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Abstract

Topological Quantum Field Theories (TQFTs) pertinent to some emergent low energy phe-
nomena of condensed matter lattice models in 2+1 and 3+1 dimensions are explored. Many of
our TQFTs are highly-interacting without free quadratic analogs. Some of our bosonic TQFTs
can be regarded as the continuum field theory formulation of Dijkgraaf-Witten twisted dis-
crete gauge theories. Other bosonic TQFTs beyond the Dijkgraaf-Witten description and all
fermionic TQFTs (namely the spin TQFTs) are either higher-form gauge theories where parti-
cles must have strings attached, or fermionic discrete gauge theories obtained by gauging the
fermionic Symmetry-Protected Topological states (SPTs). We analytically calculate both the
Abelian and non-Abelian braiding statistics data of anyonic particle and string excitations in
these theories, where the statistics data can one-to-one characterize the underlying topological
orders of TQFTs. Namely, we derive path integral expectation values of links formed by line
and surface operators in these TQFTs. The acquired link invariants include not only the fa-
miliar Aharonov-Bohm linking number, but also Milnor triple linking number in 3 dimensions,
triple and quadruple linking numbers of surfaces, and intersection number of surfaces in 4 di-
mensions. We also construct new spin TQFTs with the corresponding knot/link invariants of
Arf(-Brown-Kervaire), Sato-Levine and others. We propose a new relation between the fermionic
SPT partition function and the Rokhlin invariant. As an example, we can use these invariants
and other physical observables, including ground state degeneracy, reduced modular Sxy and
T xy matrices, and the partition function on RP

3 manifold, to identify all ν ∈ ❩8 classes of 2+1
dimensional gauged Z2-Ising-symmetric Z

f
2 -fermionic Topological Superconductors (realized by

stacking ν layers of a pair of chiral and anti-chiral p-wave superconductors [p + ip and p − ip],
where boundary supports non-chiral Majorana-Weyl modes) with continuum spin-TQFTs.
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1 Introduction and Summary

In condensed matter physics, we aim to formulate a systematic framework within unified princi-
ples to understand many-body quantum systems and their underlying universal phenomena. Two
strategies are often being used: classification and characterization. The classification aims to orga-
nize the distinct macroscopic states / phases / orders of quantum matter in terms of distinct classes,
give these classes some proper mathematical labels, and find the mathematical relations between
distinct classes. The characterization aims to distinguish different classes of matter in terms of some
universal physics probes as incontrovertible experimental evidence of their existences. Ginzburg-
Landau theory [1–3] provides a framework to understand the global-symmetry breaking states and
their phase transitions. Ginzburg-Landau theory uses the group theory in mathematics to classify
the states of matter through their global symmetry groups. Following Ginzburg-Landau theory
and its refinement to the Wilson’s renormalization-group theory [4], it is now well-known that
we can characterize symmetry breaking states through their gapless Nambu-Goldstone modes, the
long-range order (see References therein [5]), and their behaviors through the critical exponents.
In this classic paradigm, physicists focus on looking into the long-range correlation function of local
operators O(x) at a spacetime point x, or into a generic n-point correlation function:

〈O(x1)O(x2)〉, 〈O1(x1)O2(x2) · · · On(xn)〉, etc. (1)

through its long-distance behavior.

However, a new paradigm beyond-Ginzburg-Landau-Wilson’s have emerged since the last three
decades [6, 7]. One important theme is the emergent conformal symmetries and emergent gauge
fields at the quantum critical points of the phase transitions. This concerns the critical behavior
of gapless phases of matter where the energy gap closes to zero at the infinite system size limit.
Another important theme is the intrinsic topological order [8]. The topological order cannot be
detected through the local operator O(x), nor the Ginzburg-Landau symmetry breaking order pa-
rameter, nor the long-range order. Topological order is famous for harboring fractionalized anyon
excitations that have the fractionalized statistical Berry phase [9]. Topological order should be
characterized and detected through the extended or non-local operators. It should be classified
through the quantum pattern of the long-range entanglement (See [10] for a recent review). Topo-
logical order can occur in both gapless or gapped phases of matter. In many cases, when topological
orders occurr in the gapped phases of condensed matter system, they may have low energy effective
field theory descriptions by Topological Quantum Field Theories (TQFTs) [11]. Our work mainly
concerns gapped phases of matter with intrinsic topological order that have TQFT descriptions.

One simplest example of topological order in 2+1 dimensions (denoted as 2+1D1) is called the
Z2 topological order [12], equivalently the Z2 spin liquid [13], or the Z2 toric code [14], or the
Z2 discrete gauge theory [15]. Indeed the Z2 topological order exists in any dimension, say in
((d − 1) + 1)D with d ≥ 3. Discrete ZN gauge theory can be described by an integer level-N BF
field theory with an action

∫

N
2πB ∧ dA, where A and B are locally 1-form and d − 2-form gauge

fields. The case of N = 2 and d = 3 is our example of 2+1D Z2 topological order. Since n-point
correlation function of local operators cannot detect the nontrivial Z2 or ZN topological order, we
shall instead use extended operators to detect its nontrivial order. The extended operators pf are
Wilson and ’t Hooft operators: WA,en(C

1
n) = exp[ien

∮

C1
n
A] carrying the electric charge en along

a closed curve C1
n, and WB,qm(S

d−2
m ) = exp[iqm

∮

Sd−2
m

B] carrying the magnetic charge qm along a

closed surface Sd−2
m . The path integral (details examined in the warm up exercise done in Section

1We denote n+ 1 dimensional spacetime as n+ 1D, with n dimensional space and 1 dimensional time.
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2) for the correlator of the extended operators results in

〈WA,en(C
1
n)WB,qm(S

d−2
m )〉 = exp[−i

2π

N
enqmLk(C1

n, S
d−2
m )]. (2)

With some suitable en and qm values, its expectation value is nontrivial (i.e. equal to 1), if and only
if the linking number Lk(C1

n, S
d−2
m ) of the line and surface operator is nonzero. The closed line oper-

atorWA,en(C
1
n) can be viewed as creating and then annihilating a pair of en particle-antiparticle 0D

anyon excitations along a 1D trajectory in the spacetime. The closed surface operatorWB,qm(S
d−2
m )

can be viewed as creating and then annihilating a pair of qm fractionalized flux-anti-flux (d− 3)D
excitations along some trajectory in the spacetime (Note that the flux excitation is a 0D anyon
particle in 2+1D, while it is a 1D anyonic string excitation in 3+1D). A nontrivial linking im-
plies that there is a nontrivial braiding process between en charge and qm flux excitation in the
spacetime2. The link confugurations shown in terms of spacetime braiding process are listed in
Table 1. Physically, we can characterize the topological order through the statistical Berry phase
between anyonic excitations, say exp[i2πN enqm], via the nontrivial link invariant. Mathematically,
the viewpoint is the opposite, the topological order, or TQFT, or here the BF theory detects the
nontrivial link invariant. It shall be profound to utilize both viewpoints to explore the topologi-
cal order in condensed matter, TQFT in field theories, and link invariants in mathematics. This
thinking outlines the deep relations between quantum statistics and spacetime topology [16,17].

The goals of our paper are: (1) Provide concrete examples of topological orders and TQFTs
that occur in emergent low energy phenomena in some well-defined fully-regularized many-body
quantum systems. (2) Explicit exact analytic calculation of the braiding statistics and link invari-
ants for our topological orders and TQFTs. For the sake of our convenience and for the universality
of low energy physics, we shall approach our goal through TQFT, without worrying about a par-
ticular lattice-regularization or the lattice Hamiltonian. However, we emphasize again that all our
TQFTs are low energy physics of some well-motivated lattice quantum Hamiltonian systems, and
we certainly shall either provide or refer to the examples of such lattice models and condensed
matter systems, cases by cases. To summarize, our TQFTs / topological orders shall satisfy the
following physics properties:

1. The system is unitary.

2. Anomaly-free in its own dimensions. Emergent as the infrared low energy physics from
fully-regularized microscopic many-body quantum Hamiltonian systems with a ultraviolet
high-energy lattice cutoff. This motivates a practical purpose for condensed matter.

3. The energy spectrum has a finite energy gap ∆ in a closed manifold for the microscopic
many-body quantum Hamiltonian systems. We shall take the large energy gap limit ∆ ≫ 1
to obtain a valid TQFT description. The system can have degenerate ground states (or called

2 Let us elaborate on what exactly is meant by this. Let L be a link in a closed space-time manifold M . The link
L can be decomposed as some submanifolds, including lines or surfaces. The lines or surfaces become operators in
TQFT that create anyonic excitations at their ends. For example, an open line creates the anyonic particle at two
end points. An open surface creates the anyonic string at its boundary components. A closed line thus creates a pair
of anyonic particle/anti-particle from vacuum, and then annihilate them to vacuum. The closed surface creates the
anyonic strings from vacuum and then annihilate them to vacuum. Therefore the link L can be viewed as the time
trajectory for the braiding process of those anyonic excitations, where braiding process means the time-dependent
process (a local time as a tangent vector in a local patch of the whole manifold) that is moving those anyonic
excitations around to form a closed trajectory as the link of submanifolds (lines, surfaces) in the spacetime manifold.
The braiding statistics concerns the complex number that arise in the path integral with the configuration described
above. The braiding statistics captures the statistical Berry phase of excitations of particle and string. We remark
quantum dimensions of anyonic particles/strings in Sec. 9.
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the zero modes) on a closed spatial manifoldMd−1. This can be evaluated as the path integral
on the manifold Md−1×S1, namely Z(Md−1×S1) = dimHMd−1 ≡ GSD as the dimension of
Hilbert space, which counts the ground state degeneracy (GSD). On an open manifold, the
system has the lower dimensional boundary theory with anomalies. The anomalous boundary
theory could be gapless.

4. The microscopic Hamiltonian contains the short-ranged local interactions between the spatial
sites or links. The Hamiltonian operator is Hermitian. Both the TQFT and the Hamiltonian
system are defined within the local Hilbert space.

5. The system has the long-range entanglement, and contains fractionalized anyonic particles,
anyonic strings, or other extended object as excitations.

As said, the Z2 topological order / gauge theory has both TQFT and lattice Hamiltonian
descriptions [12–15]. There are further large classes of topological orders, including the Z2 toric
code [14], that can be described by a local short-range interacting Hamiltonian:

Ĥ = −
∑

v

Âv −
∑

f

B̂f , (3)

where Âv and B̂f are mutually commuting bosonic lattice operators acting on the vertex v and the

face f of a triangulated/regularized space. With certain appropriate choices of Âv and B̂f , we can
write down an exact solvable spatial-lattice model (e.g. see a systematic analysis in [18,19], and also
similar models in [20–22]) whose low energy physics yields the Dijkgraaf-Witten topological gauge
theories [23]. Dijkgraaf-Witten topological gauge theories in d-dimensions are defined in terms of
path integral on a spacetime lattice (d-dimensional manifold Md triangulated with d-simplices).
The edges of each simplex are assigned with quantum degrees of freedom of a gauge group G with
group elements g ∈ G. Each simplex then is associated to a complex U(1) phase of d-cocycle ωd of
the cohomology group Hd(G,U(1)) up to a sign of orientation related to the ordering of vertices
(called the branching structure). How do we convert the spacetime lattice path integral Z as the
ground state solution of the Hamiltonian given in Eq. (3)? We design the B̂f term as the zero

flux constraint on each face / plaquette. We design that the Âv term acts on the wavefunction of a
spatial slice through each vertex v by lifting the initial state through an imaginary time evolution
to a new state with a vertex v′ via Âv = 1

|G|

∑

[vv′]=g∈G Â
g
v. Here the edge along the imaginary time

is assigned with [vv′] = g and all g ∈ G are summed over. The precise value of Âg
v is related to

fill the imaginary spacetime simplices with cocycles ωd. The whole term Âv can be viewed as the
near neighbor interactions that capture the statistical Berry phases and the statistical interactions.
Such models are also named the twisted quantum double model [18, 24], or the twisted gauge
theories [19, 22], due to the fact that Dijkgraaf-Witten’s group cohomology description requires
twisted cocycles.

With a well-motivated lattice Hamiltonian, we can ask what is its low energy continuum TQFT.
The Dijkgraaf-Witten model should be described by bosonic TQFT, because its definition does not
restrict to a spin manifold. Another way to understand this bosonic TQFT is the following. Since
Âv and B̂f are bosonic operators in Eq.3, we shall term such a Hamiltonian as a bosonic system and
bosonic quantum matter. TQFTs for bosonic Hamiltonians are bosonic TQFTs that require no spin
structure. We emphasize that bosonic quantum matter and bosonic TQFTs have only fundamental
bosons (without any fundamental fermions), although these bosonic systems can allow excitations
of emergent anyons, including emergent fermions. It has been noticed by [22, 24–28] that the
cocycle in the cohomology group reveals the continuum field theory action (See, in particular, the
Tables in [28]). A series of work develop along this direction by formulating a continuum field
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theory description for Dijkgraaf-Witten topological gauge theories of discrete gauge groups, their
topological invariants and physical properties [17, 27–36]. We will follow closely to the set-up of
[17,28]. Continuum TQFTs with level-quantizations are formulated in various dimensions in Tables
of [28]. Dynamical TQFTs with well-defined exact gauge transformations to all orders and their
physical observables are organized in terms of path integrals of with linked line and surface operators
in Tables of [17]. For example, we can start by considering the Dijkgraaf-Witten topological gauge
theories given by the cohomology group Hd(G,U(1)), say of a generic finite Abelian gauge group
G =

∏

I ZNI
. Schematically, leaving the details of level-quantizations into our main text, in 2+1D,

we have field theory actions of
∫

BdA,
∫

KIJAIdAJ ,
∫

BIdAI + AIdAJ and
∫

BIdAI + A1A2A3,
etc. In 3+1D, we have

∫

BIdAI + AJAKdAL,
∫

BIdAI + A1A2A3A4. Here B and A fields are
locally 2-form and 1-form gauge fields respectively. For simplicity, we omit the wedge product (∧)
in the action. (For example, A1A2A3 is a shorthand notation for A1 ∧A2 ∧A3.) The indices of AI

and BI are associated to the choice of ZNI
subgroup in G =

∏

I ZNI
. The A fields are 1-form U(1)

gauge fields, but the B fields can have modified gauge transformations when we turn on the cubic
and quartic interactions in the actions. We should warn the readers not to be confused by the
notations: the TQFT gauge fields A and B, and the microscopic Hamiltonian operator Âv and B̂f

are totally different subjects. Although they are mathematically related by the group cohomology
cocycles, the precise physical definitions are different. How do we go beyond the twisted gauge
theory description of Dijkgraaf-Witten model? Other TQFTs that are beyond Dijkgraaf-Witten
model, such as

∫

BIdAI +BIBJ [29, 37] and other higher form TQFTs [38], may still be captured

by the analogous lattice Hamiltonian model in Eq. (3) by modifying the decorated cocycle in Ĥ
to more general cocycles. Another possible formulation for beyond-Dijkgraaf-Witten model can be
the Walker-Wang model [39, 40]. The lattice Hamiltonian can still be written in terms of certain
version of Eq. (3). All together, we organize the list of aforementioned TQFTs, braiding statistics
and link invariants that we compute, and some representative realizable condensed matter/lattice
Hamiltonians, in Table 1.

Most TQFTs in the Table 1 are bosonic TQFTs that require no spin manifold/structure. How-
ever,

∫

NI

2πB
I ∧ dAI + pIJ

4π A
I ∧ dAJ in 2+1D, and

∫

NI

2πB
I ∧ dAI + pIJNINJ

4πNIJ
BI ∧ BJ in 3+1D, 3

are two examples of fermionic TQFTs (or the so-called spin TQFTs) when pII is an odd integer.
A fermionic TQFTs can emerge only from a fermionic Hamiltonian that contains fundamental
fermionic operators satisfying the anti-commuting relations (see e.g. [41, 42]). We emphasize that
the fermionic quantum matter have fundamental fermions (also can have fundamental bosons),
although these fermionic systems can allow excitations of other emergent anyons. Mathematically,
TQFTs describing fermionic quantum matter should be tightened to spin TQFTs that require a
spin structure [43, 44] (see the prior observation of the spin TQFT in [23]).

We shall clarify how we go beyond the approach of [17,28]. Ref. [28] mostly focuses on formulat-
ing the probe-field action and path integral, so that the field variables that are non-dynamical and
do not appear in the path integral measure. Thus Ref. [28] is suitable for the context of probing
the global-symmetry protected states, so-called Symmetry Protected Topological states [45] (SPTs,
see [10, 46, 47] for recent reviews). Ref. [17] includes dynamical gauge fields into the path integral,
that is the field variables which are dynamical and do appear in the path integral measure. This
is suitable for the context for Ref. [17] observes the relations between the links of submanifolds
(e.g. worldlines and worldsheets whose operators create anyon excitations of particles and strings)
based on the properties of 3-manifolds and 4-manifolds, and then relates the links to the braiding
statistics data computed in Dijkgraaf-Witten model [22,26,30] and in the path integral of TQFTs.
In this article, we explore from the opposite direction reversing our target. We start from the
TQFTs as an input (the first sub-block in the first column in Table 1), and determine the associ-

3 Throughout our article, we denote N12 ≡ gcd(N1, N2), in general NIJ... ≡ gcd(NI , NJ , . . . ).
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ated mathematical link invariants independently (the second sub-block in the first column in Table
1). We give examples of nontrivial links in 3-sphere S3 and 4-sphere S4, and their path integral
expectation value as statistical Berry phases (the second column in Table 1), and finally associate
the related condensed matter models (the third column in Table 1).

In Table 1, we systematically survey various link invariants together with relevant braiding
processes (for which the invariant is a nontrivial number as 1) that either are new to or had
occurred in the literature in a unified manner. The most familiar braiding is the Hopf link with
two linked worldlines of anyons in 2+1D spacetime [9, 11] such that Lk(γI , γJ) = 1 . The more
general Aharonov-Bohm braiding [48] or the charge-flux braiding has a worldline of an electric-
charged particle linked with a (d− 2)-worldsheet of a magnetic flux linked with the linking number
Lk(Sd−2

m , C1
n) = 1 in (d − 1)+1D spacetime. The Borromean rings braiding is useful for detecting

certain non-Abelian anyon systems [30]. The link of two pairs of surfaces as the loop-loop braiding
(or two string braiding) process is mentioned in [49–51]. The link of three surfaces as the three-loop
braiding (or three string braiding) process is discovered in [21,26] and explored in [22]. The link of
four 2-surfaces as the four-loop braiding (or four string braiding) process is explored in [17,30,35].

More broadly, below we should make further remarks on the related work [27–37, 52, 53]. This
shall connect our work to other condensed matter and field theory literature in a more general
context. While Ref. [27] is motivated by the discrete anomalies (the ’t Hooft anomalies for discrete
global symmetries), Ref. [28] is motivated by utilizing locally flat bulk gauge fields as physical
probes to detect Symmetry Protected Topological states (SPTs). As an aside note, the SPTs are
very different from the intrinsic topological orders and the TQFTs that we mentioned earlier:

• The SPTs are short-range entangled states protected by nontrivial global symmetries of sym-
metry group G. The SPTs have its path integral |Z| = 1 on any closed manifold. The famous
examples of SPTs include the topological insulators [54, 55] protected by time-reversal and
charge conjugation symmetries. The gapless boundaries of SPTs are gappable by breaking
the symmetry or introducing strong interactions. Consequently, take the 1+1D boundary of
2+1D SPTs as an example, the 1+1D chiral central charge is necessarily (but not sufficiently)
c− = 0.

• The intrinsic topological orders are long-range entangled states robust against local perturba-
tions, even without any global symmetry protection. However, some of topological orders that
have a gauge theory description of a gauge group G may be obtained by dynamically gauging
the global symmetry G of SPTs [56,57]. The boundary theory for topological orders/TQFTs
obtained from gauging SPTs must be gappable as well.

In relation to the lattice Hamiltonian, the SPTs has its Hilbert space and group elements
associated to the vertices on a spatial lattice [45], whereas the corresponding group cohomology
implementing the homogeneous cocycle and the holonomies are trivial for all cycles of closed man-
ifold thus |Z| = 1. In contrast, the Eq. (3) is suitable for topological order that has its Hilbert
space and group elements associated to the links on a spatial lattice [18, 19, 22], whereas its group
cohomology implementing the inhomogeneous cocycle and its holonomies are non-trivial for cycles
of closed manifold thus |Z| sums over different holonomies.

In relation to the field theory, we expect that the SPTs are described by invertible TQFTs (such
as the level N = 1 in BF theory), a nearly trivial theory, but implemented with nontrivial global
symmetries. (See [58] for the discussions for invertible TQFTs, and see the general treatment
of global symmetries on TQFTs in [29].) In contrast, we expect that the intrinsic topological
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orders are described by generic non-invertible TQFTs (e.g. level N BF theory). Since Ref. [28]
implements the nearly flat probed gauge fields, the formalism there could not be the complete story
for the intrinsic topological orders and TQFTs of our current interests. It is later found that one
can view the topological actions in terms of dynamical gauge fields instead of the probed fields, by
modifying the gauge transformations [31,32]. Up until now, there is good evidence that we can view
the discrete spacetime Dijkgraaf-Witten model in terms of some continuum TQFTs (See Tables
in [17, 28] and our Table 1). One of the most important issues for understanding the dynamical
TQFT is to compute precisely the path integral Z and to find explicitly the physical observables.
To this end, one partial goal for this article, is to explicitly compute the path integral and the
braiding statistics / link invariants for these TQFTs in various dimensions. We focus mainly on
2+1D and 3+1D for the sake of realistic dimensions in condensed matter physics, but our formalism
can be easily applied to any dimension.

Other than TQFTs and discrete gauge theories in Table 1, we can obtain even more fermionic
spin TQFTs by gauging the global symmetries of fermionic SPTs (fSPTs). An interesting example

is gauging the fSPTs with Z
f
2 × (Z2)

n symmetry in various dimensions. We are able to address one

interesting puzzle concerning the Z
f
2 × Z2 fSPTs as Topological Superconductors with 8 distinct

classes labeled by ν ∈ ❩8 (realized by stacking ν layers of a pair of chiral and anti-chiral p-wave
superconductors). Although it is known that ν = 0, 4 gauged fSPTs are bosonic Abelian Chern-
Simons (CS) theories for bosonic Z2 gauge and twisted gauge theory (toric code and double-semion
models), and ν = 2, 6 gauged fSPTs are fermionic Abelian spin-CS theory for fermionic Z2 gauge
and twisted gauge theory, the field theories description for the odd-ν classes (ν = 1, 3, 5, 7) are
somewhat mysterious. In some sense, the odd-ν class are fermionic “Z2 gauge spin-TQFTs,” but
the statistics is somehow non-Abelian. We solve the puzzle by deriving explicit non-Abelian spin
TQFTs obtained from gauging fSPTs, and compute physical observables to distinguish ν ∈ ❩8

class in Sec. 8.

1.1 The plan of the article and the convention of notation

The plan of our article is organized as follows. In Sec. 2, we derive the link invariant of
∫

BdA
theory in any dimension as the Aharonov-Bohm’s linking number that detects a charge particle and
a flux loop braiding process through the Aharonov-Bohm phase. In Sec. 3, we study

∫

KIJAIdAJ

and
∫

BdA+AdA in 2+1D and show that its path integral calculates the linking number. In Sec. 4,
we study

∫

BdA+A3 in 2+1D and obtain Milnor’s triple linking number from its path integral. In
Sec. 5, we study

∫

BdA+A2dA in 3+1D and obtain triple-linking number of surfaces. In Sec. 6, we
study

∫

BdA+ A4 in 3+1D and obtain quadruple-linking number of surfaces. In Sec. 7, we study
∫

BdA + BB in 3+1D and obtain intersection number of open surfaces. In Sec. 8, we construct

the explicit fermionic SPT path integrals with Z
f
2 × (Z2)

n symmetry, and their gauged versions:
fermionic spin TQFTs. We derive the experimentally measurable physics observables, including
the ground state degeneracy (GSD), the braiding statistics (the modular matrices Sxy and T xy),
etc. In addition, we discuss their relation to various invariants including Arf(-Brown-Kervaire),
Rokhlin, Sato-Levine invariants and more. In Sec. 9, we conclude with additional remarks.

We should emphasize that the link invariants we derive are powerful and important in various
aspects. (1) A link invariant can detect various possible links in spacetime, or various possible
braiding processes (regardless if the braiding process is known or unknown to the literature). While
in the literature, few specific braiding processes have been investigated (such as the three or four
string braiding processes), we can use our link invariants to identify other braiding processes that

7



(i). TQFT actions

associated link invariants

(ii). Spacetime-braiding process,
Path-integral Z(Link)/Z[Sd]

Quantum statistic braiding data eiθ

(iii). Comments:
Condensed matter models

Any dimensions

Sec. 2 :
∫

NI

2πB
IdAI

(Aharonov-Bohm) linking number

Lk(Sd−2
m , C1

n)

Z












/Z[Sd]

exp[− 2πi
N
qmenLk(S

d−2
m , C1

n)]

ZN topological order [12]
ZN spin liquid [13],
ZN toric code [14]

ZN gauge theory [15]

2+1D

Sec. 3 :
∫

KIJ

4π AIdAJ ,
∫

NI

2πB
IdAI + pIJ

4π A
IdAJ

Linking number: Lk(γI , γJ)

Z







1
2






/Z[S3]

exp[−πi
∑

I,J(K
−1)IJeIeJLk(γI , γJ)]

Fractional quantum Hall states [59],
Halperin states [60]

Twisted quantum double [18, 20],
String-net models [61],

2+1D anyon systems [62,63]
(Spin TQFT for KII , pII ∈ odd.)

Sec. 4 :
∫

NI

2πB
IdAI + N1N2N3 p

(2π)2N123

A1A2A3

Milnor’s triple linking number :
µ̄(γ1, γ2, γ3)

Z











1

2 3











/Z[S3]

exp(− 2πi p q1q2q3
N123

µ̄(γ1, γ2, γ3))

Gauged SPT lattice model [25, 31, 36],
Twisted quantum double [18, 20],

String-net models [61],
D4 discrete gauge theory [22,24,31,36]

Sec. 8: Gauged π
4

∫

a ∪ABK

Arf invariant

Z

( )

/Z[S3]

±1

Gauged Z
f
2 × Z2-fSPT model.

Odd ν ∈ ❩8 detects knots
with non-zero Arf invariant (e.g. Trefoil).

Sec. 8: Gauged π
∫

a1 ∪ a2 ∪ η

Sato-Levine invariant

Z

( )

/Z[S3]

±1

Gauged Z
f
2 × (Z2)

2-fSPT model.
Odd ν in the mixed class detects
links with non-zero Sato-Levine
invariant (e.g. Whitehead).

3+1D

Sec. 5 :
∫

NI

2πB
IdAI+N

I′NJ′ p
I′J′K′

(2π)2N
I′J′

AI′

AJ ′

dAK′

Triple linking number of surfaces:
Tlk(Σ1,Σ3,Σ2)

Z











1

2

3











/Z[S4]

exp( 2πi p q1q2q3
N123

Tlk(Σ1,Σ3,Σ2))

Gauged SPT lattice model [26],
Twisted gauge theory [19,64],
Abelian string model [21, 22,26]

Sec. 6 :
∫

NI

2πB
IdAI + N1N2N3N4 p

(2π)3N1234

A1A2A3A4

Quadruple linking number of surfaces:
Qlk(Σ1,Σ2,Σ3,Σ4)

Z











1

2

3 4











/Z[S4]

exp( 2πi p q1q2q3q4
N1234

Qlk(Σ1,Σ2,Σ3,Σ4))

Gauged SPT lattice model [31],
Twisted gauge theory [19],

Non-Abelian string model [22]

Sec. 7 :
∫

NI

2πB
IdAI + pIJNINJ

4πNIJ

BIBJ

Intersection number of surfaces:
#(ΣI ∩ ΣJ)

Z

















/Z[S4]

exp(−πipIJeIeJ
NIJ

#(ΣI ∩ ΣJ))

Gauged SPT lattice model [37],
Walker-Wang like model [39, 65].
(Spin TQFT for pII , NI ∈ odd.)

Table 1: TQFT actions, the link invariants computed through the path integral Z, and their
condensed matter models are organized in three columns. For a comparison of the development
from the earlier work, see the setup in [17,28]. Here p, pIJ , pIJK are quantized integer levels.
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produce nontrivial values of topological invariants and thus have nontrivial statistical Berry phases.
(2) Our method to derive topological invariants is based on field theory description of TQFTs. In
particular, our approach is systematic, using Poincaré duality and intersection theory. Our approach
is universal, and our result is more general than what appeared in the literature.

Note: To denote the cyclic group of order n, we use Zn and ❩n, which are equivalent mathematically,
but have different meanings physically. We use Zn to denote a symmetry group and a gauge
group. We use the slight different notation ❩n to denote the distinct classes in the classification
of SPTs/TQFTs or in the cohomology/bordism group. Notation Z

f
2 stands for the fermion parity

symmetry. We denote NIJ... ≡ gcd(NI , NJ , . . . ) and ❩NIJ...
≡ ❩gcd(NI ,NJ ,... ). As usual, notation

M1 ⊔M2 means the disjoint union between two sets or two manifolds M1 and M2. The M \ S
means relative complement of S in M . We use ∪ : Hp(Md,ZN ) ⊗Hq(Md,ZN ) → Hp+q(Md,ZN )
to denote cup-product in cohomology ring. GSD stands for ground state degeneracy. In Table.1
and elsewhere, the repeated indices is normally assumed to have Einstein summation, except that
the

NI′NJ′ pI′J′K′
(2π)2NI′J′

AI′AJ ′
dAK′

term where the prime indices here are fixed instead of summed over.

2
∫

BdA in any dimension and Aharonov-Bohm’s linking number

Below we warm up by considering the level-N BF theory with an action
∫

N
2πBdA in any dimension,

where N is quantized to be an integer. The study of BF theory in physics dates back to the early
work of [66, 67]. Consider the following action on any closed d-manifold Md:

S[A,B] =

∫

Md

N

2π
B ∧ dA (4)

where A is a 1-form gauge field on M and B is a (d − 2)-form gauge field on M . The partition
function or path integral without any additional operator insertion is

Z =

∫

DADB exp[iS[A,B]] =

∫

DADB exp[i

∫

Md

N

2π
B ∧ dA] (5)

Locally the gauge transformation is given by:

A → A+ dg, (6)

B → B + dη. (7)

If Md has non-trivial topology, globally g and ν may have discontinuities such that dg and dν are
continuous forms representing a cohomology class in 2πH1(Md,Z) and 2πHd−2(Md,Z) respectively.

Now for a path integral with insertions, let Φ be a gauge invariant functional Φ(A,B) of the
fields A and B. The path integral with insertion Φ can be formally defined as

〈Φ〉 =
1

Z

∫

DA DB Φ(A,B) exp[iS[A,B]] =
1

Z

∫

DA DB Φ(A,B) exp[i

∫

Md

N

2π
B ∧ dA]. (8)

Let us note that in the case when Md has non-trivial topology, the field B only locally can be
understood as a d−2 form. Globally, it can be realized as B = B̃+β where B̃ is a globally defined
d − 2 form and β is a discontinuous d − 2-form such that dβ is a continuous form representing a

9



class in 2πHd−1(Md,Z), the flux of the d − 2 gauge field B. So the path integral over B̃ actually
means the following

∫

DB . . . ≡
∑

[dβ]∈2πHd−1(Md,Z)

∫

DB̃ . . . . (9)

Below we evaluate the 〈Φ〉 in various scenarios starting from the simplest, almost trivial case and
gradually increasing complexity.

1. If Φ(A) is independent of the B field, then the integration over B̃ gives the equation of motion
as constraint of A, which localizes A to be flat U(1) connection. Namely, the curvature is
zero FA = dA = 0. Furthermore, from Poincaré duality Hd−1(Md,Z) ∼= H1(M

d,Z), it follows
that the sum over fluxes β imposes the following constrains on A:

exp(iN

∫

γ
A) = 1, ∀γ (10)

that is, modulo gauge transformations, connection A belongs to ZN subset of U(1) flat con-
nections:

[A] ∈ Hom(H1(M
d),ZN ) ⊂ Hom(H1(M

d), U(1)). (11)

Note that from the universal coefficient theorem and the fact that H0(M
d,Z) is a free group,

it follows that Hom(H1(M
d),ZN ) ∼= H1(Md,ZN ). The path integral then reduces to the

following finite sum:

〈Φ〉 =
1

Z

∑

[A]∈Hom(H1(Md),ZN )

Φ(A). (12)

The standard normalization for the partition function Z is as follows:

Z =
1

N

∑

[A]∈Hom(H1(Md),ZN )

1 (13)

so that Z = 1 for Md = Sd−1 × S1.

2. If Φ(A,B) depends on B field as follows

Φ(A,B) =
∏

m

exp[iqm

∫

Sd−2
m

B] · Φ0(A). (14)

Where {Sd−2
m }m=1,2,... is a family of d − 2-dimensional hypersurfaces inside the spacetime

manifold Md and Φ0(A) is the insertion that depends only on A. Gauge invariance requires
qm ∈ Z. One can also rewrite (21) as follows:

Φ(A,B) =
∏

m

exp[iqm

∫

M4

B ∧ δ⊥(Sd−2
m )] · Φ0(A) (15)

where δ⊥(Sd−2
m ) is the 2-form valued delta function distribution supported on Sd−2

m . That is,

∫

Md

ωd−2 ∧ δ
⊥(Sd−2

m ) =

∫

Sd−2
m

ωd−2. (16)
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for any d − 2 form ωd−2. After integrating out B the path integral Eq. (8) localizes to the
solutions of the equations of motion with source:

FA = dA = −
2π

N

∑

m

qm δ⊥(Sd−2
m ). (17)

This equation implies that FA/2π is a differential form which represents the class inH2(Md,R)
Poincaré dual to the class 1

N

∑

m qm [Sd−2
m ] in homology Hd−2(M,R). Here and below [S]

denotes the homology class of the surface S. Since FA

2π represents the first Chern class c1 ∈
H1(M

d,Z) of the U(1) gauge bundle, 1
N

∑

m qm [Sd−2
m ] must represent an integral homology

class. This gives the constraint on the allowed charge qm (the magnetic charge), if some of
the classes [Sd−2

m ] 6= 0 are nontrivial.

3. If H1(M
d,Z) = 0, then there is a unique solution to Eq. (17), modulo the gauge redundancy.

The cohomology H1(Md \ (⊔mS
d−2
m ),Z) is then generated by 1-forms µ1, . . . , µm such that

∫

C1
n

µi = δn,i, (18)

where C1
n is a small circle linking Sd−2

m . Here we denoteM \S means the relative complement
of S in M . The solution of Eq. (17) then becomes:

A = −
2π

N

∑

m

qmµm. (19)

One possible choice of forms µm is using 1-form valued delta functions supported on Vd−1
m ,

Seifert hypersurfaces bounded by Sd−2
m (i.e. such that ∂Vd−1

m = Sd−2
m and therefore dδ⊥(Vd−1

m ) =
δ⊥(Sd−2

m )):

A = −
2π

N

∑

m

qmδ
⊥(Vd−1

m ). (20)

4. If Φ0(A) in Eq. (21) is a product of the Wilson loops around the one-dimensional loops {γ1n}
separate and disjoint from {Sd−2

m }, such that

Φ0(A) =
∏

n

exp[ien

∫

γ1
n

A] (21)

with the electric charge en ∈ Z associated to each loop, then the path integral with Φ(A,B)
insertion can be evaluated as follows:

〈Φ〉 =
1

Z

∫

DA DB exp[iS[A,B]] exp[i
∑

n

en

∫

γ1
n

A] exp[i
∑

m

qm

∫

Sd−2
m

B]

= exp[−
2πi

N

∑

m,n

qmen

∫

Md

δ⊥(γ1n) ∧ δ
⊥(Vd−1

m )] = exp[−
2πi

N

∑

m,n

qmenLk(S
d−2
m , γ1n)] (22)

where the Lk(Sd−2
m , γ1n) ≡ #(Vd−1

m ∩γ1n) is the linking integer number between the loop γ1n and
the (d−2)-dimensional submanifold Sd−2

m , which by definition is given by counting intersection
points in (Vd−1

m ∩ γ1n) with signs corresponding to orientation.
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3
∫

KIJAIdAJ and
∫

BdA+ AdA in 2+1D and the linking number

In the 2+1D spacetime, as another warp up exercise, consider the action of U(1)s Chern-Simons
theory with level matrix K:

S[A] =

∫

M3

s
∑

I,J=1

KIJ

4π
AI ∧ dAJ . (23)

where KIJ is a symmetric integral valued matrix. The above most general Abelian Chern-Simons
theory includes a particular case:

S[A,B] =

∫

M3

∑

I

NI

2π
BI ∧ dAI +

∑

I,J

pIJ
4π

AI ∧ dAJ (24)

where pIJ is a symmetric integral valued matrix. When pIJ is an odd integer, we have the Abelian
spin-Chern-Simons theory (considered in detail in [43]). When pIJ is an even integer, we have
the Abelian Chern-Simons theory that are within the cohomology group H3(ZNI

× ZNJ
, U(1)) =

❩NI
× ❩NJ

× ❩NIJ
for the Dijkgraaf-Witten theory [28], pII ∈ ❩NI

, pJJ ∈ ❩NJ
and pIJ ∈ ❩NIJ

.
Here we denote ❩NIJ...

≡ ❩gcd(NI ,NJ ,... ).

Note that when KII is odd for some I, the theory becomes fermionic spin-TQFT that depends
on the choice of spin structure. A generic collection of line operators supported on s closed disjoint
curves γI embedded in S3 can be realized as follows:

Wq[{γI}
s
I=1] = exp(i

s
∑

I=1

eI

∫

γI

AI) ≡ exp(i
s
∑

I=1

eI

∫

M3

AI ∧ δ
⊥(γI)) (25)

for some integer numbers eI . As we will see the result, up to a ±1 sign, only depends on the
class of s-vector e in the cokernel of the level matrix K, that is effectively e ∈ Z

s/KZ
s. Suppose

M3 = S3. The expectation value of We[{γI}] is then given by a Gaussian integral which localizes
on the following equations of motion:

∑

J

KIJdAJ = −2πδ⊥(γI) (26)

which, up to a gauge transformation, can be solved as follows:

AI = −2π
∑

J

(K−1)IJeJδ
⊥(ΣJ) (27)

where ΣJ is a Seifert surface bounded by γJ and we used that dδ⊥(ΣJ) = δ⊥(∂Σ). Plugging the
solution back into the integrand gives us

〈We[{γI}]〉 = exp







−πi
∑

I,J

(K−1)IJeIeJ

∫

S3

δ⊥(ΣI) ∧ dδ
⊥(ΣJ)







=

exp







−πi
∑

I,J

(K−1)IJeIeJLk(γI , γJ)







(28)

where Lk(γI , γJ) is the linking number between γI and γJ , which is by definition equal to the
intersection number #(ΣI ∩ γJ). The physics literature on this invariant dates back to [68,69].
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4
∫

BdA + A
3 in 2+1D, non-Abelian anyons and Milnor’s triple

linking number

In the 2+1D spacetime, we can consider the following action on a 3-manifold M3:

S[A,B] =

∫

M3

3
∑

I=1

NI

2π
BI ∧ dAI +

p̄

(2π)2
A1 ∧A2 ∧A3 (29)

where AI and BI are 1-form fields. Here p̄ ≡ N1N2N3 p
N123

with p ∈ ❩NIJK
. We have the TQFT

that are within the class p ∈ ❩NIJK
in the cohomology group H3(ZNI

× ZNJ
× ZNK

, U(1)) for the
Dijkgraaf-Witten theory [28].

The gauge transformation is:

AI → AI + dgI

BI → BI + dηI + p̄
2πNI

ǫIJK
(

AJgK − 1
2g

JdgK
)

.
(30)

Consider the following observable:

Wr,q[γ1, γ2, γ3] = exp

{

i
3
∑

I=1

∮

γI

qI

(

BI +
p̄

4πNI
ǫIJKA

J(d−1AK)

)

+
∑

J

eIJA
J

}

(31)

Where γI are three pairwise unlinked (and with trivial framing) connected components of a link.
The functions (d−1AK) are defined on link components as follows:

(d−1AK)(x) ≡ φK(x) ≡

∫

[x0,x]γI

AK , x ∈ γI (32)

where x0 ∈ γI is a reference point and [x0, x]γI ⊂ γI denotes a segment of γI . Note that φK(x) is a
well defined continuous function on γI only if

∫

γI
AK = 0, that is the flux of AK gauge field through

γI vanishes. We assume that this is the case. If such condition is not satisfiedWr,q[γ1, γ2, γ3] should
be zero instead [36]. Later we will generalize this to the case when charges qI , similarly to eIJ ,
form a general matrix. We are interested in calculating its vacuum expectation value (vev), that
is:

〈Wq,e[γ1, γ2, γ3]〉 =

∫

DADB eiS[A,B]Wq,e[γ1, γ2, γ3]
∫

DADB eiS[A,B]
. (33)

As before, δ⊥(γ) denotes the form distribution supported on γ such that
∫

M3 ω ∧ δ⊥(γ) =
∫

γ ω for
any ω. Then we can write

Wq,e[γ1, γ2, γ3] = exp







i

∫

M3

3
∑

I=1

δ⊥(γI) ∧



qI



BI +
p̄

4πNI

∑

J,K

ǫIJKA
J(d−1AK)



+
∑

J

eIJA
J











≡ exp







i

∫

M3

3
∑

I=1

δ⊥(γI) ∧



qI



BI +
p̄

4πNI

∑

J,K

ǫIJKdφ
JφK



+
∑

J

eIJA
J











. (34)

Then integrating out BI in the path integral (47) imposes the following conditions on AI :

dAI = −
2πqI
NI

δ⊥(γI) (35)
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On M3 = S3 it can be always solved as follows (uniquely modulo the gauge group):

AI = −
2πqI
NI

δ⊥(ΣI) (36)

where ΣI is a surfcase bounded by γI (i.e. ∂ΣI = γI). Consider then the value of different terms
in the effective action that we obtained after integrating BI out:

∑

I,J

eIJ

∫

δ⊥(γI) ∧AJ =
∑

I,J

2π eIJqJ
NJ

∫

δ⊥(γI) ∧ δ
⊥(ΣJ) =

=
∑

I,J

2π eIJqJ
NJ

#(γI ∩ ΣJ) ≡
∑

I,J

2π eIJqJ
NJ

Lk(γI , γJ). (37)

The assumption that there is no flux of AI gauge field through any γJ for any pair I, J implies
that in order to get a non-vanishing expectation value all pairwise linking numbers should be zero:
Lk(γI , γJ) = 0.

∫

p̄

(2π)2
A1 ∧A2 ∧A3 = −

2π p̄ q1q2q3
N1N2N3

∫

δ⊥(Σ1) ∧ δ
⊥(Σ2) ∧ δ

⊥(Σ3) =

= −
2π p̄ q1q2q3
N1N2N3

#(Σ1 ∩ Σ2 ∩ Σ3) (38)

where intersection numbers are, as usual, counted with signs determined by orientation. Denote
(−1)ǫ(a) the sign corresponding to the orientation of the intersection at point a. Consider (32):

−
NK

2πqK
(φK)(x) =

∫

x0→x along γI

δ⊥(ΣK) = #([x0, x]γI ∩ ΣK) ≡
∑

a∈([x0,x]γI∩ΣK)

(−1)ǫ(a) (39)

which is unambiguously defined because Lk(γI , γK) = 0. Then

∑

I,J,K

p̄ qI ǫIJK
4πNI

∫

δ⊥(γI) ∧A
J(d−1AK) =

∑

I,J,K

p̄ qIqJ ǫIJK
2NINJ

∫

δ⊥(γI) ∧ δ
⊥(ΣJ) (d

−1AK) =

∑

I,J,K

π p̄ qIqJqK ǫIJK
NINJNK

∑

b ∈ γI∩ΣK

(−1)ǫ(b)
∑

a∈([x0,xb]γI∩ΣK)

(−1)ǫ(a) =

π p̄ q1q2q3
N1N2N3

∑

I,J,K

ǫIJK
∑

a ∈ γI ∩ ΣK

b ∈ γI ∩ ΣJ

xb > xa

(−1)ǫ(a)+ǫ(b), (40)

where the ordering of intersection points a, b ∈ γI (that is the condition xb > xa) is done relative
to the previously chosen reference point x0 ∈ γI . Finally we have:

〈Wq,e[γ1, γ2, γ3]〉 = exp

{

−
2πi p̄ q1q2q3
N1N2N3

µ̄(γ1, γ2, γ3)

}

= exp

{

−
2πi p q1q2q3

N123
µ̄(γ1, γ2, γ3)

}

(41)

where

µ̄(γ1, γ2, γ3) = #(Σ1 ∩ Σ2 ∩ Σ3)−
1

2

∑

I,J,K

ǫIJK
∑

a ∈ γI ∩ ΣK

b ∈ γI ∩ ΣJ

xa > xb

(−1)ǫ(a)+ǫ(b) (42)

is exactly the geometric formula for Milnor’s µ̄ invariant or Milnor’s triple linking number [70]. It
is easy to evaluate for the Borromean rings link. Consider realization of Borromean rings shown in
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3

Figure 1: Particular choice of surfaces ΣI for Borromean rings. The red lines show pairwise
intersections ΣJ ∩ΣK . The endpoints of the redlines are intersection points which pairs are counted
in (40).

Figure 1 with natural choice of Seifert surfaces ΣI lying in three pairwise orthogonal planes. It is
easy to see that the first term in (42) is 1 while all other terms vanish. That is

µ̄(γ1, γ2, γ3) = 1. (43)

As an example, in the corresponding link figure shown in Table 1, we mean the braiding process of
three particle excitations described in [17,30,35].

When the coefficients q in (31) form a general matrix qIJ (similarly to the coefficients eIJ)
we have the (det q) instead of q1q2q3 in (41)4. Lastly, we remark that this 2+1D theory with a
cubic interacting action can host non-Abelian anyons [22,24,30,36] with non-Abelian statistics. The
attempt to derive the Milnor’s µ̄ invariant from Chern-Simons-like field theory dates back to [71,72]
and recently summarized in [73].5 However, our approach is rather different and is generally based
on Poincaré duality and the intersection theory. We note that the theory of

∫
∑3

I=1
NI

2πB
I ∧ dAI +

p̄
(2π)2

A1 ∧A2 ∧A3 is equivalent to the non-Abelian discrete gauge theory of the dihedral group D4

(with the D4 group of order 8) [22, 24].

5
∫

BdA+A
2
dA in 3+1D and the triple linking number of 2-surfaces

In the 3+1D spacetime, consider the following action on a 4-manifold M4:

S[A,B] =

∫

M4

3
∑

I=1

NI

2π
BI ∧ dAI +

p̄

(2π)2
A1 ∧A2 ∧ dA3 (44)

where AI and BI are 1- and 2-form gauge fields respectively. Here p̄ ≡ N1N2 p
N12

with p ∈ ❩N123 .

We have the TQFT that are within the class p ∈ ❩N123 in the cohomology group H4(ZN1 × ZN2 ×
ZN3 , U(1)) for the Dijkgraaf-Witten theory [28].

Let us introduce an antisymmetric matrix ǫIJ such that ǫ12 = −ǫ21 = 1 and all other elements
are zero. The gauge transformation then reads:

AI → AI + dgI ,
BI → BI + dηI + p̄

2πNI
ǫIJdgJ ∧A3.

(45)

4Assuming trivial framing of link components
5We thank Franco Ferrari for bringing us attention to the earlier work on

∫

BdA+A3 theory.
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Consider the following gauge invariant observable:

Wq[Σ1,Σ2,Σ3] = exp(i
3
∑

I=1

qI

{

∫

ΣI

BI +
∑

J

p̄ ǫIJ

2πNI

∫

VI

AJ ∧ dA3

}

). (46)

Where ΣI are three non-intersecting surfaces in M4 and VI are some 3D submanifolds that are
bounded by them, that is ∂VI = ΣI . Such VI are usually called Seifert hyper-surfaces. As before,
we are interested in calculating its vev, that is:

〈Wq[Σ1,Σ2,Σ3]〉 =

∫

DADB eiS[A,B]Wq[Σ1,Σ2,Σ3]
∫

DADB eiS[A,B]
. (47)

Using δ-forms we can write it as follows

Wq[Σ1,Σ2,Σ3] = exp(i

3
∑

I=1

qI

∫

M4

{

δ⊥(ΣI) ∧B
I +

p̄ ǫIJ

2πNI
δ⊥(VI) ∧A

J ∧ dA3

}

) (48)

Then integrating out BI in the path integral (47) imposes the following conditions on AI :

dAI = −
2πqI
NI

δ⊥(ΣI) (49)

On M4 = S4 it can be always solved as follows (uniquely modulo the gauge group):

AI = −
2πqI
NI

δ⊥(V ′
I) (50)

where V ′
I is any 3D hypersurface bounded by ΣI . Without loss of generality we can choose V ′

I = VI .
Consider the value of different terms in the effective action that we obtained after integrating BI

out:

∫

p̄

(2π)2
A1 ∧A2 ∧ dA3 = −

2π p̄ q1q2q3
N1N2N3

∫

δ⊥(V1) ∧ δ
⊥(V2) ∧ δ

⊥(Σ3) =

= −
2π p̄ q1q2q3
N1N2N3

#(V1 ∩ V2 ∩ Σ3) (51)

3
∑

I=1

qI

∫

M4

p̄ ǫIJ

2πNI
δ⊥(VI) ∧A

J ∧ dA3 =
3
∑

I=1

2πp̄ ǫIJqIqJq3
NINJN3

∫

M4

δ⊥(VI) ∧ δ
⊥(VJ) ∧ δ

⊥(Σ3) =

=
4πp̄ q1q2q3
N1N2N3

#(V1 ∩ V2 ∩ Σ3). (52)

Finally we have:

〈Wq[Σ1,Σ2,Σ3]〉 = exp

{

2πi p̄ q1q2q3
N1N2N3

Tlk(Σ1,Σ3,Σ2)

}

= exp

{

2πi p q1q2q3
N123

Tlk(Σ1,Σ3,Σ2)

}

(53)

where
Tlk(Σ1,Σ3,Σ2) ≡ #(V1 ∩ V2 ∩ Σ3) (54)

is the triple linking number of surfaces (defenition (4) in [74]).
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Figure 2: An example of configuration with a triple linking number Eq.(54) of three 2-surfaces
being Tlk(Σ1,Σ3,Σ2) ≡ #(V1 ∩V2 ∩Σ3) = 1. (The same link figure is shown in Table 1.) Take the
Σ2,Σ3 to be a spun of Hopf link with Seifert hypersurfaces V2,V3 being spuns of Seifert surfaces.
The surface Σ1 is a torus embedded at a fixed value of the spin angle and encircling the Hopf link.
Choose Seifert hypersurface V1 to be the interior the torus Σ1. The intersection #(V1∩V2∩Σ3) = 1
contains one point shown bold in the figure.

Similarly one can consider theory

S[A,B] =

∫

M4

2
∑

I=1

NI

2π
BI ∧ dAI +

p̄

(2π)2
A1 ∧A2 ∧ dA2 (55)

which represents a non-trivial element of H4(ZN1 ×ZN2 , U(1)). The analogous operator supported
in a triple of surfaces Σ1,Σ2,Σ

′
2 reads:

Wq[Σ1,Σ2,Σ
′
2] = exp(iq1

∫

Σ1

B1 + iq2

∫

Σ2

B2 + iq′2

∫

Σ′
2

B2 + . . .) (56)

where dots denote appropriate gauge invariant completions similar to the ones in (46). The resulting
expectation value is as follows

〈We,q[Σ1,Σ2,Σ
′
2]〉 = exp

{

2πi p̄ q1q2q3
N1N2N3

[Tlk(Σ1,Σ2,Σ
′
2) + Tlk(Σ1,Σ

′
2,Σ2)]

}

(57)

assuming Σ2,Σ
′
2 have trivial framing.

As an example, in the corresponding link figure shown in Table 1 as well in Fig. 2, we mean
the braiding process of three string excitations described in [17,21,22,26,35]. In this configuration
shown in Fig. 2, we have Tlk(Σ1,Σ3,Σ2) = 1, Tlk(Σ2,Σ3,Σ1) = −1, Tlk(Σ3,Σ2,Σ1) = −1,
Tlk(Σ1,Σ2,Σ3) = 1, and finally Tlk(Σ2,Σ1,Σ3) = Tlk(Σ3,Σ1,Σ2) = 0. The TQFTs with A1A2dA3

term can detect this link, and also A2A1dA3, A3A1dA2, A1A3dA2 can detect this link, but neither
A2A3dA1 nor A3A2dA1 can detect this link configuration.

Reader can find Ref. [35] for a related study for this theory. We also note that Ref. [75] applies
non-linear sigma model descriptions as an alternative, without using

∫

BdA+A2dA theory to study
the 3 string braiding process, limited to a more restricted case N1 = N2 = N3 = 2. Here we had
considered more generic levels.
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6
∫

BdA + A
4 in 3+1D, non-Abelian strings and the quadruple

linking number of 2-surfaces

In the 3+1D spacetime, we can also consider the following action on a 4-manifold M4:

S[A,B] =

∫

M4

4
∑

I=1

NI

2π
BI ∧ dAI +

p̄

(2π)3
A1 ∧A2 ∧A3 ∧A4 (58)

where AI and BI are 1- and 2-form gauge fields respectively. Here p̄ ≡ N1N2N3N4 p
N1234

with p ∈ ❩N1234 .

We have the TQFT that are within the class p ∈ ❩N1234 in the cohomology group H4(ZN1 ×ZN2 ×
ZN3 × ZN4 , U(1)) for the Dijkgraaf-Witten theory [28].

The gauge transformation reads (see the exact transformation to all order in [17]):

AI → AI + dgI

BI → BI + dηI −
∑

J,K,L
p̄

2(2π)2NI
ǫIJKLAJ AK gL

(59)

where ǫIJKL is an absolutely anti-symmetric tensor. Consider the surface operators supported on
4 different non-intersecting surfaces ΣI , I = 1, . . . , 4 which we formally write as follows:

Wq[Σ1,Σ2,Σ3,Σ4] = exp(i

4
∑

I=1

qI







∫

ΣI

BI +
∑

J,K,L

p̄ ǫIJKL

3! (2π)2NI
AIAJd−1AL







) (60)

To be more specific, consider the surface operator supported on Σ1:

exp(iq1







∫

Σ1

B1 +
∑

J,K,L 6=1

p̄ ǫ1JKL

3! (2π)2NI
AIAJd−1AL







). (61)

What we mean by this expression is the following. If in the path integral we first integrate out
B2, B3, B4 (which do not appear in the surface operator supported on Σ1), this imposes conditions

dAJ = 0, J = 2, 3, 4. (62)

If Σ1 has a non-zero genus as a Riemann surface, we can always represent it by a polygon Σ̃1 (which

is topologically a disk) with appropriately glued boundary. Choose a point x
(1)
∗ ∈ Σ̃1 and define

d−1AI |Σ1 ≡ φI(x) ≡
∫ x

x
(1)
∗
AI , x ∈ Σ1 where the integral is taken along a path in Σ̃1. It does not

depend on the choice of the path in Σ̃1 due to (62). The choice of simply connected Σ̃1 representing
Σ1 is similar to the global choice of the path in γI for line operators in section 4. The surface
operator that can be expressed as

exp(iq1







∫

Σ1

B1 +
∑

J,K,L 6=1

p̄ ǫ1JKL

3! (2π)2NI
dφIdφJφL







). (63)

It is easy to see that it is invariant under the gauge transformations

φI → φI + gI

B1 → B1 + dη1 −
∑

J,K,L 6=1
p̄

2(2π)2N1
ǫ1JKLdφJ dφK gL

(64)

up to boundary terms supported on ∂Σ̃1. The presence of such terms and the dependence on the
choice of Σ̃1 in general makes such surface operator ill defined. However for field configurations with
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certain restriction the boundary terms vanish and the ambuguity goes away. This is similar to the
situation in Sec. 4, where d−1AK is a well defined continuous function on γI only if the pairwise
linking numbers vanish. In particular, we will need to require that all triple linking numbers
Tlk(ΣI ,ΣJ ,ΣK) are zero. If the ambiguity is present, the operator should vanish instead, similarly
to the case considered in Sec. 4. In the examples below there will be no such ambiguity.

As before, let VI be Seifert hypersurfaces such that ∂VI = ΣI . Then the integrating out all BI

implies:

dAI = −
2πqI
NI

δ⊥(ΣI), AI = −
2πqI
NI

δ⊥(VI). (65)

The effective action is then given by the quadruple intersection number of the Seifert hypersurfaces

∫

p̄

(2π)2
A1 ∧A2 ∧A3 ∧A4 =

2π p̄ q1q2q3q4
N1N2N3N4

∫

δ⊥(V1) ∧ δ
⊥(V2) ∧ δ

⊥(V3) ∧ δ
⊥(V4) =

=
2π p̄ q1q2q3q4
N1N2N3N4

#(V1 ∩ V2 ∩ V3 ∩ V4) (66)

The contribution of the surface operator supported on ΣI reads

− qI
∑

J,K,L

∫

M4

p̄ qJ qK qL ǫ
IJKL

3! (2π)2NINJNKNL
δ⊥(ΣI) ∧ δ

⊥(VJ) ∧ δ
⊥(VK) d−1δ⊥(VL)

∣

∣

∣

ΣI

=

−
2π p̄ q1q2q3q4
N1N2N3N4

∑

J,K,L 6=4

t(ΣI ;VJ ,VK ,VL)

3!
(67)

where t(ΣI ;VJ ,VK ,VL) is defined as follows. Consider γ
(I)
J ≡ (ΣI ∩ VJ), oriented, not necesserily

connected, curves on surface ΣI . Then
6

t(Σ1;V2,V3,V4) ≡
∑

a∈ γ
(1)
2 ∩γ

(1)
3

(−1)ǫ(a)
[

# of times one needs to cross γ
(1)
4 to reach a from x

(1)
∗

]

,(68)

where as before, (−1)ǫ(a) = ±1 depends on the orientation of the intersection of γ
(1)
2 with γ

(1)
3 . The

crossings with γ
(1)
4 are also counted with signs. See Fig. 3. Note that if there is no ambiguity in

defining t(Σ1;V2,V3,V4) (i.e. no dependence on the choice of polygon Σ̃1 and the reference point

x
(1)
∗ ) it is antisymmetric with respect to exchange of V2,V3,V4.

Finally we have:

〈Wq[Σ1,Σ2,Σ3,Σ4]〉 = exp

{

2πi p̄ q1q2q3q4
N1N2N3N4

Qlk(Σ1,Σ2,Σ3,Σ4)

}

= exp

{

2πi p q1q2q3q4
N1234

Qlk(Σ1,Σ2,Σ3,Σ4)

}

(69)

where we define the quadruple linking number of four 2-surfaces as follows:

Qlk(Σ1,Σ2,Σ3,Σ4) ≡ #(V1 ∩ V2 ∩ V3 ∩ V4)

− t(Σ1;V2,V3,V4) + t(Σ2;V3,V4,V1)− t(Σ3;V4,V1,V2) + t(Σ4;V1,V2,V3). (70)

6Again, we assume that configuration of surfaces is such that there is no ambiguity in such expression, i.e. no
dependence on the choice of Σ̃1 and x

(1)
∗ ∈ Σ̃1. Otherwise the result should be zero: 〈W 〉.
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Figure 3: An example of computing t(Σ1;V2,V3,V4) by formula (68). The red numbers 0, 1 denote

the value of the weight with which the intersection points of γ
(1)
2 with γ

(1)
3 are counted in different

domains separated by γ
(1)
4 . The points a ∈ γ

(1)
2 ∩ γ

(1)
3 that enter into the sum with non-zero weight

are shown as bold black points.
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Figure 4: An illustration of invariance of (70) under deformation of Seifert hypersurfaces VI . A
local configuration of Σ1,V2,V3,V4 in shown in R

4 ∼= R
3 × Rtime, where Rtime is not shown in the

picture. The hypersurfaces V2,V3,V4 are locally repsented by planes ×Rtime, while Σ1 is locally a
plane × point and V1 is locally a half R

3 bounded by Σ1 and spanned in the direction of the reader.
The right side shows a local deformation of V4 which results in increasing both #(V1∩V2∩V3∩V4)
and t(Σ1;V2,V3,V4) by 1 (the contributing intersection points are shown bold and black). The
total sum (70) stays intact.

It is very similar to the geometric definition Milnor’s triple linking number of a 3-component link
in S3 considered in Section 4. Each term in the sum is not a topological invariant (that is invariant
under ambient isotopy) of embedded quadruple of surfaces Σ1,2,3,4 ⊂ S4, since it depends on the
choice of Seifert hypersurfaces VI . However, their sum is. One can easily check its invariance under
basic local deformation moves, see Fig. 4. A particular example with quadruple linking number 1
is shown in Fig. 5.
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Figure 5: An example of configuration with a quadruple linking number Eq.(70) being
Qlk(Σ1,Σ2,Σ3,Σ4) = 1. Take the triple Σ2,Σ3,Σ4 to be a spun of Borromean rings with Seifert
hypersurfaces V2,V3,V4 being the spun of Seifert surfaces in Fig. 1. The surface Σ1 is a torus
embedded at a fixed value of the spin angle and encircling the Borromean rings. Choose Seifert
hypersurface V1 to be the interior the torus Σ1. It is easy to see that for this choice of Seifert hy-

persurfaces all t(ΣI ;VJ ,VK ,VL) vanish just because for each ΣI one of the three curves γ
(I)
J , J 6= I

is empty. The quadruple intersection #(V1 ∩ V2 ∩ V3 ∩ V4) = 1 contains one point shown bold in
the figure.

Lastly, we remark that this 3+1D theory with a quartic interacting action can host non-Abelian
strings [22,30,35] with non-Abelian statistics. As an example, in the corresponding link figure shown
in Table 1 and Fig. 5, we mean the braiding process of four string excitations described in [17,30,35].

7
∫

BdA+ BB in 3+1D and the intersection number of open sur-

faces

In the 3+1D spacetime, one can consider the following action on a 4-manifold M4:

S[A,B] =

∫

M4

s
∑

I=1

NI

2π
BI ∧ dAI +

s
∑

I,J=1

pIJNINJ

4πNIJ
BI ∧BJ (71)

where AI and BI are 1- and 2-form fields respectively and NIJ ≡ gcd(NI , NJ). We make a choice
on the symmetric integral quadratic form pIJ ∈ ❩. This TQFT is beyond the Dijkgraaf-Witten
group cohomology theory.

The gauge transformation reads:

AI → AI + dgI −
∑

J
pIJNJη

J

NIJ

BI → BI + dηI .
(72)

Note that if the diagonal elements pII and the integer NI are odd, eiS is invariant under large
gauge transformations only if M4 has even intersection form. Equivalently, it is a spin 4-manifold.

Consider the following gauge invariant operator supported on closed surfaces ΩI and surfaces
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ΣI with boundaries γI :

We,q[{Σ
I}, {ΩJ}] = exp

[

i
∑

I

qI

∫

ΩI

BI + i
∑

I

eI

{∫

γI

AI +

∫

ΣI

pIJNJ

NIJ
BJ

}

]

(73)

where qI , eI ∈ Z (the expectation value, up to a sign, will depend only on their value modulo NI)
are integral weights (charges). Since the charge curve γI of AI must bound the surface ΣI of BJ ,
we learn that the

∫

BdA + BB theory is a higher-form gauge theory where particles must have
strings attached.

Consider the case M4 = S4. Then integrating out AI imposes the following condition on BI :

dBI = −
2πeI
NI

δ⊥(γI), BI = −
2πeI
NI

δ⊥(Σ′
I) (74)

where Σ′
I is a Seifert surface of γI , that is ∂Σ′

I = γI . The effective action is then given by the
intersection number of the Seifert surfaces

∫

S4

∑

IJ

pIJNINJ

4πNIJ
BI ∧BJ =

∑

IJ

πpIJeIeJ
NIJ

#(Σ′
I ∩ Σ′

J). (75)

While the contribution of the surface operators reads

∑

I

qI

∫

ΩI

BI +
∑

I,J

eIpIJNJ

NIJ

∫

ΣI

BJ =

−
∑

I

2πeIqI
NI

#(ΩI ∩ Σ′
I)−

∑

IJ

2πpIJeIeJ
NIJ

#(ΣI ∩ Σ′
J) (76)

Combining all the terms we get

〈We,q[{Σ
I}, {ΩJ}]〉 =

∏

I

exp

{

−
2πieIqI
NI

Lk(γI ,ΩI)

}

∏

I,J

exp

{

−
πipIJeIeJ
NIJ

#(ΣI ∩ ΣJ)

}

(77)

where we used that, by the definition of the linking number, #(Σ′
I ∩ ΩI) = Lk(γI ,ΩI) and that

#((ΣI −Σ′
I)∩ (ΣJ −Σ′

J)) = 0 because intersection number of any two closed surfaces in S4 is zero.
Note that the result depends not only on γI , but also on the choice of surfaces ΣI that are bounded
by them. This is consistent with the fact that if one changes ΣI to ΣI + δΣI , where δΣI is a closed
surface, it is equivalent to changing qIΩI → qIΩI +

∑

J
pIJeJNI

NIJ
δΣJ in (73), and δΣJ may have

non-trivial linking with γJ (see Fig. 6). Also note that in order to calculate the digonal elements
#(ΣI ∩ ΣI) one needs to introduce a framing to γI , that is a choice of a non-zero normal vector
along γI . The trivial choice of a generic constant vector leads to #(ΣI ∩ ΣI) = 0. The example of
a framing choice that gives #(ΣI ∩ ΣI) = 1 is shown in Fig. 7.

One could also detect the value of pIJ by considering, for example, the partition function of the
theory (71) on a closed simply-connected spin 4-manifold with the second Betti number b2 and the
intersection form Qαβ on H2(M4,Z). Integrating out AI restricts N IBI/2π to be a representative
of an element from H2(M4,Z). Equivalently,

BI =
2π

NI

b2
∑

α=1

nIαδ⊥(Σα) (78)
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Figure 6: An example of a pair of surfaces ΣI ,ΣJ ∈ S4 bounded by curves γI , γJ with intersection
number #(ΣI ∩ ΣJ) = 1. The configuration of line/surface operaors in S4 is represented as a
“movie,” where the horizontal direction is the time axis moving from the left to the right. The closed
curve γI is represented by a pair of points created in 3-dimensional space and then annihilated.
Seifert surface ΣI is represented by line in the 3-dimensional space connecting the points in the
pair. Seifert surface ΣJ is represented by a disc appearing at a fixed moment in “time”. The red
bold point depicts the point contributing to the intersection number #(ΣI ∩ ΣJ) = 1. The shifted
surface ΣJ + δΣJ does not intersect ΣI , which is consistent with the fact that the 2D closed surface
δΣJ has a non-trivial linking number with the 1d closed curve γI : Lk(γI , δΣJ) = 1.

§
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Figure 7: An example of a framing choice which results in the self-intersection number #(ΣI∩ΣI) =
1. The configuration of line/surface operaors in S4 is represented as a “movie”. The closed curve
γI and its sligthly shifted copy are represented by a pairs of points created in 3-dimensional space
and then annihilated. Seifert surfaces are represented by lines in a 3-dimensional space connecting
the points in the pairs. The red bold point depicts the point contributing to the self-intersection
number #(ΣI ∩ ΣI) = 1. Note that when both pII and NI are odd, such configuration result in
〈We,q[{Σ

I}, {ΩJ}]〉 = −1 when eI = NI , eJ = 0, J 6= I, which is indication of fermionic nature of
the line/surface operator. Here the time evolution of two pairs of end points (two pairs of black
dots) form a closed (invisible undrawn) ribbon that has one side rotating by a 2π framing, as shown
in the Figure 9 of Ref. [22], which indicates the spin-statistics (exchange statistics) relation.

where Σα are representatives of the basis elements of H2(M4,Z) and nIα ∈ ZNI
taking into account
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large gauge transformations. The partition function then reads7

Z[M4] =

s
∏

I=1

NI

∑

nIα∈ZNI

exp
∑

I,J,α,β

iπpIJ
NIJ

nIαnJβQαβ . (80)

Suppose for simplicity that NI = N, ∀I = 1, . . . , s. One can rewrite (80) using Gauss reciprocity
formula as follows:

Z[M4] =
e

iπσ(p)σ(M4)
4 N3s/2

| det p|1/2

∑

a∈Zs·b2/(p⊗Q)Zs·b2

exp
{

−iπN pIJQαβaIαaJβ

}

(81)

where pIJ and Qαβ are inverse matrices of pIJ and Qαβ , respectively. Here σ(p) is the signature of
the pIJ matrix, that is the difference between the numbers of positive and the negative eigenvalues
of the matrix. Similarly, σ(M4) denotes the signature of M4, which is by definition is the signature
of the intersection matrix Qαβ .

8 Fermionic TQFT/ spin TQFT in 2+1D and 3+1D

Now we consider spin-TQFTs which arise from gauging unitary global symmetries of fermionic SPTs
(fSPTs). We can obtain fermionic discrete gauge spin TQFTs from gauging the (Z2)

n symmetry of

Z
f
2 × (Z2)

n fSPT. For example, it is recently known that the 2+1D Z
f
2 × Z2 fSPT, namely the Z2-

Ising-symmetric Topological Superconductor, has ν ∈ ❩8 classes [76–80]. The ν-class of Z
f
2 × (Z2)

n

fSPT is realized by stacking ν layers of pairs of chiral and anti-chiral p-wave superconductors
(p + ip and p − ip), in which boundary supports non-chiral Majorana-Weyl modes. Formally, one
may interpret this ❩8 classification from the extended version of group super-cohomology [81–83]
or the cobordism group [84, 85]. Yet it remains puzzling what are the continuum field theories
for these fSPTs and their gauged spin TQFTs, and what are the physical observables that fully
characterize them.

Our strategy to tackle this puzzle goes as follows. In Sec. 8.1, we define fSPT path integrals
and its gauged TQFTs for all ν ∈ ❩8 through the cobordism approach in Eq. (86). In Sec. 8.1.1,
we calculate the GSD on the T 2 torus which distinguishes only the odd-ν from the even-ν classes.
In Sec. 8.1.2, we calculate the path integral Z[RP

3], a single datum that distinguishes all ν ∈ ❩8

classes. In Sec. 8.1.3, we show the T xy matrix for the Z2-gauge flux (’t Hooft line) operator is
another single datum that distinguishes ν ∈ ❩8 classes. By computing the Sxy and T xy matrices,
we propose our continuum field theories for spin TQFTs and identify their underlying fermionic
topological orders through [86], shown in Table 2. In Sec.8.1.4 we propose expression for Z

f
2 × Z2

fSPT via Rokhlin invariant. In Sec.8.2, we study more general fSPTs and corresponding spin
TQFTs in 2+1 and 3+1D, and their link invariants.

7For a generic, not necessarily simply connected, 4-manifold M4 the partition function of a discrete 2-form gauge
theory in canonical normalization have the following form:

Z[M4] =
|H0(M4,

∏

i ZNi
)|

|H1(M4,
∏

i ZNi
)|

∑

b∈H2(M4,
∏

i
ZNi

)

e
iS[b]

. (79)

Roughly speaking, the denominator of the normalizaiton factor counts discrete group gauge transformations while
the numerator counts ambiguitites in the gauge transformations.
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8.1 2+1D Z
f
2 × Z2 symmetric fermionic SPTs

Our first non-trivial examples are the spin-TQFTs gauging the unitary Z2 part of fSPTs with
Z
f
2 × Z2 symmetry, where Z

f
2 denotes the fermions number parity symmetry. The mathematical

classification of such phases using the spin bordism group:

Ω3,Spin
tor (BZ2, U(1)) ≡ Hom(ΩSpin

3,tor(BZ2), U(1)) ∼= ΩSpin
3 (BZ2) ∼= ❩8 (82)

appeared in [84]. Note that the last isomorphism is non-canonical and follows from the fact that
ΩSpin
3 (BZ2) contains only torsion elements. In particular, for the class ν ∈ ❩8, the value of the

fSPT partition action on a closed 3-manifold M3 with a spin structure s ∈ Spin(M3) and the
background Z2 gauge connection a ∈ H1(M3,Z2) is given by

eiS[a,s] = e
πiν
4

ABK[PD(a), s|PD(a)] (83)

where PD stands for the Poincaré dual. The PD(a) ⊂M3 denotes a (possibly unoriented) surface8

inM3 representing a class in H2(M
3,Z2) Poincaré dual to a ∈ H1(M3,Z2). The s|PD(a) is the Pin

−

structure on PD(a) obtained by the restriction of s, and ABK[. . .] denotes ❩8 valued Arf-Brown-
Kervaire inavariant of Pin− 2-manifold PD(a) (which is its Pin− bordism class). Although there
is no local realization of Arf-Brown-Kervaire invariant via characteristic classes, schematically one
can write:

S[a, s] =
πν

4

∫

M3

a ∪ABK. (84)

where
∫

Σ
ABK ≡ ABK[Σ] (85)

for any possibly unoriented surface Σ embedded into M3. The corresponding spin-TQFT partition
function reads9

Z[M3, s] =
1

2

∑

a∈H1(M3,Z2)

eiS[a,s]. (86)

Starting from Eq.(86) we explicitly check that the resulting TQFTs for various values of ν ∈ ❩8

are as described in Table 2.

8.1.1 Ground state degeneracy (GSD): Distinguish the odd-ν and even-ν classes

The first step in identifying the TQFT is calculating ground state degeneracy on T 2. Since we
deal with the spin-TQFT it is necessary to specify the choice of spin structure on T 2. There are
4 choices corresponding to the periodic (P) or anti-periodic boundary (A) conditions along each of
two cycles: (P,P), (A,P), (P,A), (A,A). As we will see the Hilbert space up to an isomorphism only
depends on the parity (the value of the Arf invariant in ❩2), which is odd for (P,P), and is even for
(A,P), (P,A), (A,A). We will denote the corresponding spin 2-tori as T 2

o and T 2
e . The GSD can be

counted by considering partition function on M3 = T 3 = T 2
e × S1 or T 2

o × S1 where we put either
periodic or anti-periodic boundary conditions on the time circle S1.

8For cohomology with Z2 coefficients, it is always possible to find a smooth representative of the Poincaré dual.
9Which can be unterstood as expression of type (12), that is with B fields already integrated out.
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ν TQFT description (Local action)
Link
inv.

GSDT2
o
|T2

e
Z[RP

3] Sxy T xy

0

level 2 BF theory ∼=
level K =

(

0 2
2 0

)

U(1)2 CS ∼=
Z2-toric code

Lk 4b | 4b 1









1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

1
2

− 1
2

− 1
2

1
2

















1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1









1
Ising × p− ip ∼=

Ising × spin-Ising ∼=
U(2)2,−4 × (SO(3)−1 × U(1)1) CS

Arf 3f | 3b (1+e
±πi

4 )
2







1
2

1
2

1√
2

1
2

1
2

− 1√
2

1√
2

− 1√
2

0











1 0 0
0 −1 0

0 0 e
πi

8





2 level K =

(

0 2
2 −1

)

U(1)2 CS Lk 4b | 4b (1+e
±πi2

4 )
2









1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

i
2

− i
2

1
2

− 1
2

− i
2

i
2

















1 0 0 0
0 1 0 0

0 0 e
iπ

4 0

0 0 0 e−
3

4
iπ









3 SU(2)2 × SO(3)−1 CS Arf 3f | 3b (1+e
±πi3

4 )
2







1
2

1
2

1√
2

1
2

1
2

− 1√
2

1√
2

− 1√
2

0











1 0 0
0 −1 0

0 0 e
3πi

8





4
level K =

(

0 2
2 2

)

U(1)2 CS ∼=
Z2-double semions

Lk 4b | 4b 0









1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

− 1
2

1
2

1
2

− 1
2

1
2

− 1
2

















1 0 0 0
0 1 0 0
0 0 −i 0
0 0 0 i









5 SU(2)−2 × SO(3)1 CS Arf 3f | 3b (1+e
±πi5

4 )
2







1
2

1
2

1√
2

1
2

1
2

− 1√
2

1√
2

− 1√
2

0











1 0 0
0 −1 0

0 0 e−
3πi

8





6 level K =

(

0 2
2 1

)

U(1)2 CS Lk 4b | 4b (1+e
±πi6

4 )
2









1
2

1
2

1
2

1
2

1
2

1
2

− 1
2

− 1
2

1
2

− 1
2

− i
2

i
2

1
2

− 1
2

i
2

− i
2

















1 0 0 0
0 1 0 0

0 0 e−
iπ

4 0

0 0 0 e
3

4
iπ









7
Ising × p+ ip ∼=

Ising × spin-Ising ∼=
U(2)−2,4 × (SO(3)1 × U(1)−1) CS

Arf 3f | 3b (1+e
±πi7

4 )
2







1
2

1
2

1√
2

1
2

1
2

− 1√
2

1√
2

− 1√
2

0











1 0 0
0 −1 0

0 0 e−
πi

8





Table 2: Table of spin TQFTs as fermionic Z2 gauge theories that arise from gauging Z2 symmetry
part of Z

f
2 × Z2-fSPTs, for different classes of ν ∈ ❩8 with total 8 classes. The first column of the

table shows the ν ∈ ❩8 class. The second column shows the continuum TQFTs that we obtain
by gauging fSPTs. We use the description of the Ising TQFT in terms of Chern-Simons theory
(CS) U(2)2,−4

∼= (SU(2)2 × U(1)−4)/Z2 from [87]. By SO(3)1, we denoted the spin-CS theory
(see e.g. [44]) with the level normalized such that the states on T 2 are subset of SU(2)2 states
corresponding to SU(2) representations with odd dimension (1 and 3). The third column (“Link
inv.”) shows the topological invariant through which the expectation value of the system of line
operators supported on a link in S3 can be expressed. The fourth column in the right shows the
GSD on T 2, in terms of the spin 2-tori as T 2

o and T 2
e with the odd or even parity. The “b” stands

for boson and the “f” for fermions. On one hand, the Ising and the SU(2)2 TQFTs contain 3
bosonic (i.e. with (−1)F = 1) anyons. On the other hand, the spin-Ising and the SO(3)1 spin-CS
have 1 bosonic state on T 2 for any even spin structure, and have 1 fermionic ((−1)F = −1) state
for the odd spin structure. The theories with ν = 0 mod 2 contain 4 bosonic states for any choice
of the spin structure. The fifth column shows that Z[RP

3] distinguishes all ν ∈ ❩8 classes. The
last two columns show the reduced modular Sxy and T xy matrices (see main text for details). We
can compute Sxy and T xy based on the description Eq.(86), and find our data consistent with the
spin TQFTs that we associate with in the second column. Our spin TQFTs can be identified as
fermionic topological orders through [86], which denoted as 6F0 for odd ν, and 8F0 or 4B0 for even ν.

We find the correspondence that ν = 0 as 4B,a
0 , ν = 1 as F0⊠ 3B1/2, ν = 2 as 4B1 , ν = 3 as F0⊠ 3B3/2,

ν = 4 as 4B,b
0 , ν = 5 as F0 ⊠ 3B−3/2, ν = 6 as 4B−1, and ν = 7 as F0 ⊠ 3B−1/2.
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We denote their GSD as GSDT 2
e
and GSDT 2

o
respectively. We find that

GSDT 2(ν = odd) =

{

GSDT 2
o
= 3 (fermions),

GSDT 2
e
= 3 (bosons).

(87)

GSDT 2(ν = even) =

{

GSDT 2
o
= 4 (bosons),

GSDT 2
e
= 4 (bosons).

(88)

If we account all possible spin structures, the odd-ν theories have 3 bosonic and 3 fermionic states
(6 states in total), and the even-ν theories have 4 bosonic states in total.

We can define Ŝxy and T̂ xy as generators of SL(2,Z), the mapping class group of T 2, which
permute spin structures as follows:

Ŝxy :

(P,P) 7→ (P,P)
(A,P) 7→ (P,A)
(P,A) 7→ (A,P)
(A,A) 7→ (A,A)

T̂ xy :

(P,P) 7→ (P,P)
(A,P) 7→ (A,A)
(P,A) 7→ (P,A)
(A,A) 7→ (A,P).

(89)

So in general, the corresponding quantum operators act between Hilbert spaces for different spin
2-tori T 2. Only the unique odd spin structure (that is (P,P)) is invariant. However in our case
the Hilbert space on T 2 with spin structure s has form of HT 2

s
= H̃T 2 ⊗ H1-dim

s . Here H̃T 2 is
an s-independent purely bosonic Hilbert space that is 3 (4)-dimensional for odd (even) ν. The
H1-dim

s is a one-dimensional Hilbert space (of spin-Ising ∼= p + ip superconductor, or spin-SO(3)1
Chern-Simons, or their conjugates). The reduced modular Sxy and T xy matrices in Table 2 are
representations of Ŝxy and T̂ xy elements acting on the reduced Hilbert space H̃T 2 .

8.1.2 Z[RP
3]: Distinguish ν ∈ ❩8 classes

The easiest way to destinguish different TQFTs with the same number of states (say the 4 states
for the odd-ν and the 3+3 states for the even-ν) is to calculate the partition function on RP

3:

Z[RP
3] =

1

2

∑

a∈H1(RP
3,Z2)∼=Z2

e
πiν
4

ABK[PD(a)] =
1

2
(1 + e

πiν
4

ABK[RP
2⊂RP

3]) =
1

2
(1 + e±

πiν
4 ) (90)

where ± corresponds to the choice of spin structure on RP
3. One compares it with the expression

via Sxy and T xy matrices:
Z[RP

3] = (Sxy(T xy)2Sxy)0,0 (91)

based on the (0, 0) component of the right hand side matrix. This gives the precise map between
the gauged fSPTs for different values of ν ∈ ❩8 and the known fermionic topological orders [86]
as listed in our Table 2. To summarize, we show that the Z[RP

3] is one simple single datum that
distinguishes ν ∈ ❩8 classes of fSPTs.

8.1.3 Sxy and T xy: The mutual- and self-exchange braiding statistics for ν ∈ ❩8 classes

Another way is to calculate directly the modular data Sxy and T xy matrices starting from the
description Eq.(86) and computing the partition function with line operators supported on the
corresponding links. We recall that:
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• A Hopf link for Sxy
mn between two line operators of anyons (m,n) encodes the mutual-braiding

statistics data between two anyons. For Abelian anyons, Sxy
mn ∝ eiθmn encodes the Abelian

Berry statistical phase eiθmn of anyons (m,n), and, up to an overall factor, is related to the
total quantum dimensions of all anyons.

• A framed unknot for T xy
nn of a line operator of an anyon (n) encodes the self exchange-statistics

or equivalently the spin statistics (also called the topological spin) of the anyon.

As in the bosonic case, the possible nontrivial line operators are the Wilson loop exp(πi
∫

γ′ a) and

the ’t Hooft loop, which imposes the condition da = δ⊥(γ). Another possibility is a line defect
with a non-trivial spin-structure on its complement. In particular, consider the case when we have
Wilson loop operators supported on the connected loops γ′I ⊂ S3, and ’t Hooft operators supported
on the connected loops γJ ⊂ S3. The Wilson loop γ′I is the Z2-charge loop, while the ’t Hooft
loop γJ is the Z2-gauge flux loop (also called the vison loop in condensed matter). We consider the
loop operators:

W [{γ′I}, {γJ}] =
∏

I,J

e
πi

∫
γ′
J
a
δ(da−

∑

J

δ⊥(γJ)), (92)

then its expectation value in path integral gives

〈W [{γ′I}, {γJ}]〉 ≡
∑

a∈H1(M3,Z2)

eiS[a,s]W [{γ′I}, {γJ}] = e
∑

I,J πiLk(γ′
I ,γJ )e

πiν
4

ABK(Σ). (93)

Here Σ is such that ∂Σ = ⊔JγJ and the framing on the link components γJ is induced by Σ.
ABK(Σ) is the Arf-Brown-Kervaire invariant of embedded surface with the boundary Σ ⊂ S3 [88].
Note that it can be expressed via the Arf invariant of unframed link {γJ} as follows 10 11:

ABK[Σ] = 4Arf[{γJ}] +
1

2

∑

I,J

Lk(γI , γJ). (95)

Therefore we have:

〈W [{γ′I}, {γJ}]〉 = (−1)
∑

I,J Lk(γ′
I ,γJ )+νArf[{γJ}] · e

πiν
8

∑
I,J Lk(γI ,γJ ). (96)

Note that when ν is even, the dependence on Arf invariant goes away, and the expectation value
becomes as in Eq.(28) with the level matrix given in Table 2. Note that the trefoil knot provides
an example with non-zero Arf invariant, see Fig. 8.

Remember that the ’t Hooft loop γJ is equivalent to the Z2-gauge flux vison loop, where we
gauge the Z2-symmetry of Z

f
2×Z2-fSPT. We anticipate such a ’t Hooft loop γJ as the Z2-gauge flux

may be identified with the sigma anyon σ either in the Ising TQFT or in the SU(2)2 Chern-Simons
(CS) theory. With this in mind, to reproduce the non-trivial element of the T xy-matrix, we can
take the link to be a framed unknot of the ’t Hooft loop γJ . Thus we denote {γJ} = {	p}. Here
the 	p is an oriented unknot with a framing of any integer p. The framing p means that the line is

10Note that both ABK and Arf invariant only defined for the proper links, that are links such that each component
evenly links the rest. It can also be naturally extended for all links, taking values in ❩∗

8 ≡ ❩8 ⊔∞ instead [88], that

is e
πi

4
ABK = 0 (equivalently, (−1)Arf = 0) for the improper links. This means that 〈W 〉 = 0 in this case.

11The Arf invariant of a link can be expressed via Arf invariants of individual components [88]:

Arf[{γJ}] =
∑

I

Arf[γI ] +
1

4

∑

I<J

(λ(γI , γJ) + Lk(γI , γJ) +
∑

I,J,K

µ̄(γI , γJ , γK), (94)

where λ is the Sato-Levine linking invariant and µ̄ is the Milnor triple linking number.
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Figure 8: Trefoil knot. It has non-trivial Arf invariant (unlike unknot) and can be detected by the
2+1D fermionic (but not bosonic) gauged SPT with Z2 symmetry. If the ’t Hooft Z2 flux line (or
the vison in condensed matter terminology), as a worldline of the σ anyon, forms a knot, then the
trefoil knot gives a statistical Berry phase (−1) for the odd ν classes, while it gives a trivial (+1)
for the even ν classes. So the trefoil knot distinguishes odd ν from even ν for ν ∈ ❩8 classes of
Z
f
2 × (Z2)

2 fSPTs.

2π-twisted by p times, as being Dehn twisted by p times and then glued to a closed line. We derive
that

〈W [∅, {	p}]〉 = e
πiν
8

p (97)

since Arf[	] = 0. This reproduces an e
πiν
8 element of the T xy-matrix, with a power p. Remember

that T xy matrix represents the self-statistics and equivalently the spin (also named as the topological

spin) of the quasi-particle. The result e
πiν
8

p confirms post-factum our earlier prediction that the
Z2-gauge flux ’t Hooft line operator should be identified with the same line operator for the sigma
anyon σ. Thus, we further establish the correspondence between the gauged fSPT Eq.(86) and the
TQFTs in the second column of Table 2 for all ν ∈ ❩8 classes.

When ν is odd, similarly one can confirm that, both Ising and SU(2)2 anyons ψ can be realized
by Wilson lines and use the general expression (96) to reproduce the other elements12 of T xy and
Sxy. For example the fact that the diagonal element of Sxy for flux lines is zero follows from the
fact that Hopf link is not a proper link and (−1)Arf = 0.

Note that the appearance of the Arf invariant for the odd ν is consistent with the following two
facts: (1) The expectation values of Wilson lines supported on a link L in the fundamental repre-
sentation of the SU(2)2 CS theory is given by the Jones polynomial of the link J [L] ∈ Z[q1/2, q−1/2]

at q = e
2πı
2+2 = i [11] , where Jones polynomial is an element of Z[q1/2, q−1/2], the space of Laurent

polynomials in q1/2 with integer coefficients. (2) The value of the Jones polynomial (up to a simple
normalization related factor) at q = i is given by the Arf invariant J [L]|q=i ∝ (−1)Arf[L] [89, 90].

To summarize, we show that the modular data Sxy and T xy computed in our Table 2 also
distinguish ν ∈ Z8 classes of fSPTs.

8.1.4 Fermionic Topological Superconductor and Rokhlin invariant

We explore further on the partition function of Z
f
2 ×Z2 fSPTs, namely the Z2-symmetric fermionic

Topological Superconductors. First let us notice that the partition function of SU(2)2 Chern-

12In order to calculate the elements of Sxy matrix it is important to fix the normalization of Wilson and flux lines.
In particular, the flux line should have an extra

√
2 factor, which is easy to fix by considering a pair of flux lines

embedded in the obvious way into S2 × S1 and requiring that the corresponding path integral is 1.
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Simons theory (CS) on a closed 3-manifold can be expressed via Rokhlin invariant [91]:

ZSU(2)2 [M
3] =

1

2

∑

s∈Spin(M3)

e−
3πi
8

µ(M3,s) (98)

where the Rokhlin invariant µ(M3, s) of a 3-manifold M3 equipped with the spin-structure s ∈
Spin(M3) is defined as:

µ(M3, s) = σ(M4) mod 16. (99)

The σ(M4) is the signature of any spin 4-manifold bounded by M3 so that spin structure on M3

is induced by spin structure on M4. Similarly, for its spin version, that is the SO(3)1 spin CS:

ZSO(3)1 [M
3, s] = e−

3πi
8

µ(M3,s). (100)

Combining those together, we have:

ZSU(2)2×SO(3)−1
[M3, s] =

1

2

∑

s′∈Spin(M3)

e−
3πi
8

µ(M3,s′)+ 3πi
8

µ(M3,s) =

1

2

∑

a∈H1(M3,Z2)

e−
3πi
8

(µ(M3,s+a)−µ(M3,s)) (101)

where we used the fact that the spin structures form an affine space over H1(M3,Z2). Comparing
it with (86) at ν = 3 for the SU(2)2 × SO(3)−1 Chern-Simons theory, this suggests that13

µ(M3, s)− µ(M3, s+ a) = 2ABK[PD(a), s|PD(a)] mod 16 (103)

and that the partition function of fSPT is given by

ZfSPTν [M
3, s, a] = e

πiν
8

(µ(M3,s)−µ(M3,s+a)). (104)

The fact that it is a cobordism invariant can be understood as follows. Let M3 and M3′ be 3-
manifolds equipped with spin-structures s, s′ and Z2 gauge fields a, a′ (that is Z2 principal bundles
overM3 andM3′, or equivalently mapsM3,M3′ → BZ2 ). Suppose these spin 3-manifolds with Z2

gauge bundles represent the same class in ΩSpin
3 (BZ2). Then there exists a 4-manifoldM4 equipped

with spin structure s4 and Z2 gauge field a4 ∈ H1(M4,Z2) such that ∂M4 = M3′ ⊔ (−M3)
and s4|M3 = s, s4|M3′ = s′, a4|M3 = a, a4|M3′ = a′. It follows that (s4 + a4)|M3 = s + a,
(s4 + a4)|M3′ = s′ + a′. Therefore, by the definition of Rokhlin invariant

µ(M3, s)− µ(M3′, s′) = σ(M4) mod 16 (105)

and
µ(M3, s+ a)− µ(M3′, s′ + a′) = σ(M4) mod 16, (106)

and therefore
ZfSPTν [M

3, s, a] = ZfSPTν [M
3′, s′, a′]. (107)

13This should follow from the following formula [92]

µ(M3
, s) = σ(M4)− (PD(w2) · PD(w2)) + 2ABK[PD(w2)] (102)

where M4 is any (not necessarily spin) 4-manifold bounded by M3, and w2 is the relative Stiefel-Whitney class.
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8.2 Other examples of 2+1D/3+1D spin-TQFTs and Z
f
2×(Z2)

n fermionic SPTs:
Sato-Levine invariant and more

In Table 3, we propose other examples of spin-TQFTs with action (formally written) similar to
(84). The idea is that if we have a collection of Z2 gauge fields ai ∈ H1(Md,Z2), there is lesser-
dimensional fPST with time-reversal symmetry (with T 2 = 1) living on the intersection of domain
walls (Poincaré dual to ai, which is, in general, non-orientable). The 1-cocycle η is formally defined
such that (−1)

∫
S1 η = ±1 depending on the choice of spin structure on S1. It can be interpreted

as the action of the non-trivial 0+1D fSPT with no unitary global symmetry, that is the theory of
one free fermion (the 0+1D fSPT partition function is 1 for the choice of anti-periodic boundary
conditions on the fermion, and −1 for periodic boundary conditions).

The corresponding link invariants are similar to those appeared in bosonic theories, but in-
stead of counting points of intersection between loops/surfaces/Seifert (hyper)surfaces, we count
ΩPin−
1,2 (pt) bordism classes of 1- and 2-manifolds that appear in the intersection. In math litera-

ture, the result of such counting sometimes referred as “framed intersection”. Note that in one
dimension, the Pin− bordism group is isomorphic to the stable framed bordism group: ΩPin−

1
∼=

ΩSpin
1

∼= Ωfr
1
∼= πs1

∼= ❩2 which, in turn, by Pontryagin-Thom construction is isomorphic to the stable
homotopy group of spheres. The Pin− structure on the intersection is induced by Spin structure
on the ambient space together with the framing on its normal bundle given by vectors which are
tangent to the intersecting surfaces [93].

To clarify, consider for example the case with action π
∫

a1 ∪ a2 ∪ η (second line in Table 3).
More precisely, the fSPT partition function on a 3-manifold M3 is given by

eiS[a1,a2] = (−1)
∫
PD(a1)∩PD(a2)

η
≡

∏

circles in PD(a1)∩PD(a2)

{

+1, odd,
−1, even,

spin structure on S1 (108)

The circle with the anti-periodic boundary condition on fermions is spin-bordant to an empty set,
since it can be realized as a boundary of a disk. So the partition function of the non-trivial 0 + 1D
fSPT has value 1 for it. The circle with the periodic boundary condition forms the generator of
the spin-bordism group, and the partition function of the non-trivial fSPT has value −1. Note
that induced spin-structures on circles embedded into M3 can be understood as their framings
(trivialization of the tangent bundle) modulo two [93]. If one chooses framing on M3 compatible
with spin structure, the framing on the circle that appears at the intersection of two surfaces is
then determined by the two normal vectors tangent to the surfaces. Intuitively the framing on S1

is given by how many times the “cross” of intersecting surfaces winds when one goes around the
loop. Physically this 2+1D fSPT can be constructed by putting a non-trivial 0+1D fSPT (which
are classified by ❩2) state, that is a state with one fermion, on the intersections of pairs domain
walls for discrete gauge fields a1,2 ∈ H1(M3,Z2). The partition function of the corresponding
spin-TQFT then can be written as follows:

Z =
1

4

∑

a1,a2∈H1(M3,Z2)

eiS[a1,a2] (109)

Now let us consider flux line operators (W [γI ] ∝ δ(daI − δ⊥(γI))) in this theory supported on
a two-component semi-boundary link {γ1, γ2} in S3. “Semi-boundary” link is by definition a link
for which one can choose Seifert surfaces ΣI (which satisfies ∂ΣI = γI) such that ΣI ∩ γJ = 0 for
I 6= J . Note that semi-boundary links should be distinguished from boundary links, the links that
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Dim Symmetry
Action

(Formal notation)
Link

invariant

2+1D Z
f
2 × Z2

π
4

∫

a ∪ABK Arf invariant of a knot/link

2+1D Z
f
2 × (Z2)

2 π
∫

a1 ∪ a2 ∪ η

Sato-Levine invariant [94] :
γ1, γ2 7→ Framed bordism class

[Σ1 ∩ Σ2] ∈ πs
1
∼= ❩2

3+1D Z
f
2 × (Z2)

2 (?) π
4

∫

a1 ∪ a2 ∪ABK
Σ1,Σ2 7→

ABK[V1 ∩ V2] (∂VI = ΣI)

3+1D Z
f
2 × (Z2)

2 (?) π
∫

a1 ∪ a2 ∪ a2 ∪ η

Dlk[Σ1,Σ2] =
Framed bordism class

[Σ1 ∩ V2] ∈ πs
1
∼= ❩2 [94, 95]

3+1D Z
f
2 × (Z2)

3 π
∫

a1 ∪ a2 ∪ a3 ∪ η

Σ1,Σ2,Σ3 7→ Framed bordsim class
[V1 ∩ V2 ∩ V3] + [. . .]

∈ πs
1
∼= ❩2

Table 3: Table of spin TQFTs and the corresponding link invariants. As before ABK(Σ) is the Arf(-
Brown-Kervaire invariant) of Spin (Pin−) surface Σ. The 1-cocycle η is formally defined by the rule
(−1)

∫
S1 η = ±1 with the dependence on the spin structure choice on S1. Notation πs1(

∼= ΩPin−
1 (pt))

stands for the stable framed bordism group of 1-manifolds. Here Dlk[Σ1,Σ2] stands for the double
linking (Dlk) of two surfaces Σ1 and Σ2, given in Ref. [94,95]. It can detect, for example, two linked
surfaces obtained as a twisted spun of the Hopf link. Here the [. . .] means extra terms similar to
the ones in Eq.(42) that insure invariance under the choice of three Seifert hypersurfaces. Note
that from the point of view of bordism classification of fSPTs, it is not surprising that the emerging
link invariants are cobordism invariants of links. Here the formal actions in Table 3 are consistent
topological invariants that we merely propose them to detect potential SPT states. However, there
are further obstructions [96, 97] in order to define SPTs on any closed manifold through these
topological invariants. Indeed some topological invariants (e.g. the third and fourth rows marked
with “?”) above do not correspond to any SPTs, where we report the details in a companion
work [98].

satisfy a stronger condition ΣI ∩ ΣJ = 0 for I 6= J . Then14

W [γ1, γ2] =
∏

I

δ(daI − γI)e
πi

∑
J ǫIJ

∫
ΣI

aJ∪η
(110)

〈W [γ1, γ2]〉 = e
πi

∫
Σ1∩Σ2

η
=

∏

circles in Σ1∩Σ2

(−1)framing ≡ (−1)S(γ1,γ2) (111)

where the framing on the connected components of Σ1 ∩ Σ2 ⊂ S3 is determined by the normal
vectors in the direction of Σ1,2. This invariant SL(γ1, γ2) ∈ πs1

∼= ❩2 is known as the (stable)
Sato-Levine linking invariant of semi-boundary link [94]. It can be used to detect some non-trivial
links for which the usual linking number is zero. The simplest example of a 2-component link with
Lk(γ1, γ2) = 0 but SL(γ1, γ2) = 1 is the Whitehead link (see e.g. [99]) shown in Fig 9).

9 Conclusion

Some final remarks and promising directions are in order:

14The extra exp(. . .) factors are gauge-invariant completions of line operators, similar to the ones in Sec. 5.
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Figure 9: Whitehead link of two worldlines γ1 and γ2. It has a trivial linking number, but non-
trivial Sato-Levine invariant SL(γ1, γ2) = 1. Therefore it is detected by the 2+1D fermionic (but
not bosonic) gauged SPT with Z2 × Z2 symmetry. The two Z2-flux lines of distinct Z2 form two

components of the link. Moreover, the classification of Z
f
2 × (Z2)

2 fSPTs shows (❩8)
2 ×❩4 distinct

classes [83]. In this case, we claim that the Whitehead link can detect odd ν ∈ ❩4 classes in ❩4

sub-classes with a Berry phase (−1).

1. We formulate the continuum TQFTs to verify several statistical Berry phases raised from
particle and string braiding processes via the 2+1D and 3+1D spacetime path integral for-
malism (See [17] and References therein). We find the agreement with [17] which uses a
different approach based on surgery theory and quantum mechanics. As far as we are con-
cerned, all the TQFTs discussed in our Table 1, 2 and 3 can be obtained from dynamically
gauging the unitary global symmetries of certain SPTs. We also derive the corresponding
new link invariants directly through TQFTs.

2. We resolve the puzzle of continuum spin TQFTs that arise from gauging the Z
f
2 × Z2-fSPT

(namely the Z2-symmetric fermionic Topological Superconductor) partition function (86) and
listed in Table 2. In addition, we may also understand the spin bordism group ΩSpin

3 (BZ2) ∼=
❩8 classification [84] of those fSPT in terms of three layers with three distinct ❩2 generators
respectively through the extended group super-cohomology approach [81–83]. Comparing the
cohomology group classification [82,83] with a group G = Z2 and Table 2, we can deduce that
the first H3(G,U(1)) = ❩2 group generates the bosonic Abelian CS theories for ν = 0, 4, the
second H2(G,Z2) = ❩2 group generates the fermionic Abelian spin CS theories for ν = 2, 6,
and the third H1(G,Z2) = ❩2 group generates fermionic non-Abelian spin TQFTs for ν =
1, 3, 5, 7.

3. Following the above comment, for the odd-ν non-Abelian spin TQFTs in Table 2, we see that
they are formed by a product of a bosonic and a spin TQFT sectors, each with opposite chiral
central charges c−. The Ising TQFT and the SU(2)2 CS both have anyon contents {1, σ, ψ},
while the p+ip superconductor and the SO(3)1 CS have contents {1, f}. Here we identify the
σ as the anyon created by the ’t Hooft loop of Z2-gauge flux vison through our T xy matrix
Eq.(97). The ψ is the Bogoliubov fermion, and f is a fundamental fermion. The σ is a non-
Abelian anyon created from the Z2-gauge flux. We can identify σ with a Majorana zero mode
trapped at a half-quantum vortex of a dynamically gauged chiral p-wave superconductor [100].

To recap, we should regard the ν = 1 class Z2-symmetric Topological Superconductor as
stacking a p + ip superconductor and a p − ip superconductor together. More generally, we
should regard the ν class fSPT as stacking ν copies of p + ip superconductors and p − ip
superconductors. To obtain the spin TQFTs by gauging the fSPTs, naively we dynamically
gauging the superconductor vortices in one sector of theory. More precisely, f is realized by
equipping non-trivial spin structure on the complement of the loop. The theory of {1, σ, ψ} is
related to {1, f} by dynamically gauging the Z2-flux, thus summing over the spin structures.
The Z2-gauge flux traps the Majorana mode identified as the σ anyon. The pair of chiral
central charges c− for two sectors of odd-ν theories are (12 ,−

1
2) for ν = 1, (32 ,−

3
2) for ν = 3,
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(−3
2 ,

3
2) for ν = 5, (−1

2 ,
1
2) for ν = 7, which satisfy a relation of (ν2 ,−

ν
2 ) up to mod 4. So the

total chiral central charges is c− = 0 for each theory, as it supposed to be for a gauged fSPTs.

4. Comment on gauging and bosonization: We like to make a further remark on the relation
between SPTs and TQFTs.

By gauging, one may mean to probe SPTs by coupling the global symmetry to a background
classical probe field. However, here in our context, in order to convert (short-range entangled)
SPTs to (long-range entangled) TQFTs, we should further make the gauge field dynamical.
Namely, in the field theory context, this means summing over all the classical gauge field
configuration to define the path integral. This step is straightforward for bosonic theories in
Sec. 2-7.

By bosonization, we mean summing over all the spin structures for a fermionic theory which
turns it into a bosonic theory.

It is worthwhile to clarify the physics of gauging procedure and its relation to bosonization of
the fermionic theories in Sec. 8. The background Z2 gauge field of fSPTs in Sec. 8’s Table 2
can be understood as the difference between spin structures for chiral and anti-chiral factors
(i.e. p+ ip and p− ip superconductors for ν = 1 of Table 2). By fixing a the spin structure for
one of the chiral factors (say, p− ip), the summation over the background gauge field becomes
equivalent to the summation over the spin structure for the other factor. In particular, in
the ν = 1 case, gauging produces Ising × p− ip fTQFT or equivalently Ising × spin-Ising
fTQFT. The case of other ν ∈ Z8 classes is similar.

5. Comment on the quantum dimension and statistical Berry phase/matrix of anyonic parti-
cles/strings: In order to discuss the quantum dimensions dJ of loop/surface operators, one
should properly normalize the line/surface operators. There are different choices of possi-
ble normalizations. In particular, for condensed matter/quantum information literature, the
common normalization of line operators is such that insertion of the pair of operator and
anti-operator along a non-trivial loop in Sd × S1 in d + 1D, where d + 1 is the spacetime
dimension, yields 1. For example, from Sec. 2-7, it can be shown that quantum dimensions
dJ for

∫

BdA + A3 and
∫

BdA + A4 theories are non-Abelian in the sense that dJ = N for
some of the operators that contain BJ fields (where BJ is a 1-form field for

∫

BdA + A3

theory and a 2-form field for
∫

BdA + A4 theory) in twisted Dijkgraaf-Witten theories with
G = (ZN )d+1 with N ≥ 2. The non-Abelian nature can be seen clearly as follows: On a
spatial Sd sphere with a number Ninsert of insertions of the non-Abelian excitations, the GSD
grows as GSD ≈ (dJ)

Ninsert = NNinsert . Thus, the Hilbert space of degenerate ground state
sectors has dimension of order NNinsert . One can verify that the quantum dimensions dJ = N
is consistent with an independent derivation in Ref. [22] based on quantum algebra (without
using field theory).

In general, the spacetime braiding process of anyonic particle/string excitations, on a spatial
sphere, in such a highly degenerate ground state Hilbert subspace (of a dimension of an
order GSD ≈ (dJ)

Ninsert), would evolve the original state vector with an additional statistical
unitary Berry matrix (thus, non-Abelian statistics).

Normally, the non-Abelian statistics for the non-Abelian anyons and non-Abelian strings for
these theories are more difficult to compute, because the non-Abelian statistics require a
matrix to characterize the changes of ground-state sectors. Yet for

∫

BdA + A3 of Sec. 4
and

∫

BdA + A4 theories of Sec. 6, we are able to use the Milnor’s triple linking and the
quadruple-linking numbers of surfaces to characterize their non-Abelian statistics, thus we
boil down the non-Abelian statistics data to a single numeric invariant.15

15The physics here is similar to the observation made in [30], although in our case we have obtained more general
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We would also like to point out that the main focus of the current work is to derive the
more subtle statistical Berry phases of anyonic particles/strings. For this purpose, we choose
a convenient but different normalization of line/surface operators (result shown in Table 1).
One can easily modify our prescription above to encode the quantum dimension data.

6. We remark that the
∫

BdA + A3 studied in Sec. 4 has been found in [31, 71] that it can be
embedded into a non-Abelian Chern-Simons theory

S =
1

4π

∫

d3xǫµνρKG
aα′

(

Aa
µ(x)∂νA

α′
ρ (x) +

1

3
fbc

aAα′
µ (x)Ab

ν(x)A
c
ρ(x)

)

, (112)

here a, b, c, α, α′ = 1, . . . , 6, with a 6-dimensional Lie algebra. We write

Aα
µT

α ≡ AI
µXI +BI

µH
∗
I . (113)

(A1
µT

1,A2
µT

2,A3
µT

3) = (A1
µX1, A

2
µX2, A

3
µX3),

(A4
µT

4,A5
µT

5,A6
µT

6) = (B1
µH

∗
1 , B

2
µH

∗
2 , B

3
µH

∗
3 ).

Here α = 1, . . . , 6 and I = 1, . . . , 3, the generic Lie algebra is called the symmetric self-dual
Lie algebra [101], such that the generators H∗

I and XI in particular obey

[H∗
I , H

∗
J ] = [H∗

I , XJ ] = 0; [XI , XJ ] = CIJKH
∗
K , (114)

where CIJK serves as an appropriate structure constant now. More generally, we simply
write the whole 6-dimensional Lie algebra as [Ta, Tb] = fab

cTc. Here even if our Killing form
κab = κ(Ta, Tb) = −Tr(Ta, Tb) is degenerate, as long as we can define a symmetric bilinear
form (KG)IJ , the (K

G)IJ can replace the degenerate Killing form to define the Chern-Simons
theory Eq.(112). See Ref. [31]’s Sec. X and Appendix C for further details.

As an example, when
∫

BdA + A3 in Sec. 4 has a G = (Z2)
3, it can be shown that it is

equivalent to a non-Abelian D4 (of a group order 8) discrete gauge theory [22,24,31,36].

7. Surprisingly, non-Abelian TQFTs can be obtained from gauging the Abelian global symmetry
of some finite Abelian unitary symmetry group SPTs , in the sense that the braiding statistics
of excitations have non-Abelian statistics. Non-Abelian statistics mean that the ground state
vector in the Hilbert space can change its sector to a different vector, even if the initial and
final configurations after the braiding process are the same. This happens for the

∫

BdA+A3

in 2+1D of Sec.4, and
∫

BdA + A4 in 3+1D of Sec.6. Other examples are the 2+1D/3+1D

spin-TQFTs obtained by gauging Z
f
2 × (Z2)

n fSPTs, we also obtain some non-Abelian spin
TQFTs.

8. New mathematical invariants: The quadruple linking number of four surfaces defined in Eq.
(70), Qlk(Σ1,Σ2,Σ3,Σ4), seems to be a new link invariant that has not been explored in the

mathematics literature. In Eqs. (103-104), we propose a novel reazliation of Z
f
2 × Z2 fSPT

partition function (previously realized via Arf-Brown-Kervaire invariant in [84]) and Rokhlin
invariant.
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