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The challenge of identifying symmetry-protected topological states (SPTs) is due to their lack
of symmetry-breaking order parameters and intrinsic topological orders. For this reason, it is im-
possible to formulate SPTs under Ginzburg-Landau theory or probe SPTs via fractionalized bulk
excitations and topology-dependent ground state degeneracy. However, the partition functions from
path integrals with various symmetry twists are the universal SPT invariants defining topological
probe responses, fully characterizing SPTs. In this work, we use gauge fields to represent those
symmetry twists in closed spacetimes of any dimensionality and arbitrary topology. This allows us
to express the SPT invariants in terms of continuum field theory. We show that SPT invariants of
pure gauge actions describe the SPTs predicted by group cohomology, while the mixed gauge-gravity
actions describe the beyond-group-cohomology SPTs. We find new examples of mixed gauge-gravity
actions for U(1) SPTs in 4+1D via mixing the gauge first Chern class with a gravitational Chern-
Simons term, or viewed as a 5+1D Wess-Zumino-Witten term with a Pontryagin class. We rule
out U(1) SPTs in 3+1D mixed with a Stiefel-Whitney class. We also apply our approach to the
bosonic/fermionic topological insulators protected by U(1) charge and ZT2 time-reversal symmetries
whose pure gauge action is the axion θ-term. Field theory representations of SPT invariants not
only serve as tools for classifying SPTs, but also guide us in designing physical probes for them. In
addition, our field theory representations are independently powerful for studying group cohomology
within the mathematical context.

Introduction – Gapped systems without symmetry
breaking1,2 can have intrinsic topological order.3–5 How-
ever, even without symmetry breaking and without topo-
logical order, gapped systems can still be nontrivial if
there is certain global symmetry protection, known as
Symmetry-Protected Topological states (SPTs).6–9 Their
non-trivialness can be found in the gapless/topological
boundary modes protected by a global symmetry, which
shows gauge or gravitational anomalies.10–30 More pre-
cisely, they are short-range entangled states which can
be deformed to a trivial product state by local unitary
transformation31–33 if the deformation breaks the global
symmetry. Examples of SPTs are Haldane spin-1 chain
protected by spin rotational symmetry34,35 and the topo-
logical insulators36–38 protected by fermion number con-
servation and time reversal symmetry.

While some classes of topological orders can
be described by topological quantum field theories
(TQFT),39–42 it is less clear how to systematically con-
struct field theory with a global symmetry to classify or
characterize SPTs for any dimension. This challenge
originates from the fact that SPTs is naturally defined on
a discretized spatial lattice or on a discretized spacetime
path integral by a group cohomology construction6,43 in-
stead of continuous fields. Group cohomology construc-
tion of SPTs also reveals a duality between some SPTs
and the Dijkgraaf-Witten topological gauge theory.43,62

Some important progresses have been recently made
to tackle the above question. For example, there
are 2+1D44 Chern-Simons theory,45–49 non-linear sigma
models,50,51 and an orbifolding approach implementing
modular invariance on 1D edge modes.25,28 The above
approaches have their own benefits, but they may be ei-

ther limited to certain dimensions, or be limited to some
special cases. Thus, the previous works may not fulfill all
SPTs predicted from group cohomology classifications.

In this work, we will provide a more systematic way to
tackle this problem, by constructing topological response
field theory and topological invariants for SPTs (SPT
invariants) in any dimension protected by a symmetry
group G. The new ingredient of our work suggests a
one-to-one correspondence between the continuous semi-
classical probe-field partition function and the discretized
cocycle of cohomology group, Hd+1(G,R/Z), predicted
to classify d + 1D SPTs with a symmetry group G.52

Moreover, our formalism can even attain SPTs beyond
group cohomology classifications.16–18,20–22

Partition function and SPT invariants – For sys-
tems that realize topological orders, we can adiabatically
deform the ground state |Ψg.s.(g)〉 of parameters g via:

〈Ψg.s.(g + δg)|Ψg.s.(g)〉 ' . . .Z0 . . . (1)

to detect the volume-independent universal piece of par-
tition function, Z0, which reveals non-Abelian geometric
phase of ground states.5,30,53–58 For systems that real-
ize SPTs, however, their fixed-point partition functions
Z0 always equal to 1 due to its unique ground state on
any closed topology. We cannot distinguish SPTs via
Z0. However, due to the existence of a global sym-
metry, we can use Z0 with the symmetry twist59–61 to
probe the SPTs. To define the symmetry twist, we note
that the Hamiltonian H =

∑
xHx is invariant under

the global symmetry transformation U =
∏

all sites Ux,
namely H = UHU−1. If we perform the symmetry
transformation U ′ =

∏
x∈∂R Ux only near the bound-

ary of a region R (say on one side of ∂R), the local
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FIG. 1. On a spacetime manifold, the 1-form probe-field A
can be implemented on a codimension-1 symmetry-twist59,60

(with flat dA = 0) modifying the Hamiltonian H, but the
global symmetry G is preserved as a whole. The symmetry-
twist is analogous to a branch cut, going along the arrow
- - -B would obtain an Aharonov-Bohm phase eig with
g ∈ G by crossing the branch cut (Fig.(a) for 2D, Fig.(d)
for 3D). However if the symmetry twist ends, its ends are
monodromy defects with dA 6= 0, effectively with a gauge
flux insertion. Monodromy defects in Fig.(b) of 2D act like
0D point particles carrying flux,26,59,62,64,65 in Fig.(e) of 3D
act like 1D line strings carrying flux.66–69 The non-flat mon-
odromy defects with dA 6= 0 are essential to realize

∫
AudAv

and
∫
AuAv dAw for 2D and 3D, while the flat connections

(dA = 0) are enough to realize the top Type
∫
A1A2 . . . Ad+1

whose partition function on a spacetime Td+1 torus with
(d+1) codimension-1 sheets intersection (shown in Fig.(c),(f)
in 2+1D, 3+1D) renders a nontrivial element for Eq.(2).

term Hx of H will be modified: Hx → H ′x|x near ∂R.
Such a change along a codimension-1 surface is called
a symmetry twist, see Fig.1(a)(d), which modifies Z0 to
Z0(sym.twist). Just like the geometric phases of the de-
generate ground states characterize topological orders,30

we believe that Z0(sym.twist), on different spacetime
manifolds and for different symmetry twists, fully char-
acterizes SPTs.59,60

The symmetry twist is similar to gauging the on-site
symmetry62,63 except that the symmetry twist is non-
dynamical. We can use the gauge connection 1-form A to
describe the corresponding symmetry twists, with probe-
fields A coupling to the matter fields of the system. So
we can write52

Z0(sym.twist) = eiS0(sym.twist) = eiS0(A). (2)

Here S0(A) is the SPT invariant that we search for.
Eq.(2) is a partition function of classical probe fields, or a
topological response theory, obtained by integrating out
the matter fields of SPTs path integral. Below we would
like to construct possible forms of S0(A) based on the
following principles:52 (1) S0(A) is independent of space-
time metrics (i.e. topological), (2) S0(A) is gauge invari-
ant (for both large and small gauge transformations), and
(3) “Almost flat” connection for probe fields.

U(1) SPTs– Let us start with a simple example of

a single global U(1) symmetry. We can probe the
system by coupling the charge fields to an external
probe 1-form field A (with a U(1) gauge symmetry),
and integrate out the matter fields. In 1+1D, we can
write down a partition function by dimensional count-
ing: Z0(sym.twist) = exp[ i θ

2π

∫
F ] with F ≡ dA,

this is the only term allowed by U(1) gauge symmetry
U†(A − id)U ' A + df with U = eif . More gener-
ally, for an even (d + 1)D spacetime, Z0(sym.twist) =
exp[ i θ

( d+1
2 )!(2π)

d+1
2

∫
F ∧ F ∧ . . .]. Note that θ in such an

action has no level-quantization (θ can be an arbitrary
real number). Thus this theory does not really corre-
spond to any nontrivial class, because any θ is smoothly
connected to θ = 0 which represents a trivial SPTs.

In an odd dimensional spacetime, such as 2+1D,
we have Chern-Simons coupling for the probe field
action Z0(sym.twist) = exp[ i k

4π

∫
A ∧ dA]. More

generally, for an odd (d + 1)D, Z0(sym.twist) =
exp[ i 2πk

( d+2
2 )!(2π)(d+2)/2

∫
A ∧ F ∧ . . .], which is known to

have level-quantization k = 2p with p ∈ Z for bosons,
since U(1) is compact. We see that only quantized topo-
logical terms correspond to non-trivial SPTs, the allowed
responses S0(A) reproduces the group cohomology de-
scription of the U(1) SPTs: an even dimensional space-
time has no nontrivial class, while an odd dimension has
a Z class.∏
u ZNu SPTs– Previously the evaluation of U(1) field

on a closed loop (Wilson-loop)
∮
Au can be arbitrary

values, whether the loop is contractible or not, since U(1)
has continuous value. For finite Abelian group symmetry
G =

∏
u ZNu SPTs, (1) the large gauge transformation

δAu is identified by 2π (this also applies to U(1) SPTs).
(2) probe fields have discrete ZN gauge symmetry,∮

δAu = 0 (mod 2π),

∮
Au =

2πnu
Nu

(mod 2π). (3)

For a non-contractible loop (such as a S1 circle of a
torus), nu can be a quantized integer which thus allows
large gauge transformation. For a contractible loop, due
to the fact that small loop has small

∮
Au but nu is dis-

crete,
∮
Au = 0 and nu = 0, which imply the curvature

dA = 0, thus A is flat connection locally.
(i). For 1+1D, the only quantized topological term
is: Z0(sym.twist) = exp[ i kII

∫
A1A2]. Here and below

we omit the wedge product ∧ between gauge fields as
a conventional notation. Such a term is gauge invari-
ant under transformation if we impose flat connection
dA1 = dA2 = 0, since δ(A1A2) = (δA1)A2 + A1(δA2) =
(df1)A2 +A1(df2) = −f1(dA2)− (dA1)f2 = 0. Here we
have abandoned the surface term by considering a 1+1D
closed bulk spacetime M2 without boundaries.
• Large gauge transformation: The invariance of
Z0 under the allowed large gauge transformation via
Eq.(3) implies that the volume-integration of

∫
δ(A1A2)

must be invariant mod 2π, namely (2π)2kII
N1

= (2π)2kII
N2

=
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0 (mod 2π). This rule implies the level-quantization.
• Flux identification: On the other hand, when the
ZN1

flux from A1, ZN2
flux from A2 are inserted as n1,

n2 multiple units of 2π/N1, 2π/N2, we have kII

∫
A1A2 =

kII
(2π)2

N1N2
n1n2. We see that kII and k′II = kII + N1N2

2π give
rise to the same partition function Z0. Thus they must
be identified (2π)kII ' (2π)kII +N1N2, as the rule of flux
identification. These two rules impose

Z0(sym.twist) = exp[ i pII
N1N2

(2π)N12

∫
M2

A1A2], (4)

with kII = pII
N1N2

(2π)N12
, pII ∈ ZN12

. We abbre-

viate the greatest common divisor (gcd) N12...u ≡
gcd(N1, N2, . . . , Nu). Amazingly we have independently
recovered the formal group cohomology classification pre-
dicted as H2(

∏
u ZNu ,R/Z) =

∏
u<v ZNuv .

(ii). For 2+1D, we can propose a naive Z0(sym.twist)
by dimensional counting, exp[ i kIII

∫
A1A2A3], which is

gauge invariant under the flat connection condition. By
the large gauge transformation and the flux identifica-
tion, we find that the level kIII is quantized,52 thus

Z0(sym.twist) = exp[ i pIII
N1N2N3

(2π)2N123

∫
M3

A1A2A3],(5)

named as Type III SPTs with a quantized level pIII ∈
ZN123

. The terminology “Type” is introduced and used
in Ref.70 and 68. As shown in Fig.1, the geometric way to
understand the 1-form probe field can be regarded as (the
Poincare-dual of) codimension-1 sheet assigning a group
element g ∈ G by crossing the sheet as a branch cut.
These sheets can be regarded as the symmetry twists59,60

in the SPT Hamiltonian formulation. When three sheets
(yt, xt, xy planes in Fig.1(c)) with nontrivial elements
gj ∈ ZNj intersect at a single point of a spacetime T3

torus, it produces a nontrivial topological invariant in
Eq.(2) for Type III SPTs.

There are also other types of partition functions, which
require to use the insert flux dA 6= 0 only at the mon-
odromy defect (i.e. at the end of branch cut, see Fig.1(b))
to probe them:11,47–49,70,71

Z0(sym.twist) = exp[ i
p

2π

∫
M3

AudAv], (6)

where u, v can be either the same or different gauge
fields. They are Type I, II actions: pI,1

∫
A1 dA1,

pII,12

∫
A1 dA2, etc. In order to have e i

pII
2π

∫
M3 A1 dA2 in-

variant under the large gauge transformation, pII must

be integer. In order to have e i
pI
2π

∫
M3 A1 dA1 well-defined,

we separate A1 = Ā1 + AF1 to the non-flat part A1

and the flat part AF1 . Its partition function becomes

e i
pI
2π

∫
M3 A

F
1 dĀ1 .52 The invariance under the large gauge

transformation of AF1 requires pI to be quantized as inte-
gers. We can further derive their level-classification via
Eq.(3) and two more conditions:∫����∫ dAv = 0 (mod 2π),

∫����∫ δdAv = 0. (7)

The first means that the net sum of all monodromy-
defect fluxes on the spacetime manifold must have in-
teger units of 2π. Physically, a 2π flux configuration is
trivial for a discrete symmetry group ZNv . Therefore
two SPT invariants differ by a 2π flux configuration on
their monodromy-defect should be regarded as the same
one. The second condition means that the variation of
the total flux is zero. From the above two conditions for
flux identification, we find the SPT invariant Eq.(6) de-
scribes the ZN1 SPTs pI ∈ ZN1 = H3(ZN1 ,R/Z) and the
ZN1 × ZN2 SPTs pII ∈ ZN12 ⊂ H3(ZN1 × ZN2 ,R/Z).52

(iii). For 3+1D, we derive the top Type IV partition
function that is independent of spacetime metrics:

Z0(sym.twist) = exp[i
pIVN1N2N3N4

(2π)3N1234

∫
M4

A1A2A3A4], (8)

where dAi = 0 to ensure gauge invariance. The large
gauge transformation δAi of Eq.(3), and flux identifica-

tion recover pIV ∈ ZN1234
⊂ H4(

∏4
i=1 ZNi ,R/Z). Here

the 3D SPT invariant is analogous to 2D, when the
four codimension-1 sheets (yzt, xzt, yzt, xyz-branes in
Fig.1(f)) with flat Aj of nontrivial element gj ∈ ZNj in-

tersect at a single point on spacetime T4 torus, it renders
a nontrivial partition function for the Type IV SPTs.

Another response is for Type III 3+1D SPTs:

Z0(sym.twist) = exp[i

∫
M4

pIIIN1N2

(2π)2N12
A1A2 dA3], (9)

which is gauge invariant only if dA1 = dA2 = 0. Based
on Eq.(3),(7), the invariance under the large gauge trans-
formations requires pIII ∈ ZN123

. Eq.(9) describes Type

III SPTs: pIII ∈ ZN123
⊂ H4(

∏3
i=1 ZNi ,R/Z).52

Yet another response is for Type II 3+1D SPTs:72,73

Z0(sym.twist) = exp[i

∫
M4

pIIN1N2

(2π)2N12
A1A2 dA2]. (10)

The above is gauge invariant only if we choose A1 and
A2 such that dA1 = dA2 dA2 = 0. We denote A2 =
Ā2 + AF2 where Ā2 dĀ2 = 0, dAF2 = 0,

∮
Ā2 = 0 mod

2π/N2, and
∮
AF2 = 0 mod 2π/N2. Note that in general

dĀ2 6= 0, and Eq.(10) becomes e
i
∫
M4

pIIN1N2
(2π)2N12

A1A
F
2 dĀ2

.
The invariance under the large gauge transformations of
A1 and AF2 and flux identification requires pII ∈ ZN12

=

H4(
∏2
i=1 ZNi ,R/Z) of Type II SPTs.52 For Eq.(9),(10),

we have assumed the monodromy line defect at dA 6= 0 is
gapped ;66,68 for gapless defects, one will need to introduce
extra anomalous gapless boundary theories.

SPT invariants and physical probes –
Top types:52 The SPT invariants can help us to design
physical probes for their SPTs, as observables of numer-
ical simulations or real experiments. Let us consider:

Z0(sym.twist)= exp[ip
∏d+1
j=1 Nj

(2π)dN123...(d+1)

∫
A1A2 . . . Ad+1], a

generic top type
∏d+1
j=1 ZNj SPT invariant in (d + 1)D,

and its observables.
• (1). Induced charges: If we design the space to have a
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topology (S1)d, and add the unit symmetry twist of the
ZN1

, ZN2
, . . . , ZNd to the S1 in d directions respectively:∮

S1 Aj = 2π/Nj . The SPT invariant implies that such a

configuration will carry a ZNd+1
charge p Nd+1

N123...(d+1)
.

• (2).Degenerate zero energy modes: We can also ap-
ply dimensional reduction to probe SPTs. We can de-
sign the dD space as (S1)d−1 × I, and add the unit
ZNj symmetry twists along the j-th S1 circles for j =
3, . . . , d + 1. This induces a 1+1D ZN1

× ZN2
SPT in-

variant exp[ i p N12

N123...(d+1)

N1N2

2πN12

∫
A1A2] on the 1D spa-

tial interval I. The 0D boundary of the reduced 1+1D
SPTs has degenerate zero modes that form a projective
representation of ZN1 × ZN2 symmetry.26 For example,
dimensionally reducing 3+1D SPTs Eq.(8) to this 1+1D
SPTs, if we break the ZN3 symmetry on the ZN4 mon-
odromy defect line, gapless excitations on the defect line
will be gapped. A ZN3 symmetry-breaking domain wall
on the gapped monodromy defect line will carry degen-
erate zero modes that form a projective representation of
ZN1
× ZN2

symmetry.

• (3).Gapless boundary excitations: For Eq.(8), we de-
sign the 3D space as S1 × M2, and add the unit ZN4

symmetry twists along the S1 circle. Then Eq.(8) re-
duces to the 2+1D ZN1 × ZN2 × ZN3 SPT invariant
exp[ i pIV

N123

N1234

N1N2N3

2πN123

∫
A1A2A3] labeled by pIV

N123

N1234
∈

ZN123
⊂ H3(ZN1

× ZN2
× ZN3

,R/Z). Namely, the ZN4

monodromy line defect carries gapless excitations iden-
tical to the edge modes of the 2+1D ZN1

× ZN2
× ZN3

SPTs if the symmetry is not broken.59

Lower types:52 Take 3+1D SPTs of Eq.(9) as an exam-
ple, there are at least two ways to design physical probes.
First, we can design the 3D space as M2 × I, where M2

is punctured with N3 identical monodromy defects each

carrying n3 unit ZN3
flux, namely

∫����∫ dA3 = 2πn3 of

Eq.(7). Eq.(9) reduces to exp[ i pIIIn3
N1N2

(2π)N12

∫
A1A2],

which again describes a 1+1D ZN1
× ZN2

SPTs, labeled
by pIIIn3 of Eq.(4) in H2(ZN1

×ZN2
,R/Z) = ZN12

. This
again has 0D boundary-degenerate-zero-modes.

Second, we can design the 3D space as S1 ×M2 and
add a symmetry twist of ZN1

along the S1:
∮
S1 A1 =

2πn1/N1, then the SPT invariant Eq.(9) reduces to

exp[ i pIII n1N2

(2π)N12

∫
A2 dA3], a 2+1D ZN2 × ZN3 SPTs la-

beled by pIII n1N2

N12
of Eq.(6).

• (4).Defect braiding statistics and fractional charges:
These

∫
AdA types in Eq.(6), can be detected by the

nontrivial braiding statistics of monodromy defects, such
as the particle/string defects in 2D/3D.48,62,66–69 More-
over, a ZN1

monodromy defect line carries gapless excita-
tions identical to the edge of the 2+1D ZN2

×ZN3
SPTs.

If the gapless excitations are gapped by ZN2
-symmetry-

breaking, its domain wall will induce fractional quantum
numbers of ZN3

charge,26,74 similar to Jackiw-Rebbi75 or
Goldstone-Wilczek76 effect.

U(1)m SPTs– It is straightforward to apply the

above results to U(1)m symmetry. Again, we find

only trivial classes for even (d + 1)D. For odd
(d + 1)D, we can define the lower type action:
Z0(sym.twist) = exp[ i 2πk

( d+2
2 )!(2π)(d+2)/2

∫
Au ∧ Fv ∧ . . .].

Meanwhile we emphasize that the top type action with
k
∫
A1A2 . . . Ad+1 form will be trivial for U(1)m case since

its coefficient k is no longer well-defined, at N → ∞
of (ZN )m SPTs states. For physically relevant 2 + 1D,
k ∈ 2Z for bosonic SPTs. Thus, we will have a
Zm × Zm(m−1)/2 classification for U(1)m symmetry.52

Beyond Group Cohomology and mixed gauge-
gravity actions – We have discussed the allowed ac-
tion S0(sym.twist) that is described by pure gauge fields
Aj . We find that its allowed SPTs coincide with group
cohomology results. For a curved spacetime, we have
more general topological responses that contain both
gauge fields for symmetry twists and gravitational con-
nections Γ for spacetime geometry. Such mixed gauge-
gravity topological responses will attain SPTs beyond
group cohomology. The possibility was recently discussed
in Ref.17 and 18. Here we will propose some additional
new examples for SPTs with U(1) symmetry.

In 4+1D, the following SPT response exists,

Z0(sym.twist) = exp[i
k

3

∫
M5

F CS3(Γ)]

= exp[i
k

3

∫
N 6

F p1], k ∈ Z (11)

where CS3(Γ) is the gravitations Chern-Simons 3-form
and d(CS3) = p1 is the first Pontryagin class. This SPT
response is a Wess-Zumino-Witten form with a surface
∂N 6 =M5. This renders an extra Z-class of 4+1D U(1)
SPTs beyond group cohomology. They have the follow-
ing physical property: If we choose the 4D space to be
S2 ×M2 and put a U(1) monopole at the center of S2:∫
S2 F = 2π, in the largeM2 limit, the effective 2+1D the-

ory on M2 space is k copies of E8 bosonic quantum Hall
states. A U(1) monopole in 4D space is a 1D loop. By
cuttingM2 into two separated manifolds, each with a 1D-
loop boundary, we see U(1) monopole and anti-monopole
as these two 1D-loops, each loop carries k copies of E8

bosonic quantum Hall edge modes.77 Their gravitational
response can be detected by thermal transport with a

thermal Hall conductance,78 κxy = 8k
π2k2B

3h T .
In 3+1D, the following topological response exists

Z0(sym.twist) = exp[
i

2

∫
M4

Fw2], (12)

where wj is the jth Stiefel-Whitney (SW) class. Let us
designM4 as a complex manifold, thus w2j = cj mod 2.
The first Chern class c1 of the tangent bundle of M4 is
also the first Chern class of the determinant line bundle
of the tangent bundle of M4. So if we choose the U(1)
symmetry twist as the determinate line bundle of M4,
we can write the above as (F = 2πc1): Z0(sym.twist) =
exp[iπ

∫
M4 c1c1]. On a 4-dimensional complex manifold,

we have p1 = c21 − 2c2. Since the 4-manifold CP2 is not
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a spin manifold, thus w2 6= 0. From
∫

CP2 p1 = 3, we

see that
∫

CP2 c1c1 = 1 mod 2. So the above topologi-
cal response is non-trivial, and it suggests a Z2-class of
3+1D U(1) SPTs beyond group cohomology. Although
this topological response is non-trivial, however, we do
not gain extra 3+1D U(1) SPTs beyond group cohomol-
ogy, since exp[ i

2

∫
N 4 Fw2] = exp[ i

4π

∫
N 4 F ∧ F ] on any

manifold N 4, and since the level of
∫
F ∧ F of U(1)-

symmetry is not quantized on any manifold.79

Fermionic/Bosonic topological insulators with
U(1) charge and ZT2 time-reversal symmetries –

In 3+1D, the fermionic topological insulator as SPTs
protected by U(1) charge and ZT2 time-reversal symme-
tries is known to have an axionic θ-term response.10 We
can verify the claim by our approach. In 3+1D, although
we do not have a Chern-Simons form available, we can
use the probe

exp[
ik

4π

∫
M4

F ∧ F ] ≡ exp[
i

4π

θ

2π

∫
M4

F ∧ F ]. (13)

The time reversal symmetry ZT2 on F ∧ F is odd, so
the θ must be odd as θ → −θ under ZT2 symmetry.
On a spin manifold, the 1

8π2

∫
M4 F ∧ F corresponds to

an integer of instanton number, together with our large
gauge transformation and flux identification, it dictates
θ ' θ+ 2π. More explicitly, we recover the familiar form
exp[ i

4π
θ

2π
1
4

∫
M4 ε

µνρσFµνFρσ d4x]. If the trivial vacuum
has θ = 0, then the 3+1D fermionic topological insulator
can be probed by the θ = π response.

The 3+1D bosonic topological insulator has the similar
θ-term topological response, except that the spin struc-
ture is not required for bosonic systems. The earlier

quantization becomes doubled as an even integer, thus
θ ' θ + 4π. If the trivial vacuum has θ = 0, then
the 3+1D bosonic topological insulator can be probed
by the θ = 2π response. More topological responses
of fermionic/bosonic topological insulators within or be-
yond group cohomology are recently discussed in Refs.
17, 18, and 79.

Conclusion – The recently-found SPTs, described by
group cohomology, have SPT invariants in terms of pure
gauge actions (whose boundaries have pure gauge anoma-
lies11,13–15,26). We have derived the formal group coho-
mology results from an easily-accessible field theory set-
up. For beyond-group-cohomology SPT invariants, while
ours of bulk-onsite-unitary symmetry are mixed gauge-
gravity actions, those of other symmetries (e.g. anti-
unitary-symmetry time-reversal ZT2 ) may be pure grav-
ity actions.18 SPT invariants can also be obtained via
cobordism theory,17–19 or via gauge-gravity actions whose
boundaries realizing gauge-gravitational anomalies. We
have incorporated this idea into a field theoretic frame-
work, which should be applicable for both bosonic and
fermionic SPTs and for more exotic states awaiting fu-
ture explorations.
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Supplemental Material

Appendix A: “Partition functions of Fields” - Large
Gauge Transformation and Level Quantization

In this section, we will work out the details of
large gauge transformations and level-quantizations for
bosonic SPTs with a finite Abelian symmetry group G =∏
u ZNu for 1+1D, 2+2D and 3+1D. We will briefly com-

ment about the level modification for fermionic SPTs,
and give another example for G = U(1)m (a product of
m copies of U(1) symmetry) SPTs. This can be straight-
forwardly extended to any dimension.

In the main text, our formulation has been focused on
the 1-form field Aµ with an effective probed-field par-

tition function Z0(sym.twist) = eiS0(A). Below we will
also mention 2-form field Bµν , 3-form field Cµνρ, etc. We
have known that for SPTs, a lattice formulation can eas-
ily couple 1-form field to the matter via AµJ

µ coupling.
The main concern of relegating B, C higher forms to the

Appendix without discussing them in the main text is
precisely due to that it is so far unknown how to find
the string (Σµν) or membrane (Σµνρ)-like excitations in
the bulk SPT lattice and further coupling via the BµνΣµν ,
CµνρΣ

µνρ terms. However, such a challenge may be ad-
dressed in the future, and a field theoretic framework has
no difficulty to formulate them together. Therefore here
we will discuss all plausible higher forms altogether.

For G =
∏
u ZNu , due to a discrete ZN gauge symme-

try, and the gauge transformation (δA, δB, etc) must be
identified by 2π, we have the general rules:

∮
Au =

2πnu
Nu

(mod 2π) (A1)∮
δAu = 0 (mod 2π) (A2)



6∫����∫ Bu =
2πnu
Nu

(mod 2π) (A3)∫����∫ δBu = 0 (mod 2π) (A4)∫����∫∫ Cu =
2πnu
Nu

(mod 2π) (A5)∫����∫∫ δCu = 0 (mod 2π) (A6)

. . .

Here A is integrated over a closed loop, B is integrated
over a closed 2-surface, C is integrated over a closed
3-volume, etc. The loop integral of A is performed
on the normal direction of a codimension-1 sheet (see
Fig.1(a)(d)). Similarly, the 2-surface integral of B is per-
formed on the normal directions of a codimension-2 sheet,
and the 3-volume integral of C is performed on the nor-
mal directions of a codimension-3 sheet, etc. The above
rules are sufficient for the actions with flat connections
(dA = dB = dC = 0 everywhere).

Without losing generality, we consider a spacetime
with a volume size Ld+1 where L is the length of one di-
mension (such as a Td+1 torus). The allowed large gauge
transformation implies the A, B, C locally can be:

Au,µ =
2πnudxµ
NuL

, δAu =
2πmudxµ

L
, (A7)

Bu,µν =
2πnudxµdxν

NuL2
, δBu,µν =

2πmudxµdxν
L2

, (A8)

Cu,µνρ =
2πnudxµdxν dxρ

NuL3
, δCu,µνρ =

2πmudxµdxν dxρ
L3

.(A9)

. . .

As we discussed in the main text, for some cases, if the
codimension-n sheet (as a branch cut) ends, then its end
points are monodromy defects with non-flat connections
(dA 6= 0, etc). Those monodromy defects can be viewed
as external flux insertions (see Fig.1(b)(e)). In this Ap-
pendix we only need non-flat 1-form: dA 6= 0. We can
imagine several monodromy defects created on the space-
time manifold, but certain constraints must be imposed,∫����∫ dAv = 0 (mod 2π), (A10)∫����∫ δdAv = 0. (A11)

This means that the sum of inserted fluxes at monodromy
defects must be a multiple of 2π fluxes. A fractional flux
is allowed on some individual monodromy defects, but
overall the net sum must be nonfractional units of 2π
(see Fig.2).

For mixed gauge-gravity SPTs, we have also discussed
its probed field partition function in terms of the spin
connection ω, it is simply related to the usual Christof-
fel symbol Γ via a choice of local frame (via vielbein),
which occurs in gravitational effective probed-field parti-
tion function Z0(sym.twist) = eiS0(A,Γ,... ).

We will apply the above rules to the explicit examples
below.

FIG. 2. The net sum of fluxes at monodromy defects (as
punctures or holes of the spatial manifold) must be 2πn units
of fluxes, with n ∈ Z. e.g.

∑
j ΦB(xj) =

∫∫
dAv = 2πn.

1. Top Types:
∫
A1A2 . . . Ad+1 with G =

∏
u ZNu

a. 1+1D
∫
A1A2

For 1+1D bosonic SPTs with a symmetry group
G =

∏
u ZNu , by dimensional counting, one can think

of
∫

dA =
∫
F , but we know that due to F = dA

is a total derivative, so it is not a bulk topological
term but only a surface integral. The only possible
term is exp[ i kII

∫
A1 ∧A2], (here A1 and A2 come

from different symmetry group ZN1 , ZN2 , otherwise
A1 ∧ A1 = 0 due to anti-symmetrized wedge product).
Below we will omit the wedge product ∧ as conventional
and convenient notational purposes, so A1A2 ≡ A1 ∧A2.
Such a term A1A2 is invariant under transformation
if we impose flat connection dA1 = dA2 = 0, since
δ(A1A2) = (δA1)A2 + A1(δA2) = (df1)A2 + A1(df2) =
−f1(dA2) − (dA1)f2 = 0. Here we have abandoned
the surface term if we consider a closed bulk spacetime
without boundaries.

• Large gauge transformation: The partition func-
tion Z0(sym.twist) invariant under the allowed large
gauge transformation via Eq.(A7) implies

kII

∫
δ(A1A2) = kII

∫
(δA1)A2 +A1(δA2)

= kII

∫
2πm1 dx1

L

2πn2 dx2

N2L
+

2πn1 dx1

N1L

2πm2 dx2

L

= kII(2π)2(
m1n2

N2
+
n1m2

N1
),

which action must be invariant mod 2π for any large
gauge transformation parameter (e.g. n1, n2), namely

(2π)2kII

N1
=

(2π)2kII

N2
= 0 (mod 2π)

⇒ (2π)kII

N1
=

(2π)kII

N2
= 0 (mod 1) (A12)

This rule of large gauge transformation implies the level-
quantization.
• Flux identification: On the other hand, when the
ZN1

flux from A1 and ZN2
flux from A2 are inserted as

n1, n2 multiple units of 2π/N1, 2π/N2, we have

kII

∫
A1A2 = kII

∫
2πn1 dx

N1L

2πn2 dt

N2L

= kII
(2π)2

N1N2
n1n2.
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No matter what value n1n2 is, whenever kII
(2π)2

N1N2
shifts by

2π, the symmetry-twist partition function Z0(sym.twist)
is invariant. The coupling kII must be identified, via

(2π)kII ' (2π)kII +N1N2. (A13)

(' means the level identification.) We call this rule as
the flux identification. These two rules above imposes
that kII = pII

N1N2

(2π)N12
with pII defined by pII (mod N12)

so pII ∈ ZN12 , where N12 is the greatest common divi-
sor(gcd) defined by N12...u ≡ gcd(N1, N2, . . . , Nu). N12

is the largest number can divide N1 and N2 from Chinese
remainder theorem. We thus derive

Z0(sym.twist) = exp[ i pII
N1N2

(2π)N12

∫
M2

A1A2]. (A14)

b. 2+1D
∫
A1A2A3

In 2+1D, we have exp[ i kIII

∫
A1A2A3] allowed by flat

connections. We have the two rules, large gauge trans-
formation

kIII

∫
δ(A1A2A3)

= kIII

∫
(δA1)A2A3 +A1(δA2)A3 +A1A2(δA3)

= kIII(2π)3(
m1n2n3

N2N3
+
n1m2n3

N1N3
+
n1n2m3

N1N2
),

which action must be invariant mod 2π for any
large gauge transformation parameter (e.g. n1, n2, . . . )
and flux identification with kIII

∫
A1A2A3 =

kIII

∫
2πn1 dx
N1L

2πn2 dy
N2L

2πn3 dt
N3L

= kIII
(2π)3

N1N2N3
n1n2n3. Both

large gauge transformation and flux identification respec-
tively impose

(2π)2kIII

NuNv
= 0 (mod 1), (A15)

(2π)2kIII ' (2π)2kIII +N1N2N3, (A16)

with u, v ∈ {1, 2, 3} and u 6= v. We thus derive kIII =
pIII

N1N2N3

(2π)2N123
and

Z0(sym.twist) = exp[ i pIII
N1N2N3

(2π)2N123

∫
M3

A1A2A3], (A17)

with pIII defined by pIII (mod N123), so pIII ∈ ZN123
.

c. (d+ 1)D
∫
A1A2 . . . Ad+1

In (d+1)D, similarly, we have exp[ i k
∫
A1A2 . . . Ad+1]

allowed by flat connections, where the large gauge
transformation and flux identification respectively
constrain

(2π)d k Nu∏d+1
j=1 Nj

= 0 (mod 1), (A18)

(2π)dk ' (2π)dk +

d+1∏
j=1

Nj , (A19)

with u ∈ {1, 2, . . . , d+ 1}. We thus derive

Z0(sym.twist) = exp[ i p

∏d+1
j=1 Nj

(2π)dN123...(d+1)

∫
A1A2 . . . Ad+1],

(A20)
with p defined by p (mod N123...(d+1)). We name this

form
∫
A1A2 . . . Ad+1 as the Top Types, which can be

realized for all flat connection of A. Its path integral in-
terpretation is a direct generalization of Fig.1(c)(f), when
the (d+1) number of codimension-1 sheets with flat A on
Td+1 spacetime torus with nontrivial elements gj ∈ ZNj
intersect at a single point, it renders a nontrivial parti-
tion function of Eq.(2) with Z0(sym.twist) 6= 1.

2. Lower Types in 2+1D with G =
∏
u ZNu

a.
∫
AudAv

Apart from the top Type, we also have
Z0(sym.twist) = exp[ i k

∫
AudAv] assuming that

A is almost flat but dA 6= 0 at monodromy defects. Note
that dA is the flux of the monodromy defect, which
is an external input and does not have any dynamical
variation, δ(dAv) = 0 as Eq.(A11). For the large gauge
transformation, we have k

∫
δ(AudAv) as

k

∫ (
(δAu)dAv +Auδ(dAv)

)
= 0 (mod 2π)

⇒ k

2π

∫ (2πmudx

L

2πnv dydt

L2
+ 0
)

= 0 (mod 1),

for any mu, nv. We thus have

(2π)k = 0 (mod 1). (A21)

The above include both Type I and Type II SPTs in
2+1D:

Z0(sym.twist) = exp[ i
pI

(2π)

∫
M3

A1 dA1], (A22)

Z0(sym.twist) = exp[ i
pII

(2π)

∫
M3

A1 dA2], (A23)

where pI, pII ∈ Z integers.

Configuration: In order for Eq.(A23), e i
pII
2π

∫
M3 A1 dA2

to be invariant under the large gauge transformation that
changes

∮
A1 by 2π, pII must be integer. In order for

Eq.(A22) to be well defined, we denote A1 = Ā1 + AF1
where Ā1 dĀ1 = 0, dAF1 = 0,

∮
Ā1 = 0 mod 2π/N1,

and
∮
AF1 = 0 mod 2π/N1. In this case Eq.(A22) be-

comes e i
pI
2π

∫
M3 A

F
1 dĀ1 . The invariance under the large

gauge transformation of AF1 requires pI to be quantized
as integers.

For the flux identification, we compute k
∫
AudAv =

k
∫

2πnudx
NuL

2πnvdydt
L2 = k (2π)2

Nu
nunv, where k is identified

by

(2π)k ' (2π)k +Nu. (A24)
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On the other hand, the integration by parts in the case on
a closed (compact without boundaries) manifold implies
another condition,

(2π)k ' (2π)k +Nv, (A25)

Flux identification: If we view k ' k+Nu/(2π) and
k ' k +Nv/(2π) as the identification of level k, then we
should search for the smallest period from their linear
combination. From Chinese remainder theorem, overall
the linear combination Nu and Nv provides the smallest
unit as their greatest common divisor(gcd) Nuv:

(2π)k ' (2π)k +Nuv (A26)

Hence pI, pII are defined as pI (mod N1) and
pII (mod N12), so it suggests that pI ∈ ZN1

and pII ∈
ZN12

.
Alternatively, using the fully-gauged braiding statistics

approach among particles,48,49 it also renders pI ∈ ZN1

and pII ∈ ZN12
.

b.
∫
A1B2

For AudAv action, we have to introduce non-flat
dA 6= 0 at some monodromy defect. There is another
way instead to formulate it by introducing flat 2-form B
with dB = 0. The partition function Z0(sym.twist) =
exp[ i kII

∫
A1B2]. The large gauge transformation

and the flux identification constrain respectively

(2π)kII

Nu
= 0 (mod 1), (A27)

(2π)kII ' (2π)kII +N1N2, (A28)

with u ∈ {1, 2}. We thus derive

Z0(sym.twist) = exp[ i pII
N1N2

(2π)N12

∫
M3

A1B2], (A29)

with pII defined by pII (mod N12) and pII ∈ ZN12
.

3. Lower Types in 3+1D with G =
∏
u ZNu

a.
∫
AuAv dAw

To derive
∫
Au ∧ Av ∧ dAw topological term, we first

know that the
∫
Fu ∧ Fv =

∫
dAu ∧ dAv term is only a

trivial surface term for the symmetry group G =
∏
j ZNj

and for G = U(1)m. First, the flat connection dA = 0
imposes that Fu ∧ Fv = 0. Second, for a nearly flat con-
nection dA 6= 0, we have k

2π dAu ∧ dAv 6= 0 but the level
quantization imposes k ∈ Z, and the flux identification
ensures that k ' k + 1. So all k ∈ Z is identical to the
trivial class k = 0. Hence, for G =

∏
j ZNj , the only

lower type of SPTs we have is that
∫
AuAv dAw. Such

term vanishes for a single cycle group (A1A1 dA1 = 0 for

G = ZN1
, since A1∧A1 = 0) thus it must come from two

or three cyclic products (ZN1
×ZN2

or ZN1
×ZN2

×ZN3
).

3+1D bosonic topological insulator: However, we
should remind the reader that if one consider a different
symmetry group, such as G = U(1) o ZT2 of a bosonic
topological insulator, the extra time reversal symmetry
ZT2 can distinguish two distinct classes of θ = 0 and
θ = 2π for the probe-field partition function

exp[
i

4π

θ

2π

∫
M4

F ∧ F ]. (A30)

The time reversal symmetry ZT2 on F ∧ F is odd,
so the θ must be odd as θ → −θ under ZT2 sym-
metry. The 1

4π2

∫
M4 F ∧ F corresponds to an inte-

ger of instanton number, together with our large gauge
transformation and flux identification, it dictates θ '
θ + 4π. More explicitly, we recover the familiar form
exp[ i

4π
θ

2π
1
4

∫
M4 ε

µνρσFµνFρσ d4x]. If the trivial vacuum
has θ = 0, then the 3+1D bosonic topological insulator
can be probed by θ = 2π response.

Similar to Sec.A 2 a, the almost flat connection but
with dA 6= 0 at the monodromy defect introduces a path
integral,

Z0(sym.twist) = exp[ i k

∫
M4

AuAv dAw]. (A31)

For the large gauge transformation, we
thus have k

∫
δ(AuAv dAw) = k

∫
(δAu)Av dAw

+Au(δAv)dAw +AuAvδ(dAw) = 0 (mod 2π) ⇒
k
2π

∫
2πnu dx

L
2πnv dy
NvL

2πnw dzdt
L2 + 2πnu dx

NuL
2πnv dy

L
2πnw dzdt

L2 =

0 (mod 1). This constrains that

(2π)2k

Nu
=

(2π)2k

Nv
= 0 (mod 1). (A32)

Thus, the large gauge transformation again implies that
k has a level quantization.

For the flux identification, k
∫
AuAv dAw =

k
∫

2πnudx
NuL

2πnvdy
NvL

2πnwdzdt
L2 = k (2π)3

NuNv
nunvnw. The whole

action is identified by 2π under the shift of quantized
level k:

(2π)2k ' (2π)2k +NuNv. (A33)

For the case of a ZN1
× ZN2

symmetry, we have Type
II SPTs. We obtain a partition function:

Z0(sym.twist) = exp[ i pII
N1N2

(2π)2N12

∫
M4

A1A2 dA2], (A34)

The flux identification Eq.(A33) implies that the identi-
fication of pII ' pII +N12. Thus, it suggests that a cyclic
period of pII is N12, and we have pII ∈ ZN12

.
Similarly, there are also distinct classes

of Type II SPTs with a partition function
exp[ i pII

N1N2

(2π)2N12

∫
M4 A2A1 dA1] with pII ∈ ZN12

.

We notice that A1A2 dA2 and A2A1 dA1 are different
types of SPTs, because they are not identified even by
doing integration by parts.
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For the case of ZN1
× ZN2

× ZN3
symmetry, we have

extra Type III SPTs partition functions (other than the
above Type II SPTs), for example:

Z0(sym.twist) = exp[ i pIII
N1N2

(2π)2N12

∫
M4

A1A2 dA3].(A35)

Again, the flux identification Eq.(A33) implies that the
identification of

pIII ' pIII +N12. (A36)

Thus, it suggests that a cyclic period of pIII is N12, and
pIII ∈ ZN12

.
However, there is an extra constraint on the level iden-

tification. Now consider
∫
A1A2 dA3 =

∫
−d(A1A2)A3

up to a surface integral
∫
d(A1A2A3). No-

tice that
∫
−d(A1A2)dA3 = −

∫
A2A3 dA1 −∫

A3A1 dA2. If we reconsider the flux identifi-
cation of Eq.(A35) in terms of Z0(sym.twist) =
exp[ −i pIII

N1N2

(2π)2N12

∫
M4(A2A3 dA1 +A3A1 dA2)], we

find the spacetime volume integration yields a phase

Z0(sym.twist)=exp[ −i pIII
N1N2

(2π)2N12

( (2π)3n2n3

N2N3
+ (2π)3n3n1

N3N1

)
].

Z0(sym.twist) = exp[
−2π i pIIIn3

N3

n2N1 + n1N2

N12

)
].(A37)

We can arbitrarily choose n1, n2, n3 to determine the level
identification of pIII from the flux identification. The
finest level identification is determined from choosing the
smallest n3 and the smallest n2N1 + n1N2. We choose
n3 = 1. By Chinese remainder theorem, we can choose
n2N1 + n1N2 = gcd(N1, N2) ≡ N12. Thus Eq.(A37)

yields Z0(sym.twist) = exp[−2π i pIII
N3

]. It is apparent that
the flux identification implies the level identification

pIII ' pIII +N3. (A38)

Eq.(A36),(A38) and their linear combination together
imply the finest level pIII identification

pIII ' pIII + gcd(N12, N3) ' pIII +N123. (A39)

Overall, our derivation suggests that Eq.(A35) has pIII ∈
ZN123

.

b.
∫
A1C2

Similar to Sec.A 2 b, we can introduce a flat 3-form
C field with dC = 0 such that Z0(sym.twist) =
exp[ i kII

∫
A1C2] can capture a similar physics of∫

A1A2 dA2. The large gauge transformation and flux
identification constrain respectively,

(2π)kII

Nu
= 0 (mod 1), (A40)

(2π)kII ' (2π)kII +N1N2. (A41)

with u ∈ {1, 2}. We derive

Z0(sym.twist) = exp[ i pII
N1N2

(2π)N12

∫
M4

A1C2], (A42)

with pII defined by pII (mod N12), thus pII ∈ ZN12
.

c.
∫
A1A2B3

Similar to Sec.A 2 b, A 3 b, in 3+1D, by dimen-
sional counting, we can also introduce Z0(sym.twist) =
exp[ i k

∫
A1A2B3]. The large gauge transformation and

the flux identification yield

(2π)2k

NuNv
= 0 (mod 1), (A43)

(2π)2k ' (2π)2k +N1N2N3. (A44)

We thus derive

Z0(sym.twist) = exp[ i pIII
N1N2N3

(2π)2N123

∫
M4

A1A2B3], (A45)

with pIII defined by pIII (mod N123) with pIII ∈ ZN123
.

4. Cases for Fermionic SPTs

Throughout the main text, we have been focusing on
the bosonic SPTs, which elementary particle contents are
all bosons. Here we comment how the rules of fermionic
SPTs can be modified from bosonic SPTs. Due to that
the fermionic particle is allowed, by exchanging two iden-
tical fermions will gain a fermionic statistics eiπ = −1,
thus
• Large gauge transformation: The Z0 invariance
under the allowed large gauge transformation implies the
volume-integration must be invariant mod π (instead of
bosonic case with mod 2π), because inserting a fermion
into the system does not change the SPT class of system.
Generally, there are no obstacles to go through the anal-
ysis and level-quantization for fermions, except that we
need to be careful about the flux identification. Below
we give an example of U(1) symmetry bosonic/fermionc
SPTs, and we will leave the details of other cases for
future studies.

5. U(1)m symmetry bosonic and fermionic SPTs

For U(1)m symmetry, one can naively generalize the
above results from a viewpoint of G = ΠmZN = (ZN )m

with N → ∞. This way of thinking is intuitive (though
not mathematically rigorous), but guiding us to obtain
U(1)m symmetry classification. We find the classifica-
tion is trivial for even (d + 1)D, due to Fu ∧ Fv ∧ . . .
(where F = dA is the field strength, here u, v can
be either the same or different U(1) gauge fields) is
only a surface term, not a bulk topological term. For
odd (d + 1)D, we can define the lower type action:
Z0(sym.twist) = exp[ i 2πk

( d+2
2 )!(2π)(d+2)/2

∫
Au ∧ Fv ∧ . . .].

Meanwhile we emphasize that other type of actions,
such as the top type, k

∫
A1A2 . . . Ad+1 form, or

any other terms involve with more than one A (e.g.
k
∫
Au1

Au2
. . . dAu.) will be trivial SPT class for U(1)m

case - since its coefficient k no longer stays finite for
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N → ∞ of (ZN )m symmetry SPTs, so the level k is
not well-defined. For physically relevant 2 + 1D, k ∈ 2Z
for bosonic SPTs, k ∈ Z for fermionic SPTs via Sec.A 4.
Thus, we will have a Zm × Zm(m−1)/2 classification for
U(1)m symmetry boson, and the fermionic classification

increases at least by shifting the bosonic Z→ 2Z. There
may have even more extra classes by including Majorana
boundary modes, which we will leave for future investi-
gations.

Appendix B: From “Partition Functions of Fields” to “Cocycles of Group Cohomology” and Künneth formula

In Appendix A, we have formulated the spacetime partition functions of probe fields (e.g. Z0(A(x)), etc),
which fields A(x) take values at any coordinates x on a continuous spacetime manifold M with no dynamics. On
the other hand, it is known that, (d + 1)D bosonic SPTs of symmetry group G can be classified by the (d + 1)-th
cohomology groupHd+1(G,R/Z)6 (predicted to be complete at least for finite symmetry group G without time reversal
symmetry). From this prediction that bosonic SPTs can be classified by group cohomology, our path integral on the
discretized space lattice (or spacetime complex) shall be mapped to the partition functions of the cohomology
group - the cocycles. In this section, we ask “whether we can attain this correspondence from “partition functions
of fields” to “cocycles of group cohomology?” Our answer is “yes,” we will bridge this beautiful correspondence
between continuum field theoretic partition functions and discrete cocycles for any (d+ 1)D spacetime dimension for
finite Abelian G =

∏
u ZNu .

(d+1)dim partition function Z (d+ 1)-cocycle ωd+1

0+1D exp(i pI
∫
A1) exp

(
2πipI
N1

a1
)

1+1D exp(i pII
N1N2

(2π)N12

∫
A1A2) exp

(
2πipII
N12

a1b2
)

2+1D exp(i pI
(2π)

∫
A1 dA1) exp

(
2πipI
N2

1
a1(b1 + c1 − [b1 + c1])

)
exp(i pI

∫
C1) (even/odd effect) exp

(
2πipI
N1

a1b1c1
)

2+1D exp(i pII
(2π)

∫
A1 dA2) exp

(
2πipII
N1N2

a1(b2 + c2 − [b2 + c2])
)

exp(i pII
N1N2

(2π)N12

∫
A1B2) (even/odd effect) exp

(
2πipII
N12

a1b2c2
)

2+1D exp(i pIII
N1N2N3
(2π)2N123

∫
A1A2A3) exp

(
2πipIII
N123

a1b2c3
)

3+1D exp(i
∫
p
(1st)

II(12)
N1N2

(2π)2N12
A1A2 dA2) exp

( 2πip(1st)
II(12)

(N12·N2)
(a1b2)(c2 + d2 − [c2 + d2])

)
exp(i pII

N1N2
(2π)N12

∫
A1C2) (even/odd effect) exp

(
2πipII
N12

a1b2c2d2
)

3+1D exp(i
∫
p
(2nd)

II(12)
N1N2

(2π)2N12
A2A1 dA1) exp

( 2πip(2nd)
II(12)

(N12·N1)
(a2b1)(c1 + d1 − [c1 + d1])

)
exp(i pII

N1N2
(2π)N12

∫
A2C1) (even/odd effect) exp

(
2πipII
N12

a2b1c1d1
)

3+1D exp(i p
(1st)

III(123)
N1N2

(2π)2N12

∫
(A1A2)dA3) exp

( 2πip(1st)
III(123)

(N12·N3)
(a1b2)(c3 + d3 − [c3 + d3])

)
exp(i pIII

N1N2N3
(2π)2N123

∫
A1A2B3) (even/odd effect) exp

(
2πipIII
N123

a1b2c3d3
)

3+1D exp(i p
(2nd)

III(123)
N3N1

(2π)2N31

∫
(A3A1)dA2) exp

( 2πip(2nd)
III(123)

(N31·N2)
(a3b1)(c2 + d2 − [c2 + d2])

)
exp(i pIII

N1N2N3
(2π)2N123

∫
A3A1B2) (even/odd effect) exp

(
2πipIII
N123

a3b1c2d2
)

3+1D [exp(i pIV
N1N2N3N4
(2π)3N1234

∫
A1A2A3A4)] exp

( 2πipIV
N1234

a1b2c3d4
)

4+1D exp(i pI
(2π)2

∫
A1 dA1 dA1) exp

(
2πipI
(N1)3

a1(b1 + c1 − [b1 + c1])(d1 + e1 − [d1 + e1])
)

4+1D . . . . . .

4+1D exp(i pV
N1N2N3N4N5
(2π)4N12345

∫
A1A2A3A4A5) exp

(
2πipV
N12345

a1b2c3d4e5
)

TABLE I. Some derived results on the correspondence between the spacetime partition function of probe fields (the
second column) and the cocycles of the cohomology group (the third column) for any finite Abelian group G =

∏
u ZNu .

The even/odd effect means that whether their corresponding cocycles are nontrivial or trivial(as coboundary) depends on the
level p and N (of the symmetry group ZN ) is even/odd. Details are explained in Sec B 2.
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1. Correspondence

The partition functions in Appendix A have been
treated with careful proper level-quantizations via large
gauge transformations and flux identifications. For G =∏
u ZNu , the field Au, Bu, Cu, etc, take values in ZNu

variables, thus we can express them as

Au ∼
2πgu
Nu

, Bu ∼
2πguhu
Nu

, Cu ∼
2πguhulu

Nu
(B1)

with gu, hu, lu ∈ ZNu . Here 1-form Au takes gu value on
one link of a (d+ 1)-simplex, 2-form Bu takes gu, hu val-
ues on two different links and 3-form Cu takes gu, hu, lu
values on three different links of a (d+1)-simplex. These
correspondence suffices for the flat probe fields.

In other cases, we also need to interpret the non-flat

dA 6= 0 at the monodromy defect as the external inserted
fluxes, thus we identify

dAu ∼
2π(gu + hu − [gu + hu])

Nu
, (B2)

here [gu + hu] ≡ gu + hu (mod Nu). Such identification
ensures dAu is a multiple of 2π flux, therefore it is con-
sistent with the constraint Eq.(A10) at the continuum
limit. Based on the Eq.(B1)(B2), we derive the corre-
spondence in Table I, from the continuum path integral
Z0(sym.twist) of fields to a U(1) function as the discrete
partition function. In the next subsection, we will verify
the U(1) functions in the last column in Table I indeed
are the cocycles ωd+1 of cohomology group. Such a corre-
spondence has been explicitly pointed out in our previous
work Ref.68 and applied to derive the cocycles.

(d+1)dim Partition function Z of “fields” p ∈ Hd+1(G,R/Z) Künneth formula in Hd+1(G,R/Z)

0+1D exp(i p..
∫
A1) ZN1 H1(ZN1 ,R/Z)

1+1D exp(i p..
∫
A1A2) ZN12 H1(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)

2+1D exp(i p..
∫
A1 dA1) ZN1 H3(ZN1 ,R/Z)

2+1D exp(i p..
∫
A1 dA2) ZN12 H1(ZN1 ,R/Z)⊗Z H1(ZN2 ,R/Z)

2+1D exp(i p..
∫
A1A2A3) ZN123 [H1(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)]�Z H1(ZN3 ,R/Z)

3+1D exp(i p..
∫
A1A2 dA2) ZN12 H1(ZN1 ,R/Z)�Z H3(ZN2 ,R/Z)

3+1D exp(i p..
∫
A2A1 dA1) ZN12 H1(ZN2 ,R/Z)�Z H3(ZN1 ,R/Z)

3+1D exp(i p..
∫

(A1A2)dA3) ZN123 [H1(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)]⊗Z H1(ZN3 ,R/Z)
3+1D exp(i p..

∫
(A1 dA2)A3) ZN123 [H1(ZN1 ,R/Z)⊗Z H1(ZN2 ,R/Z)]�Z H1(ZN3 ,R/Z))

3+1D exp(i p..
∫
A1A2A3A4) ZN1234

[
[H1(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)]�Z H1(ZN3 ,R/Z)

]
�Z H1(ZN4 ,R/Z)

4+1D exp(i p..
∫
A1 dA1 dA1) ZN1 H5(ZN1 ,R/Z)

4+1D exp(i p..
∫
A1 dA1 dA2) ZN12 H3(ZN1R/Z)⊗Z H1(ZN2 ,R/Z)

4+1D exp(i p..
∫
A2 dA2 dA1) ZN12 H3(ZN2 ,R/Z)⊗Z H1(ZN1 ,R/Z)

4+1D exp(i p..
∫
A1 dA1A2A3) ZN123

[
[H3(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)]�Z H1(ZN3 ,R/Z)

]
4+1D exp(i p..

∫
A2 dA2A1A3) ZN123

[
[H3(ZN2 ,R/Z)�Z H1(ZN1 ,R/Z)]�Z H1(ZN3 ,R/Z)

]
4+1D exp(i p..

∫
A1 dA2 dA3) ZN123 [H1(ZN1 ,R/Z)⊗Z H1(ZN2 ,R/Z)]⊗Z H1(ZN3 ,R/Z)

4+1D exp(i p..
∫
A1A2A3 dA3) ZN123

[
[H1(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)]�Z H3(ZN3 ,R/Z)

]
4+1D exp(i p..

∫
A1 dA2A3A4) ZN1234

[[
[H1(ZN1 ,R/Z)⊗Z H1(ZN2 ,R/Z)]�Z H1(ZN3 ,R/Z)

]
�Z H1(ZN4 ,R/Z)

]
4+1D exp(i p..

∫
A1A2 dA3A4) ZN1234

[[
[H1(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)]⊗Z H1(ZN3 ,R/Z)

]
�Z H1(ZN4 ,R/Z)

]
4+1D exp(i p..

∫
A1A2A3 dA4) ZN1234

[[
[H1(ZN1 ,R/Z)�Z H1(ZN2 ,R/Z)]�Z H1(ZN3 ,R/Z)

]
⊗Z H1(ZN4 ,R/Z)

]
4+1D exp(i p..

∫
A1A2A3A4A5) ZN12345

[[
[H1(ZN1)�Z H1(ZN2)]�Z H1(ZN3)

]
�Z H1(ZN4)

]
�Z H1(ZN5)

TABLE II. From partition functions of fields to Künneth formula. Here we consider a finite Abelian group G =
∏
u ZNu .

The field theory result can map to the derived facts about the cohomology group and its cocycles. Here the level-quantization
is shown in a shorthand way with only p.. written, the explicit coefficients can be found in Table II. In some row, we abbreviate
H1(Znj ,R/Z) ≡ H1(Znj ). The torsion product TorZ

1 ≡ �Z evokes a wedge product ∧ structure in the corresponding field
theory, while the tensor product ⊗Z evokes appending an extra exterior derivative ∧d structure in the corresponding field
theory. This simple observation maps the field theoretic path integral to its correspondence in Künneth formula.

We remark that the field theoretic path integral’s level p quantization and its mod relation also provide an indepen-
dent way (apart from group cohomology) to count the number of types of partition functions for a given symmetry
group G and a given spacetime dimension. Such the modular p is organized in (the third column of) Table II. In
addition, one can further deduce the Künneth formula(the last column of Table II) from a field theoretic partition
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Type I Type II Type III Type IV Type V Type VI . . . . . .
ZNi ZNij ZNijl ZNijlm Zgcd⊗5

i (N
(i)) Zgcd⊗6

i (Ni)
Zgcd⊗mi (Ni) Z

gcd⊗d−1
i Ni

Zgcd⊗diN
(i)

H1(G,R/Z) 1
H2(G,R/Z) 0 1
H3(G,R/Z) 1 1 1
H4(G,R/Z) 0 2 2 1
H5(G,R/Z) 1 2 4 3 1
H6(G,R/Z) 0 3 6 7 4 1

Hd(G,R/Z) (1−(−1)d)
2

d
2
− (1−(−1)d)

4
. . . . . . . . . . . . . . . d− 2 1

TABLE III. The table shows the exponent of the Zgcd⊗mi (Ni) class in the cohomology group Hd(G,R/Z) for a finite Abelian

group G =
∏k

u=1

ZNu . Here we define a shorthand of Zgcd(Ni,Nj) ≡ ZNij ≡ Zgcd⊗2
i (Ni)

, etc also for other higher gcd. Our

definition of the Type m is from its number (m) of cyclic gauge groups in the gcd class Zgcd⊗mi (Ni). The number of exponents
can be systematically obtained by adding all the numbers of the previous column from the top row to a row before the wish-
to-determine number. This table in principle can be independently derived by gathering the data of Table II from field theory
approach. For example, we can derive H5(G,R/Z) =

∏
1≤i<j<l<m<n≤k

ZNi × (ZNij )
2× (ZNijl)

4× (ZNijlm)3×ZNijlmn , etc. Thus,

we can use field theory to derive the group cohomology result.

function viewpoint. Overall, this correspondence from field theory can be an independent powerful tool to derive the
group cohomology and extract the classification data (such as Table III).

2. Cohomology group and cocycle conditions

To verify that the last column of Table I (bridged from the field theoretic partition function) are indeed cocycles
of a cohomology group, here we briefly review the cohomology group Hd+1(G,R/Z) (equivalently as Hd+1(G,U(1))
by R/Z = U(1)), which is the (d+ 1)th-cohomology group of G over G module U(1). Each class in Hd+1(G,R/Z)
corresponds to a distinct (d + 1)-cocycles. The n-cocycles is a n-cochain, in addition they satisfy the n-cocycle-
conditions δω = 1. The n-cochain is a mapping of ω(a1, a2, . . . , an): Gn → U(1) (which inputs ai ∈ G, i = 1, . . . , n,
and outputs a U(1) value). The n-cochain satisfies the group multiplication rule:

(ω1 · ω2)(a1, . . . , an) = ω1(a1, . . . , an) · ω2(a1, . . . , an), (B3)

thus form a group. The coboundary operator δ

δc(g1, g2, . . . , gn+1) ≡ c(g2, . . . , gn+1)c(g1, . . . , gn)(−1)n+1

·
n∏
j=1

c(g1, . . . , gjgj+1, . . . , gn+1)(−1)j , (B4)

which defines the n-cocycle-condition δω = 1. The n-
cochain forms a group Cn, while the n-cocycle forms its
subgroup Zn. The distinct n-cocycles are not equivalent
via n-coboundaries, where Eq.(B4) also defines the n-
coboundary relation: if n-cocycle ωn can be written as
ωn = δΩn−1, for any (n − 1)-cochain Ωn+1, then we say
this ωn is a n-coboundary. Due to δ2 = 1, thus we know
that the n-coboundary further forms a subgroup Bn .
In short, Bn ⊂ Zn ⊂ Cn The n-cohomology group is
precisely a kernel Zn (the group of n-cocycles) mod out
image Bn (the group of n-coboundary) relation:

Hn(G,R/Z) = Zn/Bn. (B5)

For other details about group cohomology (especially
Borel group cohomology here), we suggest to read Ref.6,
68, and 70 and Reference therein.

To be more specific cocycle conditions, for finite
Abelian group G, the 3-cocycle condition for 2+1D is

(a pentagon relation),

δω(a, b, c, d) =
ω(b, c, d)ω(a, bc, d)ω(a, b, c)

ω(ab, c, d)ω(a, b, cd)
= 1 (B6)

The 4-cocycle condition for 3+1D is

δω(a, b, c, d, e) =
ω(b, c, d, e)ω(a, bc, d, e)ω(a, b, c, de)

ω(ab, c, d, e)ω(a, b, cd, e)ω(a, b, c, d)
= 1

(B7)
The 5-cocycle condition for 4+1D is

δω(a, b, c, d, e, f) =
ω(b, c, d, e, f)ω(a, bc, d, e, f)

ω(ab, c, d, e, f)

· ω(a, b, c, de, f)ω(a, b, c, d, e)

ω(a, b, cd, e, f)ω(a, b, c, d, ef)
= 1 (B8)

We verify that the U(1) functions (mapped from a field
theory derivation) in the last column of Table I indeed
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satisfy cocycle conditions. Moreover, those partition
functions purely involve with 1-form A or its field-
strength (curvature) dA are strictly cocycles but
not coboundaries. These imply that those terms with
only A or dA are the precisely nontrivial cocycles in the
cohomology group for classification.

However, we find that partition functions in-
volve with 2-form B, 3-form C or higher
forms, although are cocycles but sometimes may
also be coboundaries at certain quantized level p
value. For instance, for those cocycles correspond
to the partition functions of p

∫
C1, p N1N2

(2π)N12

∫
A1B2,

p N1N2

(2π)N12

∫
A1C2, p N1N2

(2π)N12

∫
A2C1, p N1N2N3

(2π)2N123

∫
A1A2B3,

p N1N2N3

(2π)2N123

∫
A3A1B2, etc (which involve with higher

forms B, C), we find that for G = (Z2)n symmetry,
p = 1 are in the nontrivial class (namely not a cobound-
ary), G = (Z4)n symmetry, p = 1, 3 are in the non-
trivial class (namely not a coboundary). However, for
G = (Z3)n symmetry of all p and G = (Z4)n symme-
try at p = 2, are in the trivial class (namely a cobound-
ary), etc. This indicates an even-odd effect, sometimes
these cocycles are nontrivial, but sometimes are trivial as
coboundary, depending on the level p is even/odd and the
symmetry group (ZN )n whether N is even/odd. Such
an even/odd effect also bring complication into
the validity of nontrivial cocycles, thus this is an-
other reason that we study only field theory in-
volves with only 1-form A or its field strength dA.
The cocycles composed from A and dA in Table I
are always nontrivial and are not coboundaries.

We finally point out that the concept of boundary
term in field theory (the surface or total derivative
term) is connected to the concept of coboundary in
the cohomology group. For example,

∫
(dA1)A2A3

are identified as the coboundary of the linear combina-
tion of

∫
A1A2(dA3) and

∫
A1(dA2)A3. Thus, by count-

ing the number of distinct field theoretic actions (not
identified by boundary term) is precisely counting the
number of distinct field theoretic actions (not identified

by coboundary). Such an observation matches the field
theory classification to the group cohomology classifica-
tion shown in Table III. Furthermore, we can map the
field theory result to the Künneth formula listed in Ta-
ble II, via the correspondence:∫

A1 ∼ H1(ZN1
,R/Z) (B9)∫

A1 dA1 ∼ H3(ZN1 ,R/Z) (B10)∫
A1 dA1 dA1 ∼ H5(ZN1

,R/Z) (B11)

TorZ
1 ≡ �Z ∼ ∧ (B12)

⊗Z ∼ ∧d (B13)∫
A1 ∧A2 ∼ H1(ZN1

,R/Z)�Z H1(ZN2
,R/Z) (B14)∫

A1 ∧ dA2 ∼ H1(ZN1
,R/Z)⊗Z H1(ZN2

,R/Z) (B15)

. . .

To summarize, in this section, we show that, at lease

for finite Abelian symmetry group G =
∏k
i=1 ZNi , field

theory can be systematically formulated, via the level-
quantization developed in Appendix A, we can count the
number of classes of SPTs. Explicit examples are orga-
nized in Table I, II, III, where we show that our field
theory approach can exhaust all bosonic SPT classes (at
least as complete as) in group cohomology:

H2(G,R/Z) =
∏

1≤i<j≤k

ZNij (B16)

H3(G,R/Z) =
∏

1≤i<j<l≤k

ZNi × ZNij × ZNijl (B17)

H4(G,R/Z) =
∏

1≤i<j<l<m≤k

(ZNij )
2 × (ZNijl)

2 × ZNijlm(B18)

. . .

and we also had addressed the correspondence between
field theory and Künneth formula.

Appendix C: SPT Invariants, Physical Observables and Dimensional Reduction

In this section, we comment more about the SPT invariants from probe field partition functions, and the derivation
of SPT Invariants from dimensional reduction, using both a continuous field theory approach and a discrete cocycle
approach. We focus on finite Abelian G =

∏
u ZNu bosonic SPTs.

First, recall from the main text using a continuous field theory approach, we can summarize the dimensional
reduction as a diagram below:

1 + 1D 2 + 1D 3 + 1D · · · d+ 1D

A1A2 A1A2A3
oo A1A2A3A4

oo · · ·oo A1A2 . . . Ad+1
oo

Av dAw AuAv dAw

kk

oo . . .oo

(C1)

There are basically (at least) two ways for dimensional reduction procedure:
•(i) One way is the left arrow ← procedure, which compactifies one spatial direction xu as a S1 circle while a gauge
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field Au along that xu direction takes ZNu value by
∮
S1 Au = 2πnu/Nu.

•(ii) Another way of dimensional reduction is the up-left arrow ↖, where the space is designed as M2 × Md−2,
where a 2-dimensional surface M2 is drilled with holes or punctures of monodromy defects with dAw flux, via∫����∫ ∑ dAw = 2πnw under the condition Eq.(A10). As long as the net flux through all the holes is not zero (nw 6= 0),

the dimensionally reduced partition functions can be nontrivial SPTs at lower dimensions. We summarize their
physical probes in Table IV and in its caption.

Physical Observables Dimensional reduction of SPT invariants and probe-feild actions

• degenerate zero energy modes26 of 1+1D SPT A1A2 ← A1A2A3 ← A1A2A3A4 ← · · ·
(projective representation of ZN1 × ZN2 symmetry) A1A2 ← AuAv dAw ← · · ·

• edge modes on monodromy defects of 2+1D SPT - gapless, Av dAw ← AuAv dAw ← · · ·
or gapped with induced fractional quantum numbers26

• braiding statistics of monodromy defects48,62,66,68

TABLE IV. We discuss two kinds of dimensional-reducing outcomes and their physical observables. The first kind reduces to∫
A1A2 type action of 1+1D SPTs, where its 0D boundary modes carries a projective representation of the remained symmetry

ZN1 × ZN2 , due to its action is a nontrivial element of H2(ZN1 × ZN2 ,R/Z). This projective representation also implies the
degenerate zero energy modes near the 0D boundary. The second kind reduces to

∫
Av dAw type action of 2+1D SPTs, where

its physical observables are either gapless edge modes at the monodromy defects, or gapped edge by symmetry-breaking domain
wall which induces fractional quantum numbers. One can also detect this SPTs by its nontrivial braiding statistics of gapped
monodromy defects (particles/strings in 2D/3D for

∫
AdA /

∫
AAdA type actions).

Second, we can also apply a discrete cocycle approach (to verify the above field theory result). We only need to use
the slant product, which sends a n-cochain c to a (n− 1)-cochain igc:

igc(g1, g2, . . . , gn−1) ≡ c(g, g1, g2, . . . , gn−1)(−1)n−1

·
n−1∏
j=1

c(g1, . . . , gj , (g1 . . . gj)
−1 · g · (g1 . . . gj), . . . , gn−1)(−1)n−1+j

,(C2)

with gi ∈ G. Let us consider Abelian group G, in 2+1D,
where we dimensionally reduce by sending a 3-cocycle to
a 2-cocycle:

Ca(b, c) ≡ iaω(b, c) =
ω(a, b, c)ω(b, c, a)

ω(b, a, c)
. (C3)

In 3+1D, we dimensionally reduce by sending a 4-cocycle

to a 3-cocycle:

Ca(b, c, d) ≡ iaω(b, c, d) =
ω(b, a, c, d)ω(b, c, d, a)

ω(a, b, c, d)ω(b, c, a, d)
.(C4)

These dimensionally-reduced cocycles from Table I’s last
column would agree with the field theory dimensional
reduction structure and its predicted SPT invariants.
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