson metric and singular currents. These terms arise
because, unlike in our case, the fibration structure on a Kähler elliptic surface is not
in general locally trivial and may have singular fibers. When the Kähler surface is a
genuine elliptic bundle over a Riemann surface of genus larger than one, the results of
Song–Tian give C0 collapsing of the fibers along the Kähler–Ricci flow, as well as a
uniform scalar curvature bound [26]. These convergence results were strengthened by
Song–Weinkove [28] and Gill [12] in the special case of a product E × S, giving C∞
convergence of the metrics to the pull-back of a Kähler–Einstein metric on the base.
Fong–Zhang [9], adapting a technique of Gross–Tosatti–Zhang [13] on Calabi–Yau
degenerations, established smooth convergence for the Kähler–Ricci flow on more
general elliptic bundles. In particular, the statement of Theorem 1.1 is known if the
initial metric ω0 is Kähler (with the exception of the assertion that the convergence
ω(t) → π∗ωS is exponential - as far as we know, this result is new even in the
Kähler–Ricci flow case).

Of course, we are much more interested in manifolds which do not admit Kähler
metrics. For non-Kähler elliptic surfaces, we make use of the following key fact:

Every minimal non-Kähler properly elliptic surface is an elliptic bundle or has a
finite cover which is an elliptic bundle.

This is well-known from the Kodaira classification (see for example [3, Lemmas
1, 2] or [38, Theorem 7.4]). Then an immediate consequence of our Theorem 1.1 is
that we can identify the Gromov–Hausdorff behavior of the Chern–Ricci flow on all
minimal non-Kähler surfaces of Kodaira dimension one.

Corollary 1.2 Let π : M → S be any minimal non-Kähler properly elliptic surface
and let ω(t) be the solution of the normalized Chern–Ricci flow (1.2) starting at a
Gauduchon metric ω0. Then (M, ω(t)) converges to (S, dS) in the Gromov–Hausdorff
topology.

Here dS is the distance function induced by an orbifold Kähler–Einstein metric
ωS on S, whose set Z of orbifold points is precisely the image of the multiple fibers
of π . Furthermore, ω(t) converges to π∗ωS in the C0(M, g0) topology, and for any
y ∈ S\Z the metrics etω(t)|Ey converge exponentially fast in the C1(Ey, g0) topology
(and uniformly as y varies in a compact set of S\Z) to the flat Kähler metric on Ey

cohomologous to [ω0|Ey ].
As mentioned above, explicit examples exhibiting the behavior of Corollary 1.2

were given in [37].

123



Collapsing of the Chern–Ricci flow 1227

We now outline the steps we need to establish Theorem 1.1, and point out some of
the difficulties that arise from the non-Kählerity of the metrics.

The first parts of the proof follow quite closely the arguments used by Song–Tian
[24] for the Kähler–Ricci flow. In Sect. 2, we show that the Chern–Ricci flow can be
written as parabolic complex Monge–Ampère equation

∂

∂t
ϕ = log

et (ω̃ + √−1∂∂ϕ)2

�
− ϕ, ω̃ + √−1∂∂ϕ > 0, ϕ(0) = −ρ, (1.3)

where ω̃ = ω̃(t) is a family of reference forms (which are metrics for t large) given
by

ω̃ = e−tωflat + (1 − e−t )ωS, with ωflat = ω0 + √−1∂∂ρ,

where ρ is chosen so that ωflat restricted to the fiber Ey is exactly the metric ωflat,y
discussed above. Here � is a particular fixed volume form on M with the property
that

√−1∂∂ log� = ωS . If ϕ satisfies (1.3) then ω(t) = ω̃ + √−1∂∂ϕ satisfies the
Chern–Ricci flow (1.2).

In Sect. 3 we establish uniform bounds for ϕ and ϕ̇, which imply that the volume
form of the evolving metric ω(t) is uniformly equivalent to the volume form of the
reference metric. These follow in the same way as in the case of the Kähler–Ricci flow
[24]. In addition, we prove a crucial decay estimate for ϕ,

|ϕ| ≤ C(1 + t)e−t , (1.4)

using the argument of [28]. This estimate makes use of the Gauduchon assumption on
ω0, and in fact is the only place where we use this condition.

So far, the torsion terms of ω(t) and ω̃ have not entered the picture. They show
up in the next step of obtaining uniform bounds for the metrics ω(t). The evolution
equation for trω̃ω, essentially already computed in [36], contains terms involving the
torsion and curvature of the reference metrics ω̃. In Sect. 4 we prove a technical lemma
giving bounds for the torsion and curvature of these metrics. In particular we show:

|T̃ |g̃ ≤ C, |∂ T̃ |g̃ + |∇̃ T̃ |g̃ + |˜Rm|g̃ ≤ Cet/2.

To deal with these bounds of order et/2, our idea is to exploit the strong decay
estimate (1.4) on ϕ to control these terms.

In Sect. 5, we evolve the quantity

Q = log trω̃ω − Aet/2ϕ + 1

C̃ + et/2ϕ
,

noting that et/2ϕ is bounded by (1.4). The third term of Q is the “Phong–Sturm term”
[20], which was used in [36] to control some torsion terms along the Chern–Ricci
flow. Using the good positive terms arising from the Laplacian landing on et/2ϕ we
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can control the bad terms of order et/2 coming from the torsion and curvature of ω̃.
We obtain a uniform bound on Q which gives the estimate

C−1ω̃ ≤ ω ≤ Cω̃, (1.5)

namely, that the solution ω is uniformly equivalent to the reference metric ω̃.
We point out that our argument here differs substantially from that of Song–Tian

[24] where they prove first a parabolic Schwarz Lemma, namely an estimate of the
type ω ≥ C−1ωS for a uniform C > 0. We were unable to prove this by a similar
direct maximum principle argument, because of troublesome torsion terms arising in
the evolution of trωωS . However, we still obtain the estimate ω ≥ C−1ωS once we
have (1.5).

The next step is to improve the bound (1.5) to the stronger exponential convergence
result

(1 − Ce−εt )ω̃ ≤ ω ≤ (1 + Ce−εt )ω̃, (1.6)

for ε > 0. To our knowledge, this estimate is new even for the Kähler–Ricci flow on
elliptic bundles. The idea is to evolve the quantity

Q = eεt (trωω̃ − 2) − eδtϕ,

for a carefully chosen δ > 1/2+2ε and again exploit the decay estimate (1.4). Showing
that Q is bounded from above then gives the estimate

trωω̃ − 2 ≤ Ce−εt ,

and a similar argument gives the same inequality with trωω̃ replaced by trω̃ω. Com-
bining these two estimates gives (1.6).

However, in order to apply the maximum principle to Q we first require an expo-
nential decay estimate for ϕ̇. To prove this, we observe that the evolution equation for
ϕ̇ is

∂

∂t
ϕ̇ = −R − 1 − ϕ̇,

where R is the Chern scalar curvature of g. If we had a uniform bound for the Chern
scalar curvature, an exponential decay estimate for ϕ̇ would follow from this evolution
equation and the decay estimate for ϕ. However, we are only able to prove the weaker
estimate

− C ≤ R ≤ Cet/2. (1.7)

Nevertheless, this suffices since the coefficient of t in the exponent is strictly less
than 1. The bound (1.7) is the content of Sect. 6. The factor et/2 arises from the bounds
on the curvature and torsion of the reference metrics we obtained in Sect. 4.

The idea for bounding the Chern scalar curvature from above (the lower bound
is easy) is to consider the quantity u = ϕ + ϕ̇ and bound from above −
u =
R + trωωS ≥ R. Using an idea that goes back to Cheng–Yau [5], and is used in the
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Collapsing of the Chern–Ricci flow 1229

context of the Kähler–Ricci flow on Fano manifolds by Perelman (see Sesum–Tian
[22]) and on elliptic surfaces by Song–Tian [24], we first bound the gradient of u by
considering the quantity |∇u|2g/(A−u) for a fixed large A.We then evolve the quantity
−
u + 6|∇u|2g , which is almost enough to obtain the estimate we need. There are
some bad terms which we can control by adding large multiples of trωωS and trω̃ω.
We already know that these terms are bounded from (1.5). Putting this together gives
the upper bound on scalar curvature and the exponential decay estimate for ϕ̇ that we
require.

Now that we have this exponential decay estimate on ϕ̇, we carry out in Sect. 7 the
argument mentioned above for the exponential convergence of the metrics (1.6).

In Sect. 8, we prove a local Calabi type estimate

|∇̂g|2g ≤ Ce2t/3, (1.8)

where ∇̂ is the connection associated to a local semi-flat product Kähler metric defined
in a neighborhood U . Note that if we had the better estimate |∇̂g|2g ≤ C (as in
[9,12,28] for example) then we could immediately conclude the global convergence
of the metrics ω(t) to π∗ωS from the estimates (1.4) and (1.5) and the Ascoli–Arzelà
Theorem. We do not know whether this stronger estimate |∇̂g|2g ≤ C holds or not.

To establish (1.8), we use some arguments and calculations similar to the local
Calabi estimate in [23].However, a key difference here is that themetrics are collapsing
in the fiber directions and we need to take account of the error terms that arise in this
way. The local Calabi estimate is then used to establish the last part of Theorem 1.1 that
etω(t)|Ey converges toωflat,y exponentially fast in theC1(Ey, g0) topology, uniformly
in y ∈ S.

In Sect. 9 we complete the proofs of Theorem 1.1 (this essentially follows imme-
diately) and Corollary 1.2.

2 Preliminaries

2.1 Hermitian geometry and notation

We begin with a brief recap of Hermitian geometry and the Chern connection (for
more details see for example [36]).

Given aHermitianmetric g, wewriteω = √−1gi j dzi ∧dz j for its associated (1, 1)
form, which we will also refer to as a metric. Write ∇ for its Chern connection, with
respect to which g and the complex structure are covariantly constant. The Christoffel
symbols of ∇ are given by �k

i j = gkq∂i g jq . For example, if X = Xi∂i is a vector field

then its covariant derivative has components ∇i X� = ∂i X� + ��
i j X j .

The torsion tensor of g has components T k
i j = �k

i j − �k
ji . We will often lower an

index using the metric g, writing

Ti j� = gk�T k
i j = ∂i g j� − ∂ j gi�.
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1230 V. Tosatti et al.

Note that Ti j� = T ′
i j�

if g and g′ are Hermitian metrics whose (1, 1) forms ω and

ω′ differ by a closed form. The Chern curvature of g is defined to be R p
k�i

= −∂��
p
ki ,

and wewill raise and lower indices using the metric g. We have the usual commutation
formulae involving the curvature, such as

[∇k,∇�]Xi = R i
k� j

X j .

Define the Chern–Ricci curvature of g to be Rk� = gi j Rk�i j = −∂k∂� log det g,
and we write

Ric(ω) = √−1Rk�dzk ∧ dz�

for the associated Chern–Ricci form, a real closed (1,1) form. Write R = gk� Rk� for
the Chern scalar curvature.

We write 
 for the complex Laplacian of g, which acts on a function f by 
 f =
gi j∂i∂ j f . For functions f1, f2, we define 〈∇ f1,∇ f2〉g = gi j∂i f1∂ j f2 and |∇ f |2g =
〈∇ f,∇ f 〉g . If α = √−1αi j dzi ∧ dz j is a real (1, 1) form and ω a Hermitian metric

we write trωα for gi jαi j .
A final remark about notation: we will write C, C ′, C0, . . . etc. for a uniform con-

stant, which may differ from line to line.

2.2 Elliptic bundles and semi-flat metrics

We now specialize to the setting of Theorem 1.1. Let π : M → S be an elliptic bundle
over a compact Riemann surface S of genus at least 2, with fiber an elliptic curve E .
Clearly π : M → S is relatively minimal, because there is no (−1)-curve contained
in any fiber. We will denote by Ey = π−1(y) the fiber over a point y ∈ S. Let ωS be
the unique Kähler metric on S with Ric(ωS) = −ωS , let ω0 be a Gauduchon metric
on M .

Since each fiber Ey = π−1(y) is a torus, we can find a function ρy on Ey with

ω0|Ey + √−1∂∂ρy = ωflat,y,

the unique flatmetric on Ey in theKähler class [ω0|Ey ]. Furthermorewe can normalize
the functions ρy by

∫

Ey
ρyω0 = 0, so that they vary smoothly in y (in general this

follows from Yau’s estimates [39], although in this simple case it can also be proved
directly, see also [8, Lemma 2.1]), and they define a smooth function ρ on M . We then
let

ωflat = ω0 + √−1∂∂ρ. (2.1)

ωflat is a semi-flat form, in the sense that it restricts to a flat metric on each fiber Ey ,
but in general it is not positive definite on M . But note that ωflat ∧ π∗ωS is a strictly
positive smooth volume form on M .
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Collapsing of the Chern–Ricci flow 1231

2.3 The canonical bundle and long time existence for the flow

In the same setting as above, we claim that KM = π∗KS . To see this, start from
Kodaira’s canonical bundle formula for relatively minimal elliptic surfaces without
singular fibers [1, Theorem V.12.1]

KM = π∗(KS ⊗ L),

where L is the dual of R1π∗OM . But since M is an elliptic bundle, it follows that the
line bundle R1π∗OM is trivial (see e.g. [2, Proposition 2.1]), and the claim follows.

Therefore c1(M) = π∗c1(S) (an alternative more direct proof of this fact is con-
tained in Lemma 3.2), and so there exists a unique volume form � with

Ric(�) = −ωS and
∫

M
� = 2

∫

M
ω0 ∧ ωS . (2.2)

Here and henceforth, we are abbreviating π∗ωS by ωS , and for any smooth positive
volume form�wewrite Ric(�) for the globally defined real (1, 1)-form given locally
by −√−1∂∂ log�.

It follows that the Bott–Chern class of the canonical bundle KM , which equals
cBC1 (KM ) = −cBC1 (M), is nef. In general this means that given any ε > 0 there
exists a real smooth function fε on M such that −Ric(ω0) + √−1∂∂ fε > −εω0.
Equivalently, this can be phrased by saying that for any ε > 0 there is a smooth
Hermitian metric hε on the fibers of KM with curvature form bigger than −εω0.

The maximal existence theorem for the Chern–Ricci flow [36, Theorem 1.2] has the
following immediate corollary.

Theorem 2.1 Let (M, ω0) be any compact Hermitian manifold. Then the Chern–Ricci
flow

∂

∂t
ω = −Ric(ω), ω|t=0 = ω0, (2.3)

has a smooth solution defined for all t ≥ 0 if and only if the first Bott–Chern class
cBC1 (KM ) is nef. The exact same statement holds for the normalized Chern–Ricci flow
(1.2).

Since this theorem was not stated explicitly in [36], we provide the simple proof.

Proof An elementary space-time scaling argument [14] allows one to transform a
solution of (1.2) into a solution of (2.3) and vice versa, and one exists for all positive
time if and only if the other one does, so it is enough to consider (2.3).

In this case, we know from [36] that as long as a solutionω(t) exists, it is of the form

ω(t) = ω0 − tRic(ω0) + √−1∂∂ϕ(t),

and therefore

−Ric(ω0) + √−1∂∂
(ϕ

t

)

> −1

t
ω0,

so if the solution exists for all t ≥ 0, then we see that cBC1 (KM ) is nef.
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1232 V. Tosatti et al.

Conversely, if cBC1 (KM ) is nef, then for every given t > 0 we can find a smooth
function ft with

−Ric(ω0) + √−1∂∂ ft > −1

t
ω0,

which is equivalent to

ω0 − tRic(ω0) + √−1∂∂(t ft ) > 0,

and so the flow exists at least on [0, t) by [36, Theorem 1.2]. ��

Applying this to the setting of Theorem 1.1, we obtain a smooth solution ω(t) to
the normalized Chern–Ricci flow (1.2) for t ∈ [0,∞).

2.4 The parabolic complex Monge–Ampère equation

From now on, until we get to Sect. 9, we assume we are in the setting of Theorem 1.1.
Wewill rewrite the normalizedChern–Ricci flow (1.2) as a parabolic complexMonge–
Ampère equation. Define reference (1, 1)-forms ω̃ = ω̃(t) by

ω̃ = e−tωflat + (1 − e−t )ωS,

where we recall that ωflat is defined by (2.1). Note that ω̃ may not necessarily be
positive definite for all t , but there exists a time TI such that ω̃ > 0 for all t ≥ TI . (On
the other hand, observe that ω̃ − e−t

√−1∂∂ρ is positive definite for all t ≥ 0). We
fix this constant TI now once and for all. By the long time existence result of [36], we
have uniform C∞ estimates on ω(t) for t ∈ [0, TI ]. Our goal is to obtain estimates on
ω(t) for t > TI which are independent of t .

Define a function ϕ(t) by

∂

∂t
ϕ = log

etω(t)2

�
− ϕ, ϕ(0) = −ρ,

where we recall that ωflat = ω0 + √−1∂∂ρ and � is given by (2.2). We claim that
ω(t) = ω̃ + √−1∂∂ϕ(t) holds. Indeed,

∂

∂t
ω̃ = ωS − ω̃ = −Ric(�) − ω̃,

and so,

∂

∂t
(et (ω − ω̃ − √−1∂∂ϕ)) = 0, (et (ω − ω̃ − √−1∂∂ϕ))|t=0 = 0,
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Collapsing of the Chern–Ricci flow 1233

which implies that indeed ω = ω̃ + √−1∂∂ϕ. Therefore ϕ also satisfies the PDE

∂

∂t
ϕ = log

et (ω̃ + √−1∂∂ϕ)2

�
− ϕ, ω̃ + √−1∂∂ϕ > 0, ϕ(0) = −ρ, (2.4)

and conversely every solution of (2.4) gives rise to a solution ω = ω̃ + √−1∂∂ϕ of
the normalized Chern–Ricci flow (1.2).

3 Estimates on the potential and its time derivative

We now begin the proof of Theorem 1.1. We assume π : M → S is an elliptic bundle
over a Riemann surface S of genus at least 2 and ω(t) is a solution of the normalized
Chern–Ricci flow (1.2) on M starting at a Gauduchon metric ω0.

In this section we collect some estimates on the potential function ϕ solving (2.4),
and its time derivative ϕ̇ := ∂ϕ/∂t . The proofs of these results are almost identical
to the corresponding results for the Kähler–Ricci flow [24] (see also [28]). For the
reader’s convenience we include here the brief arguments. We also point out the one
place where we use the Gauduchon condition.

Lemma 3.1 There exists a uniform positive constant C such that on M,

(i) |ϕ(t)| ≤ C for all t ≥ 0.
(ii) |ϕ̇(t)| ≤ C for all t ≥ 0.

(iii)
1

C
ω̃2 ≤ ω2 ≤ Cω̃2 for all t ≥ TI .

Proof We follow the exposition in [28]. Since et ω̃2 = e−tω2
flat+2(1−e−t )ωflat∧ωS ,

we have for t ≥ TI ,
1

C
� ≤ et ω̃2 ≤ C�. (3.1)

If ϕ attains a minimum at a point (x0, t0) with t0 > TI , then at that point

0 ≥ ∂

∂t
ϕ = log

et (ω̃ + √−1∂∂ϕ)2

�
− ϕ ≥ log

et ω̃2

�
− ϕ ≥ − logC − ϕ,

giving ϕ ≥ − logC and hence a uniform lower bound for ϕ. The upper bound for ϕ

is similar. This gives (i).
For (ii), we first compute:

(

∂

∂t
− 


)

ϕ̇ = trω(ωS − ω̃) + 1 − ϕ̇. (3.2)

On the other hand, there exists a uniform constant C0 > 1 such that C0ω̃ > ωS

for t ≥ TI . We apply the maximum principle to Q1 = ϕ̇ − (C0 − 1)ϕ. Calculate for
t ≥ TI ,
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(

∂

∂t
− 


)

Q1 = trω(ωS − ω̃) + 1 − C0ϕ̇ + (C0 − 1)trω(ω − ω̃)

≤ 1 − C0ϕ̇ + 2(C0 − 1),

and the maximum principle shows that Q1 is bounded from above uniformly. This
gives the upper bound for ϕ̇.

Next consider Q2 = ϕ̇ + 2ϕ and compute

(

∂

∂t
− 


)

Q2 = trω(ωS − ω̃) + 1 + ϕ̇ − 2trω(ω − ω̃) ≥ trωω̃ + ϕ̇ − 3.

By the geometric–arithmetic means inequality, we have for t ≥ TI ,

e− ϕ̇+ϕ
2 =

(

�

etω2

) 1
2 ≤ C

(

ω̃2

ω2

)

1
2

≤ C

2
trωω̃. (3.3)

Then at a point (x0, t0) with t0 > TI where Q2 attains a minimum, trωω̃ ≤ 3 − ϕ̇

and so e− ϕ̇+ϕ
2 ≤ C(3− ϕ̇), which gives a uniform lower bound for ϕ̇. This completes

the proof of (ii).
Part (iii) follows from (i) and (ii) and the equations (2.4) and (3.1). ��
Our next result is an exponential decay estimate for ϕ.We first need a lemma. Recall

that the volume form � is defined by (2.2). This lemma is the only place in the paper
where we make use of the Gauduchon assumption on ω0.

Lemma 3.2 We have that
� = 2ωflat ∧ ωS . (3.4)

Proof Since 2
∫

M ωflat ∧ ωS = 2
∫

M ω0 ∧ ωS = ∫

M �, it is enough to show that

√−1∂∂ log
�

ωflat ∧ ωS
= 0. (3.5)

Recalling that M is an elliptic bundle with fiber E , we can fix a small ball B ⊂ S
overwhichπ is holomorphically trivial, soπ−1(B) ∼= B×E . If we identify E = C/�,
for some lattice � ⊂ C, and call z1 the coordinate on C, then dz1 descends to a never
vanishing holomorphic 1-form on E . If we call α its pullback to B×E , then

√−1α∧α

is a smooth semi-flat form on π−1(U ). Then there is a function u(y) defined on B
such that for any y ∈ B we have

ωflat|Ey = u(y)
√−1α ∧ α.

This is because both ωflat|Ey and
√−1α ∧ α are flat volume forms on Ey , and so

their ratio is a constant on Ey . Integrating this equality over Ey we get

∫

Ey

ωflat = u(y)

∫

Ey

√−1α ∧ α.
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But on the one hand the integral
∫

Ey

√−1α ∧ α is independent of y by definition,

and on the other hand the function y �→ ∫

Ey
ωflat is also constant in y, because it

equals the pushforward π∗ωflat and we have

∂∂π∗ωflat = π∗∂∂ωflat = π∗∂∂ω0 = 0.

Note that the last equality uses the Gauduchon condition. This implies that π∗ωflat
is constant by the strong maximum principle. Therefore u is a constant.

Fix now a point x ∈ M , call y = π(x), and choose local bundle coordinates near x
and y, so that in these coordinates the projection π is given by π(z1, z2) = z2. Then
write locally

ωS = √−1g(z2)dz2 ∧ dz2,

� = G(z1, z2)(
√−1)2dz1 ∧ dz1 ∧ dz2 ∧ dz2,

and compute

F := �

ωflat ∧ ωS
= �

u
√−1α ∧ α ∧ ωS

= G(ug)−1, (3.6)

and so locally on S we have

√−1∂∂ log F = ωS + Ric(ωS) = 0, (3.7)

because Ric(�) = −ωS = Ric(ωS). This proves (3.5).
Incidentally the same calculation proves that the volume form ωflat ∧ ωS satisfies

Ric(ωflat ∧ ωS) = −ωS,

which gives another proof of the fact that c1(M) = π∗c1(S). ��

Very similar arguments can be found in the paper of Song–Tian [24], in the Kähler
case (see also [25,34]).

Remark 3.3 Lemma 3.2 fails if we drop the assumption that ∂∂ω0 = 0. Indeed,
consider the case when M = S × E , and let ωE be a flat Kähler metric on E (while
ωS is as before). If F : S → R is any nonconstant positive function then

ω0 = FωE + ωS,

is a Hermitian metric on M with ∂∂ω0 �= 0. We have that ω0 = ωflat, because ω0 is
already semi-flat. On the other hand, � = c · ωE ∧ ωS , where c is the constant given
by
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c = 2
∫

M ω0 ∧ ωS
∫

M ωE ∧ ωS
.

Therefore we have

� �= 2ωflat ∧ ωS = FωE ∧ ωS .

We can now prove a decay estimate for ϕ. The analogous estimate was proved for
the Kähler–Ricci flow on a product surface in [28, Lemma 6.7]. The proof in this case
is almost identical, given Lemma 3.2.

Lemma 3.4 There exists a uniform constant C > 0 such that on M × [0,∞),

|ϕ| ≤ C(1 + t)e−t .

Proof First, we claim that for t ≥ TI ,

∣

∣

∣

∣

et log
et ω̃2

�

∣

∣

∣

∣

≤ C. (3.8)

This follows from the argument in [28, Lemma 6.7]. Indeed, using Lemma 3.2, we
see that

et log
et ω̃2

�
= et log

2ωS ∧ ωflat + e−t (ω2
flat − 2ωflat ∧ ωS)

2ωS ∧ ωflat

= et log(1 + O(e−t )),

which is bounded.
Define now Q = etϕ + At , for A a large positive constant to be determined. Then

∂ Q

∂t
= et log

(

et (ω̃ + √−1∂∂ϕ)2

�

)

+ A. (3.9)

We wish to bound Q from below. Suppose that (x0, t0) is a point with t0 > TI at
which Q achieves a minimum. At this point we have

0 ≥ ∂ Q

∂t
≥ et log

et ω̃2

�
+ A ≥ −C ′ + A,

for a uniform C ′, thanks to (3.8). Choosing A > C ′ gives contradiction. Hence Q
is bounded from below and it follows that ϕ ≥ −C(1 + t)e−t for a uniform C . The
upper bound for ϕ is similar. ��
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4 Torsion and curvature of the reference metrics

This section is devoted to proving a technical lemma on estimates for the torsion and
curvature of the reference metrics. These estimates will be needed later in Sects. 5
and 8.

Recall that the reference forms ω̃ = ω̃(t) are given by

ω̃ = e−tωflat + (1 − e−t )ωS .

For t ≥ TI , this defines a Hermitian metric which we denote by g̃. We will use a
tilde to denote quantities with respect to g̃, such as T̃ k

i j for the torsion tensor, ∇̃ for the

Chern connection and ˜Rm for the Chern curvature tensor. We will write ∂ T̃ for the
tensor ∂�T̃ i

jk = ∇̃�T̃ i
jk .

Denote by (T 0)k
i j the torsion tensor of the initial metric g0, and T 0

i j�
= (T 0)k

i j (g0)k�.

Then since dω̃ = e−t dω0, we have T̃i j� = e−t T 0
i j�

.

Lemma 4.1 There exists a uniform constant C such that for t ≥ TI ,

(i) |T̃ |g̃ ≤ C.

(ii) |∂ T̃ |g̃ + |∇̃ T̃ |g̃ + |̃Rm|g̃ ≤ Cet/2.

(iii) |∇̃∂ T̃ |g + |∇̃∂ T̃ |g ≤ Cet .

Proof We may choose local product holomorphic coordinates z1, z2, independent of
t , with z1 in the fiber direction and z2 in the base direction. Since gflat is flat in the z1

direction, we may assume that derivatives of (gflat)11 in the z1 direction vanish. Now
with respect to these coordinates, we may write

g̃11 = e−t (gflat)11, g̃12 = e−t (gflat)12 (4.1)

g̃21 = e−t (gflat)21, g̃22 = e−t (gflat)22 + (1 − e−t )(gS)22, (4.2)

where we are writing gS for π∗gS . Then a straightforward computation shows that
there exists a uniform constant C > 0 so that

e−t

C
≤ g̃11 ≤ Ce−t ,

et

C
≤ g̃11 ≤ Cet

1

C
≤ g̃22 ≤ C,

1

C
≤ g̃22 ≤ C

|g̃12| ≤ Ce−t |g̃12| ≤ C.

Then

|T̃ |2g̃ = g̃i j g̃k�g̃ pq T̃ikq T̃ j�p = e−2t g̃i j g̃k�g̃ pq T 0
ikq T 0

j�p.

This is uniformly bounded since the only unbounded terms of type g̃i j are the terms
g̃11, but by the skew-symmetry of T 0

i j�
in i, j , there can be at most two such terms in
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the above expression, and each is bounded above by Cet (since the components T 0
i jk

are all uniformly bounded in the holomorphic coordinates z1, z2). This completes the
proof of (i).

For (ii), note that we may choose the coordinates z1, z2 as above with the additional
property that at a fixed point x say, the derivative ∂2gS vanishes. This implies that at
x we have ∂i g̃ j� = e−t∂i (gflat) j� for all i, j, �. Note that since our coordinates are
independent of t and depend continuously on the point x ∈ M , we may allow our
constants to depend on this choice of coordinate system.

We first claim that at x ,

|�̃ p
ik |2g̃ := g̃i j g̃k�g̃pq �̃

p
ik�̃

q
j� ≤ Cet , (4.3)

where �̃
p
ik are the Christoffel symbols of the Chern connection of g̃. Note that since

�̃
p
ik is not a tensor, this quantity depends on our choice of coordinates.
For (4.3) compute,

|�̃ p
ik |2g̃ = g̃i j g̃k�g̃ pq∂i g̃kq∂ j g̃p� = e−2t g̃i j g̃k�g̃ pq∂i (gflat)kq∂ j (gflat)p�.

But this is bounded from above by Cet since each term of type g̃i j is bounded from
above by Cet .

Next note that, at x ,
|∂�T 0

i jk
|2g̃ ≤ Ce3t . (4.4)

Indeed this follows from the skew symmetry of ∂�T 0
i jk

(again, not a tensor) in the

indices i and j . Then at x ,

|∂ T̃ |2g̃ = e−2t |∇̃�T 0
i jk

|2g̃
= e−2t |∂�T 0

i jk
− �̃r

�k T 0
i jr |2g̃

≤ 2e−2t |∂�T 0
i jk

|2g̃ + 2e−2t |�̃r
�k |2g̃|T 0

i jr |2g̃ ≤ Cet (4.5)

where the last inequality follows from (4.3), (4.4) and the fact that |T 0
i jr |2g̃ ≤ Ce2t .

The bound on |∇̃ T̃ |g̃ is completely analogous (again we compute at x):

|∇̃ T̃ |2g̃ = e−2t |∇̃�T 0
i jk

|2g̃
= e−2t |∂�T 0

i jk
− �̃r

�i T
0

r jk
− �̃r

�j T
0

irk
|2g̃

≤ 2e−2t |∂�T 0
i jk

|2g̃ + 4e−2t |�̃r
�k |2g̃|T 0

i jk
|2g̃ ≤ Cet . (4.6)

For the bound on the curvature R̃i jk� of g̃, we first compute in our coordinates,

|R̃1111| ≤ Ce−2t , (4.7)
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where by | · | we mean the absolute value as a complex (or real) number. Recall that
the Chern curvature of g̃ is given by

R̃i jk� = −∂i∂ j g̃k� + g̃ pq∂i g̃kq∂ j g̃p�.

Hence from (4.1) and (4.2) and the fact that ∂1∂1(gflat)11 and ∂1(gflat)11 vanish in
our coordinate system,

R̃1111 = −∂1∂1g̃11 + g̃ pq∂1g̃1q∂1g̃p1

= e−2t
∑

(p,q) �=(1,1)

g̃ pq∂1(gflat)1q∂1(gflat)p1.

but since each term g̃ pq for (p, q) �= (1, 1) is uniformly bounded, this gives (4.7).
Next we show that

|R̃2222| ≤ C. (4.8)

For this note that |∂2∂2 g̃22| ≤ C and

∑

p,q

g̃ pq∂2 g̃2q∂2 g̃p2 = g̃11∂2 g̃21∂2 g̃12 +
∑

(p,q) �=(1,1)

g̃ pq∂2 g̃2q∂2 g̃p2,

but the first term is of order O(e−t ) and the second is uniformly bounded. This proves
(4.8).

Finally, we show that

|R̃i jk�| ≤ Ce−t , for (i, j, k, �) not all equal. (4.9)

To see this observe that, for i, j, k, � not all equal, we have

|∂i∂ j g̃k�| ≤ Ce−t . (4.10)

Indeed, this follows immediately from (4.1) and (4.2) unless k = � = 2. But then
one of i or j must equal 1 and we use the fact that ∂1(gS)22 = 0.

Moreover, for i, j, k, � not all equal, we claim:

∣

∣

∣

∣

∣

∑

p,q

g̃ pq∂i g̃kq∂ j g̃p�

∣

∣

∣

∣

∣

≤ Ce−t . (4.11)

Indeed, first assume that neither k nor � is equal to 2. Then

|g̃ pq | ≤ Cet , |∂i g̃kq | ≤ Ce−t and |∂ j g̃p�| ≤ Ce−t ,

and so

|g̃ pq∂i g̃kq∂ j g̃p�| ≤ Ce−t .
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Next suppose that k = 2 and � = 1. Then

∑

p,q

g̃ pq∂i g̃2q∂ j g̃p1 =
∑

p

g̃ p1∂i g̃21∂ j g̃p1 +
∑

p

g̃ p2∂i g̃22∂ j g̃p1.

The first term on the right hand side is of order O(e−t ) by the same argument
as above, and the second is of order O(e−t ) since |g̃ p2| ≤ C , |∂i g̃22| ≤ C and
|∂ j g̃p1| ≤ Ce−t . This proves (4.11) if k = 2 and � = 1 and the case k = 1, � = 2 is
similar.

Finally we deal with the case k = � = 2. We wish to bound

∑

p,q

g̃ pq∂i g̃2q∂ j g̃p2.

If one of p or q is equal to 1 then the summand is of order O(e−t ) by similar
arguments to the ones given above. Otherwise the summand is

g̃22∂i g̃22∂ j g̃22,

and thenwe use that fact that one of i or j must be 1, sincewe are assuming that i, j, k, �

are not all equal. But |∂1g̃22| ≤ Ce−t and so the summand is of order O(e−t ). This
completes the proof of (4.11).

Combining (4.10) and (4.11) gives (4.9).
To complete the proof of (ii), we note that

|˜Rm|2g̃ = g̃iq g̃ p j g̃ks g̃r� R̃i jk� R̃q psr .

Recall that g̃ab is bounded by C if (a, b) �= (1, 1) and by Cet if a = b = 1.
When i = j = k = � = p = q = r = s = 1, then we apply (4.7) to see that
the summand is bounded by C . We get the same bound if i = j = k = � = 2 or
p = q = r = s = 2 by applying (4.7), (4.8) and (4.9). Otherwise, both of the terms
R̃i jk� and R̃q psr are bounded by Ce−t (or better) by (4.7) and (4.9) (because the term

R̃2222 does not appear). Moreover, at least one of the metric terms g̃−1 is bounded by a
uniform constant C , while the other three are each bounded from above by Cet . Thus
in every case we obtain |˜Rm|2g̃ ≤ Cet . Combining this with (4.5) and (4.6) gives (ii).

For (iii), compute

∇̃p∇̃q T̃i jk = ∇̃p(∂q T̃i jk − �̃�
qk T̃i j�)

= ∂p∂q T̃i jk − T̃i j�∂p�̃
�
qk − �̃�

qk∂pT̃i j� − �̃�
pq∂�T̃i jk − �̃�

pk∂q T̃i j�

+ �̃r
pq �̃�

rk T̃i j� + �̃r
pk�̃

�
qr T̃i j�.
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For the first term we observe that

|∂p∂q T̃i jk |2g̃ = e−2t |∂p∂q T 0
i jk

|2g̃ ≤ Ce2t , (4.12)

because of the skew symmetry in i, j . And, as in the proof of (ii),

|∂pT̃i j�|2g̃ = e−2t |∂pT 0
i jk

|2g̃ ≤ Cet . (4.13)

We claim that

|∂p�̃
i
jk |2g̃ := g̃ pq g̃ ja g̃kbg̃ic∂p�̃

i
jk∂q �̃c

ab ≤ Ce2t . (4.14)

To see this note that at x we have

∂p�̃
i
jk = g̃i�∂p∂ j g̃k� − g̃is g̃r�∂p g̃rs∂ j g̃k�

= e−t g̃i�∂p∂ j (gflat)k� + (1 − e−t )g̃i�∂p∂ j (gS)k�

− e−2t g̃is g̃r�∂p(gflat)rs∂ j (gflat)k�,

and so (with the obvious notation)

|∂p�̃
i
jk |2g̃ ≤ C(e−2t |∂p∂ j (gflat)k�|2g̃ + |∂p∂ j (gS)k�|2g̃ + e−4t |∂p(gflat)rs∂ j (gflat)k�|2g̃).

But the second term equals C |∂2∂2(gS)22|2|g̃22|4, and so is bounded by C , while

the other two terms are bounded by Ce2t because each term of type g̃i j is bounded
above by Cet . This establishes the claim (4.14).

Combining (4.3), (4.12), (4.13), (4.14) and parts (i) and (ii) we have proved the

bound |∇̃∂ T̃ |g ≤ Cet .
Finally, calculate

∇̃p∇̃q T̃i jk = ∇̃p(∂q T̃i jk − �̃�
qk T̃i j�)

= ∂p∂q T̃i jk − T̃i j�∂p�̃
�
qk − �̃�

qk∂pT̃i j� − �̃�
pi∂q T̃�jk − �̃�

pj∂q T̃i�k

+ �̃r
pi �̃

�
qk T̃r j� + �̃r

pj �̃
�
qk T̃ir�.

Arguing as above we can bound the | · |g̃ of all these terms by Cet . Indeed, the

only terms which are different are the one involving ∂p�̃
�
qk = −R̃q pk

�, which can be

bounded using part (ii) and the one involving ∂pT̃i j� which can be bounded by the
same argument as in (4.13). This finishes the proof of (iii). ��
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5 Evolution of the trace of the metric

Let ω = ω(t) solve the normalized Chern–Ricci flow (1.2) in the setting of Theo-
rem 1.1. The main theorem we prove in this section is:

Theorem 5.1 There exists a uniform constant C > 0 such that for t ≥ TI ,

trω̃ω ≤ C.

Hence the metrics ω and ω̃ are uniformly equivalent for t ≥ TI .

For the last assertion, note that we have

trωω̃ = ω̃2

ω2 trω̃ω, (5.1)

and the uniform equivalence of the volume forms ω2 and ω̃2 (Lemma 3.1). Then an
upper bound for trω̃ω is equivalent to an upper bound for trωω̃ and hence also the
uniform equivalence of ω and ω̃.

In [28] a similar estimate is proved using a direct maximum principle argument
and a bound for the potential ϕ. Here, as discussed in the Introduction, there are
new unbounded terms arising from the torsion. We will control these terms using the
exponential decay estimate for ϕ (Lemma 3.4).

First we need the following lemma.

Lemma 5.2 For t ≥ TI , the following evolution inequality holds:

(

∂

∂t
− 


)

log trω̃ω ≤ 2

(trω̃ω)2
Re(g̃i�gkq T̃ki�∂q trω̃ω) + Cet/2trωω̃. (5.2)

Proof From [36, Proposition 3.1] we have

(

∂

∂t
− 


)

log trω̃ω = 1

trω̃ω

(

−g p j giq g̃k�∇̃k gi j ∇̃�gpq + 1

trω̃ω
gk�∂k trω̃ω∂�trω̃ω

− 2Re(gi j g̃k�T̃ p
ki ∇̃�gp j ) − gi j g̃k�T̃ p

ik T̃ q
j�gpq

+ gi j g̃k�(∇̃i T̃
q
j� − R̃i�p j g̃

pq)gkq − gi j ∇̃i T̃ �
j�

− gi j g̃k�g̃p j ∇̃�T̃ p
ik + gi j g̃k�T̃ p

ik T̃ q
j�g̃pq − trω̃ω

−g̃i�g̃k j gi j
∂

∂t
g̃k�

)

.

Note that there are some differences from the computation in [36] since here we are
evolving ω by the normalized Chern–Ricci flow, and our reference metrics ω̃ depend
on time. In particular herewe have Ti jk = T̃i jk (instead of Ti jk = (T0)i jk in [36]). Also,
the last two terms above are new: the first arising from the −ω term on the right hand
side of (1.2) and the second from the time derivative of ω̃. Fortunately, the contribution
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of these two terms has a good sign. Indeed, observe that ∂
∂t g̃ = gS − g̃ ≥ −g̃ and

hence

−trω̃ω − g̃i�g̃k j gi j
∂

∂t
g̃k� ≤ 0.

Again from Proposition 3.1 in [36], we have

1

trω̃ω

(

− g p j giq g̃k�∇̃k gi j ∇̃�gpq + 1

trω̃ω
gk�∂k trω̃ω∂�trω̃ω

− 2Re(gi j g̃k�T̃ p
ki ∇̃�gp j ) − gi j g̃k�T̃ p

ik T̃ q
j�gpq

)

≤ 2

(trω̃ω)2
Re(g̃i�gkq T̃ki�∂q trω̃ω).

Hence to complete the proof of the lemma it remains to show that for t ≥ TI we
have

1

trω̃ω
(gi j g̃k�(∇̃i T̃

q
j� − R̃i�p j g̃

pq)gkq − gi j ∇̃i T̃ �
j� − gi j g̃k�g̃p j ∇̃�T̃ p

ik

+ gi j g̃k�T̃ p
ik T̃ q

j�g̃pq) ≤ C(trωω̃)et/2.

But this follows easily from Lemma 4.1, the fact that the quantities trωω̃ and trω̃ω

are uniformly equivalent and the inequality trω̃ω ≥ C−1 > 0 for a uniform constant
C (the geometric–arithmetic means inequality). Indeed,

1

trω̃ω
|gi j g̃k�∇̃i T̃

q
j�gkq | ≤ 1

trω̃ω
|g−1|g̃|g̃−1|g̃|∇̃ T̃ |g̃|g|g̃ ≤ C(trωω̃)et/2,

1

trω̃ω
|gi j g̃k�g̃ pq gkq R̃i�p j | ≤ 1

trω̃ω
|g−1|g̃|g̃−1|2g̃|g|g̃|˜Rm|g̃ ≤ C(trωω̃)et/2,

1

trω̃ω
|gi j ∇̃i T̃ �

j�| ≤ 1

trω̃ω
|g−1|g̃|∇̃ T̃ |g̃ ≤ Cet/2,

1

trω̃ω
|gi j g̃k�g̃p j ∇̃�T̃ p

ik | ≤ 1

trω̃ω
|g−1|g̃|g̃−1|g̃|g̃|g̃|∇̃ T̃ |g̃ ≤ Cet/2,

1

trω̃ω
|gi j g̃k�T̃ p

ik T̃ q
j�g̃pq | ≤ 1

trω̃ω
|g−1|g̃|g̃−1|g̃|g̃|g̃|T̃ |2g̃ ≤ C,

as required. ��
Wecan now prove Theorem 5.1,making use of the decay estimate ofϕ (Lemma 3.4)

and the bound on ϕ̇ (Lemma 3.1).

Proof of Theorem 5.1 We use the fact that et/2ϕ is uniformly bounded, and consider
the quantity

Q = log trω̃ω − Aet/2ϕ + 1

C̃ + et/2ϕ
,
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1244 V. Tosatti et al.

where C̃ is a uniform constant chosen so that C̃ + et/2ϕ ≥ 1, and A is a large constant
to be determined later. The idea of adding an extra term, of the form of a reciprocal
of a potential function, comes from Phong–Sturm [20] and was used in the context of
the Chern–Ricci flow in [36]. Notice that

0 ≤ 1

C̃ + et/2ϕ
≤ 1.

We will show that at a point (x0, t0) with t0 > TI at which Q achieves a maxi-
mum, we have a uniform upper bound of trω̃ω, and the theorem will follow thanks to
Lemma 3.4.

First compute, using the fact that 
ϕ = 2− trωω̃ and the bounds for ϕ and ϕ̇ from
Lemma 3.1,

(

∂

∂t
− 


)(

−Aet/2ϕ + 1

C̃ + et/2ϕ

)

= −
(

A + 1

(C̃ + et/2ϕ)2

) (

et/2ϕ̇ + 1

2
et/2ϕ

)

+
(

A + 1

(C̃ + et/2ϕ)2

)


(et/2ϕ) − 2|∂(et/2ϕ)|2g
(C̃ + et/2ϕ)3

≤ C Aet/2 − Aet/2trωω̃ − 2|∂(et/2ϕ)|2g
(C̃ + et/2ϕ)3

. (5.3)

At the point (x0, t0), we have ∂q Q = 0, which implies that

∂q trω̃ω

trω̃ω
=

(

A + 1

(C̃ + et/2ϕ)2

)

et/2∂qϕ.

Then at this point,

2

(trω̃ω)2
Re(g̃i�gkq T̃ki�∂q trω̃ω)

= 2

trω̃ω
Re

(

g̃i�gkq T̃ki�

(

A + 1

(C̃ + et/2ϕ)2

)

et/2∂qϕ

)

≤ C A2

(trω̃ω)2
(C̃ + et/2ϕ)3gkq g̃i�T̃ki�g̃m j T̃q jm + |∂(et/2ϕ)|2g

(C̃ + et/2ϕ)3

≤ C A2

trω̃ω
+ |∂(et/2ϕ)|2g

(C̃ + et/2ϕ)3
, (5.4)

where for the last step we have used Lemma 3.4, part (i) of Lemma 4.1, and the fact
that trω̃ω and trωω̃ are uniformly equivalent.
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Combining (5.2), (5.3) and (5.4), we have, at a point at which Q achieves a maxi-
mum, for a uniform C > 0,

(

∂

∂t
− 


)

Q ≤ C A2 + Cet/2trωω̃ + C Aet/2 − Aet/2trωω̃

where we are assuming, without loss of generality, that at this maximum point of Q
we have trω̃ω ≥ 1. Choose a uniform A large enough so that

A ≥ C + 1.

Then we obtain at the maximum of Q,

et/2trωω̃ ≤ C A2 + C Aet/2,

which implies that trωω̃ and hence trω̃ω is uniformly bounded from above at the
maximum of Q. This establishes the estimate trω̃ω ≤ C and completes the proof of
the theorem. ��

6 A bound on the Chern scalar curvature

In this section, we establish the following estimate for the Chern scalar curvature.

Theorem 6.1 There exists a uniform constant C such that along the normalized
Chern–Ricci flow (1.2) we have

−C ≤ R ≤ Cet/2,

for all t ≥ 0.

First note that the lower bound for the Chern scalar curvature follows from the same
argument as in the Kähler–Ricci flow (see for example Theorem 2.2 in [28]). Indeed,
from (1.2), we have

gk� ∂

∂t
gk� = −R − 2.

But R = −gi j∂i∂ j log det g and hence

∂ R

∂t
= −gi j∂i∂ j

(

gk� ∂

∂t
gk�

)

−
(

∂

∂t
gi j

)

∂i∂ j log det g

= 
R + |Ric|2 + R

≥ 
R + 1

2
R2 + R

and then the lower bound for R follows.
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We now establish the upper bound of the Chern scalar curvature. Before we start
the main argument, we need a few preliminary calculations.

Lemma 6.2 There exists a uniform constant C > 0 such that for t ≥ TI , we have

(

∂

∂t
− 


)

trω̃ω ≤ −C−1|∇̃g|2g + Cet/2. (6.1)

and
(

∂

∂t
− 


)

trωωS ≤ |∇̃g|2g − C−1|∇trωωS|2g + Cet/2. (6.2)

As a consequence, there are uniform positive constants C0, C1 such that for t ≥ TI ,

(

∂

∂t
− 


)

(trωωS + C0trω̃ω) ≤ −|∇̃g|2g − C−1
1 |∇trωωS|2g + C1et/2. (6.3)

Proof For (6.1), we compute the evolution of trω̃ω. As in Lemma 5.2 we may modify
[36, Proposition 3.1] to obtain, for t ≥ TI ,

(

∂

∂t
− 


)

trω̃ω = −g p j giq g̃k�∇̃k gi j ∇̃�gpq − 2Re(gi j g̃k�T̃ p
ki ∇̃�gp j )

− gi j g̃k�T̃ p
ik T̃ q

j�gpq + gi j g̃k�(∇̃i T̃
q
j� − R̃i�p j g̃

pq)gkq

− gi j ∇̃i T̃ �
j� − gi j g̃k�g̃p j ∇̃�T̃ p

ik + gi j g̃k�T̃ p
ik T̃ q

j�g̃pq − trω̃ω

− g̃i�g̃k j gi j ((gS)k� − g̃k�).

Using Theorem 5.1, Lemma 4.1, and the Cauchy–Schwarz inequality in the second
term, we obtain (6.1).

The inequality (6.2) is a parabolic Schwarz Lemma calculation for the map π :
M → S [24,40]. Note that we already know that trωωS ≤ C since the metrics ω and
ω̃ are uniformly equivalent.

The computation for (6.2) is similar to that of Song–Tian [24], except that of course
herewe need to control the extra torsion terms. Given any point x ∈ M we choose local
coordinates {zi } on M centered at x such that g is the identity at x , and a coordinate
w on S near π(x) ∈ N , which we can assume is normal for the metric gS . In these
coordinates we can represent the map π as a local holomorphic function f . We will
use subscripts like fi , fi j , . . . to indicate covariant derivatives of f with respect to g.
For example we have

fi = ∂i f, fi j = ∂ j fi − (gkq∂ j giq) fk, fi j = f j i = 0.

We will also write gS for the coefficient of the metric gS in the coordinate w,
so gS(x) = 1 and the pullback of the metric gS to M is given by fi f j gS . We use

the shorthand hi j = gi�gk j fk f�gS, where hi j is semipositive definite and satisfies
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|h|2g := hi j hk�gi�gk j ≤ C . Then we have (cf. [33])


trωωS = gi j∂i∂ j (g
k� fk f�gS) = gi j gk� fki f�j gS + gi j h pq Ri j pq

− gi j gk� fk f� fi f j RS,

for RS the scalar curvature of gS , and so

(

∂

∂t
− 


)

trωωS = trωωS − gi j gk� fki f�j gS + gi j h pq(Rpqi j − Ri j pq)

+ gi j gk� fk f� fi f j RS . (6.4)

The last term can be dropped since RS < 0. Now at x we have ∂i (trωωS) =
∑

k fki fk, and using the Cauchy–Schwarz inequality we have

|∇trωωS|2g =
∑

i,k,p

fki f pi f p fk

≤
∑

k,p

| fk || f p|
(

∑

i

| fki |2
)1/2

⎛

⎝

∑

j

| f pj |2
⎞

⎠

1/2

=
⎛

⎝

∑

k

| fk |
(

∑

i

| fki |2
)1/2

⎞

⎠

2

≤
(

∑

�

| f�|2
)

⎛

⎝

∑

i,k

| fki |2
⎞

⎠

= (trωωS)gi j gk� fki f�j gS ≤ Cgi j gk� fki f�j gS . (6.5)

Next we claim that given any constant C0 we can find a constant C such that

|gi j h pq(Rpqi j − Ri j pq)| ≤ Cet/2 + 1

2C0
|∇̃g|2g. (6.6)

In fact, we only need the case C0 = 1 here, but the general case will be useful later.
To prove this claim, we first calculate (see also [23, (2.6)]),

Ri j pq = −grq∂ j�
r
ip = −grq∂ j�

r
pi + grq∂ j T

r
pi = Rp jiq + grq∂ j T

r
pi

= R j pqi + grq∂ j T
r
pi = Rq p ji + gis∂pT s

q j + grq∂ j T
r
pi

= Rpqi j + gis∂pT s
q j + grq∂ j T

r
pi , (6.7)

and therefore

gi j h pq(Rpqi j − Ri j pq) = −h pq∂pT j
q j − gi j h pq grq∂ j T

r
pi . (6.8)
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Recall that Ti j� = T̃i j�. Differentiating this gives

∂pT j
q j = g̃rs gr j∂pT̃ s

q j − g̃rs gru gt j T̃ s
q j ∇̃pgtu = gr j ∇̃pT̃q jr − gru gt j T̃q jr ∇̃pgtu,

(6.9)

∂ j T
r
pi = g̃sbgrb∂ j T̃

s
pi − g̃sbgru gtbT̃ s

pi ∇̃ j gtu = grb∇̃ j T̃pib − gru gtbT̃pib∇̃ j gtu .

(6.10)

Putting together (6.8), (6.9), (6.10) we get

gi j h pq(Rpqi j − Ri j pq) = −h pq gr j ∇̃pT̃q jr + h pq gru gt j T̃q jr ∇̃pgtu

− h pq gi j ∇̃ j T̃piq + h pq gi j gtr T̃pir ∇̃ j gtq . (6.11)

Using again that the metrics g and g̃ are equivalent and |h|g ≤ C , we can then
bound this by

|gi j h pq(Rpqi j − Ri j pq)| ≤ C |∂ T̃ |g̃ + C |T̃ |g̃|∇̃g|g.

But from Lemma 4.1 we have that |T̃ |g̃ ≤ C and |∂ T̃ |g̃ ≤ Cet/2, and so we have
(6.6) as required.

Then (6.2) follows from (6.4), (6.5) and (6.6). (6.3) follows immediately from (6.1)
and (6.2). ��

We can now start the main argument for the proof of Theorem 6.1. Note that since
many of our inequalities require ω̃ to be ametric, wewill often assume (without saying
it explicitly) that t ≥ TI , which is not a problem since R is bounded on [0, TI ]. As
in [24], we consider the quantity u = ϕ + ϕ̇ = log et ω2

�
. We know that |u| ≤ C , and

we have that −
u = R + trωωS ≥ R, so our goal is to get an upper bound for −
u.
First compute from (3.2),

(

∂

∂t
− 


)

u = trωωS − 1, (6.12)

and
(

∂

∂t
− 


)


u = Ri j ui j + 
u + 
trωωS .

But on the other hand Ri j = −ui j − (gS)i j , and so

(

∂

∂t
− 


)


u = −|∇∇u|2g − 〈gS,∇∇u〉g + 
u + 
trωωS

≥ −3

2
|∇∇u|2g + 
u + 
trωωS − C,
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using that |gS|g ≤ C . From (6.2) we have

−
trωωS ≤ Cet/2 + |∇̃g|2g − C−1|∇trωωS|2g − hi j (Ri j + gi j )

≤ Cet/2 + |∇̃g|2g − C−1|∇trωωS|2g + hi j (ui j + (gS)i j )

≤ Cet/2 + |∇̃g|2g − C−1|∇trωωS|2g + 1

2
|∇∇u|2g,

where we have used the fact that ∂
∂t trωωS = −hi j ∂

∂t gi j , with hi j as in the proof of
Lemma 6.2. Therefore

(

∂

∂t
− 


)

(−
u) ≤ 2|∇∇u|2g − 
u + Cet/2 + |∇̃g|2g − C−1|∇trωωS|2g. (6.13)

We need a quantitywhose evolution can kill the bad term2|∇∇u|2g , and this quantity
is |∇u|2g . Beforewe compute its evolution,we need formulae to commute two covariant

derivatives of the same type. For any function ψ and (0, 1) form a = akdzk , a short
calculation gives

[∇ j ,∇�]ψ = −T k
j�∇kψ, [∇i ,∇ j ]ak = −T �

i j∇�ak .

We will also use the familiar formulae

[∇i ,∇ j ]ak = g p� Ri j pka�, Ri�p j = Rp�i j + gr j∂�T r
pi ,

where the second equation is contained in (6.7). We then compute:


|∇u|2g = gi j gk�(∇i∇ j∇ku∇�u + ∇ku∇i∇ j∇�u + ∇i∇ku∇ j∇�u + ∇i∇�u∇ j∇ku)

= |∇∇u|2g + |∇∇u|2g + gi j gk�(∇i∇k∇ j u∇�u + ∇ku∇i∇�∇ j u

− ∇ku∇i (T
p
j�∇pu))

= |∇∇u|2g + |∇∇u|2g + 2Re〈∇
u,∇u〉g − gi j gk�T p
ik∇p∇ j u∇�u

+ gi j gk�g pq Ri�p j∇qu∇ku−gi j gk�T p
j�∇ku∇i∇pu−gi j gk�∂i T

p
j�∇ku∇pu

= |∇∇u|2g + |∇∇u|2g + 2Re〈∇
u,∇u〉g + gk�g pq Rp�∇qu∇ku

− 2Re(gi j gk�T p
ik∇p∇ j u∇�u) + gk�g pq∂�T i

pi∇qu∇ku

− gi j gk�∂i T
p
j�∇ku∇pu.

We use again (6.9) and (6.10)

∂i T
p
j� = gq p∇̃i T̃ j�q − gr pgqs T̃ j�q ∇̃i grs, ∂�T i

pi = gi j ∇̃�T̃pi j − gis gr j T̃pi j ∇̃�grs,
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and Lemma 4.1 to conclude that


|∇u|2g ≥ |∇∇u|2g + |∇∇u|2g + 2Re〈∇
u,∇u〉g + gk�g pq Rp�∇qu∇ku

− C |∇∇u|g|∇u|g − Cet/2|∇u|2g − C |∇̃g|g|∇u|2g
≥ 1

2
|∇∇u|2g + |∇∇u|2g + 2Re〈∇
u,∇u〉g + gk�g pq Rp�∇qu∇ku

− Cet/2|∇u|2g − C |∇̃g|g|∇u|2g.

Next, using (6.12), we have

∂

∂t
|∇u|2g = gk�g pq Rp�∇ku∇qu + |∇u|2g + 2Re〈∇
u,∇u〉g + 2Re〈∇trωωS,∇u〉g

and hence

(

∂

∂t
− 


)

|∇u|2g ≤ −1

2
|∇∇u|2g − |∇∇u|2g + 2Re〈∇trωωS,∇u〉g

+ Cet/2|∇u|2g + C |∇̃g|g|∇u|2g. (6.14)

We will use this evolution inequality to bound |∇u|2g .
Proposition 6.3 There is a constant C such that

|∇u|2g ≤ Cet/2.

Proof We use the method of Cheng–Yau [5], see also [22,24]. We fix a constant A
such that |u| ≤ A − 1 and use (6.14) to compute

(

∂

∂t
− 


)

( |∇u|2g
A − u

)

= 1

A − u

(

∂

∂t
− 


)

|∇u|2g + |∇u|2g
(A − u)2

(

∂

∂t
− 


)

u

− 2Re〈∇|∇u|2g,∇u〉g

(A − u)2
− 2

|∇u|4g
(A − u)3

≤ 1

A − u

(

− 1

2
|∇∇u|2g − |∇∇u|2g + 2Re〈∇trωωS,∇u〉g

+ Cet/2|∇u|2g + C |∇̃g|g|∇u|2g
)

+ (trωωS − 1)
|∇u|2g

(A − u)2

− 2Re〈∇|∇u|2g,∇u〉g

(A − u)2
− 2

|∇u|4g
(A − u)3

. (6.15)

Note that the term (trωωS − 1)
|∇u|2g

(A−u)2
can be absorbed in the term

Cet/2|∇u|2g
A−u . For

ε > 0 small (to be fixed soon), write
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2Re〈∇|∇u|2g,∇u〉g

(A − u)2
= ε

2Re〈∇|∇u|2g,∇u〉g

(A − u)2

+ 2(1 − ε)

A − u
Re

〈

∇
( |∇u|2g

A − u

)

,∇u

〉

g

− 2(1 − ε)|∇u|4g
(A − u)3

,

(6.16)

and use the Cauchy–Schwarz inequality to bound

−ε
2Re〈∇|∇u|2g,∇u〉g

(A − u)2
≤ ε2

√
2
|∇u|2g(|∇∇u|2g + |∇∇u|2g)1/2

(A − u)2

≤ ε

2

|∇u|4g
(A − u)2

+ 4ε
|∇∇u|2g + |∇∇u|2g

(A − u)2

≤ ε

2

|∇u|4g
(A − u)2

+ 1

2

|∇∇u|2g + |∇∇u|2g
A − u

, (6.17)

provided ε ≤ 1/8 (here we fix ε). We also bound

C |∇̃g|g|∇u|2g
A − u

≤ C |∇̃g|2g + ε

2

|∇u|4g
(A − u)2

. (6.18)

Putting (6.15), (6.16), (6.17), (6.18) together, we get

(

∂

∂t
− 


)

( |∇u|2g
A − u

)

≤ 1

A − u
(2Re〈∇trωωS,∇u〉g + Cet/2|∇u|2g) + C |∇̃g|2g

− ε
|∇u|4g

(A − u)3
− 2(1 − ε)

A − u
Re

〈

∇
( |∇u|2g

A − u

)

,∇u

〉

g

.

Call now

Q1 = |∇u|2g
A − u

+ C2(trωωS + C0trω̃ω),

where C0 is as in (6.3), and C2 is a large uniform constant to be fixed soon. We can
use (6.3) to get

(

∂

∂t
− 


)

Q1 ≤ 1

A − u
(2Re〈∇trωωS,∇u〉g + Cet/2|∇u|2g)

− ε
|∇u|4g

(A − u)3
− 2(1 − ε)

A − u
Re

〈

∇
( |∇u|2g

A − u

)

,∇u

〉

g

− C2

2
|∇̃g|2g − 2|∇trωωS|2g + Cet/2, (6.19)
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provided C2 is large enough. We now observe that |∇trω̃ω|2g̃ ≤ 2|∇̃g|2g̃. Indeed, if we
choose local coordinates such that g̃ is the identity at a point, then at that point we
have

|∇trω̃ω|2g̃ =
∑

k

|
∑

i

∇̃k gii |2 ≤ 2
∑

i,k

|∇̃k gii |2 ≤ 2
∑

i, j,k

|∇̃k gi j |2 = 2|∇̃g|2g̃. (6.20)

Since g̃ and g are uniformly equivalent, we conclude that |∇trω̃ω|2g ≤ C |∇̃g|2g. We
can then assume that C2 was large enough (this fixes C2) so that

− C2

2
|∇̃g|2g ≤ −|∇trω̃ω|2g. (6.21)

Furthermore, we can bound

C
et/2|∇u|2g

A − u
≤ ε

4

|∇u|4g
(A − u)3

+ Cet , (6.22)

2
Re〈∇trωωS,∇u〉g

A − u
≤ |∇trωωS|2g + ε

4

|∇u|4g
(A − u)3

+ C, (6.23)

so combining (6.19), (6.21), (6.22), (6.23) we get

(

∂

∂t
− 


)

Q1 ≤ −ε

2

|∇u|4g
(A − u)3

− 2(1 − ε)

A − u
Re

〈

∇
( |∇u|2g

A − u

)

,∇u

〉

g

− |∇trω̃ω|2g − |∇trωωS|2g + Cet .

We can write this as

(

∂

∂t
−


)

Q1 ≤ −ε

2

|∇u|4g
(A − u)3

− 2(1 − ε)

A − u
Re 〈∇Q1,∇u〉g

+ 2(1 − ε)C2

A − u
Re 〈∇trωωS,∇u〉g + 2(1−ε)C0C2

A − u
Re 〈∇trω̃ω,∇u〉g

− |∇trω̃ω|2g − |∇trωωS|2g + Cet ,

which together with the bounds

2(1 − ε)C2

A − u
Re〈∇trωωS,∇u〉g ≤ |∇trωωS|2g + ε

8

|∇u|4g
(A − u)3

+ C,

2(1 − ε)C0C2

A − u
Re〈∇trω̃ω,∇u〉g ≤ |∇trω̃ω|2g + ε

8

|∇u|4g
(A − u)3

+ C,
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gives us

(

∂

∂t
− 


)

Q1 ≤ −ε

4

|∇u|4g
(A − u)3

− 2(1 − ε)

A − u
Re〈∇Q1,∇u〉g + Cet .

Now define Q2 = e−t/2Q1, which satisfies

(

∂

∂t
− 


)

Q2 ≤ −C−1e−t/2|∇u|4g − 2(1 − ε)

A − u
Re〈∇Q2,∇u〉g + Cet/2.

At a maximum of Q2 (occurring at a time t0 > TI ) we conclude that |∇u|4g ≤ Cet ,
which implies that Q2 ≤ C everywhere. This proves the proposition. ��

Now that we know that |∇u|2g ≤ Cet/2, we can go back to (6.14) and get

(

∂

∂t
− 


)

|∇u|2g ≤ −1

2
|∇∇u|2g − |∇∇u|2g + |∇trωωS|2g + |∇̃g|2g + Cet . (6.24)

Finally we can put everything together to prove Theorem 6.1.

Proof of Theorem 6.1 We will show that there is a constant C such that

−
u ≤ Cet/2.

and this will give R ≤ Cet/2.
From (6.13) and (6.24), we see that

(

∂

∂t
− 


)

(−
u + 6|∇u|2g) ≤ −|∇∇u|2g − 
u + C |∇trωωS|2g
+ C |∇̃g|2g + Cet .

Using (6.3) we get

(

∂

∂t
− 


)

(−
u + 6|∇u|2g + C2(trωωS + C0trω̃ω)) ≤ −|∇∇u|2g − 
u + Cet ,

provided C2 is large enough. Define now

Q3 = e−t/2(−
u + 6|∇u|2g + C2(trωωS + C0trω̃ω)).

Note that Q3 ≥ −Ce−t/2, because −
u ≥ R ≥ −C . Then,

(

∂

∂t
− 


)

Q3 ≤ −e−t/2|∇∇u|2g − e−t/2
u + Cet/2,

where we absorbed a term like e−t/2 into et/2. From the Cauchy–Schwarz inequality
we also have that
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(−
u)2 ≤ 2|∇∇u|2g.

It follows that at a maximum of Q3 (occurring at t0 > TI ) we have that (−
u)2 ≤
Cet , which implies that Q3 ≤ C everywhere. This completes the proof of the theorem.

��
We end this section by applying our Chern scalar curvature bound to obtain an

exponential decay estimate for ϕ̇.

Lemma 6.4 For any η with 0 < η < 1/2 and any σ with 0 < σ < 1/4, there exists
a constant C such that

−Ce−ηt ≤ ϕ̇ ≤ Ce−σ t .

Proof We first prove the lower bound by refining an argument in [28]. We have

∂

∂t
ϕ̇ = −R − 1 − ϕ̇ (6.25)

and hence, by Theorem 6.1 and the fact that |ϕ̇| is bounded,
∂

∂t
ϕ̇(t) ≤ C0, (6.26)

for a uniform C0. Suppose for a contradiction that we do not have the bound ϕ̇ ≥
−Ce−ηt for any C . Then there exists a sequence (xk, tk) ∈ M ×[0,∞) with tk → ∞
as k → ∞ such that

ϕ̇(xk, tk) ≤ −ke−ηtk .

Put γk = k
2C0

e−ηtk . From now on we work at the point xk . Then by (6.26), we have
that

ϕ̇ ≤ −k

2
e−ηtk on [tk, tk + γk].

Indeed,

ϕ̇(tk + a) − ϕ̇(tk) =
∫ tk+a

tk

∂

∂t
ϕ̇ dt ≤ C0γk, for a ∈ [0, γk],

and hence ϕ̇(tk + a) ≤ ϕ̇(tk) + C0γk ≤ −ke−ηtk + k
2e−ηtk .

Then, using Lemma 3.4,

−C(1 + tk)e
−tk ≤ ϕ(tk + γk) − ϕ(tk) =

∫ tk+γk

tk
ϕ̇dt ≤ −γk

k

2
e−ηtk = − k2

4C0
e−2ηtk .

But if 2η < 1 then we get a contradiction when k → ∞ and we are done.
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For the upper bound of ϕ we use the upper bound R ≤ Cet/2 of Theorem 6.1. From
(6.25), we have

∂

∂t
ϕ̇(t) ≥ −C0et/2, (6.27)

for a uniform C0. Note that we may assume, by increasing C0, that we have

∂2

∂t2
ϕ(t) ≥ −C0et ′/2 for t ∈ [t ′, t ′ + 1], (6.28)

for any time t ′. Suppose for a contradiction that we do not have the bound ϕ̇ ≤ Ce−σ t

for any C . Then there exists a sequence (xk, tk) ∈ M × [0,∞) with tk → ∞ as
k → ∞ such that

ϕ̇(xk, tk) ≥ ke−σ tk .

Put γk = k
2C0

e−(σ+1/2)tk which we assume for the moment satisfies γk ≤ 1. From
now on we work at the point xk . Then by (6.28), we have that

ϕ̇ ≥ k

2
e−σ tk on [tk, tk + γk].

Indeed, this follows from (6.28) since

ϕ̇(tk + a) − ϕ̇(tk) =
∫ tk+a

tk

∂

∂t
ϕ̇ dt ≥ −γkC0etk/2, for a ∈ [0, γk],

and hence ϕ̇(tk + a) ≥ ϕ̇(tk) − γkC0etk/2 ≥ ke−σ tk − k
2e−σ tk .

Then from Lemma 3.4,

C(1 + tk)e
−tk ≥ ϕ(tk + γk) − ϕ(tk) =

∫ tk+γk

tk
ϕ̇dt ≥ γk

k

2
e−σ tk = k2

4C0
e−(2σ+1/2)tk .

But since 2σ + 1/2 < 1 we get a contradiction when k → ∞ and we are done.
It remains to check the case when γk > 1. But then we have ϕ̇ ≥ k

2e−σ tk on [tk,
tk +1] since ϕ̇(tk +a)− ϕ̇(tk) ≥ −γkC0etk/2 for a ∈ [0, 1] and so we get ϕ̇(tk +a) ≥
k
2e−σ tk for a ∈ [0, 1]. Then

C(1 + tk)e
−tk ≥ ϕ(tk + 1) − ϕ(tk) =

∫ tk+1

tk
ϕ̇dt ≥ k

2
e−σ tk

and we get a contradiction since σ < 1. ��

7 Exponential decay estimates for the metric

In this section we establish the key estimates which show that ω(t) and ω̃ approach
each other exponentially fast as t → ∞. More precisely we prove:
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Theorem 7.1 For any ε with 0 < ε < 1/8, there exists C such that for t ≥ TI

(1 − Ce−εt )ω̃ ≤ ω(t) ≤ (1 + Ce−εt )ω̃.

In this section we will always assume t ≥ TI , without necessarily mentioning it
explicitly. First, we have the following evolution inequality for trωω̃ which has the
same form as the inequality for trω̃ω given by (6.1). We will make use of both of these
inequalities to prove Theorem 7.1.

Lemma 7.2 We have, for a uniform C > 0,

(

∂

∂t
− 


)

trωω̃ ≤ Cet/2 − C−1|∇̃g|2g.

Proof We will use the shorthand hi j = gi�gk j g̃k�. Note that we know already that
h, g and g̃ are all uniformly equivalent to each other.

We start by computing a formula for the evolution of trωω̃. First of all, we have


trωω̃ = gi j ∇̃i ∇̃ j (g
k�g̃k�) = −gi j ∇̃i (g

kq g p�g̃k�∇̃ j gpq)

= gi j gks grq g p�g̃k�∇̃i grs∇̃ j gpq + gi j g ps gr�gkq g̃k�∇̃i grs∇̃ j gpq

− gi j gkq g p�g̃k�∇̃i ∇̃ j gpq .

But

∇̃i ∇̃ j gpq = ∇̃i (∂ j gpq − �̃s
jq gps) = ∂i∂ j gpq − �̃r

ip∂ j grq − gps∂i �̃
s
jq

− �̃s
jq∂i gps + �̃r

ip�̃
s
jq grs = R̃i jrq g̃rs gps − Ri j pq + grs∇̃i gps∇̃ j grq ,

and so


trωω̃ = gi j gks grq g p�g̃k�∇̃i grs∇̃ j gpq + gi j gkq g p�g̃k� Ri j pq − gi j g pq R̃i j pq .

On the other hand

∂

∂t
trωω̃ = trωω̃ + trω(ωS − ω̃) + gi j h pq Rpqi j .

Therefore,

(

∂

∂t
− 


)

trωω̃ = trωωS + gi j gk� R̃i jk� + gi j h pq(Rpqi j − Ri j pq)

− gi j gk�h pq ∇̃i gkq∇̃ j gp�.
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From Lemma 4.1, we conclude that

(

∂

∂t
− 


)

trωω̃ ≤ Cet/2+gi j h pq(Rpqi j − Ri j pq)−gi j gk�h pq ∇̃i gkq ∇̃ j gp�. (7.1)

We also use the equivalence of g and h to bound

− gi j gk�h pq ∇̃i gkq ∇̃ j gp� ≤ −C−1
0 |∇̃g|2g. (7.2)

Next we have

|gi j h pq(Rpqi j − Ri j pq)| ≤ Cet/2 + 1

2C0
|∇̃g|2g. (7.3)

Indeed, this follows from the same argument as in the proof of (6.6), even though the
tensor h there is different. Combining (7.1), (7.2), (7.3), we get the desired inequality.

��
Next we use the exponential decay of ϕ (Lemma 3.4) and ϕ̇ (Lemma 6.4) to obtain

an exponential decay bound from above for trωω̃ − 2 and trω̃ω − 2.

Proposition 7.3 For any 0 < ε < 1/4 there is a constant C > 0 such that for t ≥ TI ,

trωω̃ − 2 ≤ Ce−εt (7.4)

and
trω̃ω − 2 ≤ Ce−εt . (7.5)

Proof Given 0 < ε < 1/4, choose η > ε such that ε + 1/2 + η < 1 (in particular
0 < η < 1/2), and choose δ satisfying 2ε + 1/2 < δ < ε + 1/2 + η (in particular
0 < δ < 1), which we can do because ε < η. For (7.4), we compute the evolution of

Q1 = eεt (trωω̃ − 2) − eδtϕ.

From Lemma 3.4, it suffices to obtain a uniform upper bound for Q1. Compute
using Lemma 7.2 and the fact that 
ϕ = 2 − trωω̃,

(

∂

∂t
− 


)

Q1 ≤ Ce(ε+1/2)t + εeεt (trωω̃ − 2) − δeδtϕ − eδt ϕ̇ − eδt (trωω̃ − 2)

≤ Ce(ε+1/2)t + Ce(δ−η)t − eδt (trωω̃ − 2), (7.6)

where in the last line we have used the lower bound ϕ̇ ≥ −Ce−ηt from Lemma‘6.4
(since 0 < η < 1/2), Lemma 3.4 and the fact that trωω̃ ≤ C .

But we have δ − η < ε + 1/2 and so at a maximum point of Q1,

0 ≤ Ce(ε+1/2)t − eδt (trωω̃ − 2),
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and hence

eεt (trωω̃ − 2) ≤ Ce(2ε−δ+1/2)t ≤ C.

since we chose δ so that 2ε − δ + 1/2 < 0. This implies that Q1 is bounded from
above at any maximum point, and completes the proof of (7.4).

The proof of (7.5) is slightly more complicated. First recall that (see (6.1)) for
t ≥ TI ,

(

∂

∂t
− 


)

trω̃ω ≤ Cet/2.

Fix σ with 0 < ε < σ < 1/4. From Lemma 6.4 we have

− Ce−σ t ≤ ϕ̇ ≤ Ce−σ t . (7.7)

Now choose δ with 1/2+ 2ε < δ < 1/2+ ε +σ , which we can do because ε < σ .
Then set

Q2 = eεt (trω̃ω − 2) − eδtϕ.

Compute

(

∂

∂t
− 


)

Q2 ≤ Ce(ε+1/2)t − eδt ϕ̇ − eδt (trωω̃ − 2)

≤ Ce(ε+1/2)t − eδt (trωω̃ − 2), (7.8)

using (7.7) and the fact that δ − σ < 1/2 + ε. We now wish to replace the term trωω̃

by the sum of trω̃ω and a small error term.

trωω̃ = ω̃2

ω2 trω̃ω = trω̃ω +
(

ω̃2

ω2 − 1

)

trω̃ω. (7.9)

Then from (2.4), (3.8) and Lemma 3.4,

ϕ̇ = log
ω2

ω̃2 + O(e−σ t ),

and so using (7.7) again

∣

∣

∣

∣

ω̃2

ω2 − 1

∣

∣

∣

∣

= |eO(e−σ t ) − 1| ≤ Ce−σ t ,

which implies that, since trω̃ω is uniformly bounded,

∣

∣

∣

∣

(

ω̃2

ω2 − 1

)

trω̃ω

∣

∣

∣

∣

≤ Ce−σ t . (7.10)
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Then combining (7.8), (7.9), (7.10) and again using the fact that e(δ−σ)t ≤ e(ε+1/2)t

we obtain for t ≥ TI ,

(

∂

∂t
− 


)

Q2 ≤ Ce(ε+1/2)t − eδt (trω̃ω − 2) − eδt
(

ω̃2

ω2 − 1

)

trω̃ω

≤ Ce(ε+1/2)t − eδt (trω̃ω − 2).

Then at the maximum point of Q2 (occurring at a time t > TI ) we have

eεt (trω̃ω − 2) ≤ Ce(2ε+1/2−δ)t ≤ C ′,

sincewe chose δ > 1/2+2ε. This shows that Q2 is bounded fromabove and completes
the proof. ��

To show that ω and ω̃ approach each other exponentially fast we use an elementary
lemma:

Lemma 7.4 Let ε > 0 be small. Suppose that

trωω̃ − 2 ≤ ε and trω̃ω − 2 ≤ ε.

Then

(1 − 2
√

ε)ω̃ ≤ ω ≤ (1 + 2
√

ε)ω̃.

Proof We may work at a point at which g̃ is the identity and g is diagonal with
eigenvalues λ1, λ2. Then the lemma amounts to proving that if λ1, λ2 > 0 satisfy

λ1 + λ2 ≤ 2 + ε,
1

λ1
+ 1

λ2
≤ 2 + ε,

then

1 − 2
√

ε ≤ λi ≤ 1 + 2
√

ε, for i = 1, 2.

By symmetry, we only have to prove the estimate for λ1. We have

λ1 ≤ 2 + ε − λ2,
1

λ2
≤ (2 + ε)λ1 − 1

λ1
, (7.11)

which implies in particular that (2 + ε)λ1 − 1 > 0. This last inequality implies that

−λ2 ≤ −λ1

(2 + ε)λ1 − 1
.
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Then in (7.11),

λ1 ≤ 2 + ε − λ1

(2 + ε)λ1 − 1
.

Multiplying this by (2 + ε)λ1 − 1 > 0 and simplifying, we get

λ21 − (2 + ε)λ1 + 1 ≤ 0.

Completing the square, we obtain

(λ1 − (1 + ε/2))2 ≤ ε + ε2/4.

Then, assuming ε > 0 is smaller than some universal constant,

1 − 2
√

ε ≤ λ1 ≤ 1 + 2
√

ε,

as required. ��
Finally, we complete the proof of Theorem 7.1.

Proof of Theorem 7.1 Combine Proposition 7.3 with Lemma 7.4. ��

8 A third order estimate

In this section we prove a “Calabi-type” estimate for the first derivative of the evolving
metric. One might guess that the natural quantity to consider is |∇̃g|2g , following the
computation in [28], say. However, we encountered difficulties in obtaining a good
bound for this quantity because of the non-Kählerity of the reference metrics ω̃. Our
idea then is to take a Kähler reference metric. Of course, in general M may not admit a
global Kähler metric, so we work locally on an open set where the bundle M is trivial.

We obtain a Calabi estimate on this open set, using a cut-off function and a local
reference Kähler metric. Our computations are based on those in [23]. However, the
situation here is complicated by the fact that the metrics are collapsing in the fiber
directions, and we will need to make careful use of the bounds from Lemma 4.1.

Fix a point y ∈ S and neighborhood B of y over which π is trivial, so U =
π−1(B) ∼= B × E . Over U we have ωE = iα ∧ α a d-closed semi-flat (1, 1)-form
constructed as in the proof of Lemma 3.2. Therefore, ω̂ = ωE + ωS is a semi-flat
product Kähler metric on U . From now on we work exclusively on U , where we
define S = |∇̂g|2g . Fix a smaller open set V ⊂⊂ U .

Theorem 8.1 On V we have

S ≤ Ce2t/3,

for all t > 0.
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By compactness, we obtain the same bound in any such neighborhood V . Recall
that ωflat,y denotes the unique flat metric on the fiber Ey = π−1(y) in the Kähler
class [ω0|Ey ]. Exactly as in [28, Lemma 6.9] (see also [12], [13, Theorem 1.1], [9,
Proposition 5.8]) we have that:

Corollary 8.2 For any y ∈ S, we have on Ey,

etω(t)|Ey → ωflat,y

exponentially fast in the C1(Ey, g0) topology. Moreover, the convergence is uniform
in y ∈ S.

Proof We use an idea from [34, p. 440]. Since g|Ey is uniformly equivalent to
e−t ĝ|Ey = e−t gE , we conclude that

|∇gE (et g|Ey )|2gE
= e−t |∇gE (g|Ey )|2e−t gE

≤ Ce−t |∇ĝ|Ey
(g|Ey )|2g

≤ Ce−tS ≤ Ce−t/3,

using Theorem 8.1. But on Ey , gflat,y is a constant multiple of gE , and so

|∇gE (et g|Ey − gflat,y)|2gE
≤ Ce−t/3.

The rest of the proof follows easily, and exactly as in [28, Lemma 6.9], since et g|Ey

and gflat,y lie in the same Kähler class on Ey . ��
Before we start the proof of Theorem 8.1, we need some preliminary calculations.

Denote by � i
jk = �i

jk − �̂i
jk , the difference of the Christoffel symbols of g and ĝ. It

is a tensor which satisfies |�|2g = S. The evolution of S is computed in [23, (3.4)],
generalizing calculations of [4,19,39], which gives

(

∂

∂t
− 


)

S = S − |∇�|2g − |∇�|2g
+ gi j grs gab(∇r Tbja + ∇bTar j )�

k
ip�

�
sq g pq gk�

+ gi j grs gab(∇r Tbja + ∇bTar j )�
k
pi�

�
qs g pq gk�

− gab(∇k Tbsa + ∇bTaks)�
k
ip�

s
jq gi j g pq

− 2Re[grs(∇i∇pTs�r + ∇i∇s Tr p�

− T a
ir Ras p� + gk�∇r R̂is p

k)��
jq gi j g pq ], (8.1)

where R̂is p
k is the curvature tensor of ĝ. We are going to bound each of these terms

separately. The key difference from the calculation in [23] is that in our case the torsion
Ti j� of g does not equal the torsion of ĝ (which here is zero), but rather the torsion

T̃i j� of g̃.

Therefore we let �̃ i
jk = �i

jk − �̃i
jk and Hi

jk = �̃i
jk − �̂i

jk = � i
jk − �̃ i

jk .
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Lemma 8.3 For all t ≥ TI , we have that

|H |g ≤ Cet/2. (8.2)

|∂ H |g ≤ Cet/2. (8.3)

|∇̃H |g ≤ Cet . (8.4)

Proof At any given point x ∈ M we can choose local bundle coordinates (z1, z2) as
before. Then in this coordinate system (4.3) gives

|�̃i
jk |2g ≤ Cet ,

where we are using the fact that g and g̃ are uniformly equivalent. Since ĝ is a semi-flat
product Kähler metric, �̂i

jk is zero except when i = j = k = 2, and so

|�̂i
jk |2g ≤ C.

The bound (8.2) follows immediately from these bounds.
Next, note that

∂� Hi
jk = −R̃ j�k

i + R̂ j�k
i .

From Lemma 4.1, part (ii), we have that |R̃ j�k
i |g ≤ Cet/2, while the fact that ĝ

is a semi-flat product Kähler metric implies that the only nonzero component of R̂ is
R̂222

2, and so
|R̂ j�k

i |g ≤ C, (8.5)

from which (8.3) follows.
We have that

∇̃p Hi
jk = ∂p Hi

jk − �̃�
pj Hi

�k − �̃�
pk Hi

j� + �̃i
p� H �

jk .

Thanks to (4.3) and (8.2), in these coordinates we can bound the | · |g norm of the
last three terms by Cet . As for the first term, we have

∂p Hi
jk = ∂p�̃

i
jk − ∂p�̂

i
jk,

and

∂p�̂
i
jk = ĝi�∂p∂ j ĝk� − ĝis ĝr�∂p ĝrs∂ j ĝk�,

which is zero except when i = j = k = p = 2, and so

|∂p�̂
i
jk |g ≤ C.
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On the other hand

|∂p�̃
i
jk |g ≤ Cet ,

thanks to (4.14). This proves (8.4). ��
We now start bounding the terms in (8.1). We have

∇�Tik j = ∇̃�T̃ik j − �
q
�j T̃ikq + Hq

�j T̃ikq ,

and so thanks to Lemmas 4.1 and 8.3 we have that

|∇�Tik j |g ≤ Cet/2 + CS1/2.

Therefore we can bound

gi j grs gab(∇r Tbja + ∇bTar j )�
k
ip�

�
sq g pq gk�

+ gi j grs gab(∇r Tbja + ∇bTar j )�
k
pi�

�
qs g pq gk�

− gab(∇k Tbsa + ∇bTaks)�
k
ip�

s
jq gi j g pq ≤ C(et/2 + S1/2)S. (8.6)

Next, we compute

∇a∇bTi jk = ∇a(∇̃bT̃i jk − �r
bk T̃i jr + Hr

bk T̃i jr )

= ∇̃a∇̃bT̃i jk − �r
ab∇̃r T̃i jk − �r

ak∇̃bT̃i jr

+ Hr
ab∇̃r T̃i jk + Hr

ak∇̃bT̃i jr − (∇a�r
bk)T̃i jr

− �r
bk∇̃a T̃i jr + �r

bk�
s
ar T̃i js − �r

bk Hs
ar T̃i js

+ (∇̃a Hr
bk)T̃i jr + Hr

bk∇̃a T̃i jr − �s
ab Hr

sk T̃i jr

− �s
ak Hr

bs T̃i jr + Hs
ab Hr

sk T̃i jr + Hs
ak Hr

bs T̃i jr .

Using again Lemmas 4.1 and 8.3 we can bound

|∇a∇bTi jk |g ≤ C(et + et/2S1/2 + S + |∇�|g),

and so

−2Re(grs(∇i∇pTs�r )�
�
jq gi j g pq) ≤ C(etS1/2+et/2S+S3/2+|∇�|gS1/2). (8.7)

Similarly we have

∇a∇bTi jk = ∇a(∇̃bT̃i jk − �r
bk T̃i jr + Hr

bk T̃i jr )

= ∇̃a∇̃bT̃i jk − �r
ai ∇̃bT̃r jk − �r

a j ∇̃bT̃irk
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+ Hr
ai ∇̃bT̃r jk + Hr

aj ∇̃bT̃irk − (∇a�r
bk)T̃i jr

− �r
bk∇̃a T̃i jr + �r

bk�
s
ai T̃s jr + �r

bk�
s
a j T̃isr

− �r
bk Hs

ai T̃s jr − �r
bk Hs

aj T̃isr + (∇̃a Hr
bk)T̃i jr

+ Hr
bk∇̃a T̃i jr − �s

ai Hr
bk T̃s jr − �s

a j Hr
bk T̃isr

+ Hs
ai Hr

bk T̃s jr + Hs
aj Hr

bk T̃isr .

Using again Lemmas 4.1 and 8.3 we can bound

|∇a∇bTi jk |g ≤ C(et + et/2S1/2 + S + |∇�|g),

and so

− 2Re(grs∇i∇s Tr p��
�
jq gi j g pq) ≤ C(etS1/2 + et/2S + S3/2 + |∇�|gS1/2). (8.8)

Next, we have

∂p�
�
qk = R̂q pk

� − Rq pk
�,

and so we can bound

2Re(grs T a
ir Ras p��

�
jq gi j g pq) ≤ C |∇�|gS1/2 + C |̂Rm|gS1/2 ≤ C(1+ |∇�|g)S1/2,

(8.9)
because of (8.5).

Finally, we have

∇r R̂is p
k = ∇̂r R̂is p

k − ��
ri R̂�s p

k − ��
r p R̂is�

k + �k
r� R̂is p

�.

But ĝ is a product of Kähler–Einstein metrics on Riemann surfaces, therefore
∇̂r R̂is p

k = 0. Using (8.5) again, we conclude that

− 2Re(grs gk�∇r R̂is p
k��

jq gi j g pq) ≤ CS. (8.10)

Putting together (8.1), (8.6), (8.7), (8.8), (8.9) and (8.10), we conclude that

(

∂

∂t
− 


)

S ≤ C(et/2S + etS1/2 + S3/2) − 1

2
|∇�|2g − 1

2
|∇�|2g. (8.11)

Next, we define Kähler metrics on U by ω̂t = e−tωE + ωS . These are uniformly
equivalent to ω independent of t thanks to Theorem 5.1. Furthermore, the covariant
derivative of ω̂t is independent of t and equal to that of ω̂, and we will denote it by ∇̂
as before. The same is true for the curvature of ω̂t , which equals R̂i jk

p. We use [36,
Proposition 3.1] to compute
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(

∂

∂t
− 


)

trω̂t ω = −g p j giq ĝk�
t ∇̂k gi j ∇̂�gpq − gi j ĝk�

t ĝ pq
t gkq R̂i�p j

− gi j ĝk�
t ∇̂i T̃ j�k − gi j ĝk�

t ∇̂�T̃ik j − trω̂t ω + e−t ĝi�
t ĝk j

t gi j (gE )k�.

We have that

∇̂i T̃ j�k = ∇̃i T̃ j�k + H p
ik T̃ j�p,

and so we can use Lemma 4.1 and (8.2) to bound

|∇̂i T̃ j�k |g ≤ Cet/2.

Hence, making use of (8.5), we have

(

∂

∂t
− 


)

trω̂t ω ≤ −C−1S + Cet/2, (8.12)

for a uniform C > 0.
We now give the proof of Theorem 8.1, along the lines of [23].

Proof Let K be a large constant such that

K

2
≤ K − trω̂t ω ≤ K ,

whose value will be fixed later. Let 0 ≤ ρ ≤ 1 be a smooth nonnegative cutoff function
supported in the open ball B in S, which is identically 1 in a smaller neighborhood of
y, and denote the pullback ρ ◦ π also by ρ. Consider the quantity

Q = ρ2 e−2t/3S
K − trω̂t ω

+ trω̂t ω on supp(ρ) ⊂ U.

Our goal is to obtain an upper bound for Q, giving the bound S ≤ Ce2t/3 on a
smaller neighborhood of U , which we may assume contains V . We will apply the
maximum principle to this function Q, noting that it is equal to trω̂t ω, and hence is
bounded, on the boundary of supp(ρ).

We start with the following observations. Since ρ is the pullback of a function from
the base S, we have from the estimate Cω ≥ ωS ,

|∇ρ|2g ≤ C, |
ρ|g ≤ C, (8.13)

independent of t . Furthermore, we have the simple inequalities (see [23, (3.9), (3.10)]),

|∇trω̂t ω|2g ≤ CS, |∇S|2g ≤ 2S(|∇�|2g + |∇�|2g), (8.14)

where the first one also follows from the argument for (6.20).
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We can now compute

(

∂

∂t
− 


)

Q = − 2ρ2e−2t/3S
3(K − trω̂t ω)

+ ρ2e−2t/3

K − trω̂t ω

(

∂

∂t
− 


)

S

+
(

1 + ρ2 e−2t/3S
(K − trω̂t ω)2

) (

∂

∂t
− 


)

trω̂t ω

− 2ρ2e−2t/3 Re〈∇S,∇trω̂t ω〉g

(K − trω̂t ω)2
− 2ρ2 e−2t/3S

(K − trω̂t ω)3
|∇trω̂t ω|2g

− 
(ρ2)

(

e−2t/3S
K − trω̂t ω

)

− 4ρ
e−2t/3

K − trω̂t ω
Re 〈∇ρ,∇S〉g

− 4ρ
e−2t/3S

(K − trω̂t ω)2
Re

〈∇ρ,∇trω̂t ω
〉

g .

Let (x0, t0) be a point in supp(ρ) at which Q achieves a maximum.Wemay assume
without loss of generality that t0 > 0 and x0 lies in the interior of supp(ρ). We have
at (x0, t0),

2ρ∇ρ
e−2t/3S

K − trω̂t ω
+ ρ2 e−2t/3

K − trω̂t ω
∇S + ρ2 e−2t/3S

(K − trω̂t ω)2
∇trω̂t ω + ∇trω̂t ω = 0.

Taking the inner product of this with ∇trω̂t ω, we see that, at this point,

0 ≤
(

∂

∂t
− 


)

Q = − 2ρ2e−2t/3S
3(K − trω̂t ω)

+ ρ2e−2t/3

K − trω̂t ω

(

∂

∂t
− 


)

S

+
(

1 + ρ2 e−2t/3S
(K − trω̂t ω)2

) (

∂

∂t
− 


)

trω̂t ω

− 
(ρ2)

(

e−2t/3S
K − trω̂t ω

)

− 4ρ
e−2t/3

K − trω̂t ω
Re〈∇ρ,∇S〉g + 2|∇trω̂t ω|2

K − trω̂t ω
. (8.15)

We use (8.11), (8.12), (8.13), (8.14) to obtain at this point,

0 ≤ 2ρ2e−2t/3

K

(

C(et/2S + etS1/2 + S3/2) − 1

4
|∇�|2g − 1

4
|∇�|2g

)

+
(

1 + 4ρ2e−2t/3S
K 2

) (

−S
C

+ Cet/2
)

+ Ce−2t/3S
K

+ ρ2e−2t/3

2K
(|∇�|2g + |∇�|2g) + CS

K
,
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where we have used the Young inequality and (8.14):

4ρ
e−2t/3

K − trω̂t ω
|〈∇ρ,∇S〉g| ≤ Ce−2t/3S

K
+ ρ2e−2t/3

4K

|∇S|2
S

≤ Ce−2t/3S
K

+ ρ2e−2t/3

2K
(|∇�|2g + |∇�|2g).

Suppose that at (x0, t0) we have e−2t/3SK −1 ≥ 1, and hence et ≤ S3/2K −3/2

(otherwise, e−2t/3S is bounded and thus so is Q). We may also assume that S is much
larger than K , say S ≥ K 4. Then at this point,

S
C

+ 4ρ2e−2t/3S2

C K 2 ≤ Cρ2e−2t/3

K

( S7/4

K 3/4 + S2

K 3/2 + S2

K 2

)

+ CS3/4

K 3/4 + Cρ2e−2t/3S7/4

K 11/4 + Ce−2t/3S
K

+ CS
K

Choosing K to be much larger than C2, we see that the second term on the left
hand side of this inequality dominates all the terms involving ρ2 on the right hand
side. This gives

S
(

1

C
− C

K 3/4S1/4 − Ce−2t/3

K
− C

K

)

≤ 0,

a contradiction since we chose K to be much larger than C2. It follows that Q is
uniformly bounded from above at the point (x0, t0). This completes the proof of the
theorem. ��

9 Proofs of the main results

In this section we give the proofs of Theorem 1.1 and Corollary 1.2.

Proof of Theorem 1.1 The estimate proved in Theorem 7.1 immediately implies that
given any 0 < ε < 1/8 there exists a constant C such that

‖ω(t) − ω̃(t)‖C0(M,g0) ≤ Ce−εt .

From the definition of ω̃(t) = e−tωflat + (1 − e−t )π∗ωS we deduce that

‖ω(t) − π∗ωS‖C0(M,g0) ≤ Ce−εt .

The Gromov–Hausdorff convergence of (M, ω(t)) to (S, ωS) follows from
Lemma 9.1 below. Finally, given any y ∈ S, the exponential convergence of etω(t)|Ey

to ωflat,y in the C1(Ey, g0) topology (uniformly in y), follows from Corollary 8.2 and
the compactness of M . ��
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We used the following elementary result, which is undoubtedly well-known (cf.
[37, Theorem 8.1]).

Lemma 9.1 Let π : M → S be a fiber bundle, where (M, gM ) and (S, gS) are closed
Riemannian manifolds. If g(t), t ≥ 0, is a family of Riemannian metrics on M with
‖g(t) − π∗gS‖C0(M,gM ) → 0 as t → ∞, then (M, g(t)) converges to (S, gS) in the
Gromov–Hausdorff sense as t → ∞.

Proof For any y ∈ S we denote by Ey = π−1(y) the fiber over y. Fix ε > 0, denote
by Lt the length of a curve in M measured with respect to g(t), and by dt the induced
distance function on M . Similarlywe have L S, dS on S. Using the standard formulation
of Gromov–Hausdorff convergence (see e.g. [37]), let F = π : M → S and define
a map G : S → M by sending every point y ∈ S to some chosen point in M on the
fiber Ey . The map G will in general be discontinuous, and it satisfies F ◦ G = Id, so

dS(y, F(G(y))) = 0. (9.1)

On the other hand since g(t)|Ey goes to zero, we have that for any t large and for
any x ∈ M

dt (x, G(F(x))) ≤ ε. (9.2)

Next, given two points x1, x2 ∈ M let γ : [0, L] → S be a unit-speed minimizing
geodesic in S joining F(x1) and F(x2). Since the bundle π is locally trivial, we can
cover the image of γ by finitely many open sets U j , 1 ≤ j ≤ N , such that π−1(U j ) is
diffeomorphic toU j × E (where E is the fiber of the bundle) and there is a subdivision
0 = t0 < t1 < · · · < tN = L of [0, L] such that γ ([t j−1, t j ]) ⊂ U j . Fix a point
e ∈ E , and use the trivializations to define γ̃ j (s) = (γ (s), e), for s ∈ [t j−1, t j ], which
are curves in M with the property that

|Lt (γ̃ j ) − L S(γ |[t j−1,t j ])| ≤ ε/N ,

as long as t is sufficiently large (because g(t) → π∗gS). The points γ̃ j (t j ) and
γ̃ j+1(t j ) lie in the same fiber of π , so we can join them by a curve contained in this
fiber with Lt -length at most ε/2N (for t large). We also join x1 with γ̃1(0) and x2 with
γ̃N (L) in the same fashion. Concatenating these “vertical” curves and the curves γ̃ j ,
we obtain a piecewise smooth curve γ̃ in M joining x1 and x2, with π(γ̃ ) = γ and
|Lt (γ̃ ) − dS(F(x1), F(x2))| ≤ 2ε. Therefore,

dt (x1, x2) ≤ Lt (γ̃ ) ≤ dS(F(x1), F(x2)) + 2ε. (9.3)

Since F ◦ G = Id, we also have that for all t large and for all y1, y2 ∈ S,

dt (G(y1), G(y2)) ≤ dS(y1, y2) + 2ε. (9.4)

Given now two points x1, x2 ∈ M , let γ be a unit-speed minimizing g(t)-geodesic
joining them. If we denote by Lπ∗gS (γ ) the length of γ using the degenerate metric
π∗gS , then we have for t large,
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dS(F(x1), F(x2)) ≤ L S(F(γ )) = Lπ∗gS (γ ) ≤ Lt (γ ) + ε = dt (x1, x2) + ε, (9.5)

where we used again that g(t) → π∗gS . Obviously this also implies that for all t large
and for all y1, y2 ∈ S,

dS(y1, y2) ≤ dt (G(y1), G(y2)) + ε. (9.6)

Combining (9.1), (9.2), (9.3), (9.4), (9.5) and (9.6) we get the required Gromov–
Hausdorff convergence. ��
Proof of Corollary 1.2 The proof is similar to [37, Theorem 8.2]. From [3, Lemmas 1,
2] or [38, Theorem 7.4] we see that there is a finite unramified covering p : M ′ → M
(with deck transformation group �) which is also a minimal properly elliptic surface
π ′ : M ′ → S′ and π ′ is an elliptic fiber bundle with S′ a compact Riemann surface
of genus at least 2. Furthermore, � also acts on S′ (so that π ′ is �-equivariant), with
finitely many fixed points whose union Z is precisely the image of the multiple fibers
of π , with quotient S = S′/�, and so that the quotient map q : S′ → S satisfies
q ◦ π ′ = π ◦ p.

Denote by ωS′ the orbifold Kähler–Einstein metric on S′ with Ric(ωS′) = −ωS′ .
From the description of M and M ′ as quotients of H × C

∗, where H is the upper half
plane in C (see e.g. [17], [37, Section 8]), it follows that π ′∗ωS′ is a smooth real (1, 1)
form on M ′, which also equals p∗π∗ωS . Indeed, if we let z ∈ H be the variable in
the upper half plane, w ∈ C

∗, and y = Imz, then from the arguments in [37, Section
8] we see that the form π∗ωS on M is induced from the form 1

2y2
√−1dz ∧ dz on

H × C
∗, and the exact same formula holds on M ′.

Given any Gauduchonmetricω0 on M , callω(t) its evolution under the normalized
Chern–Ricci flow on M , as before. Letω′

0 = p∗ω0, which is a �-invariant Gauduchon
metric on M ′. If we call ω′(t) its evolution under the normalized Chern–Ricci flow on
M ′, then ω′(t) is also �-invariant, and equal to p∗ω(t). Furthermore, � also acts by
isometries of the distance function dS′ ofωS′ , with quotient space (S, dS), the distance
function of the orbifold metric ωS .

Now Theorem 1.1 applied to the elliptic bundle π ′ : M ′ → S′ shows that
(M ′, ω′(t)) converges to (S′, ωS′) in the Gromov–Hausdorff topology. But exactly
as in [37, Theorem 8.2] we see that the convergence happens also in the �-equivariant
Gromov–Hausdorff topology, and therefore by [10, Theorem2.1] or [21, Lemma1.5.4]
we conclude that (M, ω(t)) converges to (S, dS) in the Gromov–Hausdorff topology.

Now we apply Theorem 1.1 again to M ′ to see that

‖ω′(t) − π ′∗ωS′ ‖C0(M ′,p∗g0) ≤ Ce−εt .

Fix now an open set U of M , small enough so that p−1(U ) is a disjoint union of
finitely many copies U j of U . Then p : U j → U is a biholomorphism for each j and
the�-action on p−1(U ) permutes theU j ’s. Therefore for each j , themap p : U j → U
gives an isometry between ω′(t)|U j and ω(t)|U , and also between (π ′∗ωS′)|U j and
(π∗ωS)|U . Fixing one value of j , from ‖ω′(t) − π ′∗ωS′ ‖C0(U j ,p∗g0) ≤ Ce−εt , we
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conclude that

‖ω(t) − π∗ωS‖C0(U,g0) ≤ Ce−εt .

Covering M by finitely many such open sets U shows that ω(t) converges to π∗ωS

in the C0(M, g0) topology.
Finally, fix any point y ∈ S\Z , and let V be a small open neighborhood of y such

that π−1(V ) ∼= V × E and q−1(V ) is a disjoint union of finitely many copies Vj

of V with points y j ∈ Vj mapping to y and with q : Vj → V a biholomorphism.
Then π ′−1(V1) ∼= V1 × E , and under these identifications the biholomorphism p :
π ′−1(V1) → π−1(V ) equals (q, Id) : V1 × E → V × E . Under this map the fiber
E ′

y1 := π ′−1(y1) is carried to the fiber Ey . Applying Theorem 1.1 to M ′, we see that
etω′(t)|E ′

y1
converges exponentially fast in the C1(E ′

y1 , g′
0) topology to ω′

flat,y1
, the

flat Kähler metric on E ′
y1 cohomologous to [ω′

0|E ′
y1

], and the convergence is uniform

when varying y1. But the local biholomorphism p maps ω′(t) to ω(t), and ω′
flat,y1

to
ωflat,y , and the result follows. ��
Acknowledgments The authors thank the referee for some suggestions which improved the presentation.
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