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Abstract

To formulate the universal constraints of quantum statistics data of generic long-range entan-
gled quantum systems, we introduce the geometric-topology surgery theory on spacetime manifolds
where quantum systems reside, cutting and gluing the associated quantum amplitudes, specifically
in 2+1 and 3+1 spacetime dimensions. First, we introduce the fusion data for worldline and
worldsheet operators capable of creating anyonic excitations of particles and strings, well-defined
in gapped states of matter with intrinsic topological orders. Second, we introduce the braiding
statistics data of particles and strings, such as the geometric Berry matrices for particle-string
Aharonov-Bohm, 3-string, 4-string, or multi-string adiabatic loop braiding process, encoded by
submanifold linkings, in the closed spacetime 3-manifolds and 4-manifolds. Third, we derive new
“quantum surgery” formulas and constraints, analogous to Verlinde formula associating fusion and
braiding statistics data via spacetime surgery, essential for defining the theory of topological orders,
3d and 4d TQFTs and potentially correlated to bootstrap boundary physics such as gapless modes,
extended defects, 2d and 3d conformal field theories or quantum anomalies.

This article is meant to be an extended and further detailed elaboration of our previous work [1]
and Chapter 6 of Ref. [2]. Our theory applies to general quantum theories and quantum mechanical
systems, also applicable to, but not necessarily requiring the quantum field theory description.
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1 Introduction

Geometry and topology have long perceived to be intricately related to our understanding of the
physics world. Our physical Universe is known to be quantum in nature. For a system with many-
body quantum degrees of freedom, we have a well-motivated purpose of determining the governing
laws of quantum statistics. Quantum statistics, to some extent, behave as hidden long-range “forces”
or “interactions” between the quantum quasi-excitations. One of the goals of our present work is
formulating the quantum version of constraints from geometric topology and surgery properties of
spacetimes (as manifolds, either smooth differentiable, or triangulable on a lattice) in order to develop
theoretical equations governing the quantum statistics of general quantum theories.

The fractional quantum Hall effect was discovered decades ago [3]. A quantum theory of the
wavefunction of fractional quantum Hall effect is formulated subsequently [4]. The intrinsic relation
between the topological quantum field theories (TQFT) and the topology of manifolds was found years
after [5, 6]. These breakthroughs partially motivated the study of topological order [7] as a new state
of matter in quantum many-body systems and in condensed matter systems [8]. Topological orders are
defined as the gapped states of matter with physical properties depending on global topology (such
as the ground state degeneracy (GSD)), robust against any local perturbation and any symmetry-
breaking perturbation. Accordingly, topological orders cannot be characterized by the old paradigm
of symmetry-breaking phases of matter via the Ginzburg-Landau theory [9,10]. The systematic studies
of 2+1 dimensional spacetime1 (2+1D) topological orders enhance our understanding of the real-world
plethora phases including quantum Hall states and spin liquids [11]. In this work, we explore the
constraints between the 2+1D and 3+1D topological orders and the geometric-topology properties of
3- and 4-manifolds. We only focus on 2+1D / 3+1D topological orders with GSD insensitive to the
system size and with a finite number of types of topological excitations creatable from 1D line and
2D surface operators. Specifically, the open ends of 1D line operators give rise to quasi-excitations
of anyons. The open ends of 2D surface operators give rise to quasi-excitations of anyonic strings.
Conversely, the worldlines of anyons become 1D line operators (see Fig.1), while the worldsheets of
anyonic strings become 2D surface operators.

In this work, we mainly apply the tools of quantum mechanics in physics and surgery theory
in mathematics [12, 13]. Our main results are: (1) We provide the fusion data for worldline and
worldsheet operators creating excitations of particles (i.e. anyons [14]) and strings (i.e. anyonic strings)
in topological orders. (2) We provide the braiding statistics data of particles and strings encoded by
submanifold linking, in the 3- and 4-dimensional closed spacetime manifolds. (3) By “cutting and
gluing” (or “cutting and sewing” in synonym) quantum amplitudes, we derive constraints between
the fusion and braiding statistics data analogous to Verlinde formula [6, 15, 16] for 2+1 and 3+1D

1For abbreviation, we write n+ 1D for an n+1-dimensional spacetime. We write md for an m-dimensional spacetime.
We write nD simply for the n-dimensional manifold or nD space.
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Figure 1: (a) A topologically-ordered ground state on a spatial 2-torus T 2
xy is labeled by a quasiparticle

σ. (b) The quantum amplitude of two linked spacetime trajectories of anyons σ1 and σ2 in 2+1D is
proportional to a complex number Sσ1σ2 , which is related to the modular SL(2,Z) data to be introduced
later.

topological orders.

2 Quantum Statistics: Fusion and Braiding Statistics Data

Imagine a renormalization-group-fixed-point topologically ordered quantum system on a spacetime
manifold M. The manifold can be viewed as a long-wavelength continuous limit of certain lattice
regularization of the system.2 We aim to compute the quantum amplitude from “gluing” one ket-
state |R〉 with another bra-state 〈L|, such as 〈L|R〉. A quantum amplitude also defines a path integral
or a partition function Z with the linking of worldlines/worldsheets on a d-manifold Md, read as

〈L|R〉 = Z(Md; Link[worldline, worldsheet, . . . ]). (2.1)

For example, the |R〉 state can represent a ground state of 2-torus T 2
xy if we put the system on a solid

torus D2
xt×S1

y
3 (see Fig. 1(a) as the product space of 2-dimensional disk D2 and 1-dimensional circle

S1, where the footnote subindices label the coordinates). Note that its boundary is ∂(D2×S1) = T 2,
and we can view the time t evolving along the radial direction. We label the trivial vacuum sector
without any operator insertions as |0D2

xt×S1
y
〉, which is trivial respect to the measurement of any

contractible line operator along S1
x. A worldline operator creates a pair of anyon and anti-anyon at

its end points, if it forms a closed loop then it can be viewed as creating then annihilating a pair
of anyons in a closed trajectory. Our worldline or worldsheet operator corresponds to the Wilson, ’t
Hooft, or other extended operator of the gauge theory, although throughout our work, we consider a
more generic quantum description without limiting to gauge theory or quantum field theory (QFT).

Inserting a line operator W
S1
y

σ in the interior of D2
xt × S1

y gives a new state

W
S1
y

σ |0D2
xt×S1

y
〉 ≡ |σD2

xt×S1
y
〉. (2.2)

Here σ denotes the anyon type4 along the oriented line, see Fig. 1.

2Mathematically, it is proven that all smooth thus differentiable manifolds are always triangulable. This can be
proven via Morse theory, which implies that we only need to show the triangulation of piecewise-linear (PL) handle-
attachments. However, the converse statement may not be true in general. Thus here we focus on going from the smooth
thus differentiable manifolds (the continuum) to the triangulable manifolds (the discrete).

3This is consistent with the fact that TQFT assigns a complex number to a closed manifold without boundary, while
assigns a state-vector in the Hilbert space to an open manifold with a boundary.

4If there is a gauge theory description, then the quasi-excitation type of particle σ and string µ would be labeled by
the representation for gauge charge and by the conjugacy class of the gauge group for gauge flux.
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Insert all possible line operators of all σ can completely span the ground state sectors for 2+1D
topological order. The gluing of 〈0D2×S1 |0D2×S1〉 computes the path integral Z(S2 × S1). If we view
the S1 as a compact time, this counts the ground state degeneracy (GSD, i.e., the number of ground
states, or equivalently the dimensions of ground-state Hilbert space dim(H)) on a 2D spatial sphere
S2 without quasiparticle insertions. Follow the relation based on (2.1) and the above, we see that for
a generic spatial manifold Mspace, we have a relation:

GSDMspace = dim(H) = |Z(Mspace × S1)|. (2.3)

For a partition function without any insertion (i.e., anyonic excitations associated extended operators),
the following computes a 1-dimensional Hilbert space on a spatial S2 in 2+1D:

〈0D2×S1 |0D2×S1〉 = Z(S2 × S1) = 1. (2.4)

Similar relations hold for other dimensions, e.g. 3+1D topological orders on a S3 without quasi-
excitation yields

〈0D3×S1 |0D3×S1〉 = Z(S3 × S1) = 1. (2.5)

2.1 Elementary Geometric Topology, Notations and Surgery Formulas

Below we list down some useful and elementary surgery formulas, or other math formulas, in order to
prepare for the later derivation of more involved but physically more interesting surgery process.

Some of the above results are well-known [12,13], while others are less familiar, and perhaps also novel
to the literature.

1. For example, we consider the connected sum of two d-dimensional manifolds M1 and M2, denoted
as

M1#M2 (2.6)

which becomes a new manifold formed by deleting a ball Dd inside each manifold and gluing
together the resulting boundary spheres Sd−1.

2. We write the partition function on spacetime that is formed by disconnected manifolds M and N ,
which is denoted as

M tN, (2.7)

obeying:

Z(M tN) = Z(M)Z(N). (2.8)

4



Manifolds:

3-manifolds without boundaries:
S3, S2 × S1, (S1)3 = T 3, etc.
3-manifolds with boundaries:
D3, D2 × S1, etc.
4-manifolds without boundaries:
S4, S3 × S1, S2 × S2, S2 × (S1)2 = S2 × T 2, (S1)4 = T 4, S3 × S1#S2 × S2, S3 × S1#S2 × S2#S2 × S2.
4-manifolds with boundaries:
D4, D3 × S1, D2 × S2, D2 × (S1)2 = D2 × T 2 ≡ C4, S4 rD2 × T 2.
Certain 2-manifolds as the boundaries of 3-manifolds:
S2, (S1)2 = T 2, etc.
Certain 3-manifolds as the boundaries of 4-manifolds:
S3, S2 × S1, (S1)3 = T 3, etc.

Surgery:

Cutting and gluing 4-manifolds:
S4 = (D3 × S1) ∪S2×S1 (S2 ×D2) = (D2 × T 2) ∪T 3 (S4 rD2 × T 2) = D4 ∪D4.
S3 × S1 = (D3 × S1) ∪S2×S1 (D3 × S1) = (D2 × S1 × S1) ∪T 3 (S1 ×D2 × S1) = (D2 × T 2) ∪T 3;Sxyz (D2 × T 2).
S2 × S2 = (D2 × S2) ∪S2×S1 (D2 × S2) = (S4 rD2 × T 2) ∪T 3;Sxyz (S4 rD2 × T 2).
S2 × S1 × S1 = (D2 × T 2) ∪T 3 (D2 × T 2).
S3 × S1#S2 × S2 = (S4 rD2 × T 2) ∪T 3;Sxyz (D2 × T 2).
S3 × S1#S2 × S2#S2 × S2 = (S4 rD2 × T 2) ∪T 3 (S4 rD2 × T 2).
Cutting and gluing 3-manifolds:
S3 = (D2 × S1) ∪T 2; (S1 ×D2) = (D2 × S1) ∪T 2;Sxy (D2 × S1) = D3 ∪D3.

S2 × S1 = (D2 × S1) ∪T 2 (D2 × S1) = (D2 × S1) ∪S1×S1;(Txy)n (D2 × S1).

Mapping Class Group (MCG):
MCG(T d)=SL(d,Z). MCG(S2 × S1) = Z2 × Z2.

Table 1: Manifolds, surgery formula and mapping class group (MCG) that are considered in the
limited case of our study. The Sn is an n-dimensional sphere, the Dn is an n-dimensional disk, and
the Tn is an n-dimensional torus. The connected sum of two d-dimensional manifolds M1#M2 follows
the definition in Eq. (2.6). The gluing of two manifolds M1 ∪B;ϕM2 along their boundary B via the
map ϕ follows Eq. (2.11). The complement space notation M1rM2 follows Eq. (2.12). The mapping
class group MCG(T d)=SL(d,Z) is a special linear group with the matrix representation of integer
Z entries.The mapping class group MCG(S2 × S1) = Z2 × Z2 have two generators: A generator for
the first Z2 is given by a homeomorphism that is a reflection of each of S2 and S1 separately, so it
preserves the orientation of S2 × S1. A generator for the second Z2 has the form f(x, y) = (gy(x), y)
where gy is the rotation of S2 along a fixed axis by an angle that varies from 0 to 2π as y goes once
around S1. If we do not restrict our attention to homeomorphisms that preserve orientation, then this
“extended mapping class group (extended-MCG)” has twice elements whenever the manifold has an
orientation-reversing homeomorphism, as in the examples we considered above. Thus for S1, S2, and
S3, the extended-MCG has Z2, while we have the extended-MCG(S2 × S1) = (Z2)3.

3. For a closed manifold M glued by two pieces of d-dimensional manifolds MU and MD, so that we
denote the gluing as

M = MU ∪B MD (2.9)
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where the MU and MD share a common boundary (d− 1)-dimensional manifold

B = ∂MU = ∂MD. (2.10)

Note that ∂MD and ∂MD are differed by a sign of the orientation. If MU and MD are oriented, then
the M = MU ∪BMD can inherit an induced natural orientation, obeying the chosen orientation of
MU and MD. This requires an identification of ∂MU ' ∂MD by reversing the inherited orientation,
as an homeomorphism.5

4. Moreover, we can have an extra mapping ϕ allowed by diffeomorphism when gluing two manifolds.
The notation for gluing the boundaries via the ϕ is written as

MU ∪B;ϕMD. (2.11)

It requires that the boundary to be the same, ∂MU = ∂MD = B. In particular, we will focus
on a ϕ of mapping class group (MCG) of the boundary B in our work. Thus, we can apply
any element of ϕ ∈ MCG(B). For ϕ = 1 as a trivial identity map, we can simply denote it as
M1 ∪BM2 =M1 ∪B,IM2.

5. We denote the complement space of d-dimensional M2 out of M1 as

M1rM2. (2.12)

This means we cut out M2 out of M1. For example, to understand the connected sum M1#M2,
we can cut a ball Dd (D for the disk Dd, which is the same a d-dimensional ball) out of the M1 and
M2. Each of M1rDd and M2rDd has a boundary of a sphere Sd−1. We glue the two manifolds
M1 and M2 by a cylinder Sd−1 × I1 where the I1 ≡ I is a 1 dimensional interval.

Throughout our article, we consistently use σ to represent the quasi-excitations of anyonic particle
label (such as charge, electric charge, magnetic monopole, or representation of the gauge group) whose
spacetime trajectory become 1-dimensional worldlines WS1

σ of 1-circle. We use µ to represent the
quasi-excitations of anyonic string (or loop, or gauge flux) label whose spacetime trajectory become
2-dimensional worldsheets, e.g. V S2

µ and V T 2

µ , for the surface of 2-sphere and 2-torus.

We can also derive some helpful homology group formulas, via Alexander duality and other rela-
tions:6

H1(D3 × S1,Z) = H2(S4rD3 × S1,Z) = H2(D2 × S2,Z) = Z, (2.16)

5Since we only focus on orientable manifolds in this work, there is no subtle problem. In this work, we will not be
particularly interested in the details of orientation, so let we limit to the case that we do not emphasize ∂MD or ∂MD.
In future work, we will consider the generalization to the case for non-orientable manifolds.

6 To understand the following equations, suppose that X is a d-dimensional manifold with boundary (∂X), there is
a long exact sequence in homology:

. . . Hk(∂X)→ Hk(X)→ Hk(X, ∂X)→ Hk−1(∂X) . . . .

The first and the left most arrow is an inclusion. The middle arrow is modding out by the image of the inclusion. The
last arrow is the connecting homomorphism. Note that an element in Hk(X, ∂X) is represented by a singular chain
whose boundary is in ∂X. The right most arrow assigns to such a chain its boundary.
There is a dual exact sequence for cohomology:

. . . Hm−1(∂X)→ Hm(X, ∂X)→ Hm(X)→ Hm(∂X) . . . .

Note that Hm(X, ∂X) is represented by cocycles that are zero on all chains in (∂X). The right most arrow here becomes
the connecting homomorphism. The other two arrows are simply an algebraic inclusion (the middle one) or a pull-back.
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H2(D3 × S1,Z) = H1(S4rD3 × S1,Z) = H1(D2 × S2,Z) = 0. (2.17)

H1(D2 × T 2,Z) = H2(S4rD2 × T 2,Z) = Z2, (2.18)

H2(D2 × T 2,Z) = H1(S4rD2 × T 2,Z) = Z. (2.19)

Follow the above definitions, we obtain a set of useful formulas, and we summarize in Table 1.7

2.2 Data in 2+1D

2.2.1 Quantum Fusion Data in 2+1D

In 2+1D, we consider the worldline operators creating particles. We define the fusion data via fusing
worldline operators:

W
S1
y

σ1 W
S1
y

σ2 = Fσσ1σ2
W

S1
y

σ , and Gασ ≡ 〈α|σD2
xt×S1

y
〉. (2.20)

Here Gασ is read from the projection to a complete basis 〈α|. Indeed the W
S1
y

σ generates all the canonical
bases from |0D2

xt×S1
y
〉. Thus the canonical projection can be

〈α| = 〈0D2
xt×S1

y
|(WS1

y
α )† = 〈0D2

xt×S1
y
|(WS1

y

ᾱ ) = 〈αD2
xt×S1

y
|, (2.21)

then we have

Gασ = 〈α|WS1
y

σ |0D2
xt×S1

y
〉 = 〈0D2

xt×S1
y
|(WS1

y

ᾱ )W
S1
y

σ |0D2
xt×S1

y
〉 = Z(S2 × S1; ᾱ, σ) = δασ, (2.22)

where a pair of particle-antiparticle σ and σ̄ can fuse to the vacuum. We derive

Fασ1σ2
= 〈α|W y

σ1
W y
σ2
|0D2

xt×S1
y
〉

= 〈0D2
xt×S1

y
|(WS1

y

ᾱ )W
S1
y

σ1 W
S1
y

σ2 |0D2
xt×S1

y
〉

= Z(S2 × S1; ᾱ, σ1, σ2) ≡ Nα
σ1σ2

, (2.23)

where this path integral counts the dimension of the Hilbert space (namely the GSD or the number
of channels σ1 and σ2 can fuse to α) on the spatial S2. This shows the fusion data Fασ1σ2

is equivalent
to the fusion rule Nα

σ1σ2
, symmetric under exchanging σ1 and σ2.8

Duality imposes that

Hd−k−1(∂X) = Hk(∂X), (2.13)

Hd−k(X, ∂X) = Hk(X), (2.14)

Hd−k(X) = Hk(X, ∂X). (2.15)

If we use this result and Alexander duality, we can deduce the equations: Eq. (2.16), Eq. (2.17), Eq. (2.18), and Eq. (2.19).
7We thank conversations with Clifford Taubes and correspondences with Robert Gompf clarifying some of these

formulas. For other details, please see also our upcoming work [17].
8 For readers who require some more background knowledge about the fusion algebra of anyons, Ref. [18–22] provide

for an introduction and a review of 2+1D case. Our present work will also study the 3+1D case.
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2.2.2 Quantum Braiding Data in 2+1D

More generally we can glue the T 2
xy-boundary of D2

xt×S1
y via its mapping class group (MCG), namely

MCG(T 2) = SL(2,Z) of the special linear group, (see Table 1) generated by

Ŝ =

(
0 −1
1 0

)
, T̂ =

(
1 1
0 1

)
. (2.24)

The Ŝ identifies (x, y)→ (−y, x), while T̂ identifies (x, y)→ (x+ y, y) of T 2
xy.

9 Based on Eq.(2.1), we

write down the quantum amplitudes of the two SL(2,Z) generators Ŝ and T̂ projecting to degenerate
ground states. We denote gluing two open-manifolds M1 and M2 along their boundaries B under
the MCG-transformation Û to a new manifold as M1 ∪B;Û M2.10 Below we introduce three sets of
quantum braiding statistics data in 2+1D,

1. Modular SL(2,Z) modular data S: It is amusing to visualize the gluing

D2 × S1 ∪T 2;Ŝ D
2 × S1 = S3 (2.25)

shows that the Sσ̄1σ2 represents the Hopf link of two S1 worldlines σ1 and σ2 (e.g. Fig.1(b)) in S3

with the given orientation (in the canonical basis Sσ̄1σ2 = 〈σ1 |Ŝ|σ2〉):

Sσ̄1σ2 ≡ 〈σ1D2
xt×S1

y
|Ŝ|σ2D2

xt×S1
y
〉 = Z

 1
2

 . (2.26)

We note that this data S has also been introduced in the work of Witten on TQFT via surgery theory
[6]. However, here we actually consider more generic quantum mechanical system (a quantum
theory, or a quantum many body theory) that does not necessarily requires a QFT description.
We only require the gluing of quantum amplitudes written in the quantum mechanical bra and ket
bases living in a Hilbert space associated to the quantum theory on spacetime (sub)manifolds.

2. Modular SL(2,Z) modular data T : Use the gluing

D2 × S1 ∪T 2;T̂ D
2 × S1 = S2 × S1, (2.27)

we can derive a well known result written in the canonical bases,

Tσ1σ2 ≡ 〈σ1D2
xt×S1

y
|T̂ |σ2D2

xt×S1
y
〉 = δσ1σ2e iθσ2 . (2.28)

Its spacetime configuration is that two unlinked closed worldlines σ1 and σ2, with the worldline
σ2 twisted by 2π. The amplitude of a twisted worldline is given by the amplitude of untwisted
worldline multiplied by e iθσ2 , where θσ/2π is the spin of the σ excitation.

In summary, the above SL(2,Z) modular data implies that Sσ̄1σ2
measures the mutual braiding

statistics of σ1-and-σ2, while Tσσ measures the spin and self-statistics of σ.

9We may also denote the Ŝ as Ŝxy and the T̂ as T̂ xy.
10We may simplify the gluing notation M1 ∪B;UM2 to M1 ∪BM2 if the mapping class group’s generator U is trivial

or does not affect the glued manifold. We may simplify the gluing notation further to M1 ∪ M2 if the boundary
B = ∂M1 = ∂M2 is obvious or stated in the text earlier.
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3. We can introduce additional data, the Borromean rings (BR) linking between three S1 circles in
S3, written as a path integral Z data with insertions. We denote this path integral Z data as

Z


1

2 3

≡Z[S3; BR[σ1, σ2, σ3]]. (2.29)

Although we do not know a bra-ket expression for this amplitude, we can reduce this configuration to
an easier one Z[T 3

xyt;σ
′
1x, σ

′
2y, σ

′
3t], a path integral of 3-torus T 3 with three orthogonal line operators

each inserting along a non-contractible S1 direction. The later is a simpler expression because we
can uniquely define the three line insertions exactly along the homology group generators of T 3,
namely H1(T 3,Z) = Z3. The two path integrals are related by three consecutive modular SL(2,Z)’s
S surgeries (or Sxy surgeries) done along the T 2-boundary of D2×S1 tubular neighborhood around
three S1 rings. The three-step surgeries we describe earlier sequently send the initial 3-sphere
configuration with Borromean rings insertion

S3 1st surgery−−−−−−−→ S2 × S1 2nd surgery−−−−−−−→ S2 × S1#S2 × S1 3rd surgery−−−−−−−→ T 3 (2.30)

to a 3-torus configuration. Here we use the notation M1#M2 means the connected sum of mani-
folds M1 and M2. Namely,

Z[T 3
xyt;σ

′
1x, σ

′
2y, σ

′
3t] =

∑
σ1,σ2,σ3

Sσ′1xσ1
Sσ′2yσ2

Sσ′3zσ3
Z[S3; BR[σ1, σ2, σ3]]. (2.31)

2.3 Data in 3+1D

In 3+1D, there are intrinsic meanings of braidings of string-like excitations. We need to consider
both the worldline and the worldsheet operators which create particles and strings. In addition to
the S1-worldline operator WS1

σ , we introduce S2- and T 2-worldsheet operators as V S2

µ and V T 2

µ′ which
create closed-strings (or loops) at their spatial cross sections. We consider the vacuum sector ground
state on open 4-manifolds:

|0D3×S1〉, |0D2×S2〉, |0D2×T 2〉 and |0S4rD2×T 2〉, (2.32)

while their boundaries are

∂(D3 × S1) = ∂(D2 × S2) = S2 × S1 and ∂(D2 × T 2) = ∂(S4rD2 × T 2) = T 3. (2.33)

Here M1rM2 means the complement space of M2 out of M1.

2.3.1 Quantum Fusion Data in 3+1D

Similar to 2+1D, we define the fusion data FM by fusing operators:

WS1

σ1
WS1

σ2
= (FS1

)σσ1σ2
WS1

σ , (2.34)

V S2

µ1
V S2

µ2
= (FS2

)µ3
µ1µ2

V S2

µ3
, (2.35)

V T 2

µ1
V T 2

µ2
= (FT 2

)µ3
µ1µ2

V T 2

µ3
. (2.36)
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Notice that we introduce additional upper indices in the fusion algebra FM to specify the topology of
M for the fused operators.11

We require normalizing worldline/sheet operators for a proper basis, so that the FM is also properly
normalized in order for Z(Y d−1 × S1; . . . ) as the GSD on a spatial closed manifold Y d−1 always be
a positive integer. In principle, we can derive the fusion rule of excitations in any closed spacetime
4-manifold. For instance, the fusion rule for fusing three particles on a spatial S3 is

Z(S3 × S1; ᾱ, σ1, σ2) = 〈0D3×S1 |WS1

ᾱ WS1

σ1
WS1

σ2
|0D3×S1〉 = (FS1

)ασ1σ2
. (2.37)

Many more examples of fusion rules can be derived from computing

Z(M4;σ, µ, . . . ) (2.38)

by using FM and Eq.(2.1), here the worldline and worldsheet are submanifolds parallel not linked with
each other.

Throughout our work, we consistently use σ to represent the quasi-particle label (such as charge,
electric charge, magnetic monopole, or representation of the gauge group) for worldlines WS1

σ , and we
use µ to represent the quasi-string label for worldsheets, e.g. V S2

µ and V T 2

µ .

Overall we choose the operators WS1

σ and VM2

µ carefully, so that they generate linear-independent
states when acting on the |0M ′〉 state.

2.3.2 Quantum Braiding Data in 3+1D

If the worldline and worldsheet are linked as Eq.(2.1), then the path integral encodes the braiding
data. Below we discuss the important braiding processes in 3+1D. We consider the following four
braiding process in 4 dimensional spacetime, thus four sets of quantum braiding data in 3+1D.

1. First, the Aharonov-Bohm particle-loop braiding can be represented as a S1-worldline of particle
and a S2-worldsheet of loop linked in S4 spacetime,

L(S2,S1)
µσ ≡ 〈0D2×S2 |V S2†

µ WS1

σ |0D3×S1〉 = Z



 , (2.39)

if we design the worldline and worldsheet along the generators of the first and the second homology
group

H1(D3 × S1,Z) = H2(D2 × S2,Z) = Z

11To be further more specific, we can also specify the whole open-manifold topology M × V corresponding to the ground

state sector |0M×V 〉, namely we can rewrite the data in new notations to introduce the refined data: (FS
1

)→ (FD
3×S1

),

(FT
2

) → (FD
2×T2

) and (FS
2

) → (FD
2×S2

). However, because (FM ) are the fusion data in the local neighborhood
around the worldline/worldsheet operators with topology M , physically it does not encode the information from the
remained product space M × V . Namely, at least for the most common and known theory that we can regularize on the
lattice, we understand that (FM ) = (FM×V1) = (FM×V2) = . . . for any topology V1, V2, . . . . So here we make a physical

assumption that (FS
1

) = (FD
3×S1

), (FT
2

) = (FD
2×T2

) and (FS
2

) = (FD
2×S2

).
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respectively, via Alexander duality. We also use the fact

S2 ×D2 ∪S2×S1 D3 × S1 = S4, (2.40)

thus

〈0D2×S2 |0D3×S1〉 = Z(S4). (2.41)

2. Second, we can also consider particle-loop (Aharonov-Bohm) braiding as a S1-worldline of particle
and a T 2-worldsheet (below T 2 drawn as a S2 with a handle) of loop linked in S4,

〈0D2×T 2 |V T 2†
µ WS1

σ |0S4rD2×T 2〉 = Z



 , (2.42)

if we design the worldline and worldsheet along the generators of of the first and the second
homology group

H1(S4rD2 × T 2,Z) = H2(D2 × T 2,Z) = Z

respectively, via Alexander duality. Compare Eqs.(2.39) and (2.42), the loop excitation of S2-
worldsheet is shrinkable, while the loop of T 2-worldsheet needs not to be shrinkable. If there is
a gauge theory description, then the loop is shrinkable implies the loop is a pure flux excitation
without any net charge.

3. Third, we can represent a three-loop braiding process [23–26] as three T 2-worldsheets triple-linking
[27] in the spacetime S4 (as the first figure in Eq.(2.43)). We find that

LTri
µ3,µ2,µ1

≡ 〈0S4rD2
wx×T 2

yz
|V T 2

zx†
µ3

V
T 2
xy†

µ2 V
T 2
yz

µ1 |0D2
wx×T 2

yz
〉

= Z


1

2
3


= Z


1

2

3


, (2.43)

where we design the worldsheets V
T 2
yz

µ1 along the generator of homology group H2(D2
wx×T 2

yz,Z) = Z

while we design V
T 2
xy†

µ2 and V
T 2
zx†

µ3 along the two generators of H2(S4rD2
wx × T 2

yz,Z) = H1(D2
wx ×

T 2
yz,Z) = Z2 respectively. Again, we obtain via Alexander duality that

H2(S4rD2 × T 2,Z) = H1(D2 × T 2,Z) = Z2.

We find that Eq.(2.43) is also equivalent to the spun surgery construction (or the so-called spinning
surgery) of a Hopf link (denoted as µ2 and µ3) linked by a third T 2-torus (denoted as µ1) [28,29].
Namely, we can view the above figure as a Hopf link of two loops spinning along the dotted path
of a S1 circle, which becomes a pair of T 2-worldsheets µ2 and µ3. Additionally the T 2-worldsheet
µ1 (drawn in gray as a S2 added a thin handle), together with µ2 and µ3, the three worldsheets
have a triple-linking topological invariance [27].
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4. Fourth, we consider the four-loop braiding process, where three loops dancing in the Borromean ring
trajectory while linked by a fourth loop [30], can characterize certain 3+1D non-Abelian topological
orders [26]. We find it is also the spun surgery construction of Borromean rings of three loops linked
by a fourth torus in the spacetime picture, and its path integral Z[S4; Link[Spun[BR[µ4, µ3, µ2]], µ1]]
can be transformed:

Z[S4; Link[Spun[BR[µ4, µ3, µ2]], µ1]] ≡ Z


1

2

3 4


surgery−−−−−→ Z[T 4#S2 × S2;µ′4, µ

′
3, µ
′
2, µ
′
1]

= 〈0T 4#S2×S2rD2
wx×T 2

yz
|V T 2†
µ′4

V T 2†
µ′3

V T 2†
µ′2

V
T 2
yz

µ′1
|0D2

wx×T 2
yz
〉, (2.44)

where the surgery contains four consecutive modular S-transformations done along the T 3-boundary
of D2 × T 2 tubular neighborhood around four T 2-worldsheets.

The four-step surgeries here sequently send the initial configuration 4-sphere S4 into:

S4 = (D3 × S1) ∪ (S2 ×D2) = ((S3rD3)× S1) ∪ (S2 ×D2) (2.45)
1st surgery−−−−−−−→ ((S2 × S1rD3)× S1) ∪ (S2 ×D2)
2nd surgery−−−−−−−→ ((S2 × S1#S2 × S1rD3)× S1) ∪ (S2 ×D2)
3rd surgery−−−−−−−→ ((T 3rD3)× S1) ∪ (S2 ×D2) = (T 4rD3 × S1) ∪ (S2 ×D2)
4th surgery−−−−−−−→ T 4#S2 × S2

to a connected sum of T 4-torus and S2 × S2 configuration. Here we use the notation M1#M2

means the connected sum of manifoldsM1 andM2. The outcome Z[T 4#S2×S2;µ′4, µ
′
3, µ
′
2, µ
′
1] has

the wonderful desired property that we can design the worldsheets along the generator of homology

groups so the operator insertions are well-defined. Here V
T 2
yz

µ′1
is the worldsheet operator acting along

the only generator of homology group H2(D2×T 2,Z) = Z. And V T 2

µ′2
, V T 2

µ′3
, V T 2

µ′4
are the worldsheet

operators acting along three among the seven generators of H2(T 4#S2 × S2rD2 × T 2,Z) = Z7

with the hollowed D2 × T 2 specified in the earlier text. This shows that

Z[T 4#S2 × S2;µ′4, µ
′
3, µ
′
2, µ
′
1] (2.46)

is a better quantum number easier to be computed than Z[S4; Link[Spun[BR[µ4, µ3, µ2]], µ1]]. The
final spacetime manifold that we obtained after the four-step surgery above is T 4#S2 × S2, where
# stands for the connected sum.

5. Modular SL(3,Z) modular data Sxyz and T xy:
We can glue the T 3-boundary of 4-submanifolds (e.g. D2 × T 2 and S4rD2 × T 2) via MCG(T 3) =
SL(3,Z) generated by

Ŝxyz =

0 0 1
1 0 0
0 1 0

 , T̂ xy =

1 1 0
0 1 0
0 0 1

 . (2.47)
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In this work, we define their representations as

Sxyzµ2,µ1
≡ 〈0D2

xw×T 2
yz
|V T 2

yz†
µ2 ŜxyzV T 2

yz
µ1 |0D2

xw×T 2
yz
〉, (2.48)

T xyµ2,µ1
≡ 〈0D2

xw×T 2
yz
|V T 2

yz†
µ2 T̂ xyV T 2

yz
µ1 |0D2

xw×T 2
yz
〉, (2.49)

while Sxyz is a spun-Hopf link in S3×S1, and T xy is related to the topological spin and self-statistics
of closed strings [26].

In this work, we project Ŝxyz and T̂ xy into the bra-ket bases of |µD2×T 2〉 ≡ V
T 2
yz

µ |0D2×T 2〉. Our
representation of

Sxyzµ2,µ1
≡ 〈µ2D2×T 2 |Ŝxyz|µ1D2×T 2〉 = 〈0D2

xw×T 2
yz
|V T 2

yz†
µ2 ŜxyzV T 2

yz
µ1 |0D2

xw×T 2
yz
〉 = Z[S3 × S1; Spun[Hopf[µ2, µ1]]]

is effectively a path integral of a spun Hopf link in the spacetime manifold

D2 × T 2 ∪T 3;Ŝxyz D
2 × T 2 = S3 × S1.

Our representation of

T xyµ2,µ1
≡ 〈µ2D2×T 2 |T̂ xy|µ1D2×T 2〉 = 〈0D2

xw×T 2
yz
|V T 2

yz†
µ2 T̂ xyV T 2

yz
µ1 |0D2

xw×T 2
yz
〉

is effectively a Z[S2 × S1 × S1]-path integral in the spacetime manifold

D2 × T 2 ∪T 3;T̂ xy D
2 × T 2 = S2 × S1 × S1.

In addition, the worldsheet operator V
T 2
yz

µ effectively contains also worldline operators, e.g. WS1
y

and WS1
z along y and z directions. Namely we mean that V

T 2
yz

µ = WS1
yWS1

zV T 2
yz , so WS1

y and

WS1
z are along the two generators of homology group H1(D2 × T 2,Z) = Z2, while V T 2

yz is along the
unique one generator of homology group H2(D2 × T 2,Z) = Z. If there is a gauge theory description,
then we project our Ŝxyz and T̂ xy into a one-flux (conjugacy class) and two-charge (representation)
basis

|µ1, σ2, σ3〉 ≡ V
T 2
yz

µ1 W
S1
y

σ2 W
S1
z

σ3
|0D2

xw×T 2
yz
〉. (2.50)

So our projection here is different from the one-charge (representation) and two-flux (conjugacy
class) basis |σ1, µ2, µ3〉 used in Ref. [24–26]. The |σ1, µ2, µ3〉-bases can be obtained through

|σ1, µ2, µ3〉 ≡WS1
x

σ1
V
T 2
xy

µ2 V T 2
xz

µ3
|0S4rD2

xw×T 2
yz
〉, (2.51)

where WS1
x is along the generator of homology group H1(S4rD2 × T 2,Z) = Z, while V

T 2
xy

µ2 and

V
T 2
xz

µ3 are along the two generators of homology group H2(S4rD2 × T 2,Z) = Z2 via the Alexander
duality. The alternate representation of the SL(3,Z) modular data via the bases (2.51) is presented
in our upcoming work [17].

3 New Quantum Surgery Formulas: Generalized Analogs of Ver-
linde’s

3.1 Derivations of some basics of quantum surgery formulas

Now we like to derive two powerful identities (Eq. (3.2), and Eq. (3.8)) for fixed-point path integrals
or partition functions for quantum theory, for example suitable for studying topological orders.
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1. If the path integral formed by disconnected manifolds M and N , denoted as M t N , we have
Z(M tN) = Z(M)Z(N). Assume that
(1) we divide both M and N into two pieces such that M = MU ∪BMD, N = NU ∪BND, and their
cut topology (dashed boundary denoted as B) is equivalent B = ∂MD = ∂MU = ∂ND = ∂NU , and
(2) the Hilbert space on the spatial slice is 1-dimensional (namely the GSD=1),12 then we obtain

Z


M

U

D

B B

ND

NUM

 = Z


M

U

D

B
N

B
MU

ND

 (3.2)

⇒ Z(MU ∪B MD)Z(NU ∪B ND) = Z(NU ∪B MD)Z(MU ∪B ND) .

2. Now we derive a generic formula for our use of surgery. We consider a closed manifold M glued
by two pieces MU and MD so that M = MU ∪B MD where B = ∂MU = ∂MD. We consider
there are insertions of operators in MU and MD. We denote the generic insertions in MU as αMU

and the generic insertions in MD as βMD
. Here both αMU

and βMD
may contain both worldline

and worldsheet operators. We write the path integral as Z(M ;αMU
, βMD

) = 〈αMU
|βMD

〉, while
the worldline/worldsheet may be linked or may not be linked in M . Here we introduce an extra
subscript M in

Z(M ;αMU
, βMD

) = 〈αMU
|βMD

〉M
to specify the glued manifold is MU ∪B MD = M . Now we like to do surgery by cutting out the
submanifold MD out of M and re-glue it back to MU via its mapping class group (MCG) generator

K̂ ∈ MCG(B) = MCG(∂MU ) = MCG(∂MD). (3.3)

We now give some additional assumptions.
Assumption 1: The operator insertions in M are well-separated into MU and MD, so that no
operator insertions cross the boundary B. Namely, at the boundary cut B there are no defects of
point or string excitations from the cross-section of αMU

, βMD
or any other operators.13

Assumption 2: We can generate the complete bases of degenerate ground states fully spanning
the dimension of Hilbert space for the spatial section of B, by inserting distinct operators (world-
line/worldsheet, etc.) into MD. Namely, we insert a set of operators Φ in the interior of |0MD

〉 to
obtain a new state Φ|0MD

〉 ≡ |ΦMD
〉, such that these states {Φ|0MD

〉} are orthonormal canonical
bases, and the dimension of the vector space dim({Φ|0MD

〉}) equals to the ground state degeneracy
(GSD) of the topological order on the spatial section B.

12Presumably there may be defect-like excitation of particles and strings on the spatial slice cross-section B. If the
dimensional of Hilbert space on the spatial slice B is 1, namely the ground state degeneracy (GSD) is 1, then we can
derive the gluing identity

〈MU |MD〉 = 〈NU |ND〉 ⇒ 〈MU |ND〉 = 〈NU |MD〉 (3.1)

because this vector space (of the Hilbert space) is 1-dimensional and all vectors are parallel in the inner product.
13 The readers should notice that this assumption is stronger and more restricted than the previous Eq. (3.2). In

Eq. (3.2), we can have defects of point or string excitations from the cross-section and on the boundary cut B, as long
as the dimension of Hilbert space associated to B is 1-dimensional.
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If both assumptions hold, then we find a relation:

Z(M ;αMU
, βMD

) = 〈αMU
|βMD

〉M
=
∑

Φ

〈αMU
|K̂Φ|0MD

〉〈0MD
|(K̂Φ)†|βMD

〉

=
∑

Φ

〈αMU
|K̂Φ|0MD

〉〈0MD
|Φ†K̂−1|βMD

〉

=
∑

Φ

〈αMU
|K̂|ΦMD

〉MU∪B;K̂MD
〈ΦMD

|K̂−1|βMD
〉MD∪B;K̂−1MD

=
∑

Φ

Z(MU ∪B;K̂ MD;αMU
,ΦMD

)〈ΦMD
|K̂−1|βMD

〉MD∪B;K̂−1MD

=
∑

Φ

K−1
Φ,β Z(MU ∪B;K̂ MD;αMU

,ΦMD
) (3.4)

We note that in the second equality, we write the identity matrix as I =
∑

Φ(K̂Φ)|0MD
〉〈0MD

|(K̂Φ)†.

In the third and fourth equalities, we have K̂−1 in the inner product 〈ΦMD
|K̂−1|βMD

〉, because
K̂ as a MCG generator acts on the spatial manifold B directly. The evolution process from the
first K̂−1 on the right and the second K̂ on the left can be viewed as the adiabatic evolution
of quantum states in the case of fixed-point topological orders. In the fifth equality, we rewrite
〈αMU

|K̂|ΦMD
〉MU∪B;K̂MD

= Z(MU ∪B;K̂ MD;αMU
,ΦMD

) where αMU
and ΦMD

may or may not be

linked in the new manifold MU ∪B;K̂ MD. In the sixth equality, we assume that both |βMD
〉 and

|ΦMD
〉 are vectors in a canonical basis, then we can define

〈ΦMD
|K̂−1|βMD

〉MD∪B;K̂−1MD
≡ K−1

Φ,β (3.5)

as a matrix element of K−1, which now becomes a representation of MCG in the quasi-excitation
bases of {|βMD

〉, |ΦMD
〉, . . . }. It is important to remember that K−1

Φ,β is a quantum amplitude
computed in the specific spacetime manifold MD ∪B;K̂−1 MD.

To summarize, so far we derive,

Z(M ;αMU
, βMD

) =
∑

Φ

K−1
Φ,β Z(MU ∪B;K̂ MD;αMU

,ΦMD
) . (3.6)

The detailed derivation shows∑
Φ′

Kβ,Φ′Z(M ;αMU
, βMD

)

=
∑
Φ′

Kβ,Φ′

∑
Φ

K−1
Φ,β Z(MU ∪B;K̂ MD;αMU

,ΦMD
)

= δΦΦ′ Z(MU ∪B;K̂ MD;αMU
,ΦMD

)

= Z(MU ∪B;K̂ MD;αMU
,Φ′MD

). (3.7)

We can also derive another formula by applying the inverse transformation,

Z(MU ∪B;K̂ MD;αMU
,Φ′MD

) =
∑
Φ′

Kβ,Φ′ Z(M ;αMU
, βMD

) . (3.8)

if it satisfies KK−1 = I. Again we stress that Kβ,Φ′ is a quantum amplitude computed in the
specific spacetime manifold MD ∪B;K̂−1 MD.
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3.2 Quantum Surgery Formulas in 2+1D and for 3-manifolds

In 2+1D, we can derive the renowned Verlinde formula [6,15,16] by one specific version of our Eq. (3.2):

Z


1

Z


1

2

3

 = Z


1

2

Z


1

3


⇒ Sσ̄10

∑
σ4

Sσ̄1σ4
N σ4
σ2σ3

= Sσ̄1σ2
Sσ̄1σ3

, (3.9)

where each spacetime manifold is S3, with the line operator insertions such as an unlink and Hopf
links. Each S3 is cut into two D3 pieces, so D3 ∪S2 D3 = S3, while the boundary dashed cut is
B = S2. The GSD for this spatial section S2 with a pair of particle-antiparticle must be 1, so our
surgery satisfies the assumptions for Eq.(3.2). The second line is derived from rewriting path integrals
in terms of our data introduced before – the fusion rule N σ4

σ2σ3
comes from fusing σ2σ3 into σ4 which

Hopf-linked with σ1, while Hopf links render the SL(2,Z) modular S matrices. The label 0, in Sσ̄10

and hereafter, denotes a vacuum sector without operator insertions in a submanifold.

For Eq.(3.9), the only path integral we need to compute more explicitly is this:

Z

 1
2

3

 = 〈0D2
xt×S1

y
|(WS1

y
σ1 )†ŜWS1

y
σ2 W

S1
y

σ3 |0D2
xt×S1

y
〉

= 〈0D2
xt×S1

y
|(WS1

y
σ1 )†ŜWS1

y
σ4 Fσ4

σ2σ3
|0D2

xt×S1
y
〉

=
∑
ασ4

(Gασ1
)∗Sασ4Fσ4

σ2σ3
=
∑
σ4

Sσ̄1σ4N σ4
σ2σ3

, (3.10)

where the last equality we use the canonical basis. Together with the previous data, we can easily
derive Eq.(3.9).

Since it is convenient to express in terms of canonical bases, below for all the derivations, we
will implicitly project every quantum amplitude into canonical bases when we write down its matrix
element.

In the canonical basis when S is invertible, we can massage our formula to a familiar form, which
we derive that:

N a
σ2σ3

=
∑
σ̄1

Sσ̄1σ2
Sσ̄1σ3

(S−1)σ̄1a

Sσ̄10

. (3.11)
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3.3 Quantum Surgery Formulas in 3+1D and for 4-manifolds

3.3.1 Formulas for 3+1D particle-string braiding process: Link between 1-worldline and
2-worldsheet

In 3+1D, we derive that the particle-string braiding process in terms of S4-spacetime path integral
Eq.(2.39) has the following constraint formulas:

Z


1


Z


1

2

3


= Z


1

2


Z


1

3


⇒ L

(S2,S1)
µ10

∑
σ4

L(S2,S1)
µ1σ4

(FS1
)σ4
σ2σ3

= L(S2,S1)
µ1σ2

L(S2,S1)
µ1σ3

. (3.12)

Z


1


Z


1

2

3


= Z


1

2


Z


1

3


⇒ L

(S2,S1)
0σ1

∑
µ4

L(S2,S1)
µ4σ1

(FS2
)µ4
µ2µ3

= L(S2,S1)
µ2σ1

L(S2,S1)
µ3σ1

. (3.13)

Here the gray areas mean S2-spheres. All the data are well-defined and introduced earlier in Eqs.(2.34),
(2.35), and (2.39). Notice that Eqs.(3.12) and (3.13) are symmetric by exchanging worldsheet/worldline
indices: µ↔ σ, except that the fusion data is different: FS1

fuses worldlines, while FS2
fuses world-

sheets.

For Eq.(3.12), the only path integral we need to compute more explicitly is this:

Z


1

2

3

 = 〈0D2
ϕw×S2

θφ
|(V

S2
θφ

µ1 )†W
S1
ϕ

σ2 W
S1
ϕ

σ3 |0D3
θφw×S1

ϕ
〉

= 〈0D2
ϕw×S2

θφ
|(V

S2
θφ

µ1 )†W
S1
ϕ

σ4 (FS1
)σ4
σ2σ3
|0D3

θφw×S1
ϕ
〉

=
∑
σ4

L(S2,S1)
µ1σ4

(FS1
)σ4
σ2σ3

, (3.14)

again we use the canonical basis. Together with the previous data, we can easily derive Eq.(3.12).
Similarly, we can also derive Eq.(3.13), using the almost equivalent computation following Eq.(3.12).
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3.3.2 Formulas for 3+1D three-string braiding process: Triple link between three sets
of 2-worldsheets

We also derive a quantum surgery constraint formula for the three-loop braiding process in 3+1D in
terms of an S4-spacetime path integral Eq.(2.43) via the Sxyz-surgery and its matrix representation:

Z




Z


1 2

3
4
5


1

= Z


1 2

3


Z


1

4
5


⇒ LTri

0,0,µ1
·
∑

Γ,Γ′,Γ1,Γ′1

(FT 2
)Γ
ζ2,ζ4(Sxyz)−1

Γ′,Γ(FT 2
)Γ1
µ1Γ′S

xyz
Γ′1,Γ1

LTri
0,0,Γ′1

=
∑

ζ′2,η2,η′2

(Sxyz)−1
ζ′2,ζ2

(FT 2
)η2

µ1ζ′2
Sxyz
η′2,η2

LTri
0,0,η′2

·
∑

ζ′4,η4,η′4

(Sxyz)−1
ζ′4,ζ4

(FT 2
)η4

µ1ζ′4
Sxyz
η′4,η4

LTri
0,0,η′4

, (3.15)

here the µ1-worldsheet in gray represents a T 2 torus, while µ2-µ3-worldsheets and µ4-µ5-worldsheets
are both a pair of two T 2 tori obtained by spinning the Hopf link. All our data are well-defined in
Eqs.(2.36), (2.43), and (2.48) introduced earlier. For example, the LTri

0,0,µ1
is defined in Eq.(2.43) with

0 as a vacuum without insertion, so LTri
0,0,µ1

is a path integral of a T 2 worldsheet µ1 in S4. The index
ζ2 is obtained from fusing µ2-µ3-worldsheets, and ζ4 is obtained from fusing µ4-µ5-worldsheets. Only
µ1, ζ2, ζ4 are the fixed indices, other indices are summed over.

Now let us derive Eq.(3.15). In the first path integral, we create a pair of loop µ1 and anti-loop
µ̄1 excitations and then annihilate them, in terms of the spacetime picture, we obtain that

Z


1

 = Z


 = LTri

0,0,µ1
, (3.16)

based on the data defined earlier. Let us explain our figure expressions further:
— The grey area drawn in terms of a tube means a 2-torus T 2 in topology (the 2-surface insertion in
the left hand side of path integral Eq. (3.16)).
— A 2-torus T 2 can be also regarded as a 2-sphere S2 adding a handle in topology (the 2-surface
insertion in the right hand side of path integral Eq. (3.16)).

In the third path integral LTri
µ3,µ2,µ1

, which is Eq. (2.43), appeared in Eq. (3.15), there are two
descriptions to interpret it in terms of the braiding process in spacetime:

• Here is the first description. we create a pair of loop µ1 and anti-loop µ̄1 excitations and then
there a pair of µ2-µ̄2 and another pair of µ3-µ̄3 are created while both pairs are thread by
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µ1. Then the µ1-µ2-µ3 will do the three-loop braiding process, which gives the most important
Berry phase or Berry matrix information into the path integral. After then the pair of µ2-µ̄2 is
annihilated and also the pair of µ3-µ̄3 is annihilated, while all the four loops are threaded by µ1

during the process. Finally we annihilate the pair of µ1 and µ̄1 in the end [24].

• The second description is that we take a Hopf link of µ2-µ3 linking spinning around the loop of µ1

[28,29]. We denote the Hopf link of µ2-µ3 as Hopf[µ3, µ2], denote its spinning as Spun[Hopf[µ3, µ2]],
and denote its linking with the third T 2-worldsheet of µ1 as Link[Spun[Hopf[µ3, µ2]], µ1]. Thus
we can define LTri

µ3,µ2,µ1
≡ Z[S4; Link[Spun[Hopf[µ3, µ2]], µ1]]. From the second description, we

immediate see that LTri
µ3,µ2,µ1

as Z[S4; Link[Spun[Hopf[µ3, µ2]], µ1]] are symmetric under exchang-
ing µ2 ↔ µ3, up to an overall conjugation due to the orientation of quasi-excitations.

We can view the spacetime S4 as a S4 = R4 + {∞}, the Cartesian coordinate R4 plus a point at
the infinity {∞}. Similar to the embedding of Ref. [28], we embed the T 2-worldsheets µ1, µ2, µ3 into
the (X1, X2, X3, X4) ∈ R4 as follows:

X1(u, ~x) = [r1(u) + (r2(u) + r3(u) cosx) cos y] cos z,
X2(u, ~x) = [r1(u) + (r2(u) + r3(u) cosx) cos y] sin z,
X3(u, ~x) = (r2(u) + r3(u) cosx) sin y,
X4(u, ~x) = r3(u) sinx,

(3.17)

here ~x ≡ (x, y, z). We choose the T 2-worldsheets as follows:
The T 2-worldsheet µ1 is parametrized by some fixed u1 and free coordinates of (z, x) while y = 0 is
fixed.
The T 2-worldsheet µ2 is parametrized by some fixed u2 and free coordinates of (x, y) while z = 0 is
fixed.
The T 2-worldsheet µ3 is parametrized by some fixed u3 and free coordinates of (y, z) while x = 0 is
fixed.
We can set the parameters u1 > u2 > u3. Meanwhile, a T 3-surface can be defined as M3(u, ~x) ≡
(X1(u, ~x), X2(u, ~x), X3(u, ~x), X4(u, ~x)) with a fixed u and free parameters ~x. The T 3-surfaceM3(u, ~x) ≡
(X1(u, ~x), X2(u, ~x), X3(u, ~x), X4(u, ~x)) encloses a 4-dimensional volume. We define the enclosed 4-
dimensional volume as theM3(u, ~x)× I1(s) where I1(s) is the 1-dimensional radius interval along r3,
such that I1(s) = {s|s = [0, r3(u)]}, namely 0 ≤ s ≤ r3(u). Here we can define r3(0) = 0. The topology
of the enclosed 4-dimensional volume ofM3(u, ~x)× I1(s) is of course the T 3 × I1 = T 2 × (S1 × I1) =
T 2 × D2. For a M3(ularge, ~x) × I1(s) prescribed by a fixed larger ularge and free parameters ~x, the
M3(ularge, ~x)× I1(s) must enclose the 4-volume spanned by the past history ofM3(usmall, ~x)× I1(s),
for any ularge > usmall. Here we set u1 > u2 > u3. And we also set r1(u) > r2(u) > r3(u) for any given
u.

One can check that the three T 2-worldsheet µ1, µ2 and µ3 indeed have the nontrivial triple-linking
number [27]. We can design the triple-linking number to be:

Tlk(µ2, µ1, µ3)=Tlk(µ3, µ1, µ2) = 0, Tlk(µ1, µ2, µ3) = +1,

Tlk(µ3, µ2, µ1) = −1, Tlk(µ2, µ3, µ1) = +1, Tlk(µ1, µ3, µ2) = −1. (3.18)

Below we will frequently use the surgery trick by cutting out a tubular neighborhood D2 × T 2 of
the T 2-worldsheet and re-gluing this D2 × T 2 back to its complement S4rD2 × T 2 via the modular
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Sxyz-transformation. The Sxyz-transformation sendsxout

yout

zout

 =

0 0 1
1 0 0
0 1 0

xin

yin

zin

 . (3.19)

Thus, the Sxyz-identification is (xout, yout, zout)↔ (zin, xin, yin). The (Sxyz)−1-identification is
(xout, yout, zout) ↔ (yin, zin, xin). The surgery on the initial S4 outcomes a new manifold,

(D2 × T 2) ∪T 3;Sxyz (S4rD2 × T 2) = S3 × S1#S2 × S2. (3.20)

In terms of the spacetime path integral picture, use Eqs.(3.6) and (3.8), we derive:

Z


1 2

3

 ≡ LTri
µ3,µ2,µ1

= Z[S4; Link[Spun[Hopf[µ3, µ2]], µ1]]

=
∑
µ′3

Sxyz
µ′3,µ3

Z(S3 × S1#S2 × S2;µ1, µ2 ‖ µ′3) (3.21)

=
∑
µ′3,Γ2

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
Z(S3 × S1#S2 × S2;µ1,Γ2) (3.22)

=
∑

µ′3,Γ2,Γ′2

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
(Sxyz)−1

Γ′2,Γ2
Z(S4;µ1,Γ

′
2) (3.23)

=
∑

µ′3,Γ2,Γ′2,Γ
′′
2

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
(Sxyz)−1

Γ′2,Γ2
(Sxyz)−1

Γ′′2 ,Γ
′
2
Z(S3 × S1#S2 × S2;µ1,Γ

′′
2) (3.24)

=
∑

µ′3,Γ2,Γ′2,Γ
′′
2 ,η2

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
(Sxyz)−1

Γ′2,Γ2
(Sxyz)−1

Γ′′2 ,Γ
′
2
(FT 2

)η2

µ1Γ′′2
Z(S3 × S1#S2 × S2; η2)(3.25)

=
∑

µ′3,Γ2,Γ′2,Γ
′′
2 ,η2,η′2

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
(Sxyz)−1

Γ′2,Γ2
(Sxyz)−1

Γ′′2 ,Γ
′
2
(FT 2

)η2

µ1Γ′′2
Sxyz
η′2,η2

LTri
0,0,η′2

. (3.26)

As usual, the repeated indices are summed over. With the trick of Sxyz-transformation in mind, here
is the step-by-step sequence of surgeries we perform.

Step 1: We cut out the tubular neighborhood D2 × T 2 of the T 2-worldsheet of µ3 and re-glue this
D2×T 2 back to its complement S4rD2×T 2 via the modular (Sxyz)−1-transformation. The D2×T 2

neighborhood of µ3-worldsheet can be viewed as the 4-volume M3(u3, ~x)× I1(s), which encloses nei-
ther µ1-worldsheet nor µ2-worldsheet. The (Sxyz)−1-transformation sends (yin, zin) of µ3 to (xout, yout)
of µ2. The gluing however introduces the summing-over new coordinate µ′3, based on Eq.(3.6). Thus
Step 1 obtains Eq.(3.21).

In Step 1, as Eq.(3.21) and thereafter, we write down Sxyz
µ′3,µ3

matrix. Based on Eq.(3.5), we stress

that the Sxyz
µ′3,µ3

is projected to the |0D2×T 2〉-states with operator-insertions for both bra and ket states.
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Sxyz
µ′3,µ3

≡ 〈µ′3D2×T 2 |Ŝxyz|µ3D2×T 2〉D2×T 2∪T3;ŜxyzD
2×T 2

= 〈0D2
xw×T 2

yz
|V T 2

yz†
µ′3
ŜxyzV T 2

yz
µ3 |0D2

xw×T 2
yz
〉S3×S1 (3.27)

Here we use the surgery fact

D2 × T 2 ∪T 3;Ŝxyz D
2 × T 2 = S3 × S1. (3.28)

So our Sxyz
µ′3,µ3

is defined as a quantum amplitude in S3 × S1. Two T 2-worldsheets µ′3 and µ3 now

become a pair of Hopf link resides in S3 part of S3 × S1, while share the same S1 circle in the S1 part
of S3 × S1. We can view the shared S1 circle as the spinning circle of the spun surgery construction
on the Hopf link in D3, the spun-topology would be D3 × S1, then we glue this D3 × S1 contains
Spun[Hopf[µ′3, µ3]] to another D3 × S1, so we have D3 × S1 ∪S2×S1 D3 × S1 = S3 × S1 as an overall
new spacetime topology. Hence we also denote

Sxyz
µ′3,µ3

= Z[S3 × S1; Spun[Hopf[µ′3, µ3]]]. (3.29)

Step 2: The earlier surgery now makes the inner µ′3-worldsheet parallels to the outer µ2-worldsheet,
since they share the same coordinates (xout, yout) = (yin, zin). We denote their parallel topology
as µ2 ‖ µ′3. So we can fuse the µ2-worldsheet and µ′3-worldsheet via the fusion algebra, namely

V
T 2
xout,yout

µ2 V
T 2
xout,yout

µ′3
= (FT 2

)Γ2

µ2µ′3
V
T 2
xout,yout

Γ2
. Thus Step 2 obtains Eq.(3.22).

Step 3: We cut out the tubular neighborhood D2 × T 2 of the T 2-worldsheet of Γ2 and re-glue this
D2 × T 2 back to its complement S4rD2 × T 2 via the modular Sxyz-transformation. The D2 × T 2

neighborhood of Γ2-worldsheet can be viewed as the 4-volumeM3(u2, ~x)× I1(s) in the new manifold
S3 × S1#S2 × S2, which encloses no worldsheet inside. After the surgery, the Sxyz-transformation
sends the redefined (xin, yin) of Γ2 back to (yout, zout) of Γ′2. The gluing however introduces the
summing-over new coordinate Γ′2, based on Eq.(3.6). We also transform S3 × S1#S2 × S2 back to S4

again. Thus Step 3 obtains Eq.(3.23).

Step 4: We cut out the tubular neighborhood D2 × T 2 of the T 2-worldsheet of Γ′2 and re-glue this
D2 × T 2 back to its complement S4rD2 × T 2 via the modular Sxyz-transformation. The D2 × T 2

neighborhood of Γ2
′-worldsheet viewed as the 4-volume in the manifold S4 encloses no worldsheet

inside. After the surgery, the Sxyz-transformation sends the (xin, yin) of Γ′2 to (zout, xout) of µ1. The
gluing however introduces the summing-over new coordinate Γ′′2, based on Eq.(3.6). We also transform
S4 to S3 × S1#S2 × S2 again. Thus Step 4 obtains Eq.(3.24).

Step 5: The earlier surgery now makes the inner Γ′′2-worldsheet parallels to the outer µ1-worldsheet,
since they share the same coordinates (zout, xout) = (xin, yin). We denote their parallel topology
as µ1 ‖ Γ′′2. We now fuse the µ1-worldsheet and Γ′′2-worldsheet via the fusion algebra, namely

V
T 2
zout,xout

µ1 V
T 2
zout,xout

Γ′′2
= (FT 2

)η2

µ1Γ′′2
V
T 2
zout,xout

η2 . Thus Step 5 obtains Eq.(3.25).

Step 6: We should do the inverse transformation to get back to the S4 manifold. Thus we cut out
the tubular neighborhood D2 × T 2 of the T 2-worldsheet of η2 and re-glue this D2 × T 2 back to its
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complement via the modular (Sxyz)−1-transformation. We relate the original path integral to the final
one Z(S4; η′2) = LTri

0,0,η′2
. Thus Step 6 obtains Eq.(3.26).

Similarly, in the fourth path integral of Eq.(3.15), we derive

Z


1

4
5

 ≡ LTri
µ5,µ4,µ1

= Z[S4; Link[Spun[Hopf[µ5, µ4]], µ1]]

=
∑

µ′5,Γ4,Γ′4,Γ
′′
4 ,η4,η′4

Sxyz
µ′5,µ5

(FT 2
)Γ4

µ4µ′5
(Sxyz)−1

Γ′4,Γ4
(Sxyz)−1

Γ′′4 ,Γ
′
4
(FT 2

)η4

µ1Γ′′4
Sxyz
η′4,η4

LTri
0,0,η′4

. (3.30)

In the second path integral of Eq.(3.15), we have the Hopf link of Hopf[µ3, µ2] and the Hopf
link of Hopf[µ5, µ4]. In the spacetime picture, all µ2, µ3, µ4, µ5 are T 2-worldsheets under the spun
surgery construction. We can locate the the spun object named Spun[Hopf[µ3, µ2],Hopf[µ5, µ4]] inside
a D3 × S1, while this D3 × S1 is glued with a S2 × D2 to a S4. Here the S2 × D2 contains a T 2-
worldsheet µ1. We can view the T 2-worldsheet µ1 contains a S2-sphere of the S2 ×D2 but attached
an extra handle. We derive:

Z


1 2

3
4
5

 ≡ Z[S4; Link[Spun[Hopf[µ3, µ2],Hopf[µ5, µ4]]], µ1]]

=
∑

µ′3,Γ2,Γ′2

∑
µ′5,Γ4,Γ′4

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
(Sxyz)−1

Γ′2,Γ2
Sxyz
µ′5,µ5

(FT 2
)Γ4

µ4µ′5
(Sxyz)−1

Γ′4,Γ4
Z[S4; Spun[Γ′2,Γ

′
4], µ1] (3.31)

=
∑

µ′3,Γ2,Γ′2

∑
µ′5,Γ4,Γ′4

∑
Γ

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
(Sxyz)−1

Γ′2,Γ2
Sxyz
µ′5,µ5

(FT 2
)Γ4

µ4µ′5
(Sxyz)−1

Γ′4,Γ4
(FT 2

)Γ
Γ′2,Γ

′
4
Z[S4; Γ, µ1] (3.32)

=
∑

µ′3,Γ2,Γ
′
2

µ′5,Γ4,Γ′4

∑
Γ,Γ′,Γ1,Γ′1

Sxyz
µ′3,µ3

(FT 2
)Γ2

µ2µ′3
(Sxyz)−1

Γ′2,Γ2
Sxyz
µ′5,µ5

(FT 2
)Γ4

µ4µ′5
(Sxyz)−1

Γ′4,Γ4

·(FT 2
)Γ
Γ′2,Γ

′
4
(Sxyz)−1

Γ′,Γ(FT 2
)Γ1
µ1Γ′S

xyz
Γ′1,Γ1

LTri
0,0,Γ′1

. (3.33)

Here we do the Step 1, Step 2 and Step 3 surgeries on Spun[Hopf[µ3, µ2]] first, then do the same
3-step surgeries on Spun[Hopf[µ5, µ4]] later, then we obtain Eq.(3.31). While in Eq.(3.31), the new
T 2-worldsheets Γ′2 and Γ′4 have no triple-linking with the worldsheet µ1. Here Γ′2 and Γ′4 are arranged
in the D3×S1 part of the S4 manifold, while µ1 is in the S2×D2 part of the S4 manifold. Indeed, Γ′2
and Γ′4 can be fused together in parallel to a new T 2-worldsheet Γ via the fusion algebra (FT 2

)Γ
Γ′2,Γ

′
4
,

so we obtain Eq.(3.32). Then we apply the Step 4, Step 5 and Step 6 surgeries on the T 2-worldsheets
Γ and µ1 of Z[S4; Spun[Γ], µ1] = Z[S4; Γ, µ1] in Eq.(3.32), we obtain the final form Eq.(3.33).

Use Eqs.(3.16),(3.26),(3.30) and (3.33), and plug them into the path integral surgery relations,
after massaging the relations, we derive a new quantum surgery formula (namely Eq.(3.12) in the
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earlier text):

Z


1

Z


1 2

3
4
5

 = Z


1 2

3

Z


1

4
5


⇒ LTri

0,0,µ1
·
∑

Γ,Γ′,Γ1,Γ′1

(FT 2
)Γ
Γ′2,Γ

′
4
(Sxyz)−1

Γ′,Γ(FT 2
)Γ1
µ1Γ′S

xyz
Γ′1,Γ1

LTri
0,0,Γ′1

=
∑

Γ′′2 ,η2,η′2

(Sxyz)−1
Γ′′2 ,Γ

′
2
(FT 2

)η2

µ1Γ′′2
Sxyz
η′2,η2

LTri
0,0,η′2

·
∑

Γ′′4 ,η4,η′4

(Sxyz)−1
Γ′′4 ,Γ

′
4
(FT 2

)η4

µ1Γ′′4
Sxyz
η′4,η4

LTri
0,0,η′4

,

here only µ1,Γ
′
2,Γ
′
4 are the fixed indices, other indices are summed over.

3.3.3 More discussions

For all path integrals of S4 in Eqs.(3.12), (3.13) and (3.15), each S4 is cut into two D4 pieces, so
D4 ∪S3 D4 = S4. We choose all the dashed cuts for 3+1D path integral representing B = S3, while
we can view the S3 as a spatial slice, with the following excitation configurations:

(i). A loop in Eq.(3.12) on the slice B = S3. Thus, we consider a natural 1-dimensional Hilbert
space (GSD=1), for a single shrinkable loop excitation configuration on the spatial S3.

(ii). A pair of particle-antiparticle in Eq.(3.13) on the slice B = S3. Thus, we consider a natural
1-dimensional Hilbert space (GSD=1), for this particle-antiparticle configuration on the spatial
S3.

(iii). A pair of loop-antiloop in Eq.(3.15) on the slice B = S3. In this case, here we require a stronger
criterion that all loop excitations are gapped without zero modes, then the GSD is 1 for all
above spatial section S3.

Thus all our surgeries satisfy the assumptions for Eq.(3.2).

3.3.4 Formulas for 3+1D fusion statistics

The above Verlinde-like formulas constrain the fusion data (e.g. N , FS1
, FS2

, FT 2
, etc.) and braiding

data (e.g. S, T , L(S2,S1), LTri, Sxyz, etc.). Moreover, we can derive constraints between the fusion
data itself. Since a T 2-worldsheet contains two non-contractible S1-worldlines along its two homology
group generators in H1(T 2,Z) = Z2, the T 2-worldsheet operator V T 2

µ contains the data of S1-worldline

operator WS1

σ . More explicitly, we can compute the state W
S1
y

σ1 W
S1
y

σ2 V
T 2
yz

µ2 |0D2
wx×T 2

yz
〉 by fusing two WS1

σ

operators and one V T 2

µ operator in different orders, then we obtain a consistency formula:∑
σ3

(FS1
)σ3
σ1σ2

(FT 2
)µ3
σ3µ2

=
∑
µ1

(FT 2
)µ1
σ2µ2

(FT 2
)µ3
σ1µ1

. (3.34)
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We organize our quantum statistics data of fusion and braiding, and some explicit examples of topo-
logical orders and their topological invariances in terms of our data in the Supplemental Material.

Lastly we provide more explicit calculations of Eq. (3.34), the constraint between the fusion data
itself. First, we recall that

W
S1
y

σ1 W
S1
y

σ2 = (FS1
)σ3
σ1σ2

W
S1
y

σ3 ,

V
T 2
yz

µ1 V
T 2
yz

µ2 = (FT 2
)µ3
µ1µ2

V
T 2
yz

µ3 ,

W
S1
y

σ1 V
T 2
yz

µ2 = (FT 2
)µ3
σ1µ2

V
T 2
yz

µ3 .

Of course, the fusion algebra is symmetric respect to exchanging the lower indices, (FT 2
)µ3
σ1µ2 =

(FT 2
)µ3
µ2σ1 . We can regard the fusion algebra (FS1

)σ3
σ1σ2

and (FT 2
)µ3
σ1µ2 with worldlines as a part of a

larger algebra of the fusion algebra of worldsheets (FT 2
)µ3
µ1µ2 . We compute the stateW

S1
y

σ1 W
S1
y

σ2 V
T 2
yz

µ2 |0D2
wx×T 2

yz
〉

by fusing two WS1

σ operators and one V T 2

µ operator in different orders.

On one hand, we can fuse two worldlines first, then fuse with the worldsheet,

W
S1
y

σ1 W
S1
y

σ2 V
T 2
yz

µ2 |0D2
wx×T 2

yz
〉

=
∑
σ3

(FS1
)σ3
σ1σ2

W
S1
y

σ3 V
T 2
yz

µ2 |0D2
wx×T 2

yz
〉

=
∑
σ3,µ3

(FS1
)σ3
σ1σ2

(FT 2
)µ3
σ3µ2

V
T 2
yz

µ3 |0D2
wx×T 2

yz
〉. (3.35)

On the other hand, we can fuse a worldline with the worldsheet first, then fuse with another worldline,

W
S1
y

σ1 W
S1
y

σ2 V
T 2
yz

µ2 |0D2
wx×T 2

yz
〉

=
∑
µ1

W
S1
y

σ1 (FT 2
)µ1
σ2µ2

V
T 2
yz

µ1 |0D2
wx×T 2

yz
〉

=
∑
µ1,µ3

(FT 2
)µ1
σ2µ2

(FT 2
)µ3
σ1µ1

V
T 2
yz

µ3 |0D2
wx×T 2

yz
〉 (3.36)

Therefore, by comparing Eqs.(3.35) and (3.36), we derive a consistency condition for fusion algebra
Eq. (3.34):

∑
σ3

(FS1
)σ3
σ1σ2

(FT 2
)µ3
σ3µ2 =

∑
µ1

(FT 2
)µ1
σ2µ2(FT 2

)µ3
σ1µ1 .

4 Summary of Quantum Statistics Data of Fusion and Braiding

We organize the quantum statistics data of fusion and braiding introduced in the earlier text into
Table 2. We propose using the set of data in Table 2 to label or characterize topological orders,
although such labels may only partially characterize topological orders. We also remark that Table
2 may not contain all sufficient data to characterize and classify all topological orders. What can be
the missing data in Table 2? Clearly, there is the chiral central charge c− = cL − cR, the difference
between the left and right central charges, missing for 2+1D topological orders. The c− is essential
for describing 2+1D topological orders with 1+1D boundary gapless chiral edge modes. The gapless
chiral edge modes cannot be fully gapped out by adding scattering terms between different modes,
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Quantum statistics data of fusion and braiding

Data for 2+1D topological orders:

• Fusion data:

N σ3
σ1σ2

= Fσ3
σ1σ2

(fusion tensor) from Eq. (2.23),

• Braiding data:

Sxy, T xy (modular SL(2, Z) matrices from MCG(T 2)) from Eq. (2.26) and Eq. (2.28),

Z[T 3
xyt;σ

′
1x, σ

′
2y, σ

′
3t] (or Z[S3; BR[σ1, σ2, σ3]) from Eq. (2.29), etc.

Data for 3+1D topological orders:

• Fusion data:

(FS1
)σ3
σ1σ2

, (FS2
)µ3
µ1µ2 , (FT 2

)µ3
µ1µ2 . (fusion tensor) from Eq. (2.34), Eq. (2.35), and Eq. (2.36).

• Braiding data:

Sxyz, T xy (modular SL(3,Z) matrices from MCG(T 3) from Eq. (2.48) and Eq. (2.49),

including Sxy)

LTri
0,0,µ (from LTri

µ3,µ2,µ1
of Eq. (2.43)), L

Lk(S2,S1)
µσ from Eq. (2.39),

Z[T 4#S2 × S2;µ′4, µ
′
3, µ
′
2, µ
′
1] from Eq. (2.46)

(from Z[S4; Link[Spun[BR[µ4, µ3, µ2]], µ1]] of Eq. (2.44)), etc.

Table 2: Some data for 2+1D and 3+1D topological orders encodes their quantum statistics properties,
such as fusion and braiding statistics of their quasi-excitations (anyonic particles and anyonic strings).
However, the data is not complete because we do not account the degrees of freedom of their boundary
modes, such as the chiral central charge c− = cL − cR for 2+1D topological orders.

because they are protected by the net chirality. So our 2+1D data only describes 2+1D non-chiral
topological orders. Similarly, our 2+1D/3+1D data may not be able to fully classify 2+1D/3+1D
topological orders whose boundary modes are protected to be gapless. We may need additional data
to encode boundary degrees of freedom for their boundary modes.

In some case, some of our data may overlap with the information given by other data. For example,
the 2+1D topological order data (Sxy, Txy, N σ3

σ1σ2
) may contain the information of Z[T 3

xyt;σ
′
1x, σ

′
2y, σ

′
3t]

(or Z[S3; BR[σ1, σ2, σ3]) already, since we know that we the former set of data may fully classify 2+1D
bosonic topological orders.

Although it is possible that there are extra required data beyond what we list in Table 2, we find
that Table 2 is sufficient enough for a large class of topological orders, at least for those described
by Dijkgraaf-Witten twisted gauge theory [31] and those gauge theories with finite Abelian gauge
groups. In the next Section, we will give some explicit examples of 2+1D and 3+1D topological orders
described by Dijkgraaf-Witten topological gauge theory and group cohomology [31], which can be
completely characterized and classified by the data given in Table 2.
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5 Examples of Topological Orders, TQFTs and Topological Invari-
ances

In Table 3, we give some explicit examples of 2+1D and 3+1D topological orders from Dijkgraaf-Witten
twisted gauge theory. We like to emphasize that our quantum-surgery Verlinde-like formulas apply
to generic 2+1D and 3+1D topological orders beyond the gauge theory or field theory description.
So our formulas apply to quantum phases of matter or theories beyond the Dijkgraaf-Witten twisted
gauge theory description. We list down these examples only because these are famous examples with
a more familiar gauge theory understanding. In terms of topological order language, Dijkgraaf-Witten
theory describes the low energy physics of certain bosonic topological orders which can be regularized
on a lattice Hamiltonian [24,26,34] with local bosonic degrees of freedom (without local fermions, but
there can be emergent fermions and anyons).

We also clarify that what we mean by the correspondence between the items in the same row in
Table 3:

• (i) Quantum statistic braiding data,

• (ii) Group cohomology cocycles

• (iii) Topological quantum field theory (TQFT).

What we mean is that we can distinguish the topological orders of given cocycles of (ii) with the low
energy TQFT of (iii) by measuring their quantum statistic Berry phase under the prescribed braiding
process in the path integral of (i). The Euclidean path integral of (i) is defined through the action S
of (iii) via

Z =

∫
[DBI ][DAI ] exp[−S]. (5.1)

For example, the mutual braiding (Hopf linking) measures the S matrix distinguishing different types
of
∫

iNI
2π B

I ∧ dAI + ipIJ
2π AI ∧dAJ with different pIJ couplings; while the Borromean ring braiding can

distinguish different types of
∫

iNI
2π B

I ∧ dAI+ ic123A
1∧A2∧A3 with different c123 couplings. However,

the table does not mean that we cannot use braiding data in one row to measures the TQFT in another
row. For example, S matrix can also distinguish the

∫
iNI
2π B

I ∧ dAI + ic123A
1 ∧A2 ∧A3-type theory.

However, Z[S3; BR[σ1, σ2, σ3] = Z[T 3
xyt;σ

′
1x, σ

′
2y, σ

′
3t] = 1 is trivial for

∫
iNI
2π B

I ∧ dAI + ipIJ
2π AI ∧ dAJ

with any pIJ . Thus Borromean ring braiding cannot measure nor distinguish the nontrivial-ness of
pIJ -type theories.

Recently, after the appearance of our previous work [1, 2], further progress has been made on
systematically and rigorously deriving the topological invariants of TQFTs, such as:

1. The TQFT link invariants [33],

2. The GSD data and the partition function [35] without extended operator insertions, with or without
topological boundary,

directly from the continuum bosonic TQFT formulation.
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(i). Path-integral linking invariants;
Quantum statistic braiding data

(ii). Group-cohomology cocycles
distinguished by the braiding in (i)

(iii). TQFT actions S characterized
by the spacetime-braiding in (i)

2+1D

Z

 1
2


= Z[S3; Hopf[σ1, σ2]] = Sσ̄1σ2

exp
(

2π ipIJ
NINJ

aI(bJ + cJ − [bJ + cJ ])
) i

∫
NI
2π
BI ∧ dAI + pIJ

2π
AI ∧ dAJ

AI → AI + dgI ,

NIB
I → NIB

I + dηI .

Z


1

2 3


= Z[S3; BR[σ1, σ2, σ3];

Also Z[T 3
xyt;σ

′
1x, σ

′
2y, σ

′
3t]

exp
(

2π ip123
N123

a1b2c3
) i

∫
NI
2π
BI ∧ dAI + c123A

1 ∧A2 ∧A3

AI → AI + dgI ,

NIB
I → NIB

I + dηI + 2πc̃IJKA
JgK

−πc̃IJKgJ dgK .

3+1D

Z


 = L

(S2,S1)
µσ 1

i
∫
NI
2π
BI ∧ dAI

AI → AI + dgI ,

NIB
I → NIB

I + dηI .

Z

 1
2

3

 = LTri
µ3,µ2,µ1

= Z[S4; Link[Spun[Hopf[µ3, µ2]], µ1]]

exp
( 2π ipIJK

(NIJ ·NK)
(aIbJ)(cK + dK − [cK + dK ])

) i
∫
NI
2π
BI ∧ dAI+

∑
I,J

NINJ pIJK
(2π)2NIJ

AI ∧AJ ∧ dAK

AI → AI + dgI ,

NIB
I → NIB

I + dηI + εIJ
NINJ pIJK

2πNIJ
dgJ ∧AK ,

here K is fixed.

Z

 1

2

3 4


= Z[S4; Link[Spun[BR[µ4, µ3, µ2]], µ1]];

Also Z[T 4#S2 × S2;µ′4, µ
′
3, µ
′
2, µ
′
1]

exp
(

2π ip1234
N1234

a1b2c3d4

)
i
∫
NI
2π
BI ∧ dAI + c1234A

1 ∧A2 ∧A3 ∧A4

AI → AI + dgI ,

NIB
I → NIB

I + dηI − πc̃IJKLAJAKgL

+πc̃IJKLA
JgKdgL − π

3
c̃IJKLg

JdgKdgL.

Table 3: Examples of topological orders and their topological invariances in terms of our data in the spacetime
dimension d+ 1D. Here some explicit examples are given as Dijkgraaf-Witten twisted gauge theory [31] with
finite gauge group, such as G = ZN1 × ZN2 × ZN3 × ZN4 × . . . , although our quantum statistics data can be
applied to more generic quantum systems without gauge or field theory description. The first column shows
the path integral form which encodes the braiding process of particles and strings in the spacetime. In terms
of spacetime picture, the path integral has nontrivial linkings of worldlines and worldsheets. The geometric
Berry phases produced from this adiabatic braiding process of particles and strings yield the measurable
quantum statistics data. This data also serves as topological invariances for topological orders. The second
column shows the group-cohomology cocycle data ω as a certain partition-function solution of Dijkgraaf-
Witten theory, where ω belongs to the group-cohomology group, ω ∈ Hd+1[G,R/Z] = Hd+1[G,U(1)]. The
third column shows the proposed continuous low-energy field theory action form for these theories and their
gauge transformations. In 2+1D, A and B are 1-forms, while g and η are 0-forms. In 3+1D, B is a 2-form,
A and η are 1-forms, while g is a 0-form. Here I, J,K ∈ {1, 2, 3, . . . } belongs to the gauge subgroup indices,
N12...u ≡ gcd(N1, N2, . . . , Nu) is defined as the greatest common divisor (gcd) of N1, N2, . . . , Nu. Here pIJ ∈
ZNIJ , p123 ∈ ZN123 , pIJK ∈ ZNIJK , p1234 ∈ ZN1234 are integer coefficients. The cIJ , c123, cIJK , c1234 are quantized
coefficients labeling distinct topological gauge theories, where c12 = 1

(2π)
N1N2 p12

N12
, c123 = 1

(2π)2
N1N2N3 p123

N123
,

c1234 = 1
(2π)3

N1N2N3N4 p1234

N1234
. Be aware that we define both pIJ... and cIJ... as constants with fixed-indices I, J, . . .

without summing over those indices; while we additionally define c̃IJ... ≡ εIJ...c12... with the εIJ... = ±1 as an
anti-symmetric Levi-Civita alternating tensor where I, J, . . . are free indices needed to be Einstein-summed
over, but c12... is fixed. The lower and upper indices need to be summed-over, for example

∫
NI
2πB

I ∧ dAI means

that
∫ s∑
I=1

NI
2πB

I ∧ dAI where the value of s depends on the total number s of gauge subgroups G =
∏s
i ZNi .

The quantization labelings are described and derived in [26, 32]. See the explicit verification of our proposed
link invariants from continuum TQFT formulations in [33].
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The relevant field theories are also discussed in Ref. [32, 36–41], here we systematically summa-
rize and claim the field theories in Table 3 third column indeed describe the low energy TQFTs of
Dijkgraaf-Witten theory. It can be checked that the continuum TQFT formulation can indeed match
to Dijkgraaf-Witten theory [31] and its discrete cochain formulation [42], [26], [43, 44].

Readers can find the similarity of our Table 3 and Ref. [33]’s Table I. However, we emphasize that
the derivations and the logic of our present work and Ref. [33] are somehow opposite.

I. Our present work [1, 2] starts from the following inputs:

(1) Spacetime topology, geometric topology and surgery properties

derive−→ (2) quantum surgery formulas

derive−→ (3) possible link invariants and spacetime braiding process

detect−→ (4) group cohomology cocycles and TQFTs, (5.2)

which is going from the inputs of purely quantum mechanics and mathematical geometric topol-
ogy, to obtain the left-hand-side (LHS) of Table 3, then to obtain the middle, then the right-
hand-side (RHS) of Table 3.

II. Ref. [33] starts from the following inputs of:

(4) group cohomology cocycles and continuum TQFTs

derive−→ (3) link invariants and spacetime braiding process . (5.3)

which is logically going from the opposite direction.

Further recently, the formulations of continuum TQFTs or discrete cochain TQFTs have also been
generalized, from

1. TQFTs for the bosonic Dijkgraaf-Witten theory ( [33] and References therein),

to

2. Fermionic version of TQFT gauge theory: Fermionic finite-group gauge theory and spin-TQFT,
and their braiding statistics or topological link invariants [35,45,46]

and

3. Higher-gauge theory as TQFTs, see some selective examples in [47,48], [37], [33], [49–53].

6 Conclusion

6.1 Comparison to Previous Works

It is known that the quantum statistics of particles in 2+1D begets anyons, beyond the familiar statis-
tics of bosons and fermions, while Verlinde formula [15] plays a pivotal role to dictate the consistent
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anyon statistics. In this work, we derive a set of quantum surgery formulas analogous to Verlinde’s
constraining the fusion and braiding quantum statistics of excitations of anyonic particle and anyonic
string in 3+1D. We derive a set of fairly general quantum surgery formulas, which are also constraints
of fusion and braiding data of topological orders. We work out the explicit derivations of Eq. (3.9) in
2+1D, Eqs. (3.12) and (3.13) in 3+1D, and then later we also derive Eq. (3.15) in 3+1D step by step.
We also derive the fusion constraint Eq.(3.34) explicitly.

A further advancement of our work, comparing to the pioneer work of Witten Ref. [6] on 2+1D
Chern-Simons gauge theory, is that we apply the surgery idea to generic 2+1D and 3+1D topological
orders without assuming quantum field theory (QFT) or gauge theory description. Although many
lattice-regularized topological orders happen to have TQFT descriptions at low energy, we may not
know which topological order derives which TQFT easily. Instead we simply use quantum amplitudes
written in the bra and ket (over-)complete bases, obtained from inserting worldline/sheet operators
along the cycles of non-trivial homology group generators of a spacetime submanifold, to cut and glue to
the desired path integrals. Consequently our approach, without the necessity of any QFT description,
can be powerful to describe more generic quantum systems.14 While our result is originally based on
studying specific examples of TQFT (such as Dijkgraaf-Witten gauge theory [31]), we formulate the
data without using QFT. We have incorporated the necessary generic quantum statistic data and new
constraints to characterize some 3+1D topological orders (including Dijkgraaf-Witten’s), we will leave
the issue of their sufficiency and completeness for future work. Formally, our approach can be applied
to any spacetime dimensions.

6.2 Physics and Laboratory Realization, and Future Directions

Now we comment about the more physical and laboratory realization of implementing the cut-and-
glue surgery procedure we discussed earlier. The matrix obtained from quantum wavefunction-overlap
between different ground states of Hilbert space of a quantum matter,15 forms a representation of the
mapping class group (MCG) of the real space manifold (Mspace) where the quantum matter resides
(See [54], [25, 26], and references therein). This matrix can be written as:

ϕ(σ′,µ′,...),(σ,µ,...) ≡ 〈ψσ′,µ′,...|ϕ̂|ψσ,µ,...〉, (6.1)

ϕ̂ ∈ MCG(Mspace), |ψσ,µ,...〉 ∈ H, (6.2)

rank(ϕ(σ′,µ′,...),(σ,µ,...)) = GSDMspace = dim(H) = |Z(Mspace × S1)|. (6.3)

It is worthwhile to mention that for 2+1D topological order, one can construct group elements of
the mapping class group of a genus g Riemann 2-surface Mg, obtained via a series of projections on
selecting the quasi-excitation sectors (i.e., projection by selecting the ground state sector |ψσ,µ,...〉),
along at least above a certain number of mutually intersecting non-contractible cycles on theMg [55].
It is noted that
(i) A genus g Riemann 2-surface Mg can be realized in a 2D planar geometries via multi-layers or
folded constructions of the desired topological orders, with the appropriate types of gapped boundaries
designed.

14Namely, in our formulation and in our present derivation of quantum surgery formulas, we do not require the
second quantization description of a quantum theory such as a QFT, which is more subtle to be formulated rigorously
and mathematically. Instead we only require the first quantization description of a quantum theory via the standard
mathematically well-defined standard quantum mechanics.

15 Preferably, the following discussion is rigorous and well-defined, when we limit our discussion such that quantum
matter is topologically ordered, the so-called topological order.
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(ii) The projections on selecting the quasi-excitation sectors (named topological charge projections
in [55]) can be implemented as the adiabatic unitary deformations by tuning microscopic parameters
of the quantum system locally (at the lattice scale or at the ultraviolet high energy locally).
The result suggests that, in 2+1D, we could potentially implement and realize the quantum represen-
tation of modular transformations or MCG(Mg) of topological orders in physical systems.

Future Directions:

1. It will be interesting to study the 3+1D story analogous to what [55] has done for the “mapping
class group representation realization” in 2+1D, given that our present and earlier work indicate
exotic braiding, fusion and “quantum surgeries” happen in 3+1D [1,2].

2. There is a recent interest concerning a constraint of fusion and half-braiding process16 of boundary
excitations of 2+1D topological orders (or 3d TQFTs), coined boundary’s defect Verlinde for-
mula [56]. The approach relies on a tunneling matrix data Wia, defined in [57], which shows how
an anyon i in 3d TQFT Phase A can decompose into a direct sum of a set of anyons ⊕aWiaa
after tunneling to another 3d TQFT Phase B. Ref. [56] suggests a defect Verlinde formula (on 2d
boundary of 3d TQFT) based on the relation of data of:
• The fusion rules of the boundary excitations in 2d, and
• The half-braiding or half-linking modular data (a modified modular S matrix) for 3d TQFT with
2d boundary.
It will be an illuminating future direction to derive an analogous story for 3d (2+1D) boundary
of a 4d (3+1D) TQFT with an analogous boundary excitation quantum surgery formulas like ours
(Eqs. (3.12), (3.13) and (3.15) in 4d). Such a boundary’s defect Verlinde formula may be helpful
to constrain other physical observables of systems of gapped boundary with defects, such as the
boundary topological degeneracy [58–60] [57]. Moreover, by “the bulk-boundary 3d-2d correspon-
dence,” we see that
♣ The 2d boundaries/interfaces of 3d TQFT systems can be regarded as the 2d defects surfaces in
3d TQFT;
via “dimensional reductions (lowering one dimension)” thus the above discussion intimately relates
to
♣ The 1d boundaries/interfaces of 2d CFT, or the 1d defect lines in 2d CFT. The later direction
of 2d-1d system had generated various interests in the past [61–66] and fairly recently [67–69].
Topological defects in higher dimensions viewed as the gapped interfaces/boundaries in any di-
mensions of group cohomology theory is explored recently in [70]. So Ref. [70]’s study may play
a helpful guiding role along this direction. Possible outcomes along this direction may lead us to
understand:
♠ Relation between Verlinde formula of 3d TQFT/2d CFT and the defect Verlinde formula [56]
(on 2d boundary of 3d TQFT, or 1d defect line of 2d CFT).
to
♠ Relation between our quantum surgery formulas [1,2] of 4d TQFT/3d CFT and the defect anal-
ogous of these quantum surgery formulas (on 3d boundary of 4d TQFT; or 1d defect line or 2d
defect surface of 3d CFT).

3. It will be interesting to study the analogous Verlinde formula constraints for 2+1D boundary states
of 3+1D bulk systems (thus relates to the direction 2), such as highly-entangled gapless modes, 3d

16The half-braiding means that the braiding of the bulk excitations in 3d (2+1D) is moving through a half-circle
1-worldline to the constrained 2d (1+1D) boundary.
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conformal field theories (CFT) and 3d anomalies.17 For example, one can start from exploring the
bulk-boundary correspondence between TQFT and CFT; such as for 3d TQFT and 2d CFT ( [6]
and the group-cohomology version of correspondence [71]), and for 4d TQFT and 3d CFT [72,73],
of some bulk quantum systems. The set of consistent quantum surgery formulas we derive may lead
to an alternative effective way to bootstrap [74, 75] 3+1D topological states of matter and 2+1D
CFT.

Note added: The formalism and some results discussed in this work have been partially reported in
the first author’s Ph.D. thesis [2] and in [1]. Readers may refer to Ref. [2] for other discussions. Other
related aspects of research will also be reported in upcoming work [17], [76] and [77].
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