
Symmetry-protected many-body Aharonov-Bohm effect

Luiz H. Santos1, ∗ and Juven C. Wang2, 1, †

1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario, N2L 2Y5, Canada
2 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

It is known as a purely quantum effect that a magnetic flux affects the real physics of a particle,
such as the energy spectrum, even if the flux does not interfere with the particle’s path - the
Aharonov-Bohm effect. Here we examine an Aharonov-Bohm effect on a many-body wavefunction.
Specifically, we study this many-body effect on the gapless edge states of a bulk gapped phase
protected by a global symmetry (such as ZN ) - the symmetry-protected topological (SPT) states.
The many-body analogue of spectral shifts, the twisted wavefunction and the twisted boundary
realization are identified in this SPT state. An explicit lattice construction of SPT edge states is
derived, and a challenge of gauging its non-onsite symmetry is overcome. Agreement is found in the
twisted spectrum between a numerical lattice calculation and a conformal field theory prediction.

Mysteriously an external magnetic flux can affect the
physical properties of particles even without interfering
directly on their paths. It is known as the Aharonov-
Bohm(AB) effect [1]. For instance, a particle of charge q
and mass m confined in a ring (parametrized by 0 ≤ θ <
2π) of radius a threaded with a flux ΦB , see Fig. 1(a),
would have its energy spectrum shifted as

En =
1

2ma2

(
n+

ΦB
Φ0

)2

, n = 0,±1, ..., (1)

where Φ0 = 2π/q is the quantum of magnetic flux and we
adopt e = ~ = c = 1 units. One can dispose of the gauge
potential in the Schrödinger’s equation of the wavefunc-
tion ψ(θ), by a gauge transformation that changes the

wavefunction to ψ̃(θ) = ψ(θ) exp[i q
∫ θ

A(θ′) d θ′]. So,
the effect of the external flux can be enforced by the
condition that the phase ϕ̃(θ) of the new wavefunction
satisfies a twisted boundary condition,

(1/2π)

∮
dθ

∂ ϕ̃(θ)

∂θ
= ΦB/Φ0, (2)

as the particle trajectory encloses the ring; thus, this
twisted boundary condition implies a “branch cut”, see
Fig. 1(b). We may refer to this twist effect as “Aharonov-
Bohm twist”. For electrons confined on a mesoscopic
ring, for example, even though interactions are not neg-
ligible, the sensitivity of the system to the presence of
the external flux can be rationalized as a single particle
phenomenon [2].

It is then opportune, as matter of principle, to ask
whether such an AB effect can take place as an intrin-
sically interacting many-body phenomenon. More con-
cretely, we ask whether the low energy properties of
such interacting systems display a response analogous
to Eq. (1) when subject to a gauge perturbation and,
in turn, how this effect is encoded in the “topology’’ (or
boundary conditions) of the the wave-functional Ψ[φ(x)],
see Figs. 1(c)-(d). We shall refer to this as a many-body
AB effect or twist.

In this paper we show that 2D “symmetry protected
topological”(SPT) states [3–5] offer a natural platform

for observing the many-body AB effect. SPT states are
quantum many-body states of matter with a finite gap to
bulk excitations and no fractionalized degrees of freedom.
Due to a global symmetry, the system has the property
that its edge states can only be gapped if a symmetry
breaking occurs, either explicitly or spontaneously. So,
in the absence of any symmetry breaking, the edge is
described by robust edge excitations which can not be
localized due to weak symmetry-preserving disorder, in
contrast to purely one dimensional systems [6]. Assuming
then that the edge states are in this gapless phase (an as-
sumption which we will take throughout the paper), we
shall demonstrate that the system will respond to the
insertion of a gauge flux in a non-trivial way, whereas if
the edge degrees of freedom were to become gapped, then
they would be insensitive to the flux. We note that in
2D systems displaying the integer quantum Hall effect,
the insertion of a flux also induces a non-trivial response
of the chiral edge states [7]. In contrast to this situation,
here we shall be concerned with 2D non-chiral SPT states
for which the gapless edge excitations, like the single par-
ticle modes on a ring, propagate in both directions. The
spectrum of these gapless modes characterize the low en-
ergy properties of the system.

(a) 

(b) 

(c) 

(d) 

FIG. 1: (a) and (c): Single- and many-body wavefunctions
upon flux insertion, respectively. (b) and (d): Flux effect cap-
tured by twisted boundary conditions showing the associated
branch cut.
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We approach this problem from two venues: (I) First
we study the response of the SPT state to the insertion
of a gauge flux by means of a low energy effective theory
for the edge states and derive the change in the spectrum
of edge states akin to Eq. (1). (II) Complementarily, we
show that the many-body AB effect derived in (I) can also
be captured by formulating a lattice model describing
the edge states. Twisted boundary conditions defined
for these models are shown to account for the presence
of a gauge flux, which we confirm numerically.

MANY-BODY AHARONOV-BOHM EFFECT

To capture the essence of AB effect on a symmetry-
protected many-body wavefunction, we imagine thread-
ing a gauge flux through an effective 1D edge on one side
of a 2D bulk SPT annulus (or cylinder). This many-
body wavefunction on the 1D edge (parametrized by
0 ≤ x < L) of SPT states is the analogue of a single-
body wavefunction of a particle in a ring. Since the bulk
degrees of freedom are gapped, we concentrate on the low
energy properties on the edge described by a non-chiral
Luttinger liquid action Iedge[φI ] [9, 10]. To capture the
gauge flux effect on a many-body wave function |Ψ〉, we
formulate it in the path integral,

|Ψ(tf )〉 =
∑
n

|Ψn(tf )〉〈Ψn(tf )|e−i
∫ tf
ti

H(t)dt|Ψ(ti)〉

=
∑
n

|Ψn(tf )〉
∫ φI,n

φI(ti)

DφIei (Iedge[φI ]+(1/2π)
∫
qIA∧dφI),

(3)

with φI the intrinsic field on the edge. Our goal is to
interpret this many-body AB twist (1/2π)

∫
qIA ∧ dφI .

We anticipate the energy spectrum under the flux would
be adjusted, and we aim to capture this “twist” effect on
the energy spectrum. Below we focus on bosonic SPT
states with ZN symmetry [9–13], with global symmetry
transformation on the edge (see Appendix 1 for details
on the field theoretic input)

S(p)N = e
i
N (

∫ L
0
dx ∂xφ2+p

∫ L
0
dx ∂xφ1), (4)

where p ∈ {0, ..., N −1} and (1/2π)∂xφ2(x) is the canon-
ical momentum associated to φ1(x) [14].

The Lagrangian density associated to Eq.(3) reads

Ledge[A] =
1

4π
KIJ ∂tφI ∂xφJ −Hf [φI ]+

1

2π
qI Aµε

µν∂νφI ,

(5)

where indices µ, ν ∈ {0, 1}, I, J ∈ {1, 2}, K =

(
0 1
1 0

)
,

Hf [φI ] is the Hamiltonian density describing a free boson
and qI = (q1, q2) = (1, p) specify the charges carried
by the currents JµI = (1/2π)εµν∂νφI . The right/left
moving modes are described by φR,L ∝ φ1 ± φ2.

Integrating the equations of motion of (5), with re-
spect to φI , along the boundary coordinate x in the pres-
ence of a static background ZN gauge flux configuration∮ L
0
dxA1(x) = 2π

N delivers

(1/2π)

∮ L

0

dx ∂x

(
φ1
φ2

)
=

1

N

(
p
1

)
. (6)

(See Appendix 2 for an alternative derivation from a
bulk-edge Chern-Simons approach). Eq. (6) represents
the shift in winding modes of the edge boson fields
and plays a role analogous to the single-particle twisted
boundary condition Eq. (2). The spectrum of the cen-
tral charge c = 1 free boson at compactification radius R
is labeled by the primary states |n,m〉 (n,m ∈ Z) with
scaling dimension

∆(n,m;R) =
n2

R2
+
R2m2

4
(7)

and momentum P(n,m) = nm [15]. Then, according
to Eq. (6), after the flux insertion, we derive the new
spectrum (also see another related setting [16])

∆̃
(p)
N (n,m;R) =

1

R2

(
n+

p

N

)2
+
R2

4

(
m+

1

N

)2

(8)

and momenta P̃(p)
N (n,m) =

(
n+ p

N

) (
m+ 1

N

)
for each

SPT state p ∈ {0, ..., N−1}. Eqs. (6) and (8) capture the
essence of the many-body AB effect analogous to Eqs. (1)
and (2).

EFFECTIVE LATTICE MODEL FOR THE EDGE
OF SPT STATES

-Symmetry transformation and domain wall-
The twist effect encoded in Eq. (8) comes from an effec-
tive low energy description of the edge. We aim, as a
complementary and perhaps more fundamental point of
view, to capture this twist effect from a lattice model. As
a first step in this program, we shall construct a global
ZN symmetry transformation in terms of discrete degrees
of freedom on the edge whose action reduces to Eq. (4)
at long wavelengths. The hallmark of a non-trivial SPT
state is that the symmetry transformation on the bound-
ary cannot be in a tensor product form on each single
site, i.e., it acts as a non-onsite symmetry transforma-
tion [3, 4, 17]. We propose the following ansatz for the
symmetry transformation,

• S
(p)
N ≡

M∏
j=1

τj

M∏
j=1

exp
{
i
p

N

[2π
N

(δNDW)j,j+1

]}

≡
M∏
j=1

τj

M∏
j=1

e
i
N Q

(p)
N (σ†jσj+1),

(9)
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acting on a ring with M sites that we take to describe
the 1D edge, with σM+1 ≡ σ1. At every site of the ring
we consider a pair of two ZN operators: (τj , σj), with a
site index j = 1, ...,M , satisfying τNj = σNj = 11 and a

conjugation relation τ †j σj τj = ω σj , where ω ≡ ei 2π/N .
We shall use the following representation

σj =


1 0 0 0
0 ω 0 0

0 0
. . . 0

0 0 0 ωN−1


j

,

τj =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
... 0 0 . . . 1 0


j

.

(10)

The operators act on the Hilbert space of ZN states for
each site j.

The overall symmetry transformation contains the
onsite transformation part generated by the string
of τ ’s and the “non-onsite domain wall (DW)” part
(δNDW)j,j+1 between sites j and (j + 1). The ansatz

form Eq. (9) has the property that
∏M
j=1 τj and∏M

j=1 e
i
N Q

(p)
N (σ†jσj+1) commute, and the unitarity of S

(p)
N

implies [Q
(p)
N ]† = Q

(p)
N . It follows that(

S
(p)
N

)N
=

M∏
j=1

eiQ
(p)
N (σ†jσj+1) . (11)

The construction above then naturally yields N distinct
classes of ZN symmetry transformations, labeled by p ∈
ZN , upon imposing the following condition on the (N −
1)-th order polynomial operator Q

(p)
N (σ†jσj+1):

eiQ
(p)
N (σ†jσj+1) = (σ†jσj+1)p, p = 0, ..., N − 1, (12)

which guarantees (due to periodic boundary conditions)

that (S
(p)
N )N = 11. The symmetry transformation in

the trivial case corresponds to p = 0 (modN) for which∏
j e

i
N Q

(p=0)
N (σ†jσj+1) = 11, while p 6= 0 (modN) describe

the other N − 1 non-trivial SPT classes. Identifying
σj ∼ ei φ1(j), then the domain wall variable (δNDW)j,j+1

counts the number of units of ZN angle between sites j
and j + 1, so (2π/N)(δNDW)j,j+1= φ1,j+1 − φ1,j , which
produces the expected long distance behavior of the sym-
metry transformation Eq. (4). Our ansatz nicely embod-
ies two interpretations together, on both a continuum
field theory and a discrete lattice model. The ZN sym-
metry transformations Eq. (9) that satisfy Eq. (12) can
be explicitly written as

S
(p)
N =

M∏
j=1

τj

M∏
j=1

e
−i 2π

N2 p

{
(N−1

2 )11+
∑N−1
k=1

(σ
†
j
σj+1)k

(ωk−1)

}
.

(13)

In Ref.17 the edge symmetry for ZN SPT states was
proposed in terms of effective long-wavelength rotor
variables. We emphasize that the construction of the
edge symmetry transformations Eq. (13) described
here does not rely on a long wavelength description;
rather it can be viewed as a fully regularized symmetry
transformation. In Appendices 3 and 4, we give explicit
formulas for the Z2 and Z3 symmetry transformations,
as well as we draw a connection between the lattice
operators (τj , σj) and quantum rotor variables.

-Lattice model-
Having constructed all the classes of ZN symmetry trans-
formations Eq. (13), we now propose our translation in-
variant and ZN -symmetric lattice model Hamiltonians

H
(p)
N on the edge of ZN SPT states, i.e.,

[H
(p)
N , T ] = 0, [H

(p)
N , S

(p)
N ] = 0, (14)

where T performs a translation by one lattice site. Our

model Hamiltonian is (with λ
(p)
N a constant),

H
(p)
N =λ

(p)
N

M∑
j=1

h
(p)
N,j≡−λ

(p)
N

M∑
j=1

N−1∑
`=0

(
S
(p)
N

)−`
(τj+τ

†
j )
(
S
(p)
N

)`
.

(15)

Notice that H
(p)
N is manifestly ZN symmetric since it is

constructed from the superposition of τj conjugated to

all powers of S
(p)
N . In the trivial SPT case for which

H
(p=0)
N ∝ −

∑M
j=1 (τj + τ †j ), the model gives a gapped

and symmetry preserving ground state. In Appendix 3,
we provide explicit forms of the non-trivial classes of SPT
Hamiltonians for the N = 2 and N = 3 cases. We note
that for the Z2 case, our symmetry transformation and
edge Hamiltonian are the same as that obtained in Ref.
10 (where the low energy theory in terms of a non-chiral
Luttinger liquid has been discussed), despite the fact that
our method of constructing the symmetry is independent
of that in Ref. 10 and provides a generalization for all
ZN groups. It is noteworthy to mention that the authors
of Ref. 10 argue that the edge of the Z2 bosonic SPT
state is generically unstable to symmetry preserving per-
turbations. Nevertheless, we shall still study the model
Hamiltonian (15) for the Z2 as a means to address our
numerical methods. A common feature of these Hamil-
tonian classes is the existence of combinations of terms
like σj−1τjσj+1 due to the non-onsite global symmetry.
Their effect, as we shall see, is to give rise to a gapless
spectrum. In order to understand their effect on the low
energy properties, we perform an exact diagonalization
study of the non-trivial Hamiltonian classes Eq. (15) on
finite systems.

In Fig. (2) we plot the lowest energy eigenvalues for
the Z2 and Z3 non-trivial SPT states as a function of the
lattice momentum k ∈ Z defined by T = ei

2π
M k. The spec-

trum of H
(1)
2 with M = 20 sites, shows very good agree-

ment with the bosonic spectrum Eq. (7) at R = 2, with
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states being labeled by |n,m〉. The global Z2 charges
relative to the ground state were found to be ei π (n+m)

in accordance to Eq. (4) (We note that similar results
have been obtained for the Z2 case in Ref. 17). For the
Z3 SPT states, which have not been investigated before,

with M = 12 sites, the spectrum of H
(1)
3 and H

(2)
3 are

identical [18]. Finite size effects are more prominent than
in the Z2 case, but the overall structure of the spectrum
is very similar with the second and third states being de-
generate with energy close to 1/4 and global Z3 charges
e±2πi/3 (which we identify as the |n = ±1,m = 0〉 states),
suggesting the same spectrum Eq. (7) at R = 2.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.25

1
1.25

2
2.25

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
0

0.25

1
1.25

2
2.25

FIG. 2: Spectrum of the SPT Hamiltonian Eq. (15) with

respect to the lowest energy E
(p)
N,0, on a ring as a function of

the lattice momentum k ∈ Z. First few primary states labeled

by (n,m). (a) Spectrum of H
(p=1)
2 with λ

(p=1)
2 = 0.82 and

M = 20 sites. (b) Spectrum of H
(p=1,2)
3 with λ

(p=1,2)
3 = 0.26

and M = 12 sites. The values of λ
(p)
N above guarantee a

proper normalization so that states in the same conformal
tower separated by δk = ±1 are integer spaced (up to finite
size effects) [see Ref. 19].

In Appendix 4, following the methods of Refs. [3, 4, 17],
we show that the symmetry classes defined in Eq. (9) sub-
ject to condition Eq. (12) are related to all ZN 3-cocycles
of the group cohomology classification of 2D SPT states
[3]. Thus, our lattice model completely realizes all N
classes of H3(ZN , U(1)) = ZN , where p stands for the
p-th class in the third cohomology group.

TWISTED BOUNDARY CONDITIONS AND
TWISTED HAMILTONIAN ON THE LATTICE

We now seek to build a lattice model with twisted
boundary conditions to capture the edge states spectral
shift in the presence of a unit of ZN flux insertion.

It is instructive to revisit the case of twisted bound-
ary conditions where the symmetry transformation acts
as an on-site symmetry. For the sake of concreteness,
let us consider the one dimensional quantum Ising model
HIsing =

∑M
j=1 (J σzj σ

z
j+1 + hσxj ) with global Z2 sym-

metry
∏M
j=1 σ

x
j . The Z2 twisted sector (or equivalently,

in this case, the anti-periodic boundary condition sec-
tor) of the model is realized by flipping the sign of a
pair interaction σzkσ

z
k+1 → −σzkσzk+1, for some site k,

while leaving all the other terms unchanged. If the Ising
model is defined on an open line, the twist effect is im-
plemented by conjugating the HIsing with the operator∏
`≤k σ

x
` . When the model is defined on a ring, the same

effect is obtained by defining a new translation operator
T̃ = T σxk and demanding that the twisted Hamiltonian

H̃Ising commutes with T̃ . It is straightforward to see
that the twisted Ising Hamiltonian on a ring which com-
mutes with T̃ indeed has σzkσ

z
k+1 → −σzkσzk+1. We also

note that (T̃ )M =
∏M
j=1 σ

x
j generates the Z2 symmetry

of HIsing, which is also a symmetry of H̃Ising.
We now generalize the construction above for the SPT

edge Hamiltonians on a ring with a non-onsite symme-
try by defining the unitary twisted lattice translation
operator[20]

T̃ (p) = T e
i
N Q

(p)
N (σ†Mσ1)τ1, (16)

for each p ∈ ZN classes, which incorporates the effect of
the branch cut as in Fig. 1(d). The twisted Hamiltonian

H̃
(p)
N , constructed from H

(p)
N of Eq. (15) and satisfying

[H̃
(p)
N , T̃ (p)] = 0, (17)

reads (see Appendix 3.2 for explicit results)

H̃
(p)
N = λ

(p)
N

M∑
j=1

h̃
(p)
N,j (18a)

h̃
(p)
N,1 = τ †1 τ

†
2 h

(p)
N,1τ1 τ2,

h̃
(p)
N,j = h

(p)
N,j (2 ≤ j ≤M − 1),

h̃
(p)
N,M = τ †1 e

− i
N Q

(p)
N (σ†Mσ1) h

(p)
N,M e

i
N Q

(p)
N (σ†Mσ1)τ1.

(18b)

Notice that, due to the intrinsic non-onsite term in the
symmetry transformation,

S̃
(p)
N ≡ (T̃ (p))M = e

i
N

[
Q

(p)
N (ω σ†M σ1)−Q(p)

N (σ†M σ1)

]
S
(p)
N ,

(19)
the twisted non-trivial Hamiltonian breaks the SPT
global symmetry (i.e. [H̃

(p)
N , S

(p)
N ] 6= 0 if p 6= 0 mod(N) ),

signaling an anomaly effect[21, 22]. (For a more sys-
tematic discussion of bosonic anomalies in the context
of 2D SPT states, see Ref.[22].) However, in the triv-

ial state, Eq. (19) yields S̃
(p=0)
N = S

(p=0)
N =

∏M
j=1 τj , so

that the twisted trivial Hamiltonian still commutes with
the global ZN onsite symmetry, and the twisted effect is
equivalent to usual toroidal boundary conditions [19], as
exemplified before for anti-periodic boundary condition
of the Ising model.

In Figs. (3 a) and (3 b) we display the low energy spec-
trum of the twisted Z2 and Z3 SPT Hamiltonians with
a π-flux and 2π/3-flux, respectively, as a function of
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twisted lattice momentum k̃ defined as T̃ = ei
2π
M k̃. The

eigenvalues of the primary states show very good agree-

ment with ∆̃
(1)
2 (n,m;R = 2) and ∆̃

(1,2)
3 (n,m;R = 2) in

Eq. (8), which we compare, in Figs. (3 c) and (3 d), by
folding the spectrum so that the primary states are plot-

ted as a function of the continuum momenta P̃(1)
2 (n,m)

and P̃(1,2)
3 (n,m). Our findings thus establish a relation-

ship between the many-body AB effect both in terms of
a long wavelength description in the field theory as well
as in terms of twisted boundary conditions in a lattice
model.

−6 −4 −2 0 2 4 6
0

0.5

1

1.5

−10 −8 −6 −4 −2 0 2 4 6 8 10
0.2

0.6

1

1.4

1.8

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0.2

0.6

1

1.4

1.8

−1 −0.5 0 0.5 1
0.1

0.3

0.5

0.7

0.9
1

(0,0)

(-1,0)

(-1,0)

(0,0)

(-1,-1)(0,-1)

(-1,-1)
(1,0)

(0,-1)
(-2,0)

(1,0) (-2,-1)(-2,0)(1,-1)

(0,0)
(-1,-1)

(0,-1)
(-1,0)

(1,0)
(-2,-1)

(-2,0)
(1,-1)

(2,-1)
(-3,0)

(2,0)
(-3,-1)

FIG. 3: Spectrum of the twisted SPT Hamiltonian with re-

spect to the lowest energy E
(p)
N,0 on a ring as a function of

the lattice momentum k̃, with the same values of λ
(p)
N as in

Fig. (2). First few primary states labeled by (n,m). (a) Spec-

trum of H̃
(1)
2 withM = 20 sites. (b) Spectrum of H̃

(1)
3 (+) and

H̃
(2)
3 (×) with M = 12 sites. (c) Comparison between ∆̃

(1)
2

(circles) and numerical results (+) plotted as a function of

the momentum P̃(1)
2 . All points are two-fold degenerate. Red

circles represent primary states, while the remaining points
account for descendant states in the CFT spectrum. (d) Com-

parison between ∆̃
(1)
3 (circles) and data points (+) plotted in

terms of the momentum P̃(1)
3 . Same for ∆̃

(2)
3 (squares) and

data points (×) plotted in terms of the momentum P̃(2)
3 .

SUMMARY

We have demonstrated that an intrinsically many-body
realization of the Aharonov-Bohm phenomenon takes
place on the edge of a 2D symmetry-protected many-
body system in the presence of a background gauge flux.
In our construction we have assumed that edge state is
in a gapless phase and is described by a simple non-chiral
Luttinger liquid action with one right and one left mov-
ing propagating modes carrying different ZN charges [24],
in which case, the spectrum in the presence of a gauge

flux displays quantization as Eq.(8) due to global sym-
metry protection (ZN symmetry in our work), analogous
to the quantization of the energy spectrum of a super-
conducting ring due to the Z2 symmetry inherent to
superconductors[23]. The universal information carried
by the counter propagating edge modes is that they carry
different ZN charges, which has been numerically verified
for the Z2 and Z3 SPT classes in Fig. (2), where this dif-
ference is parametrized by the integer p ∈ {1, ..., N − 1}
that characterizes the SPT class. This quantum number
should remain invariant as long as the SPT order is not
destroyed in the bulk. The offset in the charges carried
by the right and left moving modes has then been shown
to reflect itself in the edge spectrum according to Eq. (8)
(where R is a non-universal parameter), which we have
confirmed numerically in our model Hamiltonians for the
Z2 and Z3 SPT classes in Fig. (3).

We have proposed general principles guiding the con-
struction of the lattice Hamiltonians, Eqs. (15) and (18),
of the bosonic ZN -symmetric SPT edge states for both
the untwisted/twisted (without/with gauge fluxes) cases.

The twisted spectra (i.e. with gauge flux) characterize
all types of ZN bosonic anomalies[21, 22], which naturally
serve as “SPT invariants[5]” to detect and distinguish
all ZN classes of SPT states numerically/experimentally.
(See also recent works[22, 25].)

Gauging a non-onsite symmetry of SPT has been no-
ticed relating to Ginsparg-Wilson(G-W) fermion[26] ap-
proach of a lattice field theory problem[27]. We remark
that our current work achieves gauging a non-onsite sym-
metry for a bosonic system, thus providing an impor-
tant step towards this direction. Whether our work
can be extended to more general symmetry classes and
to fermionic systems (such as U(1) symmetry in G-W
fermion approach) is an open question, which we leave
for future works.
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Appendix

In Appendix 1, we briefly review the field theory
tool for topological states, especially symmetry-protected
topological (SPT) states, but with the emphasis on the
canonical quantization, and how the global symmetry

transformation S(p)N on the edge is encoded in the canoni-
cal quantization. Using the same formalism, in Appendix
2, we derive the twisted boundary condition due to a
gauge flux insertion.

In Appendix 3, we provide our detailed lattice
construction (with ZN symmetry) for both the un-
twisted/twisted (without/with gauge flux) cases.

In Appendix 4, we match each SPT class of our lattice
construction to the 3-cocycles in the group cohomology
classification.

1. Field Theory Realization of ZN SPT States

1.1. Bulk and boundary actions

A general framework of categorizing and classifying
Abelian topological orders, especially the SPT ones, in
2+1D, makes use of Abelian K-matrix Chern-Simons
theory[8]. We now derive the K-matrix construction for
the SPT order, following the pioneering works[9–14].

The intrinsic field theory description of SPT states, on
a 2D spatial surface M2, is the Chern-Simons action

ISPT,M2 =
1

4π

∫
dt d2xKIJε

µνρaIµ∂νa
J
ρ (20)

where a is the intrinsic(or statistical) gauge field, and K
is the K-matrix which categorizes the SPT orders. An
SPT state is not intrinsically topologically ordered[3], so
it has no topological degeneracy[8, 14]. Ground state de-
generacy(GSD) of SPT on the torus is GSD = |detK| =
1[8, 9, 14], this suggests a constrained canonical form of
K[9, 13, 14].

The SPT order is symmetry-protected, so tautologi-
cally its order is protected by a global symmetry. The
novel features of SPT distinct from a trivial insulator
is its symmetry-protected edge states on the boundary.
The effective degree of freedom of its 1D edge, ∂M2, is
chiral bosonic field φ, where φ is meant to preserve gauge
invariance on the bulk-edge under gauge transformation

mailto:lsantos@perimeterinstitute.ca
mailto:juven@mit.edu


7

of the field a[8]. The boundary action shows

ISPT,∂M2 =
1

4π

∫
dt dx

(
KIJ∂tφI∂xφJ−VIJ∂xφI∂xφJ

)
.

(21)

1.2 ZN symmetry transformation

The ZN symmetry simply requires a rank-2 K-
matrix, which exhausts all the group cohomology class,
H3(ZN , U(1)) = ZN ,

K =
(
0 1
1 0

)
. (22)

The ZN symmetry transformation with a ZN angle spec-
ifies the group element g[9],

gn : δφgn =
2π

N
n

(
1
p

)
, (23)

where p labels the ZN class of the cohomology group
H3(ZN , U(1)) = ZN . Both n and p are module N as
elements in ZN . It can be shown that under φgn → φgn+
δφgn , the action Eq. (21) is invariant, and the ZN group
structure is realized through gNn = 11. The construction of
more general symmetry classes can be found in Ref.9, 13.

1.3 Canonical quantization

Here we go through the canonical quantization of the
boson field φI . For canonical quantization, we mean that
imposing a commutation relation between φI and its con-
jugate momentum field ΠI(x) = δL

δ(∂tφI)
= 1

2πKIJ∂xφJ .

Because φI is a compact phase of a matter field, its
bosonization contains both zero mode φ0I and winding
momentum PφJ , in addition to non-zero modes[14]:

φI(x) = φ0I +K−1IJ PφJ
2π

L
x+ i

∑
n 6=0

1

n
αI,ne

−inx 2π
L . (24)

The periodic boundary has size 0 ≤ x < L. Firstly we im-
pose the commutation relation for zero mode and winding
modes, and generalized Kac-Moody algebra for non-zero
modes:

[φ0I , PφJ ] = iδIJ , [αI,n, αJ,m] = nK−1IJ δn,−m. (25)

We thus derive canonical quantized fields with the com-
mutation relation:

[φI(x1),KI′J∂xφJ(x2)] = 2πiδII′δ(x1 − x2), (26)

[φI(x1),ΠJ(x2)] = iδIJδ(x1 − x2). (27)

The symmetry transformation of Eq. (23) imples
φgn → φgn + δφgn :(

φ1(x)
φ2(x)

)
→
(
φ1(x)
φ2(x)

)
+

2π

N

(
1
p

)
. (28)

It can be easily checked, using Eq. (26), that

S(p)N = e
i
N (

∫ L
0
dx ∂xφ2+p

∫ L
0
dx ∂xφ1) (29)

implements the global symmetry transformation

S(p)N

(
φ1(x)
φ2(x)

)
(S(p)N )−1 =

(
φ1(x)
φ2(x)

)
+

2π

N

(
1
p

)
. (30)

2. Twisted boundary condition from a gauge flux
insertion

Here we apply the canonical quantization method to
formulate the effect of a gauge flux insertion through a
cylinder (an analog of Laughlin thought experiments [7])
in terms of a twisted boundary condition effect. The
canonical quantization approach here can be compared
with the alternate path integral approach motivated in
the main text. The canonical quantization offers a solid
view why the twisted boundary condition resulted from a
gauge flux is a quantum effect. We will firstly present the
bulk theory viewpoint, then the edge theory viewpoint.

2.1 Bulk theory

Our setting is an external adiabatic gauge flux inser-
tion through a cylinder/annulus. Here the gauge field
(such as electromagnetic field) couples to (SPT or intrin-
sic) topologically ordered states, by a coupling charge
vector qI . The bulk term (here we recover the right di-
mension, while one can set these to be e = ~ = c = 1 in
the end)

Ibulk =

∫
M

(c dt) d2x
(

(
e2

~
)
KIJ

4π
εµνρaIµ∂νa

J
ρ+eqIAµJ

µ
I

)
,

(31)
where JµI is in a conserved current form

JµI = (
e

~
)

1

2π
εµνρ∂νaρ,I . (32)

From the action, we derive the EOM

JµJ = −qI
e

2π
K−1IJ

c

~
εµνρ∂νAρ. (33)

From the bulk theory side, an adiabatic flux ∆ΦB in-
duces an electric field Ex by Faraday effect, causing a per-
pendicular current Jy flow to the boundary edge states.
We can explicitly derive the flux effect from Faraday-
Maxwell equation in the 2+1D bulk,

qI∆ΦB = −qI
∫
dt

∫
~E · d~l = qI

∫
dt dlµ c ε

µνρ∂νAρ

= −2π

e
KIJ~

∫
Jy,Jdtdx = −2π

e
KIJ

~
e
QJ ,(34)
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which relates to the induced charge transported through
the bulk, via the Hall effect mechanism. This is a deriva-
tion of Laughlin flux insertion argument. Q is the total
charge transported through the bulk, which should con-
dense on the edge of cylinder.

2.2 Edge theory

On the other hand, from the boundary theory side,
the induced charge QI on the edge can be derived from
the edge state dynamics affecting winding modes(see
Eq. (24)) by

QI =

∫
J0
∂,Idx = −

∮ L

0

e

2π
∂xφIdx = −eK−1IJ Pφ,J .

(35)
Combine Eq.(34) and (35),

qI∆ΦB/(2π
~
e

) = ∆Pφ,I . (36)

An equivalent interpretation is that the flux insertion
twists the boundary conditions of φI field

1

2π
(φI(L)− φI(0)) =

∮ L

0

1

2π
∂xφIdx = K−1IJ ∆Pφ,J (37)

= K−1IJ qJ

(
∆ΦB/(2π

~
e

)
)

(38)

In the ZN symmetry SPT case at hand, we should
replace e to the condensate(order parameter) charge e∗ =
Ne. This affects the unit of ∆ΦB as 2π ~

e∗ , so ∆ΦB =

2πn ~
Ne , and the twisted boundary condition is

1

2π
(φI(L)− φI(0)) = K−1IJ qJ

(
n/N

)
. (39)

Notice qJ is the crucial coupling in the global symme-
try transformation, where we gauge it by minimal cou-
pling to a gauge field A with a term qIAµJ

µ
I . Here qJ

is realized by (1, p) from Eq.(23), so inserting a unit ZN
flux produces

(φI(L)− φI(0)) =
2π

N

(
p
1

)
. (40)

In other words, while the global ZN symmetry transfor-
mation is realized by

S(p)N

(
φ1(x)
φ2(x)

)
(S(p)N )−1 =

(
φ1(x)
φ2(x)

)
+

2π

N

(
1
p

)
, (41)

the insertion of a unit ZN gauge flux implies the twisted
boundary condition(

φ1(L)
φ2(L)

)
=

(
φ1(0)
φ2(0)

)
+

2π

N

(
p
1

)
. (42)

Here φ1(x) is realized as the long wavelength descrip-
tion of the rotor angle variable introduced in the main-
text, while its conjugate momentum is the angular mo-
mentum

Lφ1(x) =
1

2π
∂xφ2(x), (43)

where

[φ1(x1), Lφ1(x2)] = iδ(x1 − x2). (44)

We stress that our result is very different from a seemly
similar study in Ref.5, where “the gauging process” is
by coupling the bulk state to an external gauge field A,
and integrating out the intrinsic field a, to get an effec-
tive response theory description. However, the twisted
boundary condition derived in [5] does not capture the
dynamical effect on the edge under gauge flux insertion.
Instead, in our case, we can capture this effect in Eq. (42).

3. From field theory to lattice model

Here we motivate the construction of our lattice model
from the field theory. Our lattice model uses the ro-
tor eigenstate |φ〉 as basis, where in ZN symmetry, φ =
n(2π/N), with n is a ZN variable. The conjugate vari-
able of φ is the angular momentum L, which again is a
ZN variable. The |φ〉 and |L〉 eigenstates are related by

a Fourier transformation, |φ〉 =
∑N−1
L=0

1√
N
eiLφ|L〉.

3.1 General Hamiltonian construction

The ZN class of Hamiltonian may be realized by H
(p)
N ,

with p ∈ ZN ,

H
(p)
N ≡ λ(p)N

M∑
j=1

h
(p)
N,j

= −λ(p)N
M∑
j=1

N−1∑
`=0

(
S
(p)
N

)−`
(τj + τ †j )

(
S
(p)
N

)`
,

(45)

with the parametrization

τj = ei2πLj/N . (46)

S
(p)
N is the ZN class of symmetry transformation

S
(p)
N ≡

M∏
j=1

τj

M∏
j=1

exp
{
i
p

N

[2π
N

(δNDW)j,j+1

]}

≡
M∏
j=1

τj

M∏
j=1

e
i
N Q

(p)
N (σ†jσj+1),

(47)
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where

Q
(p)
N (σ†jσj+1) =

N−1∑
a=0

q
(p)
N,a (σ†jσj+1)a. (48)

Hermiticity of Q
(p)
N combined with σ†jσj+1 ∈ ZN imply

the constraint on the complex coefficients qa (we drop
indices p,N to simplify notation and, in the following,
bar denotes complex conjugation):

q0 ∈ R; qa = q̄N−a, a = 1, ..., (N − 1)/2 (49)

for odd N , while

q0 ∈ R; qa = q̄N−a, a = 1, ..., N/2− 1; qN
2
∈ R (50)

for even N . The coefficients of the (N − 1)-th order

polynomial operator Q
(p)
N (σ†jσj+1) are determined, up to

unimportant phases, by the condition

eiQ
(p)
N (σ†jσj+1) = (σ†jσj+1)p, p = 0, ..., N − 1. (51)

Solution of Eq. (51) can be systematically found for each
value of p ∈ ZN giving rise to different symmetry classes.
Below, for the sake of concreteness, we give explicit forms
of the symmetry transformations and Hamiltonians for
Z2 and Z3 groups.

3.1.1 Z2 Lattice model

For N = 2 lattice model, in the |φ〉 basis, we have
|φ = 0〉, |φ = π〉, and ω = ei π = −1.

〈φa|eiφj |φb〉 =

(
1 0
0 −1

)
ab,j

= σab,j = (σz)ab,j (52)

〈φa|τj |φb〉 = 〈φa|ei2πLj/N |φb〉 =

(
0 1
1 0

)
ab,j

= τab,j = (σx)ab,j

(53)
The symmetry transformation reads

S
(p)
2 =

M∏
j=1

τj

M∏
j=1

e
i
2 Q

(p)
2 (σzj σ

z
j+1), (54)

where we find, by imposing condition (51),

Q
(p)
2 (σzjσ

z
j+1) = p

π

2
(1− σzjσzj+1), p = 0, 1. (55)

With that, we obtain the Hamiltonian in the trivial class
as

H
(0)
2 = −2λ

(0)
2

M∑
j=1

σxj , (56)

and in the non-trivial SPT class as

H
(1)
2 = −λ(1)2

M∑
j=1

(
σxj − σzj−1σxj σzj+1

)
. (57)

3.1.2 Z3 Lattice model

For N = 3 lattice model, in the |φ〉 basis, we have
|φ = 0〉, |φ = 2π/3〉, |φ = 4π/3〉, and ω = ei2π/3,

eiφj =

1 0 0
0 ω 0
0 0 ω2


j

= σj (58)

ei2πLj/N =

0 0 1
1 0 0
0 1 0


j

= τj (59)

The symmetry transformation reads

S
(p)
3 =

M∏
j=1

τj

M∏
j=1

e
i
3 Q

(p)
3 (σ†jσj+1), (60)

where we find, by imposing condition Eq. (51),

Q
(p)
3 (σ†jσj+1) = q

(p)
0 + q

(p)
1 (σ†jσj+1) + q̄

(p)
1 (σ†jσj+1)2

q
(p)
0 = −p 2π

3
, q

(p)
1 = p

π

3
(1 + i/

√
3), p = 0, 1, 2.

(61)

With that we obtain the Hamiltonian in the trivial
class as

H
(0)
3 = −3λ

(0)
3

M∑
j=1

(τj + τ †j ), (62)

and in the non-trivial SPT classes p = 1, 2 as

H
(p)
3 = −λ(p)3

M∑
j=1

{
τj

[5

3
+
ω + ω̄

3

(
σ†j−1σj + σj−1σ

†
j

)
+

( (1 + ω)

3
σ†jσj+1 +

2ω̄

3
σ†j−1σj+1 +

2ω

3
σ†j−1σ

†
jσ
†
j+1

+ h.c.
)]

+ h.c.
}
.

(63)

3.1.3 ZN Lattice model

For a generic ZN lattice model, we have |φ = 0〉, |φ =
2π/N〉, . . . , |φ = 2π(N − 1)/N〉, and ω = ei2π/N . Apply

the Fourier transformation, |φ〉 =
∑N−1
L=0

1√
N
eiLφ|L〉, in

the |φ〉 basis, we derive

eiφj =


1 0 0 0
0 ω 0 0

0 0
. . . 0

0 0 0 ωN−1


j

= σj (64)
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ei2πLj/N =


0 0 0 . . . 0 1
1 0 0 . . . 0 0
0 1 0 . . . 0 0
0 0 1 . . . 0 0
... 0 0 . . . 1 0


j

= τj (65)

Explicit forms of S
(p)
N can systematically be found by

imposing condition Eq. (51) for all p ∈ ZN . The explicit
form of the symmetry transformation reads

S
(p)
N =

M∏
j=1

τj

M∏
j=1

e
−i 2π

N2 p

{
(N−1

2 )11+
∑N−1
k=1

(σ
†
j
σj+1)k

(ωk−1)

}
.

(66)

3.2 Twisted Boundary Conditions on the lattice
model

We clarify some of the steps leading to an edge Hamil-
tonian satisfying twisted boundary conditions account-
ing for the presence of one unit of background ZN gauge
flux. The case with a general number of flux quanta can
be equally worked out.

Let T be the lattice translation operator satisfying

T †Xj T = Xj+1, j = 1, ...,M, (67)

for any operator Xj on a ring such that XM+1 ≡ X1. It
satisfies TM = 11. One can then immediately verify from

Eqs. (45) and (47) that [S
(p)
N , T ] = 0 and

T † h
(p)
N,j T = h

(p)
N,j+1, (68)

from which follows that H
(p)
N in Eq. (45) is translational

invariant, i.e,

[H
(p)
N , T ] = 0. (69)

Twisted boundary conditions are implemented by
defining a modified translation operator

T̃ (p) = T e
i
N Q

(p)
N (σ†Mσ1) τ1 (70)

and seeking a twisted Hamiltonian

H̃
(p)
N ≡ λ(p)N

M∑
j=1

h̃
(p)
N,j (71)

under the condition that(
T̃ (p)

)†
h̃
(p)
N,j

(
T̃ (p)

)
= h̃

(p)
N,j+1, (72)

which then yields

[H̃
(p)
N , T̃ (p)] = 0. (73)

We now compute, iteratively,
(
T̃ (p)

)M
[where we use

U
(p)
M,1 = e

i
N Q

(p)
N (σ†Mσ1)],

(
T̃ (p)

)2
= T U

(p)
M,1 τ1 T U

(p)
M,1 τ1 = T 2 U

(p)
1,2 τ2 U

(p)
M,1 τ1

...(
T̃ (p)

)M
= TM︸︷︷︸

=11

(U
(p)
M−1,MτM )(U

(p)
M−2,M−1τM−1)...(U

(p)
1,2 τ2)(U

(p)
M,1τ1)

= (U
(p)
M−1,MU

(p)
M−2,M−1...U

(p)
1,2 )τM U

(p)
M,1 (τM−1τM−2...τ1)

=

 M∏
j=1

U
(p)
j,j+1

(U (p)
M,1

)−1
τM U

(p)
M,1 τ

†
M

 M∏
j=1

τj


=

 M∏
j=1

U
(p)
j,j+1

 e−
i
NQ

(p)
N (σ†Mσ1)e

i
NQ

(p)
N (ωσ†Mσ1)

 M∏
j=1

τj

 .

(74)

Thus we obtain

S̃
(p)
N ≡

(
T̃ (p)

)M
= e

i
N

[
Q

(p)
N (ωσ†Mσ1)−Q(p)

N (σ†Mσ1)

]
S
(p)
N .

(75)

Notice that in trivial case (p = 0) the relation

S̃
(p=0)
N =

(
T̃ (p=0)

)M
=

N∏
j=1

τj = S
(p=0)
N . (76)
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reduces to to the global onsite symmetry S
(p=0)
N . In

this case, the twisted Hamiltonian commutes with the

onsite symmetry since 0 = [H̃
(p=0)
N ,

(
T̃ (p=0)

)M
] =

[H̃
(p=0)
N , S

(p=0)
N ], and the states in the twisted sector

are still labeled by the global trivial ZN charges, cor-
responding to usual toroidal boundary conditions. In
a non-trivial SPT state (p 6= 0), however, we find

0 = [H̃
(p)
N ,

(
T̃ (p)

)M
] 6= [H̃

(p)
N , S

(p)
N ], so that the twisted

Hamiltonian breaks the non-trivial ZN SPT global sym-

metry. We should regard
(
T̃ (p)

)M
≡ S̃

(p)
N as a new

twisted symmetry transformation incorporating the gauge
flux effect on the branch cut.

3.2.1 Twisted boundary conditions for the Z2 SPT state

We now explicitly work out the twisted Hamiltonian
for the non-trivial Z2 SPT state and later mention the
general ZN case. The global SPT symmetry reads

S
(1)
2 =

M∏
j=1

σxj

M∏
j=1

e
i
2 Q

(1)
2 (σzj σ

z
j+1) =

M∏
j=1

σxj

M∏
j=1

e
iπ
4 [1−σzj σ

z
j+1]

(77)

Define Uj,j+1 ≡ e
iπ
4 [1−σzj σ

z
j+1]. Then the non-trivial SPT

Hamiltonian H =
∑M
j=1 hj (we drop overall constants

for simplicity) is

hj = σxj + S−1 σxj S

= σxj + U−1j−1,j U
−1
j,j+1 σ

x
j Uj−1,j Uj,j+1

= σxj − σzj−1σxj σzj+1,

(78)

for j = 1, ...,M . The modified translation operator reads

T̃ = T UM,1 σ
x
1 = T e

iπ
4 [1−σzMσ

z
1 ] σx1 . (79)

We seek a twisted Hamiltonian H̃ ≡
∑M
j=1 h̃j that com-

mutes with T̃ . It is a simple exercise to check that

T̃ †h2T̃ = h3

T̃ †h3T̃ = h4

...

T̃ †hM−2T̃ = hM−1.

(80)

We are then led to identify

h̃j ≡ hj , j = 2, ...,M − 1. (81)

We now consider

h̃M ≡ T̃ †hM−1T̃ = σx1 U
−1
M,1 hM UM,1 σ

x
1 (82)

and

h̃1 ≡ T̃ †h̃M T̃ = σx1 U
−1
M,1 (σx2 U

−1
1,2 h1 U1,2 σ

x
2 )UM,1 σ

x
1

= σx1 σ
x
2

(
U−1M,1 U

−1
1,2 h1 U1,2 UM,1

)
︸ ︷︷ ︸

=h1

σx1 σ
x
2

= σx1 σ
x
2 h1 σ

x
1 σ

x
2 .

(83)

Now it remains to be shown that T̃ †h̃1T̃ = h̃2 = h2. And
indeed

T̃ †h̃1T̃ = σx1 U
−1
M,1 (σx2 σ

x
3 h2 σ

x
2 σ

x
3 )UM,1 σ

x
1

= σx1 σ
x
2 σ

x
3 h2 σ

x
1 σ

x
2 σ

x
3

= h2.

(84)

So we have found new terms h̃j such that T̃ †h̃j T̃ = h̃j+1,

thus implying that [T̃ , H̃] = 0.
Explicitly, the twisted Hamiltonian for Z2 non-trivial

SPT state reads

H̃ =

M∑
j=1

h̃j (85a)

where

h̃1 = σx1 σ
x
2 h1 σ

x
1 σ

x
2 = σx1 + σzM σx1 σ

z
2

h̃2 = h2 = σx2 − σz1 σx2 σz3
...

h̃M−1 = hM−1 = σxM−1 − σzM−2 σxM−1 σzM
h̃M = σx1 U

−1
M,1 hM UM,1 σ

x
1 = σyM σz1 + σzM−1 σ

y
M .

(85b)

3.2.2 Twisted boundary conditions for the ZN SPT state

Generalization to the ZN case follows very similar lines
as the Z2 case above. We have for the twisted Hamilto-
nian (again we drop overall constants)

H̃
(p)
N =

M∑
j=1

h̃
(p)
N,j (86a)

where

h̃
(p)
N,1 = τ †1 τ

†
2 h

(p)
N,1 τ1 τ2

h̃
(p)
N,2 = h

(p)
N,2

...

h̃
(p)
N,M−1 = h

(p)
N,M−1

h̃N,M = τ †1

(
U

(p)
M,1

)−1
h
(p)
N,M U

(p)
M,1 τ1,

(86b)

where U
(p)
M,1 = e

i
N Q

(p)
N (σ†Mσ1). One can easily verify that

Eqs. (72) and (73) are satisfied.
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4. Correspondence in Group Cohomology and
non-trivial 3-cocycles from MPS projective

representation

Here we map our lattice construction to the 3-cocycles
in the group cohomology classification for each SPT class.

Importantly, we notice that the non-onsite piece in S
(p)
N

is

Uj,j+1 ≡ eiQ
(p)
N (σ†jσj+1) = exp[

i

N

N−1∑
a=0

qa (σ†jσj+1)a] (87)

≡ exp
{
i
p

N

[2π
N

(δNDW)j,j+1

]}
(88)

We seek a quantum rotor description of the above form.
We claim that

Uj,j+1 = exp[i
p

N
(φ1,j+1 − φ1,j)r], (89)

which is equivalent to (i) the domain wall picture us-
ing rotor angle variables (here (φ1,j+1 − φ1,j)r, where
subindex r means that we take the module 2π on the an-
gle [17]), and to (ii) the field theory formalism in Eq. (29).

The reason follows: as we mention in the p-th case of
ZN class, we impose the constraint

UNj,j+1 = (σ†jσj+1)p (90)

to solve the polynomial ansatz
∑N−1
a=0 qa (σ†jσj+1)a. This

is equivalent to the fact that

UNj,j+1 = (σ†jσj+1)p = (exp[iφ1,j ]
† exp[iφ1,j+1])p (91)

= exp[ip(φ1,j+1 − φ1,j)r], (92)

since exp[iφ1,j ]ab = 〈φa|eiφj |φb〉 = σab,j . Therefore,
the domain wall variable (δNDW)j,j+1 indeed counts the
number of units of ZN angle between sites j and j+1, so

(2π/N)(δNDW)j,j+1= φ1,j+1−φ1,j . We thus have shown
Eq. (89), and have confirmed affirmatively that our ap-
proach of lattice regularization is indeed a rotor realiza-
tion in Ref.17 with the same symmetry transformation

S
(p)
N , but captures much more than the low energy rotor

model there.

The argument on non-trivial 3-cocycles from matrix
product states(MPS) projective representation follows
closely to Ref.17. We start from writing the symmetry

transformation S
(p)
N in terms of the rotor variable, this is

achieved based on the mapping derived above. So

S
(p)
N ≡

M∏
j=1

τj

M∏
j=1

U
(p)
j,j+1 =

∏
j

ei2πLj/N ·exp[i
p

N
(φ1,j+1−φ1,j)r].

(93)

We then formulate S
(p)
N as the MPS with the form:

S
(p)
N =

∑
{j,j′}

tr[T
j1j
′
1

α1α2T
j2j
′
2

α2α3 . . . T
jM j

′
M

αMα1 ]|j′1, . . . , j′M 〉〈j1, . . . , jM |.

(94)
Here j1, j2, . . . , jM and j′1, j

′
2, . . . , j

′
M are labeled by in-

put/output physical eigenvalues (here ZN angle), the
subindices 1, 2, . . . ,M are the physical site indices. There
are also inner indices α1, α2, . . . , αM which are traced in
the end. Summing over all the operation from {j, j′}
indices is supposed to reproduce the symmetry transfor-

mation operator S
(p)
N . This tensor T is suggested [17] to

be, (with the ZN angle element 2πk
N )

(Tφin,φout)
(p)
ϕα,ϕβ ,N

(
2πk

N
) = δ(φout − φin −

2π

N
k)

·
∫
dϕαdϕβ |ϕβ〉〈ϕα|δ(ϕβ − φin)eipk(ϕα−φin)r/N(95)

We verify the tensor T by computing S
(p)
N ,

S
(p)
N =

∑
{j,j′}

tr[T
φ1
in,φ

1
out

ϕα1
ϕα2

T
φ2
in,φ

2
out

ϕα2
ϕα3

. . . T
φMin,φ

M
out

ϕαMϕα1
]|φ1out, φ2out, . . . , φMout〉〈φ1in, φ2in, . . . , φMin | (96)

= ei
p
N

(
(φ2
in−φ

1
in)r+(φ3

in−φ
2
in)r+···+(φ1

in−φ
M
in)r

)
|φ1in +

2π

N
, φ2in +

2π

N
, . . . , φMin +

2π

N
〉〈φ1in, φ2in, . . . , φMin | (97)

= ei
p
N

(∑M
j=1(φ

j+1
in −φ

j
in)r

)
| . . . , φjin +

2π

N
, . . . 〉〈. . . , φjin, . . . | (98)

=
∏
j

exp[i
p

N
(φ1,j+1 − φ1,j)r] ·

∏
j

ei2πLj/N , (99)

which justifies the claim for MPS of S
(p)
N .

To find out the projective representation eiθ(g1,g2,g3)

of this tensors T (g1), T (g2), T (g3) acting on three neigh-

bored sites, we follow the fact that

P †g1,g2T (g1)T (g2)Pg1,g2 = T (g1 · g2) (100)

and contracting the three neighbored-site tensors in two
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different orders,

(Pg1,g2 ⊗ I3)Pg1g2,g3 ' eiθ(g1,g2,g3)(I1 ⊗ Pg2,g3)Pg1,g2g3 .
(101)

Here ' means the equivalence is up to a projection out
of un-parallel state transformation.

To derive Pg1,g2 , notice that Pg1,g2 inputs one state
and output two states. This has the expected form,

P
(p)
N,m1,m2

=

∫
dφin|φin +

2π

N
m2〉|φin〉〈φin|

· e−ipφin[m1+m2−(m1+m2)N ]/N , (102)

where (m1 + m2)N with subindex N means taking the
value module N .

In order to derive θ(g1, g2, g3), we start by contracting

T
(p)
N (m1) and T

(p)
N (m2) firstly, and then the combined

tensor contracts with T
(p)
N (m3) gives:

(Pg1,g2 ⊗ I3)Pg1g2,g3

=

∫
dφin|φin +

2π

N
(m2 +m3)〉|φin +

2π

N
m3〉|φin〉〈φin|

· e−ipφin(m1+m2+m3−(m1+m2+m3)N )

· e−ip 2π
N m3

m1+m2−(m1+m2)N
N , (103)

which form inputs one state 〈φin| and outputs three
states |φin + 2π

N (m2 +m3)〉, |φin + 2π
N m3〉 and |φin〉.

On the other hand, one can contract T
(p)
N (m2) and

T
(p)
N (m3) firstly, and then the combined tensor contracted

with T
(p)
N (m1) gives:

(I1 ⊗ Pg2,g3)Pg1,g2g3

=

∫
dφin|φin +

2π

N
(m2 +m3)〉|φin +

2π

N
m3〉|φin〉〈φin|

· e−ipφin(m1+m2+m3−(m1+m2+m3)N ), (104)

again which form inputs one state 〈φin| and outputs three
states |φin+ 2π

N (m2+m3)〉, |φin+ 2π
N m3〉 and |φin〉. From

Eq.(101),(103),(104), we derive:

eiθ(g1,g2,g3) = e−ip
2π
N m3

m1+m2−(m1+m2)N
N , (105)

which indeed is the 3-cocycle in the third cohomology
group H3(ZN , U(1)) = ZN . We thus verify that the
projective representation eiθ(g1,g2,g3) from MPS tensors
corresponds to the group cohomology approach[3]. This
demonstrates that our lattice model construction com-
pletely maps to all classes of SPT, as we aimed for.
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