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The Standard Models contain chiral fermions coupled to gauge theories. It has been a long-
standing problem to give such gauged chiral fermion theories a quantum non-perturbative definition.
By classification of quantum anomalies (including perturbative local anomalies and non-perturbative
global anomalies) and symmetric interacting invertible topological orders via a mathematical cobor-
dism theorem for differentiable and triangulable manifolds, and by the existence of symmetric gapped
boundary (designed for the mirror sector) on the trivial symmetric invertible topological orders, we
propose that Spin(10) chiral fermion theories with Weyl fermions in 16-dimensional spinor represen-
tations can be defined on a 3+1D lattice without fermion doubling, and subsequently dynamically
gauged to be a Spin(10) chiral gauge theory. As a result, the Standard Models from the 16n-chiral
fermion SO(10) Grand Unification can be defined non-perturbatively via a 3+1D local lattice model
of bosons or qubits. Furthermore, we propose that Standard Models from the 15n-chiral fermion
SU(5) Grand Unification can be regularized by a 3+1D local lattice model of fermions.
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I. INTRODUCTION AND DEFINITIONS

The Standard Models [1–3], gauge theories with the
Lie algebra u(1) × su(2) × su(3) in 3+1D, coupled to
fermions and bosons, are believed to describe elementary
particles.1 In the standard Standard Model, there are
15 of 2-component complex Weyl fermions per family.
The SU(5) Grand Unification [5] has 15 complex Weyl
fermions per family. There are also non-standard Stan-
dard Models, such as the one from the SO(10) Grand Uni-
fication [6] which has 16 complex Weyl fermions per fam-
ily. But for a long time, the Standard Models were only
defined via a perturbative expansion, which is known not
to converge. So the Standard Models were not yet known

1 Elementary particles include fermions from quarks and leptons,
and bosons from gauge mediators and Higgs particle. Gravi-
tons are not yet discovered experimentally. In addition, in our
work, we do not consider any dynamical gravity; we only consider
anomalies of gauge fields or gravitational non-dynamical back-
ground fields. The local Lie algebra of standard Standard Mod-
els is u(1)×su(2)×su(3), but the global structure Lie group can

be
U(1)×SU(2)×SU(3)

Zq
where q = 1, 2, 3, 6, see a recent overview

[4] on this issue. In fact, as we will show later that for SO(10)
and SU(5) Grand Unifications, it is more natural to study the
case q = 6. Also, we denote the d-dimensional space and 1-
dimensional time as d+ 1D, and denote the d-dimensional space
as dD.
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to be well-defined quantum theories. This is related to
the long-standing gauged chiral fermion problem: How to
define a chiral fermion theory, with the parity violation
[7], coupled to the gauge field, non-perturbatively and
in the same dimension, as a well-defined quantum the-
ory with a finite-dimensional Hilbert space for a finite-
size system (for details, see Appendix A 1), but without
suffered from fermion doublings [8]. In this work, we
use the term gauged chiral fermion theory to mean chiral
fermion theory coupled to a non-dynamical background
gauge field. In fact, the gauge theories focused in this
article are mostly non-dynamical, unless mentioned oth-
erwise.

There were many previous pioneer attempts, such as
a lattice gauge approach [9], Ginsparg-Wilson fermion
approach [10], Domain-wall fermion approach [11, 12],
and Overlap-fermion approach [13, 14]. In the Ginsparg-
Wilson fermion approach, the to-be-gauged symmetry is
not strictly an onsite symmetry but only a quasi-local
symmetry (see Def. II and [15–18], the quasi-local sym-
metry is still a non-onsite symmetry), thus it is much
challenging to gauge. (The abelian chiral gauge theory
is achieved by Ref. [14], however, the non-abelian case
is still an open question.) In the Domain-wall fermion
approach, we have an extra dimension, where the dy-
namical gauge fields can propagate. The Overlap-fermion
approach is a reformulation of the Domain-wall fermion
approach. The above approaches normally start with a
spacetime Euclidean lattice path integral and implement
the Ginsparg-Wilson fermion.

In contrast, in our work, we do not formulate a space-
time lattice path integral nor Ginsparg-Wilson fermion.
Instead, we consider a discretized spatial lattice Hamil-
tonian with a continuous time, with additional criteria
(see Def. I): (1) with a tensor product Hilbert space, (2)
with all interaction terms bounded by a finite range of
lattice spacings (called short-range interactions), (3) we
only discuss onsite symmetries (see Def. II). Below we
refer to our setup as a local lattice model.2

In this work, we aim to show nontrivial evidence that
the gauged chiral fermion problem in both the 16n-
fermion and the 15n-fermion Standard Models can be
solved via a generalized lattice gauge approach under lo-
cal lattice model (Def. I). In the standard lattice gauge
approach, the fermions do not interact directly. The gen-
eralized lattice gauge approach simply adds an extra di-
rect fermion interaction or an indirect fermion interac-
tion via some Higgs fields. A generalized lattice gauge
approach, called the mirror fermion approach, was pro-
posed in 1986 [19, 20]. In such an approach, one starts
with a lattice model containing chiral fermions (named

2 For a concrete lattice model, we mostly focus on a spatial lattice
Hamiltonian. However, our arguments and Propositions 1, 2 and
3 are more general than a Hamiltonian picture, they are also
applicable to quantum field theory and spacetime path integral
approaches.

the chiral sector or the normal sector) and a chiral con-
jugated mirror sector (the mirror sector), with a to-be-
gauged symmetry acting as an onsite symmetry. Then,
one includes a proper fermion interaction [21, 22] in such
a local lattice model, attempting to gap out the mirror
sector completely, without breaking the onsite symmetry
and without affecting the low energy properties of the nor-
mal sector. This is the key step, which will be referred
to as gapping out the mirror sector without breaking the
(to-be-gauged) symmetry. Last, one can gauge the on-
site symmetry to obtain a gauged chiral fermion theory,
regularized by a local lattice model.3

Ref. 19 proposed a way to gap out the mirror sector
without breaking the symmetry, by introducing compos-
ite fermion fields formed by mirror fermion fields, and by
adding symmetric mass terms between composite fermion
fields and the mirror fermion fields to make all those
fermion fields formally massive. However, such a pro-
posal cannot work in general. Even we can make all the
fermion fields formally massive, it does not imply we can
fully gap out the mirror sector. This is because, even for
some models with a perturbative local anomaly,4 one can
find composite fermion fields formed by mirror fermion
fields and to make all those fermion fields formally mas-
sive (see the Appendix of Ref. 23 arXiv version). Also,
the extensive studies on the previous mirror fermion pro-
posal [24–27] had difficulties to demonstrate that interac-
tions can fully gap out the mirror sector without break-
ing the symmetry and without modifying the low energy
dynamics of the normal sector. It was pointed out in
Ref. 28 that “attempts to decouple lattice fermion dou-
bles by the method of Swift and Smit cannot succeed.”
Consequently, many people gave up the mirror fermion
approach.

Recently, Ref. 23 conjectured a new gapping condition
for the mirror sector:

Proposition i: Consider a mirror sector in d+ 1D with
a symmetry group G. The mirror sector can be gapped
out without breaking the symmetry G if (1) there exist
(possibly G-symmetry breaking) mass terms that make
all the fermions massive; and (2) πn(G/Ggrnd) = 0 for
n ≤ d+ 2, where Ggrnd is the unbroken symmetry group.

The above Ref. 23’s claim is obtained based on the
following assumption (not rigorously proven so far):

3 Colloquially, we refer a lattice regularization as the same as a
lattice realization. When we say a field theory can be regularized
(on the boundary of a lattice in one higher dimension), we also
mean a field theory can be realized.

4 We overview the concepts of anomalies, including perturbative
local anomaly and non-perturbative global anomaly in Appendix
A. In the main text, however, we purposefully reduce the in-
formation on anomalies but focus on the mathematically much
well-defined concepts called the cobordism theory.
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Proposition ii: A d + 1D G-symmetric non-linear σ-
model with topologically trivial target space M = G/Ggrnd

(i.e. πn(M) = 0 for n ≤ d + 2) allows a gapped G-
symmetric ground state.

Applying the above Propositions, Ref. 23 claimed that
3+1D Spin(10) chiral fermion theory with Weyl fermions
in a 16-dimensional spinor representation can be defined
via an interacting local lattice model with a Spin(10)
onsite symmetry which can be gauged.5 The 16-fermion
Standard Model (i.e. SO(10) Grand Unification or
SO(10) Grand Unified Theory ≡ SO(10) GUT) can
then be obtained from a 3+1D Spin(10) chiral gauge
theory, coupled to Spin(10) chiral Weyl fermions in the
16-dimensional representation of Spin(10).

Purpose of our present work : The homotopy group ar-
gument in Ref. 23 only proposed a sufficient condition.
There are mirror sectors (thus also normal sectors) that
do not satisfy the condition, but that mirror sectors can
still be gapped out without breaking the symmetry and
without altering low energy physics in the normal sector.
In this work, we are going to prescribe a more general
condition, to capture the cases missed by Ref. 23:

Proposition 1. Consider a continuum field theory in
d+ 1D with an internal symmetry group Gf .6 If the fol-
lowing two conditions hold: (i) If the field theory can be
regularized as the low energy effective theory of a bound-
ary of a gapped local lattice model in one higher dimen-
sion d+ 2D with a bulk onsite symmetry Gf , and (ii) if
the gapped ground state of the bulk lattice model repre-
sents a trivial cobordism invariant in d + 2D; then the
d + 1D field theory can be regularized as the low energy
effective theory of a local lattice model in the same di-
mension d + 1D with an onsite internal symmetry Gf .

Our above statement used the following assumption:

Proposition 2. A gapped local lattice model with an on-
site internal symmetry Gf in d + 2D must exist a Gf -
symmetric gapped d + 1D boundary (that does not break
the Gf symmetry), if its gapped bulk ground state in
d+2D represents a trivial cobordism invariant in d+2D.

The existence of a symmetric gapped boundary is based
on the belief that the bulk with a trivial cobordism invari-
ant can be smoothly deformed into a symmetric product
state without closing the gap. The symmetric product
state always have a symmetric gapped boundary. See
Appendix A and D for further details.

5 In this work, a local lattice model is a lattice model of bosons
and/or fermions with short-range interactions and a tensor-
product structured Hilbert space, see (Def. I).

6 An internal symmetry may or may not be an onsite symmetry.
But an onsite symmetry must be an internal symmetry.

To obtain Proposition 1, we have to apply Proposition
2. We first regularize the field theory as a boundary (also
referred as the normal sector) of the gapped lattice model
in one higher dimension, then assume the lattice model
has a finite thickness, and make the boundary on the
other side (also referred as the mirror sector) to be the
symmetric gapped boundary ensured by Proposition 2.

Using the above statements, we will show that a 3+1D
Spin(10) chiral fermion theory with Weyl fermions in a
16-dimensional spinor representation can be defined via
an interacting local lattice model with a Spin(10) onsite
internal symmetry which can be gauged. In addition,
we will show that a 3+1D SU(5) chiral fermion theory
with Weyl fermions in 5-dimensional and 10-dimensional
representations can be defined via an interacting local
lattice model with an SU(5) onsite symmetry which can
be gauged.

Last, we remark that to fully characterize the global
symmetry in a fermion system, we need to specify the full
internal global symmetry group Gf and how the fermion

number parity Zf2 is embedded in Gf . So we can denote

the fermion symmetry as Gf ⊃ Zf2 . In our case, the
full internal symmetry is actually Gf = Spin(10), while

SO(10) is the quotient group Spin(10)/Zf2 = SO(10). So
in this work, we use the name: a Spin(10) chiral fermion
model (rather than an SO(10) chiral fermion model which
was sometimes used by others).

II. COBORDISM THEORY AND SYMMETRIC
GAPPED BOUNDARY

Let us first explain the cobordism theory used in
Proposition 1 and 2. Based on a theorem of Freed-Hopkin
[29] and an extended generalization [30–32] (including
higher symmetries [33–40]) there is a 1-to-1 correspon-
dence between “the deformation class of invertible topo-
logical quantum field theories (iTQFTs7) [41, 42] with
symmetry (including higher symmetries)” and “a cobor-
dism group.”8 More precisely, there is a 1-to-1 correspon-
dence (isomorphism “∼=”) between the following two well-

7 It is called an invertible TQFT because its partition function
Z(MD) on any closed manifold MD must have its absolute value
|Z(MD)| = 1, namely Z(MD) = e iθ can only be a complex
phase. On a closed spatial manifold MD−1, it always has a sin-
gle ground state Z(MD−1 ×S1) = 1 with no topological ground
state degeneracy. Thus, Z(M) = e iθ has an inverted phase
Z†(M) = e− iθ that can be defined as its complex conjugated
iTQFT. The combined iTQFT Z(M) · Z†(M) = 1 is the trivial
iTQFT (i.e. the trivial gapped vacuum).

8 By all symmetric iTQFTs, their classifications and character-
izations depend on the category of manifolds that can detect
them. The categories of manifolds can be: TOP (topological
manifolds), PL (piecewise linear manifolds), or DIFF (differen-
tiable thus equivalently smooth manifolds), etc. These categories
are different, and they are related by the inclusions:

TOP ⊇ PL ⊇ DIFF. (1)
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defined “mathematical objects” (these “objects” turn out
to form the abelian group structures):

Deformation classes of the reflection positive
D-dimensional extended invertible

topological field theories (iTQFT) with

symmetry group G =
Gspacetime×Gf

Nshared


∼= [MT (G),ΣD+1IZ]tors. (2)

The MT (G) is the Madsen-Tillmann spectrum [43] of
the G group, the Σ is the suspension, the IZ is the An-
derson dual spectrum, and the ΣD+1IZ is the D + 1-
th suspension of the spectrum. The tors means taking
only the finite group sector (i.e. the torsion group). The
right-hand side is the torsion subgroup of the homotopy
classes of maps from a Thom-Madsen-Tillmann spectrum
[43, 44] to a shift of the Anderson dual to the sphere spec-
trum. The spacetime symmetry Gspacetime and the inter-
nal symmetry Gf , mod out the shared common normal
subgroup Nshared, is combined to a G structure:

G =
Gspacetime ×Gf

Nshared
. (3)

This also means the pertinent iTQFTs of (2) are defined
on manifolds with G structure.

In condensed matter physics, this roughly means that

Proposition 3. There is a 1-to-1 correspondence [29]
between “the invertible gapped states with an internal
symmetry Gf (including higher symmetries [30, 33])”
that can be regularized on a lattice with Gf realized
as an onsite symmetry [45] in its own dimensions and
“the group elements as the corresponding generators in a
cobordism group for the internal symmetry Gf ,” at least
in lower dimensions.9

In contrast, triangulable manifolds are smooth manifolds at least
for dimensions up to D = 4 (i.e. the “if and only if” statement
is true below D ≤ 4). The concept of piecewise linear (PL) and
smooth DIFF structures are equivalent in dimensions D ≤ 6.
Thus all symmetric iTQFT classified by the cobordant prop-
erties of smooth manifolds have a triangulation (thus a lattice
regularization) on a simplicial complex (thus a UV [ultraviolet]
competition on a lattice). This implies a correspondence between
“the symmetric iTQFTs (on smooth manifolds)” and “the sym-
metric invertible topological orders (on triangulable manifolds)”
for D ≤ 4. This leads to our application of this mathematical
fact on the lattice regularization of symmetric iTQFTs and sym-
metric invertible topological orders for various Standard Models
of particle physics. In this work, we only focus on the smooth
differentiable (DIFF) manifolds and their associated all possible
iTQFTs. The tools we use in either case would be a certain
version of cobordism theory suitable for a specific category of
manifolds.

9 We clarify that, before gauging, the Gf symmetry discussed in
our setup must be an onsite internal symmetry of the lattice
model (see Appendix A). Certainly, this does not exclude the
possibility that the lattice model may have a larger symmetry.
We stress that the Gf in the cobordism calculations is the onsite

There is a logic gap here to establish Proposition 3,
since by (2), we only know there is a 1-to-1 correspon-
dence between “the iTQFTs with symmetry” and “the
cobordism invariants from a cobordism group.” We do
not yet know if there is a 1-to-1 correspondence between
“the lattice invertible topological order with symmetry”
and “the iTQFTs with symmetry.” In particular, we
do not mathematically and rigorously prove how to con-
struct a lattice Hamiltonian realization for each iTQFT
with symmetry classified by a cobordism group. (We
remark that some of the “lattice invertible topological
orders with symmetry on a lattice” are also called the
Symmetry Protected Topological/Trivial states (SPTs)
[15, 16, 46, 47], if they can deform to a trivial tensor
product state under local unitary transformations after
explicitly breaking the symmetry.) Regardless of a logic
gap in the rigorous mathematical sense, the broad liter-
ature suggests strong physical evidence that

(a): The classification of iTQFT [29, 30, 48–50] so far
matches with the classification of lattice invertible
topological orders and lattice SPTs [47, 51–53]. Many
such iTQFTs can thus be constructed on the lattice
Hamiltonian.

(b): Moreover, in (2), we only focus on iTQFTs definable
on differentiable and triangulable manifolds, thus those
iTQFTs may be regularized by the same lattice from
the simplicial complex of triangulable manifolds.

In summary, based on the support of (a) and (b), be-
low we propose and assume that a refined and rigorous
version of Proposition 3 is true.

internal symmetry for

the Gf -symmetric deformation class of the Hamiltonians. (4)

Thus, we consider many Gf -symmetric Hamiltonians under the
Gf -symmetric preserving deformations. The onsite Gf always
needs to be preserved in order to be gauged later. For ex-
ample, we choose an internal symmetry group Gf = Spin(10)
for SO(10) GUTs. However, we point out that the full sym-
metry group G used in cobordism calculations also include the
emergent spacetime symmetry at low energy infrared (IR) as
Gspacetime = Spin(D) (for a D-dimensional Euclidean space-
time). Thus, for the Spin(10) fermion model, in Eq. (3), we have

N = Zf2 , so G = (
(Spin(D)×Spin(10))

Zf
2

).

Given a lattice model, there can be a larger symmetry Gonsite ⊃
Gf . Such as some lattice models in Sec. III and in Appendix B,
we have

Gonsite ⊃ U(16Nf ) ⊃ U(16) ⊃ Gf = Spin(10),

for some flavor number Nf . There are also other space group
symmetries on a lattice, say Glattice,space, while Glattice,space is
typically smaller than the emergent Gspacetime, so usually

Glattice,space ⊂ Gspacetime.

Overall, all these “symmetries” are not crucial to our discus-
sion, except the only key symmetries are the onsite internal Gf
symmetry, and the overall G.
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Proposition 2 can be obtained from Proposition 3.
There can be two kinds of gapped fermion systems on
a lattice, those with topological excitations (which may
be fractionalized) and those without topological excita-
tions (i.e. all the excitations correspond to the original
fermions or bosons). By definition, the gapped states
with topological excitations, are the lattice non-invertible
topological orders. The gapped states without topologi-
cal excitations are the “lattice invertible topological or-
ders with symmetry.” According to Proposition 3, if a
“lattice invertible topological order with symmetry” has
a trivial cobordism invariant, then it must be a “triv-
ial lattice invertible topological order with symmetry.”10

In other words, there exists a symmetry preserving local
unitary transformation that deforms the “trivial lattice
invertible topological order with symmetry” into a “triv-
ial tensor product state with symmetry” [54], where its
gapped symmetric boundary can always be constructed.
(We provide more steps along with these logical argu-
ments in Appendix A 2.) Crucially, this is precisely why
the cobordism approach allows us to obtain the gapping
condition for the mirror sector.

Proposition 1 can be obtained from Proposition 2, if
we can show that the normal sector or the mirror sector
can be regularized as some boundary states of a gapped
local lattice model. We will provide such a local lattice
model construction for the Spin(10) chiral fermion theory
in Sec. III and in Sec. B as an example.

Although we propose Proposition 1, 2, and 3, we do not
require the complete versions of all these Propositions to
establish our claim of a local lattice model with a chiral
fermion low-energy spectrum. We only require the weaker
Proposition 1, let us clarify:

• Proposition 1 ’s “the existence of a fully gapped bound-
ary” is a static statement. On the other hand, “the gap-
less sector can be fully gapped out without breaking the
symmetry” is a dynamic statement, more changeling
than Proposition 1. But the two statements are re-
lated; their detailed relations are given in Appendix A 2
and in D, based on physical intuitions of phase bound-
aries and quantum phase transitions. In fact, we only
require the weaker static statement in Proposition 1’s
“the existence of a fully gapped boundary” in order to
establish the gapped mirror sector.

• To use Proposition 3, we only require a local lattice
construction for the cobordism class whose boundary
gives rise to the normal sector or mirror sector. To
establish Spin(10), Spin(18), and SU(5) chiral fermion
theories, we only require a local lattice construction of
the trivial cobordism class (the identity element 0 in
the cobordism group). They happen to be a trivial

10 A “trivial lattice invertible topological order with symmetry”
means the “trivial gapped vacuum with symmetry” in quantum
field theory, or the “symmetric gapped direct product state” in
condensed matter.

bulk gapped insulator that we certainly can construct
their local lattice model with a gapless normal sector
on the boundary (Sec. III).

In the following sections, we also provide the physics
interpretations of the classifications of all 4+1D iTQFTs
whose boundaries are associated with the 3+1D Spin(10)
and Spin(18) chiral fermion theories (for SO(10) and
SO(18) GUTs) in Sec. III,11 and the 3+1D SU(5) chiral
fermion theories (for SU(5) GUTs) in Sec. IV. We rel-
egate the mathematical calculation details on algebraic
topology in Appendix E. (See also Ref. 55.)

III. SPIN(N) CHIRAL FERMION THEORY,
AND SO(10) AND SO(18) GRAND UNIFICATION

We now construct a local lattice Hamiltonian model.
A 3+1D two-component Weyl fermion described by a
Hamiltonian (Model 1 defined in Appendix A 1)

H = ψ† iσj∂jψ, σ1,2,3 are Pauli matrices, (5)

can be regularized on the boundary of a fermion hopping
model on a 4D spatial cubic lattice with a Hamiltonian
operator [23]

Ĥhop =
∑
ij

(tabij ĉ
†
a,iĉb,j + h.c.), (6)

which has 4 fermion orbitals (a, b = 1, · · · , 4) per site
(i, j for sites). The h.c. contains the hermitian conjugate
term. The 4× 4 hopping matrices tij are given by

H4D(k1, k2, k3, k4) (7)

= 2[Γ1 sin(k1) + Γ2 sin(k2) + Γ3 sin(k3) + Γ4 sin(k4)]

+ 2Γ5[cos(k1) + cos(k2) + cos(k3) + cos(k4)− 3]

in the momentum k-space, where Γ1 = σ1 ⊗ σ3, Γ2 =
σ2 ⊗ σ3, Γ3 = σ3 ⊗ σ1, Γ4 = σ0 ⊗ σ2, and Γ5 = σ0 ⊗ σ3,
which obey {Γi,Γj} = 2δij . If the 4D lattice is formed by
two layers of 3D cubic lattices, the one-body Hamiltonian
in the (k1, k2, k3)-space is given by the following 8-by-8
matrix

H3D(k1, k2, k3) =

(
M1 M2

M†2 M1

)
, where

M1 = 2[Γ1 sin(k1) + Γ2 sin(k2) + Γ3 sin(k3)]

+ 2Γ5[cos(k1) + cos(k2) + cos(k3)− 3],

M2 = − iΓ4 + Γ5. (8)

11 To be precise, in order to embed the standard Standard Model-
like spacetime-and-internal symmetry group with this G =
Gspacetime×Gf

Nshared
structure (3) to the SO(10) Grand Unification’s

Spin(D)×Spin(10)

Zf
2

, it is natural to consider an alternative stan-

dard Standard Model spacetime-and-internal group Spin(D) ×
U(1)×SU(2)×SU(3)

Z6
, while their gauge Lie algebra is still u(1) ×

su(2) × su(3). Here Spin(10) and
U(1)×SU(2)×SU(3)

Z6
are their

gauge groups respectively. See more discussions in footnote 18.
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One can directly check that the above 3D fermion hop-
ping model gives rise to a two-component massless com-
plex Weyl fermion on each of the two 3D surfaces of the
4D lattice. The Weyl fermion on one boundary is a left-
hand Weyl fermion and on the other boundary is a right-
hand Weyl fermion. We have a similar result when the
4D lattice is formed by many layers of 3D cubic lattices.

The 16 copies of the local lattice model (7) give rise
to the 3+1D Weyl fermions in the 16-dimensional spinor
representation of the Spin(10) on the lattice boundary’s
low energy spectrum. The ground state of the 4+1D
hopping model is

• a “lattice invertible topological state (invertible topo-
logical order whose low energy is an iTQFT) with a

Spin(10) ⊃ Zf2 symmetry,” since it has no non-trivial
topological excitations.

• a lattice non-trivial 4+1D Spin(10) non-interacting free
fermionic SPT state [56–58], which belongs to the 16-th
class (or the 16n-th) in the Z classification.

But such a state may correspond to

• a trivial state for Spin(10) SPT state in the lattice in-
teracting fermionic SPT systems [49, 52, 59–61] and to
a trivial cobordism class (in 1, 2 and 3) [29, 30], which
belongs to the 0-th class in the classification.

If so, the 4+1D hopping model can have a symmetric
gapped boundary, and the 3+1D Spin(10) chiral Weyl
fermions (5) for the mirror sector can be gapped by inter-
actions without breaking the symmetry by Proposition 1
and 2.

To show that the 4+1D hopping model gives rise to
a trivial Spin(10) SPT state in interacting fermion sys-
tems, we use a recent conjectured complete classifica-
tion of interacting fermionic invertible topological orders
[29, 30, 49, 50, 61–63] with onsite symmetry, via a twisted
version of the spin cobordism theory of Freed-Hopkin
[29]. This classification includes all known interacting
fermionic SPT states and all known interacting fermionic
invertible topological orders on a lattice [52, 59, 60, 64].

We first note that, for fermions with the full symmetry

Gf ⊃ Zf2 in the D spacetime dimensions, they transform

as G =
Spin(D)×Gf

Zf
2

under the combined spacetime sym-

metry Gspacetime = Spin(D) rotation and the internal Gf
transformation, where a double-counted fermion parity

symmetry Zf2 is mod out. This shared normal subgroup

Zf2 is due to the fact that rotating a fermion by 2π in the
spacetime (namely, the spin-statistics) gives rise to the
same fermion parity minus sign for the fermion operator
ψ → −ψ.

To classify the iTQFT whose boundary can have a
3+1D Spin(10) chiral fermion theory, we focus on the
following cobordism group

ΩD=5
(Spin(D=5)×Spin(10))

Zf
2

≡ TPD=5(
(Spin(D = 5)× Spin(10))

Zf2
).

(9)

More generally, we find that 4+1D fermionic invertible

topological orders with Gf = Spin(N) ⊃ Zf2 onsite global
symmetry for N ≥ 7 are classified by the 5-th cobordism
group [30]:

ΩD=5
(Spin(D=5)×Spin(N))

Zf
2

= Z2, N ≥ 7. (10)

Beware that we define the cobordism group, classifying
symmetric fermionic invertible topological orders, as

ΩDG ≡ ΩD
(
Gspacetime×Gf

Nshared
)

≡ TPD(G) ≡ [MT (G),ΣD+1IZ], (11)

which stands for the homotopy classes of maps from
Thom-Madsen-Tillmann spectrum [43, 44] MT (G) to
the D + 1-th suspension of the Anderson dual spectrum
ΣD+1IZ. Our notations follow Refs. [29, 30, 50] and
[65]: TP abbreviates “Topological Phases” classifying
the symmetric invertible topological orders (or invertible
topological quantum field theories), Nshared is the shared
normal subgroup of Gspacetime and Gf .

The cobordism group of topological phases (TP) de-
fined in [29] as TPD(G) classifies the deformation classes
of reflection positive invertible d-dimensional extended
topological field theories with symmetry group GD. The
cobordism group TPD(G) ≡ ΩDG and the bordism group
ΩGD are related by a short exact sequence

0→ Ext1(ΩGD,Z)→ TPD(G) ≡ ΩDG → Hom(ΩGD+1,Z)→ 0,
(12)

with Ext denotes the extension functor, see Appendix E.
In contrast, we do not define the cobordism group as

the usual definition of Pontryagin dual of the torsion sub-
group (≡ tors) of the bordism group ΩGD as the homomor-
phism (Hom) map to U(1):

Hom(ΩG,torsD ,U(1)), (13)

although the torsion (i.e. finite group) sectors of (11) and
(13) are equivalent. Mathematical details for the above
result are presented in Refs. 30, 50, and 55.12 We classify
the deformation classes of invertible topological quantum
field theories (further precisely, the reflection positive in-
vertible extended topological field theories) via ΩDG , by
classifying the cobordant differentiable and triangulable
manifolds with a stable G-structure, via associating them
to the homotopy groups of Thom-Madsen-Tillmann spec-
tra [43, 44], thanks to a theorem in Ref. 29.

To be precise, here the spin cobordism theory is be-
lieved to completely classify all the fermionic iTQFTs.

12 In contrast, Ref. 66 computes a different bordism group

Ω
(Spin(D=5)×Spin(10))
D=5 = 0 which detects no anomaly. Instead,

we study the bordism group Ω
(Spin(D=5)×Spin(10))/Zf

2
D=5 = Z2,

whose manifold generator can detect the recently discovered new
SU(2) anomaly [67].
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By applying this spin cobordism theory, we classify 4+1D
Spin(N) SPT states and 4+1D Spin(N) symmetric in-
vertible fermionic topological orders. In fact, in this con-
text, the 3+1D Spin(N) fermion theories already include
all possible 3+1D Spin(N) chiral fermion theories that we
need. To this end, we will especially focus on the 3+1D
Spin(10) chiral fermion theories with Weyl fermions in a
16-dimensional spinor representation.

The above Z2 classification in (10) implies that there
is only one non-trivial 4+1D invertible fermionic topo-
logical order with a Spin(N) onsite symmetry. We find
that such a topological phase is characterized by a 5-
dimensional topological invariant [30] written in terms of
a bulk partition function on a 5-manifold M5,

Z = e iπ
∫
M5 w2(TM)∪w3(TM), (14)

where wn(TM) is the nth-Stiefel-Whitney class for the
tangent bundle of 4 + 1D spacetime manifold M5, and
the ∪ is the cup product (which we may omit writing ∪)

[68]. We note that on M5, we have a Spin(D=5)×Spin(N)

Zf
2

connection — a mixed gravitational and gauge con-
nection, rather than a pure gravitational Spin(D =
5) connection, such that w2(TM) = w2(VSO(N)) and

w3(TM) = w3(VSO(N)), where wn(VSO(N)) is the nth-

Stiefel-Whitney class for an SO(N) gauge bundle.13

Thus, M5 may not be a spin manifold (note that a spin
manifold requires w2(TM) = 0), generally called a non-
spin manifold.

We can detect the 4+1D cobordism invariant
e iπ

∫
M5 w2(TM)w3(TM) for the 4+1D invertible fermionic

topological order by study its boundary state. In particu-
lar, if the 4+1D state has a boundary described by 3+1D
Spin(N) chiral Weyl fermion theory, then we can detect
the 4+1D cobordism invariant via the Spin(N) represen-
tation of the chiral Weyl fermions on the boundary. Here
we use a fact that the 4+1D cobordism invariant can be
detected by restricting to a SU(2) = Spin(3) subgroup
of Spin(N) [67]: Let nj be the number of isospin-j rep-
resentations of SU(2) = Spin(3) ⊆ Spin(N) for 3+1D
boundary chiral Weyl fermions, then the 4+1D cobor-
dism invariant e iπ

∫
M5 w2(TM)w3(TM) is absent if

∞∑
r=0

n2r+ 1
2
∈ Zeven,

∞∑
r=0

n4r+ 3
2
∈ Zeven. (15)

13 In the context of anomalies (see Appendix A for details),
the boundary of this 4+1D Spin(N)-SPT state may have a
mixed anomaly of SO(N)-gauge bundle and spacetime geom-
etry/gravity, and we can use the this 3+1D anomaly on the
boundary to detect the bulk invertible topological order. Namely,
we find that there is only one possible candidate of the 3+1D
anomaly for interacting fermion systems with a Spin(N) sym-
metry (N ≥ 7), which is a non-perturbative global mixed gauge-
gravity (i.e. gauge-diffeomorphism) anomaly characterized by
(14).

To see how the representation of Spin(N) reduces to
the representations of SU(2) = Spin(3), let us describe
the representation of Spin(N) (the spinor representation
of Spin(N)), assuming N = even. We first introduce
γ-matrices γa, a = 1, · · · , N :

γ2k−1 = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
N
2 −k σ0’s

⊗σ1 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
k−1 σ3’s

,

γ2k = σ0 ⊗ · · · ⊗ σ0︸ ︷︷ ︸
N
2 −k σ0’s

⊗σ2 ⊗ σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
k−1 σ3’s

, (16)

k = 1, · · · , N2 , which satisfy {γa, γb} = 2δab and γ†a =

γa. Here σ0 is the 2-by-2 identity matrix and σl with

l = 1, 2, 3 are the Pauli matrices. The N(N−1)
2 hermitian

matrices γab = i
2 [γa, γb] = iγaγb, a < b, generate a 2N/2-

dimensional representation of Spin(N). The above 2N/2-
dimensional representation is reducible. To obtain an
irreducible representation, we introduce

γFIVE = (− i)N/2γ1 · · · γN = σ3 ⊗ · · · ⊗ σ3︸ ︷︷ ︸
N
2 σ3’s

. (17)

We have (γFIVE)2 = 1, its trace Tr(γFIVE) = 0, and
{γFIVE, γa} = [γFIVE, γab] = 0. This allows us to obtain
two 2N/2−1-dimensional irreducible representations: one
for γFIVE = 1 and the other for γFIVE = −1.

Now, let us consider an SU(2) = Spin(3) subgroup of
Spin(N), generated by γ12 = I ⊗ σ0 ⊗ σ3, γ23 = I ⊗
σ1⊗ σ1, and γ31 = I ⊗ σ1⊗ σ2. We see that the 2N/2−1-
dimensional representation of Spin(N) becomes 2N/2−2

isospin-1/2 representations of SU(2).
Summarizing the above results, we see that the 2N/2−1

copies of 4+1D hopping model (7) formed by many (but
finite) layers of 3D cubic lattices has a 3+1D bound-
ary chiral Weyl fermion in the 2N/2−1-dimensional rep-
resentation of Spin(N) on one boundary (the normal
sector), and a conjugate 3+1D chiral Weyl fermion on
the other boundary (the mirror sector). For an even
N ≥ 8, the 3+1D boundary chiral Weyl fermions only re-
duces to an even number of isospin-1/2 representations,
and, according to (15), the 4+1D cobordism invariant

e iπ
∫
M5 w2(TM)w3(TM) is absent. Thus the corresponding

4+1D bulk state is a trivial fermionic iTQFT (i.e. the
identity element as the trivial cobordism class in Propo-
sition 1 and 2) with a Spin(N) symmetry.

In this case, the mirror sector can be chosen as a
Spin(N)-symmetric gapped boundary (Proposition 1), or
the mirror sector can be gapped out without breaking
the Spin(N) symmetry by introducing a proper sym-
metric fermion interaction on the boundary (Proposition
2). Since the 4+1D hopping model has many layers and
the 3+1D boundary massless chiral Weyl fermion has no
symmetric relevant deformation operators (in the renor-
malization group sense, e.g., there is no Spin(N) symmet-
ric mass term), the symmetric interaction in the mirror
sector on one boundary will not affect the low energy dy-
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namics of the 3+1D massless chiral Weyl fermion in the
normal sector on the other boundary.14

Now we apply a well-known lattice method

Finite-width/layer lattice dimensional reduction:

An n+ 1D lattice model with finite layers along one
extra direction (a finite width w) can be dimensionally
reduced to an nD lattice model via absorbing the degrees
of freedom along w to the orbital in nD. (18)

Thus by (18), the 4+1D hopping model with finite layers
can be viewed as a 3+1D lattice model with finite orbitals
per site, the 3+1D Spin(N) chiral Weyl fermion theory
in the 2N/2−1-dimensional representation can be regular-
ized by a lattice model in the same dimension without
breaking the Spin(N) symmetry for even N ≥ 8.

In particular, for N = 10, the Spin(10) chiral fermion
theory with Weyl fermions in a 16-dimensional spinor
representation (similarly, for Spin(18) chiral fermion the-
ory in a 256-dimensional spinor representation) can be
regularized by a local lattice fermion model in the same
dimension. After regularizing the Spin(10) chiral fermion
theory as a lattice fermion model in the same dimen-
sion (3+1D) with an onsite Spin(10) symmetry, we can
gauge the onsite Spin(10) symmetry to obtain a gauged
Spin(10) chiral fermion theory,15 again regularized by a
lattice model in the same dimension.

We remark that, in fact, forN = 3, the 4+1D fermionic
invertible topological orders with a Spin(3)=SU(2) in-
ternal global symmetry are classified by the cobordism

group of (Spin(D = 5)× Spin(N = 3))/Zf2 [30, 67]:

ΩD=5
(Spin(D=5)×Spin(3))

Zf
2

= ΩD=5
(Spin(D=5)×SU(2))

Zf
2

= (Z2)2. (19)

14 In the previous paragraph, we had determined that the 4+1D
hopping model (7) without higher-order interactions, whose
boundary hosts a 3+1D chiral Weyl fermion in the 2N/2−1-
dimensional representation of Spin(N), has a trivial cobordism
class in the bulk. Readers may wonder whether the bulk’s cobor-
dism class would change under the interactions that we required?
The answer is no. To recall, our setup follows:
(i) Bulk does not include non-perturbative interactions. Bulk
only allows small perturbative interactions if any. So the bulk
gap does not close, and can never be closed.
(ii) Only on the boundary, we can add “arbitrary Spin(N) pre-
serving interactions” (both small perturbative or large non-
perturbative interactions).
In summary, since the bulk gap does not close, the bulk phase re-
mains the same trivial cobordism class, which stays valid before
and after adding boundary interactions.

15 To gauge the onsite symmetry, one way is by inserting gauge
variables on the 1-dimensional links between local sites. This is
known as the hard-gauge, such that the outcome gauge theory
does not have a tensor product Hilbert space (Def. I) thus it is not
a local lattice model that we aim for. However, we can further
maintain a tensor product Hilbert space (Def. I) by designing the
soft-gauge. We relegate the details of the soft-gauge via a local
lattice model in Appendix B. See discussions on hard-gauge and
soft-gauge in Ref. 18.

The corresponding cobordism invariant is given by

Z = e iαπ
∫
M5 Arf w̃3(TM) e iβπ

∫
M5 w2(TM)w3(TM). (20)

Here Arf is the Arf invariant [69], which characterizes the
1+1D fermionic chain whose open ends host Majorana
zero modes [70]. This 1+1D fermionic chain is also known
as Kitaev chain [70] whose low energy physics is governed
by a 1+1D invertible fermionic topological order. The
w̃3(TM) is a twisted version of the 3rd-Stiefel-Whitney
class w3(TM). The above cobordism invariant can be
detected by the SU(2) representations of 3+1D boundary
chiral Weyl fermions, and α, β in (20) are given by [67]

α =

∞∑
r=0

n2r+ 1
2

mod 2, β =

∞∑
r=0

n4r+ 3
2

mod 2. (21)

In this work, we only suggest that there exists a sym-
metric short-range non-perturbative interaction that can
fully gap out the mirror sector without breaking the
Spin(10) symmetry.16 Our approach only proves the
symmetric gapped boundary exists (via Proposition 1
and 2), but does not provide a prescription to design
such an interaction. The approach in Ref. 23 and 71
proposes a design: The interaction in the mirror sec-
tor is given by the smooth orientation fluctuations of
Higgs field (thus beyond the Higgs mechanism [18, 72]),
where a constant orientation will gap out all the mirror
fermions. But the validity of the design requires confir-
mation by numerical simulations. A first step is taken in
Ref. 71 for a 1+1D system. In such a design, crucially
the mass of the mirror fermions induced by the Higgs
field must be comparable with the fermion bandwidth.
Some other gapping-mirror-fermion approaches have also
been proposed recently [17, 72–77]. Many previous cal-
culations [26, 27] checking the mirror fermion approach
choose an induced energy gap (i.e. an effective mass) to

16 There exists such a symmetric gapping interaction preserving
Spin(10). Moreover, for 16 chiral Weyl fermions at IR, there
can be a U(16) global symmetry, with U(16) ⊃ Spin(10). It is
possible that additional constraints happen on what interactions

we can engineer in the quotient space
U(16)

Spin(10)
(also a homo-

geneous space) without breaking Spin(10). We provide some
further guidelines for designing interactions:

• To gap the mirror sector by adding non-perturbative lattice-
scale interactions on the boundary, we may need to look for
a larger symmetry G+ than Spin(10), such that

Spin(10) ⊆ G+ ⊆ U(16).

This G+ can be useful for constructing exactly solvable and
integrable models.

• However, we can further weakly break G+ down to Spin(10),
by small perturbative interactions that are not merely ir-
relevant perturbations in the renormalization group (RG)
and field theory sense but also with small lattice-scale cou-
plings. Thus we can break the redundant symmetry outside
Spin(10) without changing the quantum dynamics.
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be much bigger than the bandwidth (i.e. at the infinite
coupling limit). The infinite coupling limit in the mirror
sector generates a dead layer, a neighbor layer next to
the mirror sector would become the new mirror sector
with fermion doublings [8], which would fail to produce
a chiral fermion/gauge theory at low energies.

IV. SU(5) CHIRAL FERMION THEORY AND
SU(5) GRAND UNIFICATION

Above we have discussed the lattice regularization of
a Spin(10) gauged chiral fermion theory. To consider a
lattice regularization of a SU(5) gauged chiral fermion

theory (with Gf = Zf2 × SU(5), but only SU(5) will be
gauged), we classify the 4+1D invertible fermionic topo-

logical order with Gf = Zf2×SU(5) symmetry by a cobor-
dism group defined in Eq. (11) (note that Spin(D = 5) ⊃
Zf2 ) [30, 55]:

ΩD=5
Spin(D=5)×SU(5) ≡ TPD(Spin(D = 5)× SU(5)) = Z,

(22)
where the topological invariant is given by the SU(5)
Chern-Simons 5-form, associated with perturbative local
anomalies captured by perturbative Feynman diagram
calculations in 3+1D.

Again, such a cobordism invariant and the associ-
ated invertible topological order can be detected by the
boundary chiral fermions: if the 3+1D boundary SU(5)
chiral fermion theory is free from any of the Z class of
SU(5) perturbative local anomaly, then the correspond-
ing cobordism invariant and the 4+1D bulk invertible
topological order are trivial. Thus, by Proposition 1
and 2, any SU(5) gauged chiral fermion theory that can be
regularized at the boundary of a 4+1D gapped local lattice
model, can be regularized by a 3+1D local lattice model
via the method (18), provided that the SU(5) gauge the-
ory is free of the SU(5) perturbative anomalies (see also
Prop. I in Appendix A 1). In particular, the SU(5) grand
unified theory [5] can be regularized by a lattice. This
implies that its induced 15-fermion Standard Model can
be regularized by a lattice fermion model.

V. IMPLICATIONS AND CONCLUSIONS

In fact, an n + 1D G-symmetric iTQFT given by a
cobordism class in Proposition 1 and 2 corresponds to
an nD ’t Hooft anomaly of G-symmetry (see footnote
4 and the details of anomalies in Appendix A). So a
trivial cobordism class in n+ 1D for G-symmetry means
all-’t Hooft-anomaly-free in nD for the full G-symmetry.
Namely, by far we only show that anomaly-free gauged
chiral fermion theories can be defined on a lattice with
non-dynamical background gauge fields (Model 1 and
Model 2 in Appendix A 1), regularized with onsite sym-
metries in its own dimensions (via (18)). However, we can

obtain a dynamical chiral gauge theory (Model 3 in Ap-
pendix A 1) by dynamically gauging the onsite symme-
try: introducing dynamical gauge link variables between
local sites (e.g. dynamically sum over gauge inequivalent
configurations in the partition function) — this is a hard-
gauge model but not a local lattice model, see footnote
15. We can further apply the soft-gauge method [18] to
obtain a local lattice model, see Appendix B. We empha-
size if all gauge invariant operators are bosonic, the above
dynamical lattice gauge theory coupled to fermions is ac-
tually a local lattice bosonic model in disguise, as one can
see from the slave-particle/parton approach [36, 78–81].

We remark that the dynamical Spin(10) chiral gauge
theory coupled to Weyl fermions in the 16-dimensional
spinor representation is a local bosonic theory, since all
gauge invariant operators are bosonic.17 The lattice reg-
ularization that realizes the dynamical Spin(10) chiral
gauge theory is also a local bosonic model (see Appendix
B). In other words, the Spin(10) dynamical chiral gauge
theory with Weyl fermions in a 16-dimensional represen-
tation, and the induced 16-fermion Standard Model, can
be regularized as the low energy effective theory of a lo-
cal lattice model of qubits (since any local bosonic lat-
tice model can be viewed as a lattice model of qubits).
Based on the stability of cobordism group of Eq. (10) for
N ≥ 7, our result directly applies to a Spin(N = 18)
chiral gauge theory [72, 82], which is also a local bosonic
model. Thus our study implies that all elementary par-
ticles (except the graviton) can be viewed as originated
from qubits [83–85]. It is a concrete realization of “it
from qubit [86],” representing an Ultra Unification of all
gauge interactions and matter fermions in term of quan-
tum information (i.e. qubits).

The statement that all elementary particles arise from
bosonic qubits has a falsifiable experimental prediction:
all fermions and their fermionic bound states must carry
non-trivial gauge charge [36, 87]. As a result, the “Stan-
dard Model” from a lattice qubit model cannot just have

a U(1)×SU(2)×SU(3)
Zq

gauge group, since such a Standard

Model indeed has fermionic bound states that carry no
gauge charge. Thus, the “standard model” from a lattice
qubit model must have a larger gauge group, e.g. adding
a new [Z2] gauge sector,18 where we gain a new cos-
mic string (whose spacetime trajectory is a 2-dimensional

17 In Appendix B, we provide the explicit slave-particle/parton con-
struction for a 4+1D local bosonic lattice model, whose bound-
ary can give rise to the dynamical Spin(10) chiral gauge theory
coupled to Weyl fermions (Model 3) in the 16-dimensional rep-
resentation.

18 See Footnote 11, we can show that

Spin(D)× Spin(10)

Zq′
⊃ Spin(D)×SU(5) ⊃ Spin(D)×

U(1)× SU(2)× SU(3)

Z6
,

where q′ = 1 or 2, while

SO(10) ⊃ SU(5) ⊃
U(1)× SU(2)× SU(3)

Z6
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worldsheet) — the flux line of the new [Z2] gauge field
[88].

In contrast, the dynamical SU(5) chiral gauge theory
coupled to Weyl fermions in the 5- and 10-dimensional
representations is a fermionic theory definable on spin
manifolds, since some gauge invariant operators are
fermionic. The lattice regularization that realizes the
dynamical SU(5) chiral gauge theory is also a local
fermionic model (which is not a local lattice model of
qubits). The Standard Model from local fermionic lattice

models can have U(1)×SU(2)×SU(3)
Zq

as its gauge group, see

Footnote 18. It does not require extra gauge groups.
In our work, we have shown that a Spin(10) (or SU(5))

chiral gauge theory with 16 (or 15) Weyl fermions can be
regularized by lattice, since the mirror sector can be fully
gapped by Spin(10) (or SU(5)) symmetric interactions
without spontaneously breaking the symmetry. However,
it is possible that the mirror sector can be fully gapped
by interactions with a larger symmetry G+ without spon-
taneously breaking the symmetry G+. In this case, after
gauging Spin(10) (or SU(5)), the chiral gauge theory may
have an exact global symmetry GQ (on a lattice scale or a
UV cutoff scale such as an effective Planck scale) sitting
as a quotient group satisfying the short exact sequences:

1→ Spin(10)→ G+ → GQ → 1,

or 1→ SU(5)→ G+ → GQ → 1. (23)

The reason GQ is still a global symmetry after gauging
Spin(10) (or SU(5)) is that because G+ can be chosen
as an onsite symmetry on the UV cutoff scale and G+ is
anomaly-free on the d+ 1D. Once a normal subgroup is
gauged, the GQ is still anomaly-free and unbroken thus
can still be made onsite in d+ 1D.

Lastly, we comment on the dynamics of these dy-
namical chiral gauge theories (Model 3, as highly long-
range entangled states). At the low energy of these chi-
ral gauge theories, there could be emergent symmetries
(e.g. higher-form symmetries [33] or higher symmetries
in general [30]) having new ’t Hooft anomalies. However,
emergent new anomalies only mean the emergent sym-
metries cannot be strictly regularized locally on-site, on-
link, on-n-simplex, etc., which, we emphasize, is a rather
distinct issue deviated from regularizing chiral fermion
theories which we solved earlier. After regularizing chi-
ral fermion theories on a lattice, and after dynamically
gauging, the emergent new anomalies only constrain the
dynamics of gauge theories (e.g. gapless near a quantum

and

Spin(10) ⊃ SU(5) ⊃
U(1)× SU(2)× SU(3)

Z6
.

For q′ = 2, when we gauge the [Spin(10)], we also require

to gauge the [Zf2 × SU(5)] in the embedded smaller group

Spin(D) × SU(5) ⊂ Spin(D)×Spin(10)
Zq′=2

. The dynamically gaug-

ing [Zf2 ] symmetry produces the new [Z2] gauge sector.

critical fixed point, or emergent symmetry spontaneously
broken, etc.). We aim to address the dynamics of gauge
theories in future work.
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Appendix A: Definitions of Terminology and
Discussions based on Anomalies

In the main text, we have described our results with-
out directly mentioning the quantum anomaly (footnote
4). However, in literature, many people discuss the gauge
chiral fermion problem in terms of anomaly. In this sec-
tion, we will discuss our approach using the concept of
the anomaly. We will carefully define several different
anomalies. We will also carefully define several concepts
of chiral fermion field theory and the concepts of lattice
theory as a well-defined quantum theory.

1. Detailed definitions of some relevant concepts

We should clarify several related concepts of Spin(10)
chiral fermion field theories and models as follows:

Model 1: Without gauging or before gauging Spin(10) sym-
metry, the theory is a “Spin(10) chiral fermion the-
ory” with the full internal global symmetry Gf =

Spin(10) ⊃ Zf2 . In this case, we call the anomaly
associated with the global symmetry Gf as the ’t
Hooft anomaly of Gf . We classify the ’t Hooft
anomaly [91] of Gf in Eq. (10) and Eq. (11).

Model 2: We may twist the Spin(10) symmetry via a non-
dynamical background Spin(10) gauge field, known
as the symmetry twist. We name such a theory

19 Ref. 66 (which appears around the same period of time of the
present work) and two other later works, Ref. 55 and 89, check
more systematically the co/bordism groups relevant for other
Standard Models and Grand Unifications. Furthermore, Ref. 90
examines the anomaly and cobordism constraints from Ref. 55
of these models, and explores the potential new physics beyond
the Standard Model.
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as a “Spin(10) gauged chiral fermion theory.” The
anomaly of G classified in (10) becomes the back-
ground gauge anomaly, which is the same as the ’t
Hooft anomaly in nature.

Model 3: After dynamical gauging Spin(10) symmetry via
dynamical weakly fluctuating Spin(10) gauge field,
the theory becomes a “Spin(10) chiral gauge the-
ory.” In this case, it is a standard terminology
to call the anomaly, descending from Model 1’s ’t
Hooft anomaly and after gauging Spin(10), as the
dynamical gauge anomaly. We will thus also study
the dynamical gauge anomaly of Spin(10), thanks
to Eq. (10). If any model possesses any dynami-
cal gauge anomaly, then this theory is inconsistent
thus ill-defined.

Ref. 23 adopted a new viewpoint (or a new definition)
of anomalies proposed in Ref. 92 (see Def. 1), for inter-
acting quantum theories, which in turn leads to a classifi-
cation of anomalies. Before we proceed, we should clarify
some conventions of terminology as the definitions:

Def. I: Well-defined quantum theories are quantum
theories defined with a finite-dimensional Hilbert
space and a finite-dimensional Hamiltonian matrix
for a finite-size system in the real space. In this
work, we only focus on this class of quantum theo-
ries.

Local lattice models are interacting or non-
interacting lattice models whose many-body
Hilbert space V has the following tensor product
decomposition

V =
⊗
i

Vi (A1)

where Vi is a finite-dimensional Hilbert space for
each lattice site.

By interacting models, we mean the Hamiltonian
contains certain higher-order terms beyond the
quadratic terms of fundamental lattice operators
(such as quartic fermionic or spin operator terms
beyond the quadratic terms).

By non-interacting models (or the so-called free or
quadratic models), we mean the Hamiltonian con-
tains at most the quadratic terms (thus easily di-
agonalizable and solvable) of fundamental lattice
operators.

Local interactions: By local interactions, we
mean all interaction terms in the Hamiltonian (or a
Lagrangian in the path integral) must be bounded
by a finite range of lattice spacings. We call these
types as local, finite-range or short-range interac-
tions. We do not allow infinite-range interactions,
nor the interactions with strength exponentially-
decay to zero only at infinite. For any interaction
term of our lattice model, it must be bounded by a

finite spatial range, say if the operators act on any
site i to j, then the locality means that “|i − j| ≤
a finite distance.”

We emphasize that conventional lattice gauge theo-
ries with dynamical gauge fields are usually not lo-
cal lattice models: Since there is a non-local gauge
constraint, thereby the tensor product decomposi-
tion (A1) is violated. In this work, we do not use
models of conventional lattice gauge theories, but
limit ourselves to only local lattice models.

Def. II: The onsite symmetry, for such local lattice mod-
els, is defined as a global internal symmetry, whose
symmetry transformation operator has the follow-
ing tensor product decomposition

U =
⊗
i

Ui, (A2)

where Ui is a unitary operator acting on Vi.
Def. III: Well-defined quantum field theory (living on

the boundary of lattice model): When we mention
a “well-defined” quantum field theory (QFT), we
always mean a limited class of QFTs which can be
regularized (i.e. regularized) as the low energy ef-
fective boundary theory of a gapped local lattice
model (see Def. I) in one higher dimension (so-
called the bulk). The global symmetry, if any, is
regularized as an onsite symmetry (see Def. II) for
the full bulk-boundary system. Such a QFT has at
most the b-anomaly to be defined later in Def. 1.
A “well-defined” QFT cannot have the r-anomaly
to be defined later in Def. 2.

Def. IV: All lattice obstruction-free (required to be reg-
ularizable in the same dimension): The above de-
fined QFTs include d+ 1D QFTs that can be reg-
ularized by a lattice model in the same dimension
d + 1D (with the symmetry, if any, regularized as
an onsite symmetry or a local on-n-simplex sym-
metry20), because the gapped bulk in one higher
dimension (of Def. III) can be a decoupled gapped
tensor product state. This leads to a concept of all
lattice obstruction-free: By saying a d + 1D QFT
is all lattice obstruction-free, we always mean a
d+1D well-defined quantum field theory in Def. III,
which can be regularized as the low energy effec-
tive boundary theory of a d + 2D gapped tensor
product state (i.e. a gapped trivial vacuum) on a
one-higher-dimensional lattice. Note that a ten-
sor product state (i.e. a trivial state, with neither

20 Here we only focus on the well-defined G-symmetric QFTs with
ordinary G-global symmetries (the 0-form symmetry in the sense
of generalized global symmetries [33]). If there is a generalized
higher global symmetry [33], then we need to modify the “lattice
onsite symmetry realization” to the “lattice local on-n-simplex
symmetry realization.”
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short-range nor long-range entanglement of Def. V)
in a local lattice model is defined as

|Ψ〉 =
⊗
i

|ψi〉, |ψi〉 ∈ Vi, (A3)

which can be gapped and decoupled from its bound-
ary theory. In contrast, the generic state is more
general and is not necessarily a tensor product, such
as

|Ψ〉 =
∑
{c{i}}

c{i}

(⊗
i

|ψi〉
)
, |ψi〉 ∈ Vi, (A4)

with generic complex normalizable coefficients c{i}.

Def. V: Gapped system and entanglement: By a
gapped tensor product state, we mean that the ten-
sor product state is a unique ground state (with an
energy E0) of some lattice bulk Hamiltonian sys-
tem whose energy spectrum has a finite energy gap
∆E = Eexcited − E0 > 0 separated from all ex-
cited states Eexcited. Below the energy gap ∆E , the
system behaves as a gapped trivial vacuum (or a
gapped trivial insulator in condensed matter) with
no entanglement.

On the other hand, general gapped systems (∆E =
Eexcited − E0 > 0) can generically posses short-
range or long-range entanglements.

Short-range entangle states, short-range en-
tanglements (SRE) and SPT states are de-
fined as those gapped quantum ground states which
can be deformed via local unitary transformations
(LUT) to a trivial tensor product state once we re-
move, part of or all of, the internal global symme-
tries [16]. Namely, along the deformations to a triv-
ial tensor product state, the LUT may break some
internal global symmetry of the state. Gapped SRE
states are also named to be SPT states.

Long-range entangle states, long-range en-
tanglements (LRE) and topological orders
are defined as those gapped quantum ground states
which cannot be deformed via local unitary trans-
formations (LUT) to a trivial tensor product state,
even if we remove all internal global symmetries.
Gapped LRE states are also named to be topologi-
cal orders.

By this definition Def. V, we can also rephrase
Def. IV as a well-defined quantum field theory (in
Def. III) is all lattice obstruction-free (Def. IV) if
it can be regularized as the low energy effective
boundary theory of a gapped bulk lattice system
whose bulk has no LRE (i.e. no topological or-
der) and no SRE (i.e. no SPT state), thus the bulk
has no entanglement structure at all as a gapped
trivial tensor product state. Readers should be
cautious that although this gapped bulk alone has
no entanglement, the boundary theory (such as an

all anomaly-free QFT) can be highly-entangled and
can have gapless states.

Def. VI: All anomaly-free (i.e. here free of all invertible
bosonic and fermionic b-anomalies):

The recent development suggests that all anomaly-
free conditions of d+ 1D G-symmetric QFT can be
understood as the QFT can live on the boundary
of a trivial cobordism class of a trivial invertible
topological quantum field theories (iTQFT) from a
corresponding cobordism group [29] or its higher-
symmetry and higher-classifying space generaliza-
tion [30–32]:

Ωd+2
G . (A5)

Namely, the trivial iTQFT is the trivial element 0
in the Ωd+2

G . Let us explain this development below.

’t Hooft anomaly is a property that the global sym-
metry of the theory cannot be made onsite on a lat-
tice, thus there is an obstruction to gauge the non-
onsite symmetry, which is called the anomalous
symmetry (Model 1) [18, 92]. Dynamical gauge
anomaly is a property that its theory is ill-defined
(discussed in Model 3). How to classify the prop-
erty of non-onsite global symmetries or seemly ill-
defined theories?

The previous anomaly inflow picture relates the
anomalous non-interacting field theories or non-
interacting lattice models (Def. I) to the boundary
of one higher dimensional bulk [93, 94]. Ref. 95
systematically described anomalies in field theories
in terms of topological invariants in one higher di-
mension (such as the index of a Dirac operator),
which turn out to be cobordism invariants [96].
However, to construct an interacting lattice reg-
ularization of a field theory, we need to classify
anomalies in interacting field theories and inter-
acting lattice models. Ref. 92 attempts to classify
anomalies in interacting lattice models, via topo-
logical orders and symmetry-protected topological
states (SPTs) of interacting lattice models in one
higher dimension.

Let us introduce a few different concepts of anomalies
as the definitions of terminology:

Def. 1: b-anomaly (≡ boundary defined anomaly):
There are anomalous theories that can be regu-
larized as the low energy effective boundary the-
ory of a gapped local interacting lattice model in
one higher dimension, where the global symmetry,
if any, is regularized as an onsite symmetry for
the whole bulk-boundary coupled system. How-
ever, the effective symmetry, if any, on the effec-
tive boundary theory alone is non-onsite. There is
an obstruction to gauge the non-onsite symmetry
[18, 92], because the standard gauging only works
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for an onsite symmetry: Because there is no canoni-
cal way to input the gauge variables on the links be-
tween “non-local sites” where the non-onsite sym-
metry acts. The obstruction of gauging is the same
phenomenon happened in ’t Hooft anomalies. We
will call this kind of anomalies as the b-anomalies,
which include the ’t Hooft anomalies (associated
with some internal global symmetry), gravitational
anomalies (associated with no internal global sym-
metry), and their mixed anomalies.

Def. 2: r-anomalies (≡ radical anomaly):
There are also anomalous theories that cannot be
regularized as the low energy effective boundary
theory of any gapped local lattice model in one
higher dimension. We will call this kind of anoma-
lies as the r-anomalies, which include the dynami-
cal gauge anomalies. A theory with an r-anomaly
is simply an ill-defined quantum theory.

However, for a dynamical gauge theory with an
r-anomaly, very often, we un-gauge the theory to
turn the dynamical gauge field (on the link or on
n-simplex) into a global symmetry transformation
(onsite or on (n − 1)-simplex). The resulting un-
gauged quantum theory may have a b-anomaly (’t
Hooft anomaly) instead of an r-anomaly. (See ex-
amples below.)

Def. 3: invertible v.s. non-invertible anomalies:
There are invertible anomalies that can be can-
celed by other anomalies. (The anomalies dis-
cussed in the field theory literature are mostly in-
vertible anomalies.) Invertible anomalies form an
abelian group, such as an infinite integer group
Z (i.e. a perturbative local anomaly, captured
by a Feynman diagram loop calculation) or a fi-
nite group Zn of some positive integer n (i.e. a
non-perturbative global anomaly), or the product
groups of Z and Zn. The invertible anomaly labeled
by an abelian group element g can be canceled by
an inverted anomaly labeled by an inverted abelian
group element g−1. There are also non-invertible
anomalies[41, 92, 97–100] that cannot be canceled
by any other anomalies.

Def. 4: bosonic v.s. fermionic anomalies:
There are bosonic anomalies where the local oper-
ators in the corresponding anomalous theories are
all bosonic [101, 102]. There are fermionic anoma-
lies where some local operators in the correspond-
ing anomalous theories are fermionic. For exam-
ple, a Spin(10) chiral Weyl fermion theory has an

internal symmetry Spin(10) ⊃ Zf2 containing the
fermion parity, thus we will need to classify possible
fermionic anomalies of the interacting fermionic
theory (later in Eq. (10)) in order to classify all of

its anomalies.21

For more examples,

• A 1+1D chiral complex Weyl fermion theory with
a Hamiltonian, H = iψ†∂xψ and a 1-component
complex Weyl spinor ψ, has

a fermionic invertible b-anomaly.

It is invertible because the anomaly has a Z class
as a group classification.

• A 3+1D Weyl fermion doublet coupled to a probed
(thus non-dynamical) SU(2) background gauge
field has the Witten SU(2) anomaly [103] as a type
of ’t Hooft anomaly of the SU(2) global symmetry,
which is

a fermionic invertible b-anomaly.

It is fermionic because the SU(2) ⊃ Zf2 has the
fermion parity at its Z2 center. It is invertible be-
cause the anomaly has a Z2 class as a group classi-
fication.

• A 3+1D Weyl fermion doublet coupled to a dy-
namical SU(2) gauge field has the Witten SU(2)
anomaly [103], which is

a bosonic invertible r-anomaly.

It is bosonic since all the local operators are gauge

invariant and bosonic. Namely, the SU(2) (⊃ Zf2 )

is dynamically gauged, thus the fermion parity Zf2
is also gauged and the full theory is bosonic. It is
an r-anomaly, since the Weyl fermion coupled to
this SU(2) gauge theory cannot be regularized as a
boundary of any gapped local bosonic lattice model
[67]. However, if we un-gauge the SU(2) of this
ill-defined gauge theory, then its bosonic invertible
r-anomaly (Def. 2) becomes the previous fermionic
invertible b-anomaly.

• A Z2 gauge theory in 2+1D or above with only Z2

charge excitations has

a bosonic non-invertible b-anomaly,

regularized as a boundary theory of a one-higher-
dimensional Z2 gauge theory which is a topological
quantum field theory (TQFT).

21 However, once the [Spin(10)] ⊃ Zf2 is gauged thus the fermion

parity Zf2 is gauged in the Spin(10) chiral Weyl fermion theory,
it becomes a Spin(10) chiral gauge theory, where all local gauge-
invariant operators are bosons.
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The classification in Ref. 92 is a classification of all
b-anomalies in terms of the topological orders [104] or
symmetry-protected topological (SPT) states [15, 16, 46]
in local lattice models in one higher dimension. A b-
anomaly is invertible if it is characterized by an SPT
state or an invertible topological order [41, 42, 105, 106]
in one higher dimension. In this work, we will only focus
on the invertible b-anomalies and their classifications.

From now on, by anomalous field theory, we will specif-
ically mean a well-defined quantum field theory (Def. III)
with at most some invertible b-anomalies (defined in
Def. 1). In this work, we only study well-defined quantum
field theories (Def. III) as the effective low energy theory
of the boundary of local lattice models (Def. I). So, we
exclude theories with the r-anomaly (defined in Def. 2)
since they are not well-defined quantum theories (by the
norm of both Def. I and Def. 1, and the standard lore).

According to the above classification, an anomaly-free
(Def. VI) well-defined quantum field theory (Def. III)22 is
nothing but a boundary theory of a gapped trivial state
(a tensor product state) on a one-higher-dimensional lat-
tice, which means all lattice obstruction-free that can be
also regularizable in the same dimension (Def. IV).

The generalization of the anomaly inflow to a lattice
model with interactions is crucial to obtain this result,
since some of the key concepts, like the tensor product
state and the onsite symmetry, require a lattice (provid-
ing the locality of sites) to define.

With the above terminology definitions, we claim a
proposition (Prop.):

Prop. I: Any well-defined quantum field theory (Def. III) if
that is

all anomaly free (Def. VI)

with a list of conditions in the footnote 22, then it
is

all lattice obstruction-free (Def. IV)

required to be regularizable in the same dimension:
Namely, any well-defined QFT that is all anomaly-
free can be regularized by a local interacting lat-
tice model in the same dimension, where the global
symmetry is regularized as an onsite symmetry (or
generalized local on-n-simplex symmetries) [92].23

22 Thus here the all anomaly-free condition for a well-defined quan-
tum field theory (Def. III) specifically satisfies:

• free of b-anomalies in Def. 1,

• free of all invertible anomalies in Def. 3,

• free of bosonic and fermionic anomalies in Def. 4.

23 See Footnote 20 for the comment on the local symmetry realiza-
tions on the lattice.

This result can be used to solve the gauged chiral
fermion problem via the mirror fermion approach [23]:
Given a d+1D gauged chiral fermion theory with a gauge

group Gf ⊃ Zf2 , we first un-gauge, and obtain a d + 1D
chiral fermion theory with an internal global symmetry

group Gf ⊃ Zf2 . Then, we find a gapped d + 2D lattice

model with a symmetry Gf ⊃ Zf2 whose boundary regu-
larizes the un-gauged d + 1D chiral fermion theory (the
Model 1). The symmetry Gf is regularized as an onsite
symmetry of the d + 2D lattice model. Next, we deter-
mine if the ground state of the bulk gapped d+2D lattice
model has a trivial topological order and a trivial SPT
state or not. If the d + 2D ground state indeed has no
topological order and no SPT state (which is a trivial ten-
sor product state by Def. IV), then the d+1D un-gauged
chiral fermion theory can be regularized as the low energy
effective theory of a d+ 1D local lattice model. Also, the
d + 1D gauged chiral fermion theory can be regularized
as the low energy effective theory of a d+1D local lattice
model after gauging the onsite symmetry Gf .

To show the above claim, we can choose the d + 1D
lattice model to be a slab of the d + 2D lattice model
with a finite number of layers in the extra dimension. In
such a model, the normal sector (or the chiral fermion
sector) lives on one surface of the slab and the mirror
fermion sector lives on the other surface of the slab. If
the normal sector is free of all anomalies, it implies that
the d + 2D bulk is actually a trivial gapped phase. If
so, the mirror sector can be chosen to be a symmetric
gapped boundary and can be fully gapped out without
breaking the onsite symmetry [15, 16, 18]. A detailed
explanation is given in Section A 2. Since the d+2D slab
has only finite layers, the d+2D slab is actually a d+1D
lattice model with finite orbitals per site. Last, we gauge

Above we propose that:

If “all anomaly free”
(Def. VI)

→ then “all lattice obstruction-free.”
(Def. IV)

(A6)

However, some well-defined QFTs (Def. III) can be regularized
on the boundary of one higher-dimensional lattice model, e.g.,
even if they have b-anomalies in Def. 1.

Thus, there is a subtlety about the converse statement. Only
when we restrict the “all lattice obstruction-free” requiring QFT
to be regularizable in the same dimension and all symmetries
regularized strictly locally (Def. IV), then the converse statement
is also true:

If “all lattice obstruction-free”
(Def. IV)

→ then “all anomaly free.”
(Def. VI)

(A7)

In this work, when we classify invertible ’t Hooft anomalies of
global symmetries G, we use the cobordism group Ωd+2

G in (A5)
whose category of manifolds are only smooth and differentiable
manifolds. Therefore, we can apply a known mathematical fact
that all those smooth and differentiable manifolds are triangu-
lable manifolds, via the Morse theory. Thus the anomalies cap-
tured in Ωd+2

G of smooth and differentiable manifolds can be
triangulated on a lattice of triangulable manifolds. See more
comments on Sec. II.
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the onsite symmetry to obtain a gauged chiral fermion
theory.

Thus, the above understanding suggests:

Prop. II: Any d+1D gauged chiral fermion theory (Model 2),
that can be regularized as the low energy effective
boundary theory of a d + 2D gapped local lattice
model in one higher dimension (Def. III), can be
regularized as the low energy effective theory of a
local lattice model in the same d + 1D dimension
(Def. IV), as long as the theory is free of all anoma-
lies (given by Def. VI and Footnote 22).

We remark that for a certain anomalous d + 1D chi-
ral fermion theory with an internal symmetry group Gf ,
their corresponding d+ 2D topological/SPT orders may
have a gapped boundary that does not break the Gf sym-
metry, but has a non-trivial Gf -symmetric anomalous
boundary topological order [18, 107] — the low energy
theory of topological order may be a d+1DGf -symmetric
topological quantum field theories (TQFT) canceling the
same ’t Hooft anomaly of d+ 1D chiral fermion theory.

For such an anomalous d+1D chiral fermion theory, we
can have a lattice model in the same d + 1D dimension
that exactly regularizes all the low energy particles of
the anomalous chiral fermion theories. However, the full
low energy effective theory of the lattice model will con-
tain an extra gauge field for a finite gauge group Gextra,
prescribing the non-trivial anomalous d + 1D topologi-
cal order and TQFT. Thus, if we only concern about
low energy particles, even some anomalous gauged chi-
ral fermion theories can be regularized by lattice models
in the same dimension [23]. But the lattice models will
also produce an extra d + 1D Gextra-gauge theory with
no additional low energy particles, but may give rise to
additional extended objects such as string and brane ex-
citations from the TQFT.

It is well-known that a Spin(10) chiral fermion the-
ory (Model 1) is free of all perturbative ’t Hooft anoma-
lies; similarly, it is also well-known that a Spin(10) chiral
gauge theory (Model 3) is free of all perturbative dynami-
cal gauge anomalies [108, 109]. But it is not known before
if the Spin(10) chiral fermion theory (Model 1) is free of
all other non-perturbative global anomalies (of ’t Hooft
anomalies) or not. Thus, it is also not known in the past
literature if the Spin(10) chiral gauge theory (Model 3)
is free of all other non-perturbative global anomalies (as
dynamical gauge anomalies) or not.

Ref. 23 provides an argument that the Spin(10) chiral
fermion theory is free of all anomalies, by proposing a
sufficient condition: A gauged chiral fermion theory in
a d+ 1-dimensional spacetime with a gauge group Gf is
free of all anomalies if (0) it can be regularized as a low
energy effective boundary theory of a gapped local lattice
model in one higher dimension (Def. III), (1) there ex-
ists a non-zero Higgs field that makes all the fermions
massive, and (2) πn(Gf/Ggrnd) = 0 for 0 ≤ n ≤ d + 2,
where Ggrnd is the unbroken gauge symmetry group for
the non-zero Higgs field. The chiral fermions satisfying

the above conditions can be gapped out by direct inter-
actions or boson-induced interactions without breaking
the Gf symmetry, even when the fermion mass term is
forbidden by the symmetry. This new mechanism to give
fermions an effective energy gap (or an effective mass)
is referred to as “mass without mass term [72]” (an in-
duced energy gap by interactions without a quadratic
mass term, beyond the ordinary Higgs mechanism [18]).
But the above statement is based on an assumption that
a smooth orientation fluctuation of Higgs field can give
rise to a symmetric disordered phase. Some other related
approaches have also been proposed [17, 72–74, 77].

In this work, we do not require the proposed conditions
of Ref. 23 above, nor need the assumption of new fluc-
tuating Higgs fields in Ref. 23. Instead, we will indepen-
dently and rigorously show that the above Spin(10) chiral
fermion theory (Model 1) is indeed free of all ’t Hooft
anomalies by a cobordism group approach (Eq. (10)),
and thus it can be defined on a 3+1D lattice; which can
become a Spin(10) gauged chiral fermion theory (Model
2) by coupling to a Spin(10) background gauge field, or
become a Spin(10) chiral gauge theory (Model 3) by dy-
namically gauging Spin(10).

2. Gapped boundary of a state with a trivial
invertible topological order with symmetry

In the following, we show that:
(1) There exists a 3+1D gapped boundary for the above
lattice model without breaking the Spin(10) symmetry
at the low energy.
(2) There exist non-perturbative interactions to gap
the mirror world chiral fermions without breaking the
Spin(10) symmetry.

The focus of this section is on showing the existence
(in the mathematical sense), instead of proving the con-
structions (which may not be unique for the uniqueness
in the mathematical sense). In section III, we provide
the 16 copies of the lattice model (7) give rise to the
3+1D Weyl fermions in the 16-dimensional spinor repre-
sentation of the Spin(10) on the lattice boundary, see Fig
1.

In order to show Prop. I which consequently includes
also Prop. II, we break down this proposition into several
relatedly helpful sub-propositions. For any well-defined
d + 1D QFT (defined in Def. III) that is all anomaly-
free (defined in Def. VI) with an internal symmetry Gf ,
which can live on the boundary of d+2D bulk regularized
lattice model, we aim to show that (which we focus on
the spatial dimension d = 3):

Prop. i: There exists a symmetric gapped boundary for
the corresponding d + 2D bulk regularized lattice
model. This d + 1D symmetric gapped bound-
ary does not break any internal symmetry Gf of
the whole bulk-boundary system, and does not
contribute any ground state degeneracy (neither
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symmetry-breaking degeneracy, nor topological de-
generacy [110, 111]).

Prop. ii: There exist non-perturbative symmetric interac-
tions to fully gap this well-defined all anomaly-free
d+1D QFT, via deforming the QFT by adding any
all anomaly-free gapless or gapped sectors, while
still preserving the full Gf internal symmetry, with-
out any symmetry-breaking and without contribut-
ing any degeneracy (neither symmetry-breaking de-
generacy nor topological degeneracy).

We will see that showing Prop. i is sufficient enough
to show that Prop. I is also true. In other words, we
only need Prop. i but do not need to prove Prop. ii, in
order to prove Prop. I.

• To show Prop. i, we first note that by a symmetric
gapped boundary, we also mean that the ground state
energy E0 (of this whole bulk-boundary system) to its
higher energy excited states (at energy E1, . . . , etc.), are
separated by a finite energy gap ∆E = E1 − E0 > 0.
Of course, by defining the energy gap ∆E > 0 here, we
should first set-up a toy-model system with only such a
d + 1D symmetric gapped boundary and a fully gapped
d+ 2D bulk. (We either have only this gapped boundary
and without other boundaries, or other boundaries are
also fully gapped.)

If the gapped d+2D bulk has also a symmetric gapless
boundary (say on a d+1D boundary A) other than the
symmetric gapped boundary of Prop. i (say on another
d+1D boundary B). Thus the gapless boundary A con-
tributes to the low energy spectrum at the infrared (IR)
of a tiny energy sub-gap

δE,A ' exp(−L/ξ) (A8)

which scales exponentially over the linear system size L
over the correlation length ξ; the gapped boundary B
contributes to the energy spectrum only at the higher
energy at a deeper ultraviolet (UV) of a finite energy
gap

∆E,B ' ∆E > 0, (A9)

mentioned earlier. Then the whole bulk-boundary sys-
tem would become gapless instead of being gapped.

The important issue is that when the d + 2D gapped
bulk has no entanglements (i.e. no LRE nor SRE by
Def. V), then “the d+1D symmetric gapless boundary
A” and “the d+1D symmetric gapped boundary B” ac-
tually cannot affect each other, thus are isolated from
each other. See more in Appendix C.

To proceed showing Prop. i, if the bulk regularized
lattice is in the gapped trivial phase (i.e. has a gapped
trivial tensor product ground state), we can make a
boundary by first deforming the bulk ground state (by
symmetry-preserving LUT in Def. V) into a tensor prod-
uct state. Such a deformation does not close the energy
gap since the bulk state is already in the symmetric

gapped trivial phase. The trivial tensor product state
always can have a gapped boundary respect to a trivial
vacuum24 — by saying so, we mean that we set the
energy scale of the trivial vacuum (normally to below
some energy scale such as a finite energy ∆E > 0, or
below an infinite energy gap ∆E → ∞) to be the same
as the energy scale of the gapped boundary (say on B)
∆E ' ∆E,B > 0 in Eq. (A9). We note that the above
deformation respects the onsite symmetry (if any), and
the resulting tensor product state also respects the
onsite symmetry. The gapped boundary does not break
the onsite symmetry, thus has no symmetry-breaking
degeneracy. Since the symmetric gapped boundary has
no entanglements, thus has no topological degeneracy
(because topological degeneracy [110, 111] are due to
LRE defined in Def. V).

The above completes our proof of Prop. i.

In Appendix D, we can also show Prop. i by a second
viewpoint: a derivation from the classification of quan-
tum phases of matter and their phase transitions.

This second viewpoint from the classification of quan-
tum phases of matter shows that there is no need for an
energy-gap closing phase transition. By maintaining a fi-
nite energy gap ∆E between two phases, there must exist
a symmetric gapped boundary between two phases, thus
we have given an alternative proof of Prop. i.

The slight conceptual difference between the first
viewpoint and the second viewpoint is that, the first is
about the one-spatial-dimensional-lower phase boundary
in d+ 1D between two d+ 2D phases, while the second is
about no need for the phase transition in d+2D between
two d+ 2D phases in a quantum phase diagram (at zero
temperature T = 0) by tuning a certain coupling g.

• To show Prop. I, we consider a d + 2D bulk regular-
ized lattice model that regularizes the d + 1D QFT as
its boundary theory by Def. III. We choose the bulk lat-
tice model to be a slab of finite thickness, such that one
boundary of the slab regularizes the QFT (Boundary A),
and the other boundary is a symmetric gapped boundary
(Boundary B) in Prop. i. We apply the Prop. i proven
earlier. Here a slab of finite thickness is always achievable
for this system (especially for the gauged chiral fermion
problem of Model 1 and Model 2), because of the isolation
between two d+1D boundaries A and B due to Appendix
C’s Remark (i) on the isolation of the energy scale and
Remark (ii) on the isolation of the mutual entanglement,
see Appendix C on the energy scale and mutual entan-
glement between gapless and gapped boundaries.

24 The trivial tensor product state always can have a gapped bound-
ary respect to a trivial vacuum, because the trivial tensor prod-
uct state is itself the same phase indistinguishable as the trivial
vacuum. Thus its gapped boundary simply is the trivial gapped
domain wall between the same phase [112, 113].
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Thus the low energy physics of the d + 2D slab is
described by this d + 1D QFT. A lattice model of this
d + 2D slab of a finite thickness can be constructed
explicitly as a lattice model in one lower dimension
(d + 1D), by rewriting the “quantum Hilbert space

associated with different lattice sites along the finite
width thickness w (i.e. an extra small dimension along
w)” to “quantum Hilbert space associated with finite
orbitals per site” in d+ 1D.

This completes our proof of Prop. I.25

3. A deformation class of all anomaly-free well-defined QFTs

(a)

1 single

gapless complex

Weyl fermion
~k

E(~k)

(b)

16 copies

of gapless complex

Weyl fermions

in 3+1D

· · · · · · · · · · · · · · · ·
~k

E(~k)

(c)

16 copies

of gapless complex

Weyl fermions

with interactions

in 3+1D

· · · · · · · · · · · · · · · ·
~k

E(~k)

FIG. 1.
(a) A lattice construction of a single Weyl fermion is given in Section III, the subfigure shows the gapless energy spectrum

E(~k) of Brillouin zone in the schematic 3-dimensional momentum ~k = (kx, ky, kz)-space with a linear dispersion |E(~k)| ∝ c|~k|
for some effective speed of light c.
(b) The 16 copies of the same lattice model (7) give rise to the 3+1D Weyl fermions at the low energy in the 16-dimensional
spinor representation of the Spin(10) on the lattice boundary shown in Section III. The 16 gapless Weyl points (schematically

the 16 dots •) may be separated but can be tuned to the same point on the ~k-space Brillouin zone. We show this Spin(10)
chiral Weyl fermion theory is free from all ’t Hooft anomalies via a cobordism theory in Sec. II.
(c) There are two ways to obtain the symmetric gapped boundary for the bulk of the 16 copies of the lattice model: First,
via Prop. i, there exists a symmetric gapped boundary for the corresponding d + 2D bulk regularized lattice model (without
the need to access from gapping out the gapless theories from interactions. Second, via Prop. ii, there exist non-perturbative
symmetric interactions to fully gap this well-defined all anomaly-free Spin(10) chiral fermion theory with 16 Weyl fermions in
16-dimensional spinor representation of the Spin(10). (Schematic interactions are drawn in the shaded blue region.) In this
work, we only prove Prop. i, but we suggest some supportive evidence for Prop. ii but without proving Prop. ii. However,
applying only Prop. i (but without requiring Prop. ii) is sufficient enough for us to construct the Spin(10) chiral fermion theory
on the lattice via Prop. I.

• For Prop. ii, we again consider a bulk lattice model that
regularizes the QFT as its boundary theory by Def. III.
Since the same bulk model can also have a symmetric
gapped boundary according to Prop. i, thus we ask: How
to modify the symmetric interactions in the QFT to make
it into a fully symmetric gapped theory describing the
symmetric gapped boundary?

One key ingredient is that there are more degrees of
freedom given by the full Hilbert space to help us reach
the goal. We may be able to access the symmetric

25 As we said earlier, we do not need Prop. ii to show Prop. I.

gapped phase not only within this specific well-defined
all anomaly-free QFT, but also higher energy spectrum
by engineering all possible degrees of freedom and their
symmetry-preserving local interactions.

We do not have a direct proof of Prop. ii, but we have
several supportive evidence to argue Prop. ii should be
true:

(α) “The deformation classes of QFTs” advocated by
Seiberg [114]: Given a continuum QFT with some en-
ergy scale Λ, with a given global symmetry and derivable
’t Hooft anomaly of global symemtry. We are allowed
to add arbitrary degrees of freedom and new fields pre-
serving the symmetries (and selection rules) and with
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no additional anomaly (without modifying the original
’t Hooft anomaly) at some energies. The new degrees
of freedom do not directly affect the dynamics at lower
energies. Next, we can deform the parameters of this
larger theory with the new degrees of freedom, by mak-
ing the new degrees of freedom interacting with the orig-
inal QFT, which do affect the dynamics. This is a much
larger space of theories, which can land into different new
phases with different dynamics. Seiberg names all these
possible deformations of QFT as a deformation class of
the QFT.
Seiberg [114] conjectured that given two QFTs, say
partition functions Z1 and Z2, in the same spacetime
dimension with:
(i) the same global symmetry (and selection rules),
(ii) the same ’t Hooft anomalies,
we can always add new degrees of freedom at short
distances so that we can interpolate between two QFTs:
The two QFTs, Z1 and Z2, are in the same deformation
class of QFT. In other words, this also means that the
deformation class of QFT can be determined and defined
by the symmetries and the ’t Hooft anomalies of QFT.
Seiberg’s conjecture is in fact shown to be true for many
examples.

What we claim on Prop. ii is indeed a special case of
Seiberg’s proposal [114]: We consider the deformation
class of the anomaly-free well-defined QFT, containing
the trivial gapped phase (e.g. a symmetric gapped
Spin(10) boundary) and a gapless phase (e.g. a symmet-
ric gapless Spin(10) chiral fermion theory), both have
(i) the same global symmetry (and selection rules) and
(ii) no ’t Hooft anomalies (we will show via a cobordism
theory in Sec. II). If Seiberg’s proposal [114] is true, our
proposal must also be true.

(β) We can start from the d + 1D symmetric gapless
all-anomaly-free theory, and adding new d + 1D sym-
metric gapped all-anomaly-free sectors (this is analogous
to Seiberg’s proposal [114]).

Moreover, we can also add additional gapless all-
anomaly-free sectors in the various possible representa-
tions (Rep) of symmetry.26 The symmetry organizes
the (both gapped and gapless) energy eigenstates in the
energy spectrum into various possible representations of
the symmetry group, whose selection rules constrain the
interactions and dynamics between states in the energy
spectrum.

Based on (α) and (β), we propose that Prop. ii is also

26 For example, the trivial Rep of pairs of left and right moving
3+1D Weyl fermion ψL and ψR in the trivial Rep of Spin(10).

Then adding their mass term, e.g. m(ψ†LψR + ψ†RψL) (only for
these additional trivial Rep gapless sectors) do not break the
Spin(10) symmetry.

true.

Appendix B: Construct a local bosonic lattice model
realizing a 3+1D Spin(10) gauged chiral fermion

theory

Below we will use the slave-particle/parton approach
[78–80] to explicitly construct a 4+1D local bosonic lat-
tice model, whose boundary can give rise to the dy-
namical Spin(10) chiral gauge theory coupled to Weyl
fermions (Model 3) in the 16-dimensional representation.
We start with a fermionic model on a 4D cubic lattice.
On each site we have 16Nf complex fermions ψ̂α,m, with
α = 1, · · · , 16, and m = 1, · · · , Nf .27 So on each side,
there are 216Nf states. Now we project into the even
fermion subspace on each site, and turn the fermionic
model into a bosonic model with 216Nf−1 states per site.
The Hamiltonian for such a bosonic model is given by

Ĥ1 =
∑
〈ij〉

∑
αβ

(χ̂αβij )†χ̂αβij +
∑
i

(−)in̂i, (B1)

χ̂αβij =
∑
m

ψ̂†α,m,iψ̂β,m,j , n̂i =
∑
m,α

ψ̂†α,m,iψ̂α,m,i.

The above model has [U(16)]Nsite local symmetry. In

the large Nf limit, χ̂αβij is weakly fluctuating and can be

replaced by χ(e iAij )αβ = 〈χ̂αβij 〉 expectation value and

Aij is a 16× 16 Hermitian matrix to describe the U(16)
gauge fluctuation. This leads to the following emergent
U(16) gauge theory (at a mean-field level)

Ĥmean
1 =

∑
〈ij〉

∑
αβ,m

[
ψ̂†α,m,iχ

∗(e− iAij )αβψ̂β,m,j + h.c.
]

+
∑
i

(−)in̂i. (B2)

The ground state is given by Aij = 0. The emergent
fermions are in a fully gapped product state and the
bosonic model Ĥ1 gives rise to a U(16) gauge theory at
low energies.

Next, we reduce the U(16) gauge theory to the
Spin(10) gauge theory by adding a term

Ĥ2 =
∑
i,m

Γαβγλψ̂α,m,iψ̂β,m,iψ̂γ,m,iψ̂λ,m,i + h.c. (B3)

to break the [U(16)]Nsite local symmetry to a
[Spin(10)]Nsite local symmetry where the fermions ψα,m,i
form the 16-dimensional spinor representation. Here
Γαβγλ is the antisymmetric tensor which is invariant un-
der the Spin(10) transformations. The 4+1D bosonic

27 We introduce a new flavor parameter Nf , so that we gain a
benefit to do a large Nf analysis for Nf � 1 or further Nf →∞.
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model Ĥ1 + Ĥ2 will give rise to an emergent Spin(10)
gauge theory with the fermions in a fully gapped product
state. Those fermions are also gapped on the boundary.

To have gapless Weyl fermions on the boundary, we
add the third term

Ĥ3 =
∑
ij

(tabij ĉ
†
α,a,iĉβ,b,jχ̂

αβ
ij + h.c.). (B4)

Now on each site, we have fermions ψ̂α,m and ĉα,a, but
we still project into the subspace with even fermion per
site. The Ĥ1 +Ĥ2 +Ĥ3 acts within this subspace. So the
model is still a lattice bosonic model. When tij is given
by Eq. (7), the model

Ĥ1 + Ĥ2 + Ĥ3 (B5)

will give rise to emergent massless Weyl fermions on the
boundary coupled to the Spin(10) gauge field.

Consider a 4+1D slab of the local bosonic lattice model
described by Ĥ1 + Ĥ2 + Ĥ3. In the main text, based
on the complete classification of ’t Hooft anomaly of

the group G = (Spin(5)× Spin(10))/Zf2 (in Eq. (10) and
Eq. (14)), we have shown that there exists a symmet-
ric gapped boundary by Proposition 1 and 2 (or there
exists a symmetric boundary gapping interaction, called
Ĥint.bdry.non-pert), that allows us to gap out the bound-
ary Weyl fermions (without inducing a boundary 3+1D
topological order [18]) on one of the surfaces of the slab.

In this case, by including such interactions
Ĥint.bdry.non-pert into (B5), we propose a new Hamilto-
nian

Ĥ1 + Ĥ2 + Ĥ3 + Ĥint.bdry.non-pert. (B6)

Then by applying Eq. (18)’s finite-width/layer lattice di-
mensional reduction, the 4+1D slab, with a finite width
in the extra dimension, indeed becomes a 3+1D local
bosonic lattice model that regularizes a 3+1D dynami-
cal Spin(10) gauge theory coupled to Weyl fermions in
the 16-dimensional spinor representation.

Appendix C: Energy scale and mutual entanglement
between gapless and gapped boundaries

The important issue is that when the d + 2D gapped
bulk has no entanglements (i.e. no LRE nor SRE by
Def. V), then “the d+1D symmetric gapless boundary
A” and “the d+1D symmetric gapped boundary B” ac-
tually cannot affect each other, thus are isolated from
each other, in the sense that:

(i): Energy scale: Boundary A and Boundary B are
decoupled below the energy scale ' ∆E,B. But
when the energy is above the scale & ∆E,B, the
energy spectra of A, B, and the bulk may affect
and mix with each other together.

(ii): Mutual entanglement: Although the d+1D
symmetric gapless boundary A is highly-entangled
(due to the low-lying massless chiral fermions as
the energy gapless spectrum), and the symmetric
gapped boundary B is trivially gapped with no en-
tanglements as a tensor product state on Boundary
B. Thanks to the trivial gapped bulk, Boundary A
and Boundary B on two sides have no entangle-
ments in between. More precisely, if we choose a
d+1D bipartite cut inside the d+2D gapped bulk,
we get a zero bipartite Von Neumann entanglement
entropy

SEE = S(ρA) = −Tr[ρA log ρA]

= −Tr[ρB log ρB ] = S(ρB) = 0 (C1)

for the mutual entanglement between two sides.
(This understanding is consistent with the entan-
glement structure discussed in Def. V.)

For the lattice regularization of the gauged chiral
fermion problem, we should emphasize that our state-
ments in (i) and (ii) apply to Model 1 (a chiral fermion
theory) and Model 2 (a gauged chiral fermion theory).
However, we do not intend to apply our statements in (i)
and (ii) to Model 3 (a chiral gauge theory) — once we
dynamically gauge the internal global symmetry for the
bulk-boundary coupled system, then “the bulk, Bound-
ary A and Boundary B” form altogether highly-entangle
quantum states (as a dynamical gauge theory). The SEE

of the dynamically gauged system (Model 3), based on
the previous bipartite cut in Eq. (C1), is generically non-
zero.

Appendix D: Show the existence of symmetric
gapped boundary via quantum phase transitions

A derivation can also be obtained from the classifica-
tion of quantum phases of matter and their phase transi-
tions. To give a proof of Prop. i, all we need to show is
that there exists a LUT deformation path (Def. V) be-
tween two bulk gapped quantum phases:
(1) Bulk phase: The d+2D bulk regularized lattice model
which has a symmetric gapped trivial tensor product
ground state, with a finite energy gap ∆E .
(2) Trivial gapped vacuum phase (mentioned above).
Such that this LUT deformation path satisfies the crite-
ria:
(1) does not close the energy gaps between Bulk Phase
and Trivial Vacuum Phase (i.e. no gap closing, thus no
gapless modes and no zero-mode degeneracy [=ground
state degeneracy]).
(2) does not break the internal global symmetry given
by the Bulk Phase. (i.e. Gf = Spin(10) for the Spin(10)
gauged chiral fermion problem.)
This LUT deformation path can be regarded as a path
labeled by g in the quantum phase diagram (at zero tem-
perature T = 0) by tuning a parameter (i.e. a coupling
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constant) g of the lattice Hamiltonian Ĥ(g) such that the
ground state |Ψg.s.(g)〉 is unitarily evolving under this
LUT along the deformation path. Then we can prove
the claim of (1) and (2), either by “proof by a contradic-
tion,” or by directly “constructing such a LUT deforma-
tion path.”

“A proof by a contradiction”: Suppose, given by engi-
neering arbitrary symmetry-preserving (e.g. Gf ) local in-
teractions for the lattice Hamiltonian, such a path in the
phase diagram is still impossible between two phases (the
bulk phase and the trivial gapped vacuum phase). Then
there must be a phase transition between two phases, and
the two phases should be different quantum phases — in
fact, they should be different SPT phases within the Gf
symmetry. But as we emphasize that both two phases
have symmetric gapped trivial tensor product ground
states, they must be in the same trivial SPT phase, thus
the same trivial gapped vacuum, at least below the en-
ergy gap ∆E of the bulk phase. This leads to a contra-
diction, thus we end the proof successfully.

“Constructing such a LUT deformation path”: This
path construction is basically what we had in the earlier
proof. Since both phases are symmetric gapped trivial
phases (both a trivial SPT phase and a trivial gapped
vacuum respect to the Gf symmetry), the LUT deforma-
tion path is simply the deformation to make both sym-
metric gapped trivial phases become exactly the same
symmetric gapped trivial tensor product states in a cer-
tain “canonical basis” respect the Gf symmetry. (Nor-
mally it is known as the symmetric disordered phase,
where the canonical basis is chosen to be the dual vari-
able of the symmetry breaking basis.)

Appendix E: Cobordism theory and classification of
all possible invertible anomalies related to SU(5),

SO(10), and SO(18) Grand Unifications

Here we provide the cobordism group calculations
classifying all potential invertible ’t Hooft anomalies
of SU(5), Spin(10) and Spin(18) chiral fermion the-
ories. Our calculations are crucial for showing all
gauge anomaly free conditions for SU(5), SO(10) and
SO(18) Grand Unifications. Notice that other related

work [66] computes Ω
Spin×SU(5)
D and Ω

Spin×Spin(10)
D based

on a different method, Atiyah-Hirzebruch spectral se-

quence (AHSS), while our work focus on Ω
Spin×SU(5)
D and

Ω
Spin×Spin(10)/Zf

2

D , also based on a more powerful Adams
spectral sequence. See also Ref. 55.

1. Adams spectral sequence

The Adams spectral sequence shows:

Exts,tAp
(H∗(Y,Zp),Zp) ⇒ πt−s(Y )∧p , (E1)

where Ext denotes the extension functor, Ap is the
mod p Steenrod algebra, and Y is any spectrum. The
H∗(Y,Zp) is an Ap-module whose internal degree t is
given by the ∗. The πt−s(Y )∧p is the p-completion of
the (t− s)-th homotopy group of the spectrum Y . We
note that, for any finitely generated abelian group G,
then G∧p = limn→∞ G/pnG is the p-completion of G; if G
contains an infinite group Z, then the G∧p is the ring of
p-adic integers. Here the G is meant to be substituted
by a homotopy group πt−s(Y )∧p in (E2). Here are some
explanations and inputs:

1. Here the double-arrow “⇒” means “convergent to.”
The E2 page contains groups Exts,t with double in-
dices (s, t), we reindex the bidegree by (t− s, s). There
are differentials d2 in E2 page which are arrows from
(t−s, s) to (t−s−1, s+2). That is, Exts,t → Exts+2,t+1.
Take Kerd2/Imd2 at each (t− s, s), then we get the E3

page. Repeat this procedure, we get E4 page, E5 page
and so on. Finally Er page equals Er+1 page (there
are no differentials) for r ≥ N , we call this EN page as
the E∞ page, we can read the result πD at D = t− s.
See further details discussed in Ref. 30’s Sec. 2.3.

2. In Adams spectral sequence, we consider Exts,tR (L,Zp).
Here we have the ring or the algebra R = Ap or A2(1)
for p = 2, and the L is a R-module. The A2(1) is
the subalgebra of A2 generated by the Steenrod square
Sq1 and Sq2. The index s refers to the degree of res-
olution, and the index t is the internal degree of the
R-module L. Ext groups are defined by firstly tak-
ing a projective R-resolution P• of L, then secondly
computing the (co)homology group of the (co)chain
complex Hom(P•,Zp). A P• is a resolution, which
is an exact sequence of modules. Here a projective
R-resolution P• is an exact sequence of R-modules
· · · → Ps → Ps−1 → · · · → P0 → L where Ps is projec-
tive for s ≥ 0.

2. Thom-Madsen-Tillmann spectrum and Pontryagin-Thom isomorphism

For Y = MTG, where MTG is the Thom-Madsen-Tillmann spectrum MTG of a group G, the Adams spectral
sequence shows:

Exts,tAp
(H∗(MTG,Zp),Zp) ⇒ πt−s(MTG)∧p = (ΩGD=t−s)

∧
p . (E2)
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The last equality is by the generalized Pontryagin-Thom isomorphism, we have an equality between the D-th bordism
group of G given by ΩGD and the D-th homotopy group of MTG given by πD(MTG), namely

ΩGD = πD(MTG). (E3)

We also compute the cobordism group of topological phases (TP) defined in [29] as

TPD(G). (E4)

The TPD(G) classifies deformation classes of reflection positive invertible d-dimensional extended topological field
theories with symmetry group GD. The TPD(G) and the bordism group ΩGD are related by a short exact sequence

0→ Ext1(ΩGD,Z)→ TPD(G)→ Hom(ΩGD+1,Z)→ 0. (E5)

We can compute the E2 page of A2(1)-module based on Lemma 11 of [30]. More precisely, in order to compute

Exts,tA2(1)
(L2,Z2), we find a short exact sequence of A2(1)-modules

0→ L1 → L2 → L3 → 0, (E6)

then we apply Lemma 11 of [30] to compute Exts,tA2(1)
(L2,Z2) by the given data of Exts,tA2(1)

(L1,Z2) and

Exts,tA2(1)
(L3,Z2). Our strategy is choosing L1 to be the direct sum of suspensions of Z2 on which Sq1 and Sq2

act trivially, then we take L3 to be the quotient of L2 by L1. We can use this procedure again and again until
Exts,tA2(1)

(L3,Z2) is determined.

If G = Spin×G′, then its classifying space BG = B(Spin×G′) = BSpin×BG′. By definition, the Madsen-Tillmann
spectrum MTG = Thom(BG,−V ) where V is the induced virtual bundle of dimension 0 by the map BG→ BO. By
the properties of Thom space (see the discussions in Ref. 30’s Sec. 1.3), we have

MT (Spin×G′) = MSpin ∧ (BG′)+. (E7)

The ∧ is the smash product.
Below we will use the (E2) and (E3) to compute the D-th bordism group of G given by ΩGD. Then we will use

the (E5) and the techniques around (E6) to compute the D-th cobordism group of topological phases of G given by
TPD(G).

3. Cobordism groups and topological phases for Spin× SU(5): SU(5) Grand Unification

We consider G = Spin × SU(5) for the Georgi-Glashow SU(5) Grand Unification [5], the Thom-Madsen-Tillmann
spectrum MTG of the group G is

MTG = MSpin ∧ (BSU(5))+. (E8)

The T in MTG means the G-structures are on tangent bundles instead of normal bundles. For Spin, the Thom-
Madsen-Tillmann spectrum MTSpin = MSpin is equivalent to the Thom spectrum which splits MSpin = ko∨Σ8ko∨
· · · . The ko is the (−1)-connected cover of the real K-theory spectrum. The ∧ is the smash product and the ∨ is the
wedge sum. The (BSU(5))+ is the disjoint union of the classifying space BSU(5) and a point.28

For the dimension D = t− s < 8, since there is no odd torsion,29 by MTG = MSpin∧X, then the D-th homotopy
group πD(MTG) = πD(ko ∧X) for D < 8. So for the dimension D = t− s < 8, we have

Exts,tA2(1)
(H∗(X,Z2),Z2)⇒ (ΩGD=t−s)

∧
2 . (E9)

Hence for MTG = MSpin ∧ (BSU(5))+, for the dimension D = t − s < 8, by (E9), we have the Adams spectral
sequence

Exts,tA2(1)
(H∗(BSU(5),Z2),Z2)⇒ Ω

Spin×SU(5)
t−s . (E10)

28 For a topological space X, it is a standard convention to denote
that X+ as the disjoint union of X and a point. Note that the
reduced cohomology of X+ is exactly the ordinary cohomology

of X.
29 By computation using the mod p Adams spectral sequence for

an odd prime p, we find there is no odd torsion.
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FIG. 2. Adams chart for Ω
Spin×SU(5)
D .

The A2(1)-module structure of H∗(BSU(5),Z2) below degree 6 is shown in Ref. 55’s Sec. 6’s Figure 29, and the E2

page is shown in Figure 2. Here we have used the correspondence between A2(1)-module structure and the E2 page
shown in Appendix A of Ref. 55.

In Adams chart, the horizontal axis labels the integer degree D = t − s and the vertical axis labels the integer
degree s. The differential ds,tr : Es,tr → Es+r,t+r−1r is an arrow starting at the bidegree (t− s, s) with direction (−1, r).

Es,tr+1 :=
Kerds,tr

Imds−r,t−r+1
r

for r ≥ 2. There exists N such that EN+k = EN stabilized for k > 0, we denote the stabilized

page E∞ := EN .

To read the result from the Adams chart in Figure 2, we look at the stabilized E∞ page, one dot indicates a
finite group Zp, a vertical finite line segment connecting n dots indicates a finite group Zpn . But when n = ∞, the
infinite line connecting infinite dots indicates an infinite group, an integer Z. Here p is given by the mod p Steenrod

algebra Ap in (E2). Here in Figure 2, p = 2, we can read from the Adams chart Ω
Spin×SU(5)
0 = Z (an infinite line),

Ω
Spin×SU(5)
1 = Z2 (a dot), Ω

Spin×SU(5)
2 = Z2 (a dot), Ω

Spin×SU(5)
3 = 0 (nothing), Ω

Spin×SU(5)
4 = Z2 (two infinite lines),

Ω
Spin×SU(5)
5 = 0 (nothing), and Ω

Spin×SU(5)
6 = 0 (an infinite line).

a. Classification of all invertible anomalies of Spin× SU(5) fermion theories

By (E2) and (E3), we obtain the bordism group Ω
Spin×SU(5)
D shown in Table I, focusing on D = 4, 5, 6.

Bordism group

D Ω
Spin×SU(5)
D generators

4 Z2 σ
16
, c2

5 0
6 Z c3

2

TABLE I. Bordism group Ω
Spin×SU(5)
D . σ is the signature of manifold. The cj is the j-th Chern class of the associated vector

bundle of SU(n). Note that c3 = Sq2c2 = (w2 +w2
1)c2 = 0 mod 2 on Spin 6-manifolds. Actually Ω

Spin×SU(n)
D = Ω

Spin×SU(n+1)
D

for n ≥ 3 and 0 ≤ D ≤ 6. See also Ref. 55.

By (E5) and (E6), we obtain the cobordism group TPD(Spin× SU(5)) shown in Table II, focusing on D = 4, 5.
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Cobordism group
d TPD(Spin× SU(5)) generators
4 0

5 Z 1
2
CS

SU(5)
5

TABLE II. Topological phase classification (≡ TP) as a cobordism group TPD(Spin×SU(5)), following Table I. See also Ref. 55.

4. Cobordism groups and topological phases for Spin×Spin(10)

Zf
2

and Spin×Spin(18)

Zf
2

:

SO(10) and SO(18) Grand Unification

We consider G = Spin×Spin(10)
ZF

2
for the Fritzsch-Minkowski SO(10) Grand Unification [6], the Thom-Madsen-

Tillmann spectrum MTG of the group G is

MTG = MSpin ∧ Σ−10MSO(10). (E11)

The T in MTG means the G-structures are on tangent bundles instead of normal bundles. In this case, we have
w2(TM) = w2(VSO(10)).

For the dimension D = t− s < 8, since there is no odd torsion (see the footnote 29), by MTG = MSpin ∧X, then
πD(MTG) = πD(ko ∧X) for D < 8; so for the dimension D = t− s < 8, from (E2), we have

Exts,tA2(1)
(H∗(X,Z2),Z2)⇒ (ΩGD=t−s)

∧
2 . (E12)

Hence, we have the Adams spectral sequence

Exts,tA2(1)
(H∗+10(MSO(10),Z2),Z2)⇒ Ω

Spin×Spin(10)

ZF
2

D=t−s . (E13)

0 1 2 3 4 5 6 D = t− s

0

1

2

3

4

5

s

FIG. 3. Adams chart for Ω

Spin×Spin(10)

ZF
2

D , also for Ω

Spin×Spin(18)

ZF
2

D .

Actually we find [55]

Ω

Spin×Spin(10)

ZF
2

D = Ω

Spin×Spin(18)

ZF
2

D = Ω

Spin×Spin(n)

ZF
2

D = Ω

Spin×Spin(n+1)

ZF
2

D ,

for n ≥ 7 and 0 ≤ D ≤ 6.
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The A2(1)-module structure of H∗+10(MSO(10),Z2) below degree 6 is shown in Ref. 55’s Sec. 6’s Figure 27, and
the E2 page is shown in Figure 3. Here we have used the correspondence between A2(1)-module structure and the
E2 page shown in Appendix A of Ref. 55.

To read the result from the Adams chart Figure 3, we look at the stabilized E∞ page, one dot indicates a finite
group Zp, a vertical finite line segment connecting n dots indicates a finite group Zpn . But when n = ∞, the
infinite line connecting infinite dots indicates an infinite group, an integer Z. Here p is given by the mod p Steenrod

algebra Ap in (E2). Here in Figure 3, p = 2, we can read from the Adams chart Ω

Spin×Spin(10)

Zf
2

0 = Z (an infinite line),

Ω

Spin×Spin(10)

Zf
2

1 = 0 (nothing), Ω

Spin×Spin(10)

Zf
2

2 = 0 (nothing), Ω

Spin×Spin(10)

Zf
2

3 = 0 (nothing), Ω

Spin×Spin(10)

Zf
2

4 = Z2 (two infinite

lines), Ω

Spin×Spin(10)

Zf
2

5 = Z2 (a dot), and Ω

Spin×Spin(10)

Zf
2

6 = Z2 (a dot).

a. Classification of all invertible anomalies of Spin×Spin(10)

Zf
2

and Spin×Spin(18)

Zf
2

fermion theories

By (E2) and (E3), we obtain the bordism group Ω

Spin×Spin(10)

Zf
2

D shown in Table III, focusing on D = 5.

Bordism group

D Ω

Spin×Spin(10)

Zf
2

D generators
5 Z2 w2(TM)w3(TM) = w2(VSO(10))w3(VSO(10))

TABLE III. Bordism group. The same result holds for Ω

Spin×Spin(18)

ZF
2

D and Ω

Spin×Spin(n)

ZF
2

D with n ≥ 7 and 0 ≤ D ≤ 6. See Ref. 55.

By (E5) and (E6), we obtain the cobordism group TPD(Spin×Spin(10)
Zf

2

) shown in Table IV, focusing on D = 5.

Cobordism group

D TPD(Spin×Spin(10)

Zf
2

) generators

5 Z2 w2(TM)w3(TM) = w2(VSO(10))w3(VSO(10))

TABLE IV. Topological phase classification (≡ TP) as a cobordism group, following Table III. Same result for

TPD(Spin×Spin(18)

ZF
2

) and TPD(Spin×Spin(n)

ZF
2

) with n ≥ 7 and 0 ≤ D ≤ 5. See also Ref. 55.
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