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Abstract

We formulate a family of spin Topological Quantum Filed Theories (spin-TQFTs) as fermionic
generalization of bosonic Dijkgraaf-Witten TQFTs. They are obtained by gauging G-equivariant
invertible spin-TQFTs, or, in physics language, gauging the interacting fermionic Symmetry
Protected Topological states (SPTs) with a finite group G symmetry. We use the fact that the
latter are classified by Pontryagin duals to spin-bordism groups of the classifying space BG.
We also consider unoriented analogues, that is G-equivariant invertible pin±-TQFTs (fermionic
time-reversal-SPTs) and their gauging. We compute these groups for various examples of abelian
G using Adams spectral sequence and describe all corresponding TQFTs via certain bordism
invariants in dimensions 3, 4, and other. This gives explicit formulas for the partition functions
of spin-TQFTs on closed manifolds with possible extended operators inserted. The results
also provide explicit classification of ’t Hooft anomalies of fermionic QFTs with finite abelian
group symmetries in one dimension lower. We construct new anomalous boundary deconfined
spin-TQFTs (surface fermionic topological orders). We explore SPT and SET (symmetry enriched
topologically ordered) states, and crystalline SPTs protected by space-group (e.g. translation
Z) or point-group (e.g. reflection, inversion or rotation Cm) symmetries, via the layer-stacking
construction.
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1 Introduction and summary

Topological quantum field theories (TQFTs) play an important role both in physics and mathematics.
In physics, they can be considered as the simplest examples of quantum field theories. Unlike the
mathematically poor-defined “physical” QFTs (in particular, the gauge theories in the Standard model,
that describe interactions between the quarks, leptons and gauge mediator bosons), TQFTs instead
can be mathematically well-defined. Moreover, TQFTs not only play the role of toy models, but
can also be used to describe topological phases of condensed matter system. Another application of
TQFTs is systematic description of anomalies of general (i.e. not necessarily topological) QFTs in one
less dimension.

In mathematics, the TQFTs provide a natural framework for topological invariants of manifolds
as well as invariants of embedded submanifolds up to ambient isotopy (i.e. links in 3-manifolds). The
TQFT structure allows calculation of invariants on complicated manifolds via surgery.

In this work, we are interested in study of spin-TQFTs, that is TQFTs that provide invariants of
manifolds that depend not just on their topology but also a choice of spin structure. From physics
point of view this generalization is very natural, since the physical system often contain fermions (in
particular, the matter in the real world is composed of fermions). Therefore the spin structure on the
space-time manifold is needed to describe how spinors transform under parallel transport.

From mathematics point of view, the spin-structure is also quite natural, since it provides a lift
of SO(n)-principle bundle of orthonormal frames in the tangent bundle to a principle bundle with
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a simply-connected structure group Spin(n). Such extra structure often allows construction of more
refined invariants.

The structure of the article is the following. In Section 2, we review the notion of spin-TQFT
and describe a way to produce a family of spin-TQFTs labeled by elements of a spin-bordism groups
of a classifying space of a finite group. In Section 3, we review some invariants of spin-manifolds
that will be useful for construction of spin-bordism invariants that appear in expressions for spin-
TQFT partition function on a closed manifold. In Section 4, we compute of spin-bordism groups of
classifying spaces of some simple abelian groups. In Section 5, we consider the invariants of (surface)
links produced by such spin-TQFTs. In Section 6, we calculate bordism groups of manifolds with
Spin×Z2 Z2m structure, extending some of the results previously appeared in the literature. In Section
7, we briefly consider unoriented analogues of spin-TQFTs, that is as the pin±-TQFTs. In Section
8 , we construct some symmetry-preserving spin-TQFTs living on the boundary of one-dimension-
higher bulk SPTs, explicitly in a TQFT language. In Section 9, we introduce the crystalline-SPTs
that correspond to bordism invariants of manifolds with G-bundles, where the symmetry G involves
a spatial translation Z-symmetry, and then relate them to various previously constructed SPTs with
finite abelian symmetries. In Section 10, we comment on interpretation of the results in topological
quantum matter.

For notational convention, we abbreviate the n-dimensional spacetime as nd. However, in certain
cases, we may also use the notation from condensed matter community denoting (n′ + 1)D as an
n′ + 1-dimensional space+time, where n = n′ + 1. We also use a shorthand notation fSPTs for the
fermionic SPTs. In Section 10, other than fSPTs protected by internal symmetries (denoted as a finite
group G-symmetry in this article), we will also explore crystalline-fSPTs, which means that the SPTs
is also protected by space group (such as the translational symmetry) or point group symmetries

(e.g. the rotational symmetry). We write the fermion parity symmetry as Zf2 , where Zf2 is always
implicitly included for any fSPTs. It can also be understood as the center of Spin(n) symmetry that

extends SO(n) Euclidean spacetime symmetry. When we omit writing Zf2 but only quote G-fSPTs,

it means fSPTs with G and Zf2 -symmetry, more precisely it means an invertible spin TQFT with

G× Zf2 -symmetry.

2 Spin-TQFTs and fermionic gauge theories

In this section, for completeness, we briefly review the notions of spin-TQFT and its equivariant
version.

An ordinary n-dimensional TQFT can be defined as a symmetric monoidal functor Z from the
n-dimensional bordism category Bordn to the category of complex vector spaces VectC [1]. The objects
of Bordn are oriented smooth1 closed (n− 1)-manifolds. The morphisms are n-dimensional bordisms
between them modulo diffeomorphisms. A bordism from an (n − 1)-manifold Mn−1

1 to an (n − 1)-

manifold Mn−1
2 is an oriented smooth n-manifold Mn with an isomorphism ∂Mn ∼= M̄1

n−1 tM2
n−1

where bar denotes change of orientation. The fact that the functor is symmetric monoidal means that
both categories are treated as symmetric monoidal categories and the functor respects this structure.
The tensor product product structure in the bordism category is given by disjoint union, which is
symmetric. The role of the unit is played by the empty manifold ∅. This gives a symmetric monoidal
structure on Bordn. On VectC the symmetric monoidal structure is given by the ordinary tensor
product with unit being C. The value of the functor Z on a closed n-manifold Mn is then a linear

1There are generalization without theses conditions.
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map Z(Mn) : C → C, which can be identified with an element of C itself. The complex number
Z(Mn) is often referred to as partition function. Physically an objects of the bordism category, an
(n − 1)-dimensional manifolds Mn−1, is a spatial manifolds on which the theory is quantized and
the corresponding vector space, that is the value of the functor Z(Mn−1), is the Hilbert space of the
quantum theory2.

This definition has various natural generalizations which involve a choice of some additional
structures on manifolds (provided a structure on an n-manifold induces a structure on its (n − 1)-
dimensional boundary). In particular, one can consider manifolds with spin structure, that is a
lift of SO(n) orthonormal frame bundle to Spin(n) principle bundle, with respect to the extension
Z2 → Spin(n) → SO(n). A spin structure on a manifold induces a natural spin structure on its
boundary (see e.g. [2]), therefore one can define the corresponding bordism category of spin manifolds
BordSpinn . The vector spaces associated to (n − 1)-dimensional manifolds can be equipped with Z2-
grading: Z(Mn−1) = Z0(Mn−1)⊕Z1(Mn−1). Physically the even and odd parts of vector spaces are
bosonic and fermionic states respectively in the Hilbert space Z(Mn−1). One can therefore give the
following definition (cf. [3, 4, 5]):

Definition 1. An n-dimensional spin-TQFT is symmetric monoidal functor

Z : BordSpinn → VectZ2
C (2.1)

where BordSpinn is the category of n-dimensional spin-bordisms and VectZ2
C is the category of Z2-graded

vector spaces3, satisfying

Z(Mn−1 × S1
±) = dimZ0(Mn−1)± dimZ1(Mn−1) (2.2)

for any closed (n − 1)-dimensional spin-manifold Mn−1, where S1
± is a circle with even/odd-spin

structure.

The last condition can be understood as topological spin-statistics constraint. The notion can be
also generalized to non-orientable manifolds and bordisms between them. The analog of the spin-
structure is pin± structure, the lift of O(n) bundle with respect to one of the two non-trivial central
extensions Z2 → Pin±(n)→ O(n). The extensions can be distinguished by the following commutative
diagram

Z2 Pin±(n) O(n)

Z2 Pin±(1) O(1)

(2.3)

where O(1) ∼= Z2 and Pin+(1) ∼= Z2 × Z2, Pin−(1) ∼= Z4. In this work, we firstly focus on orientable
case, and later discuss non-orientable pin± cases in Section 7.

Another natural generalization involves a choice of (isomorphism class of) principal G-bundle over
manifolds, where G is topological group. Equivalently, one can consider maps to its classifying space4

BG up to homotopy. One can consider the corresponding bordism category Bordn(BG) where objects
are pairs (Mn−1, f : Mn−1 → BG). The morphisms between (Mn−1

1 , f1) and (Mn−1
2 , f2) are pairs

2In physics literature such spaces are often denoted by a different symbol, e.g. H(Mn−1), while Z is only used for
partition function, that is the value of the functor Z on a closed n-manifold.

3The morphisms are grading preserving linear maps.
4Which can be defined as a connected topological space (unique up to homotopy) satisfying π1(BG) = 1, πi(BG) =

0, i > 1
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(Mn, g : Mn → BG) such that5 ∂Mn ∼= M̄n−1
1 tMn−1

2 , g|M̄n−1
1

= f1, g|M̄n−1
2

= f2. Then G-equivariant

TQFT can be defined as a symmetric monoidal functor Bordn(BG)→ VectC. Physically the group G
has meaning of global symmetry group of the theory.6

One can also, of course, combine the notions above and consider G-equivariant spin-TQFT which
is a symmetric monoidal functor BordSpinn (BG) → VectZ2

C . Even more generally, one can consider
the bordism category for any extension Hn → SO(n) (or O(n) in non-orientable case) and the cor-
responding bordism category BordHnn where manifolds are equipped with Hn tangential structures,
that is principle Hn-bundles that are lifts of SO(n) orthonormal tangent frame bundles. Then one
can define TQFT with symmetry Hn as a functor from BordHnn to the category of complex vector
spaces (see [6] for details). The case of G-equivariant spin-TQFT is then the particular case with
Hn = Spin(n)×G.

In what follows we will also use the notion of an invertible TQFT. This is a TQFT such that the
value of the functor on any (n−1)-manifold is a one dimensional vector space (that is, in general non-
canonically, isomorphic to C) and the value on any bordism is an invertible homomorphism. Invertible
TQFTs form an abelian group, while all TQFTs only form a monoid. The product Z1 · Z2 of TQFT
functors Zi is defined by (Z1 · Z2)(M) = Z1(M) ⊗ Z2(M). Physically taking the product of two
quantum field theories means stacking them together without interaction.

2.1 Gauging

In this work, we are interested in obtaining non-trivial spin-TQFTs by gauging G-equivariant invertible
spin-TQFTs with finite symmetry group G. The theories obtained this way can be understood as a
direct generalization of Dijkgraaf-Witten TQFTs [7] to the case of spin-TQFTs. From physics point
of view an invertible G-equivariant TQFT can be understood as a classical field theory, where the
partition function is given by the exponentiated action which depends on the background G gauge
field, while the corresponding gauged TQFT is the quantum theory where the gauge field is dynamical.
Formally, the gauging procedure can be understood as the following map{

invertible G-equivariant
spin-TQFTs

}
−→ {spin-TQFTs}

Z 7−→ Zgauged

(2.4)

such that the values of functors on closed n-manifolds (i.e. partition function) are related as follows:

Zgauged(Mn) =
∑

[f ]∈[Mn,BG]

1

|Aut(f)|
Z(Mn, f) (2.5)

where the sum is performed over [Mn, BG], homotopy classes of maps from Mn to BG, and Aut(f)
denotes the automorphism group of a principle G-bundle over Mn corresponding to the map f :
Mn → BG. Equivalently, Aut(f) can be understood as the fundamental group of the corresponding
connected component of f in the space of maps Maps(Mn, BG). In the case when G is abelian,
there is an isomorphism [Mn, BG] ∼= H1(M3, G) which is the property of the Eilenberg-MacLane
space K(G, 1) ≡ BG. More explicitly, the function f : Mn → BG corresponds to an element

5As before, the bordism data contains a choice of the isomorphism between Mn−1
2 and the boundary, however we will

usually not indicate it explicitly.
6In the sense that one can couple the theory to a background G gauge field. There is no condition that G acts

faithfully on the operators of the theory.
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f∗(e) ∈ H1(Mn, G) where e is a generator of H1(BG,G). In this paper, however, we will use the same
symbol (e.g. f above) for both a function Mn → BG and the corresponding element in H1(Mn, BG).
In the abelian case Aut(f) = G for any f .

The relation (2.5) can be extended to the full functors analogously to Dijkgraaf-Witten theories
[8, 9]. In particular, the values of the functor on the objects are related as follows:

Zgauged(Mn−1) =
⊕

[f ]∈CMn−1

Z(Mn−1, f) (2.6)

where CMn−1 is the following subset of the set of homotopy classes of maps Mn−1 → BG:

CMn−1 :=

{
[f ]
∣∣∣ Z(Mn−1 × S1, g) ∈ C is the same

for all g, s.t. g|Mn−1×pt ∼ f

}
⊂ [Mn−1, BG]. (2.7)

This subset of [Mn−1, BG] has the following meaning. From functoriality of Z it follows that
Z(Mn−1, f) forms a (one dimensional) representation of Aut(f). The representation is realized
as follows. As was mentioned above, an element [h] ∈ Aut(f) correspond to a closed path in
Maps(Mn−1, BG) starting and ending at f , considered up to homotopy. Each such path gives a func-
tion h : [0, 1]→ Maps(Mn−1, BG), or, equivalently, h′ : [0, 1]×Mn−1 → BG, such that h′|0 = h′|1 = f .
Then

Z([0, 1]×Mn−1, h′) : Z(Mn−1, f)→ Z(Mn−1, f) (2.8)

provides the action of h ∈ Aut(f) on Z(Mn−1, f). Then CMn−1 appearing in (2.6) can be also defined
as the subset of homotopy classes of functions f : Mn−1 → BG such that Z(Mn−1, f) is a trivial
representation of Aut(f). Physically this can be interpreted as the Gauss law constraint. One can
easily see that the condition (2.2) is automatically satisfied. In particular,

Zgauged(Mn−1 × S1
±) =

∑
[g]∈[Mn−1×S1,BG]

1

|Aut(g)|
Z(Mn−1 × S1

±, fg) =

∑
[f ]∈[Mn−1,BG]

1

|Aut(f)|
∑

[h]∈Aut(f)

Z(Mn−1 × S1
±, h

′) =
∑

[f ]∈CMn−1

Z(Mn−1 × S1
±, pr∗f) (2.9)

where the map h′ is related to the element h ∈ Aut(f) as above and pr∗ is the pullback with respect
to the projection map pr : Mn−1×S1 →Mn−1. In the last equality we used the fact that Z(Mn−1×
S1
±, h

′) is the character of one dimensional representation Z(Mn−1, f) of group Aut(f) defined above,
and applied orthogonality property of characters. Only characters of trivial representations survive
after taking the sums over the elements of the group. Finally, since Z is an invertible spin-TQFT, we
have:

Z(Mn−1 × S1
±, pr∗f) = dimZ0(Mn−1, f)± dimZ1(Mn−1, f) (2.10)

where in the right hand side one of the graded dimensions is zero and the other is 1. In particular,
the total dimension of the Hilbert space of the gauged spin-TQFT on Mn−1 is given by

dimZgauged(Mn−1) = |CMn−1 |. (2.11)

The value of the functor Zgauged on a bordism Mn between Mn−1
1 and Mn−1

2 is then a linear map

Zgauged(Mn) :
⊕

[f1]∈C
Mn−1

1

Z(Mn−1
1 , f1) −→

⊕
[f2]∈C

Mn−1
2

Z(Mn−1
2 , f2) (2.12)
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given by the following expression:

Zgauged(Mn) =
⊕

[f1,2]∈C
Mn−1

1,2

∑
[g]

g|
Mn−1

1,2
= f1,2

Z(Mn, g)

|Aut(g)| |Aut(f1)|
(2.13)

where
Z(Mn, g) : Z(Mn−1

1 , f1) −→ Z(Mn−1
2 , f2). (2.14)

The factor 1/|Aut(f1)| is needed so that the functor satisfies composition property (cf. [8]). The
formulas (2.12) and (2.12) then can be considered as the definition of the gauging map (2.4).

Invertible TQFTs with symmetry Hn, satisfying certain additional properties: reflection-positivity
and being extended, were classified in [6] (also in [10, 11, 12] from more physical perspective). From
physics point of view these additional requirements are quite natural and expected in theories describ-
ing realistic quantum systems. Namely, reflection-positivity is a Wick-rotated version of unitarity and
being extended corresponds to locality. In the case of Hn = Spin(n)×G the result can be formulated
as follows7:

Tor

{
deformation classes of G-equivariant

reflection-positive invertible spin-TQFTs

}
∼= Hom(Tor ΩSpin

n (BG), U(1)) (2.16)

More general formulation of the result will be mentioned and used in Section 6. As was pointed
out above, invertible TQFTs form an abelian group (the additional conditions are respected by the
product) and the isomorphism above should be understood as an isomorphism between abelian groups.
The right hand side is the Pontryagin dual to the torsion subgroup of spin-bordism group of BG, which
is defined as follows:

ΩSpin
n (BG) :=

{
pairs (Mn, f : Mn → BG),
Mn is spin n-manifold

}
/ ∼ bordisms (2.17)

where bordisms are understood as morphisms in the category BordSpinn+1 (BG) defined above. The set of
equivalence classes has a natural abelian group structure under disjoint union operation. This abelian
group is always discrete and finitely generated, that is isomorphic to the finite product of finite cyclic
groups and copies of Z.

The correspondence between G-equivariant TQFTs and the elements of the abelian group in the
right hand side of (2.16) is realized as follows. The embedding of the torsion subgroup Tor ΩSpin

n (BG)
into the full spin bordism group induces a surjective map between their Pontryagin duals. Moreover,
the connected elements of the group Hom(ΩSpin

n (BG), U(1)) map to the same elements of the Pon-
tryagin dual to the torsion subgroup. Therefore the right hand side of (2.16) can be understood as
the group of connected components:

Hom(Tor ΩSpin
n (BG), U(1)) = π0Hom(ΩSpin

n (BG), U(1)) (2.18)

One can consider a G-equivariant spin-TQFT Zµ corresponding to an element

µ ∈ Hom(ΩSpin
n (BG), U(1)) (2.19)

7Note that the free part of the classification, conjecturally given by

Hom(ΩSpinn+1 (BG),Z), (2.15)

contains Chern-Simons-like theories, which are not strictly topological.

8



so that TQFTs corresponding to elements in the same connected component can be continuously
deformed into each other8. Such TQFT can be characterized by its values on closed manifolds as
follows:

Zµ(Mn, g) = µ
(
[(Mn, g)]

)
∈ U(1) ⊂ C (2.20)

where [ · ] denotes a class in the bordism group (2.17). Applying the gauging map described above one
can consider a (generically non-invertible) spin-TQFT Zµgauged labeled by the elements of the same set.

Note that non-torsion elements only appear in ΩSpin
n (BG) in dimensions n = 0 mod 4.

2.2 Relation to Dijkgraaf-Witten gauge theories and bosonic TQFTs

The TQFTs labeled by the elements µ ∈ Hom(ΩSpin
n (BG), U(1)) which are constructed above can be

understood as generalizations of Dijkgraaf-Witten topological gauge theories [7], for both ungauged
(“classical”) and gauged (“quantum”) versions. The Dijkgraaf-Witten theories are labeled by elements
of Hn(BG,U(1)). The explicit relation between two families of TQFTs is the following. The map

ΩSpin
n (BG) −→ Hn(BG,Z)

[(M,f)] 7−→ f∗[M ]
(2.21)

induces
Hn(BG,U(1)) ∼= Hom(Hn(BG,Z), U(1))→ Hom(ΩSpin

n (BG), U(1)). (2.22)

This maps Dijkgraaf-Witten theories to the theories constructed above. Note that the map is in
general neither surjective nor injective. Non-injectivity of the map (2.22) (which is equivalent to non-
surjectivity of (2.21)) means that SPTs (the un-gauged Dijkgraaf-Witten theories) labeled by different
elements of Hn(BG,U(1)) can become equivalent when considered on smooth spin-manifolds.9 How-
ever this will not happen in any examples that we consider in this paper. That is, in all examples
in this article, the map (2.21) is surjective, and, therefore, (2.22) is injective. In this case one can
consider Hn(BG,U(1)) as a subgroup of Hom(ΩSpin

n (BG), U(1)). The TQFTs Zµ and Zµgauged that

correspond to elements µ ∈ Hom(ΩSpin
n (BG), U(1)) that are in the image of (2.22) are not proper

spin-TQFTs, meaning that the values of the functor Zµ do not actually depend on spin structures.
Following physics terminology we will call such TQFTs bosonic, while others will be called fermionic.
In this work, we are interested in presenting explicit examples of the latter.

Note that invertible n-dimensional G-equivariant (non-spin) TQFTs are actually classified by
Hom(Tor ΩSO

n (BG), U(1)), instead of Hn(BG,U(1)), where ΩSO
n (BG) is the ordinary oriented bordism

group of BG generated by pairs (M,f : M → BG) where M is an oriented manifold. The relation to

8Meaning that there are continuous maps from a path connecting points in Hom(ΩSpinn (BG), U(1)) to all values of
the TQFT functor.

9 Of course, it is known that Dijkgraaf-Witten theories corresponding to different elements of group cohomology can
become equivalent after dynamical gauging (e.g. [13] and References therein). However, here we mean a more surprising
statement: There are identical TQFTs even before gauging (i.e. SPTs). After gauging, there might be additional
identifications corresponding to field redefinitions. In dimension n > 6 Dijkgraaf-Witten theories labeled by different
elements of Hn(BG,U(1)) can become equivalent even as non-spin TQFTs, cf. [10]. This is because starting from
dimension n = 7 the map

Hn(BG,U(1))→ Hom(Tor(ΩSOn (BG)), U(1))

is not injective in general. This is because there are examples in degree 7 when a homology class of BG cannot be
represented by an image of a smooth manifold continuously mapped to BG. Since SPTs/invertible TQFTs are classified
by r.h.s. of the above equation, the TQFTs labeled by the elements of l.h.s. that map to the same element realize
equivalent TQFTs (more concretely, the actions constructed via two different classes of Hn(BG,U(1)) will have the
same value on any smooth n-manifold).
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Dijkgraaf-Witten theories is given by the direct analog of (2.21)-(2.22). However, in dimension n ≤ 4
there is no difference, that is Hom(Tor ΩSO

n (BG), U(1)) ∼= Hn(BG,U(1)). In general instead of (2.21)
one should consider the map

ΩSpin
n (BG) −→ ΩSO

n (BG) (2.23)

realized by forgetting spin-structure. The dual map

Hom(ΩSO
n (BG), U(1)) −→ Hom(ΩSpin

n (BG), U(1)) (2.24)

provides a relation between invertible G-equivariant spin- (fermionic) and non-spin (bosonic) TQFTs.

2.3 Definitions of invertible spin-TQFTs v.s. short-range entangled fSPTs

However, there is a caveat. Some theorists näıvely regard “G-equivariant reflection-positive invertible
spin-TQFTs” as a definition of SPTs protected by global symmetry G. In contrast, other theorists
define SPTs as short-range entangled (SRE) states whose existence must be protected by nontrivial
global symmetry G. The second definition, in some sense, is more physical and suitable for the
lattice-regularized condensed matter setting. In quantum system, two distinct condensed matter
phases cannot be deformed into each other via local unitary transformations. While all SPTs can
be deformed into each other via local unitary transformations if all symmetry is broken, distinct
G-SPTs cannot be deformed into each other when G is preserved. In the second definition, based
on the local unitary transformation classification of phases, the invertible spin-TQFTs protected by
no symmetry (except the fermion parity Zf2), classified by Hom(Tor ΩSpin

n (pt), U(1)), are actually
long-range entangled (LRE) invertible topologically ordered states (instead of short-range entangled
SPTs).10 Formally, in the second definition of SPTs, we need to mod out those LRE invertible
spin-TQFTs which are invertible topological order states; so we can propose a definition of fermionic
G-SPTs and their classification, mathematically, by modifying the (2.16) to{

deformation classes of fermionic SPTs
with an internal symmetry G (i.e. G-fSPTs)

}
∼=

Hom(Tor ΩSpin
n (BG), U(1))

Hom(Tor ΩSpin
n (pt), U(1))

(2.25)

Later in Section 4 and 6, when we show, in various Tables, the data of bordism groups and the
classification of fSPTs, we always use the second definition (which is, physically, the precise definition
of short-range entangled SPTs), as proposed in (2.25). Since the entangled structure and the locality
for local unitary transformation is more sharply defined in spacetime dimensions n ≥ 2, we will only
classify fSPT for dimensions n ≥ 2, focusing on n = 2, 3, 4 (namely 1+1D, 2+1D, and 3+1D), shown
in our Tables.

3 Some useful invariants of spin-manifolds

In this section we review basic invariants and structures that one can consider on closed spin and pin±

manifolds in low dimensions (see e.g. [2] for details) and fix their notations. This will be useful later
in explicit construction of TQFTs.

10 See a recent discussion in Ref. [14] and Ref. [15]’s Section 5.4 along this statement, and References therein. For
example, the 2d Arf invariant or equivalently the 1+1D Kitaev fermionic chain [16], obtained from the generator of
Hom(Tor ΩSpin2 (pt), U(1)) ∼= Z2, is actually not a short-range entangled fSPTs, but instead a long-range entangled
invertible fermionic topological order in 1+1D (in 2d).
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3.1 1-manifolds

The only one-dimensional connected closed manifold is S1. There are two choices of spin-structure
that are usually referred to as odd and even. We will denote the corresponding spin circles as S1

−
and S1

+ respectively. The circle with even spin structure is a boundary of a disk with the unique spin

structure, while the circle with odd spin structure is the generator of ΩSpin
1 (pt) ∼= Z2. We will denote

the corresponding bordism invariant as η ∈ Z2, its value is determined as follows:

η(M1) =


0, M1 = S1

+,
1, M1 = S1

−,∑
i η(Ni), M1 = tiNi.

(3.1)

3.2 2-manifolds

Consider first an oriented 2-manifold Σ. Spin structures then are in one-to-one correspondence with
quadratic forms11

q̃ : H1(Σ,Z2)→ Z2 (3.2)

such that

q̃(a+ b)− q̃(a)− q̃(b) =

∫
Σ
a ∪ b . (3.3)

The 2-dimensional spin bordism group is ΩSpin
2 (pt) ∼= Z2 and the corresponding bordism invariant is

Arf invariant:
ΩSpin

2 (pt) −→ Z2

[Σ] 7−→ Arf(Σ) :=
∑g

i=1 q̃(ai)q̃(bi) mod 2
(3.4)

where {ai, bi}gi=1 is any symplectic basis in H1(Σ,Z2).

Consider now non-orientable a 2-manifold Σ. It always admits a pin− structure. Similarly to the
spin case, pin− structures are in one-to-one correspondence with quadratic enhancement

q : H1(Σ,Z2)→ Z4 (3.5)

such that

q(a+ b)− q(a)− q(b) = 2

∫
Σ
a ∪ b mod 4. (3.6)

In particular:

q(a) =

∫
Σ
a ∪ a mod 2. (3.7)

The pin−-bordism group is ΩPin−
2 (pt) ∼= Z8 and the isomorphism is explicitly given by Arf-Brown-

Kervaire invariant:
ΩPin−

2 (pt) −→ Z8

[Σ] 7−→ ABK(Σ)
(3.8)

One of the definitions of the Arf-Brown-Kervaire invariant valued mod 8 is given in terms of the
following Gauss sum:

exp{πiABK(Σ)/4} :=
1√

|H1(Σ,Z2)|

∑
a∈H1(Σ,Z2)

eπiq(a)/2. (3.9)

When surface Σ is orientable this reduces to the previous case with q = 2q̃ mod 4, ABK = 4Arf
mod 8.

11Physically the value of q(a) corresponds to periodicity condition on spinors along the Poincaré dual 1-cycle: 1 for
periodic and 0 for anti-periodic
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3.3 3-manifolds

Let M3 be an oriented closed 3-manifold. Because of odd dimension there is no usual intersection
pairing as in the two dimensional case above. However, one can instead define a linking pairing on
the torsion part of the first homology12:

`k : TorH1(M3,Z)⊗ TorH1(M3,Z) −→ Q/Z
[α]⊗ [β] 7−→ #(α∩β̃)

n mod 1
(3.10)

where β̃ is a 2-chain such that ∂β̃ = n · β for some n ∈ Z (such n always exist because [β] is torsion).

A spin-structure on M3 again allows to define a quadratic refinement of the linking pairing:

γ : TorH1(M3,Z) −→ Q/Z

γ(α+ β)− γ(α)− γ(β) = `k(a, b) mod 1
(3.11)

The value of γ can be geometrically defined as follows. Take a smooth embedding ι : S1 → M3

representing a torsion element α ∈ TorH1(M3,Z2). Framings on K = ι(S1), i.e. trivializations of
the normal bundle, are in one-to-one correspondence to rational numbers q such that q = `k(α, α)
mod 1 (because framings corresponds to a choice of push-off K into the boundary of the tabular
neighborhood). Given a spin structure on M3 there is a subset of even framings defined as follows.
Framing on the normal bundle together with spin structure on M3 fixes a spin structure on K. Then
one can define a subset of even framings such that η(K) = 0, that is K is a spin-boundary. Such
framings have a fixed value of q mod 2. Then one defines γ(a) = q/2 mod 1.

Spin structure on M3 also allows one to define a symmetric function

δ : H1(M3,Z2)×H1(M3,Z2) −→ Z4 (3.12)

which is an enhancement of

H1(M3,Z2)⊗H1(M3,Z2)⊗H1(M3,Z2) −→ Z2

a⊗ b⊗ c 7−→
∫
M3 a ∪ b ∪ c

(3.13)

in the sense that

δ(a, b+ c)− δ(a, b)− δ(a, c) = 2

∫
M3

a ∪ b ∪ c (3.14)

The values of δ can be defined as follows. Let PD(a) be a smooth, possibly non-orientable, surface
which represents a class in H2(M3,Z2) Poincaré dual to a ∈ H1(M3,Z2) (it always exists). A spin
structure on M3 induces canonically a pin− structure on PD(a). This is follows from the fact that
TM3 = TPD(a)⊕detTPD(a) due to orientability of TM3, and from the fact that there is one-to-one
correspondence between pin− structures on V and spin-structures on V ⊕ detV . Then

δ(a, b) = qPD(a)(b) ∈ Z4 (3.15)

where qPD(a) is a quadratic enhancement corresponding to the pin− structure on PD(a) considered
above, and b is implicitly assumed to be restricted on PD(a).

Moreover, there is an enhancement of δ, given by

β : H1(M3,Z2) −→ Z8

a 7−→ ABK(Σa)
(3.16)

so that
β(a+ b) = β(a) + β(b) + 2δ(a, b). (3.17)

12There is an analogous definition of linking pairing on TorHm(M2m+1,Z) for any odd dimensional manifold.
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3.3.1 Abelian spin-Chern-Simons theory

The quadratic enhancement γ defined above can be used to explicitly write expression for the par-
tition function of abelian spin-Chern-Simons theories, a known simple family of spin-TQFTs. The
(“classical”) data needed to define a spin-Chern-Simons TQFT is a symmetric bilinear form

K : ZL ⊗ ZL −→ Z. (3.18)

or, equivalently, a lattice. On the physical level the partition function on a closed oriented spin
3-manifold M3 is given by the path integral

ZKspin-CS(M3) =

∫
U(1) connections/∼ gauge

DA exp (
i

8π

∫
M3

∑
i,j

KijAidAj). (3.19)

The expression in the exponent is actually ill defined because connection 1-form Ai is not globally
defined for non-trivial bundles. To avoid this problem one has to take a spin 4-manifold M4 such that
M3 = ∂M4 with induced spin-structure13:

exp (
i

8π

∫
M3

∑
i,j

KijAidAj) := exp (
i

8π

∫
M4

∑
i,j

KijFi Fj) (3.20)

which is independent of the choice of spin-manifold M4 because of integrality of K and the fact that
intersection form on spin-manifolds is even. If the spin-structure was not required, K would have
to be even (i.e. Kii = 0 mod 2, ∀i), which is the quantization condition on the level matrix for the
ordinary, non-spin (“bosonic”) Chern-Simons theory. If the spin-structure is required, we have the
spin (“fermionic”) Chern-Simons theory.

Different K can actually give equivalent spin-TQFTs. The classification of non-equivalent abelian
spin-Chern-Simons theories was done in [17].

Even though in general path integral over the space of connections (modulo gauge transformations)
is ill-defined, in this case the action is quadratic in connection 1-forms and the path integral can be
defined and computed formally14. The path integral reduces to the sum over critical points of the
action, that is flat connections. To simplify the formulas let us assume that M3 is a rational homology
sphere, that is H1(M3,Z) = TorH1(M3,Z). The moduli space of U(1)L flat connections is then a
finite set

Mflat = Hom(π1(M3), U(1)L)/U(1)L = Hom(H1(M3,Z), U(1)L)
`k∼= H1(M3,Z)L (3.21)

where the last isomorphism is explicitly given by the composition of linking pairing with the exponen-
tial map:

H1(M3,Z)
∼−→ Hom(H1(M3,Z), U(1))

α 7−→ exp 2πi `k(α, ·). (3.22)

Assuming this correspondence between U(1) flat connections and elements of H1(M3,Z), it is easy
to see that the usual Chern-Simons invariant (valued mod 1) of U(1) flat connection reads `k(a, a)

13We use the usual normalization of connection 1-form/curvature such that the first Chern class is c1 = F/(2π) =
dA/(2π).

14Alternatively, one can also mathematically define spin-Chern-Simons TQFT via spin-generalization (see e.g. [18, 3, 5])
of Reshetikhin-Turaev [19] construction where the input data is the spin modular tensor category of representations of
lattice vertex operator algebra associated to K.
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mod 1, while its spin-version is γ(a) mod 1. The partition function of level K spin-Chern-Simons
theory with appropriate normalization15 is then given by

ZKspin-CS(M3) =
∑

αi∈H1(M3,Z)

exp
{

2πi
∑L

i=1Kiiγ(αi) + 2πi
∑

i<jKij `k(αi, αj)
}

√
det(iK) |H1(M3,Z)|L/2

. (3.23)

As we will see later some of the TQFTs Zµgauged, µ ∈ Hom(Ω3(BG), U(1)) are equivalent to abelian
spin-Chern-Simons theories for certain choices of K. Consider in particular the case of

K =

(
0 p
p k

)
, p, k > 0. (3.24)

The sum above then can be partially performed explicitly:

Z
(0 p; p k)
spin-CS (M3) =

∑
α1,α2 ∈H1(M3,Z)

e2πi k γ(α1)+2πi p `k(α1,α2)

p |H1(M3,Z)|
=

1

p

∑
α1 ∈ H1(M3,Z),

p `k(α1, α2) = 0 mod 1 , ∀α2

e2πik γ(α1).

(3.25)
The set over which the sum is performed can be identified with the first cohomology with Zp coefficients:

H1(M3,Zp) ∼= {α ∈ H1(M3,Z) | e2πip `k(α,α′) = 1, ∀α′}. (3.26)

The isomorphism is given by the universal coefficient theorem (H1(M3,Zp) ∼= Hom(H1(M3,Z),Zp))

and the canonical embedding Hom(H1(M3,Z),Zp) ↪→ Hom(H1(M3,Z), U(1))
`k∼= H1(M3,Z). Let us

denote by â an element of H1(M3,Zp) corresponding a ∈ H1(M3,Zp). Then we can define a function

γ̂ : H1(M3,Zp) −→ Z2p

a 7−→ 2pγ(â).
(3.27)

so that

Z
(0 p; p k)
spin-CS (M3) =

1

p

∑
a∈H1(M3,Zp)

e
πik
p
γ̂(a)

. (3.28)

The function γ̂ can be understood as a quadratic refinement of the bilinear form

H1(M3,Zp)⊗H1(M3,Zp) −→ Zp
a⊗ b 7−→

∫
M3 aBb

(3.29)

where B is the Bockstein homomorphism H1(M3,Zp) → H2(M3,Zp) corresponding to the following
short exact sequence of coefficients:

0→ Zp
p ·−→ Zp2

mod p−→ Zp → 0. (3.30)

So that

γ̂(a) =

∫
M3

aBa mod p. (3.31)

One can argue that γ̂ is a bordism invariant, that is can be considered as homomorphism

γ̂ : ΩSpin
3 (BZp) −→ Z2p (3.32)

15Such that ZKspin-CS(S2 × S1) = 1.
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where we identify an element of H1(M3,Zp) with a homotopy class of a map M3 → BZp in the usual
way. We then arrive at the following relation between the spin-Chern-Simons TQFT and spin-TQFTs
associated to elements of the spin-cobordism group of Zp:

Z
(0 p; p k)
spin-CS = Z

γ̂∗(k)
gauged (3.33)

where k is considered an element of Hom(Z2p, U(1)) ∼= Z2p and γ̂∗(k) ∈ Hom(ΩSpin
3 (BZp), U(1)) is its

pullback with respect to the map γ̂ above.

4 Spin-bordism groups and computations

By the Pontryagin-Thom construction,

ΩSpin
n (X) = πn(MSpin ∧X+) (4.1)

where, as usual, πn denotes the n-th stable homotopy group of a spectrum, MSpin is a Thom spectrum
associated to stable spin-structure16. We use the standard notations in homotopy theory: X+ is a
pointed space with a disjoint basepoint added, ∧ denotes the smash product. For example, ΩSpin

d (pt)
are computed by Anderson-Brown-Peterson ([20]).

We are interested in the case X = BG, a classifying space of a finite abelian group. In this work,
we compute some simple examples where G is a finite abelian group. At odd torsion MSpin ∼= MSO.
Since we are interested in constructing spin-TQFTs which non-trivially depend on spin-structure (i.e.
not “bosonic”), we will only consider some simple examples when G itself is 2-torsion. We can then
use the Adams spectral sequence for computation:

Es,t2 = Exts,tA (H∗(MSpin ∧X+),Z2)⇒ πt−s(MSpin ∧X+)∧2 = ΩSpin
t−s (X). (4.2)

where H∗(−) stands for mod 2 cohomology and A is for Steenrod algebra. The abelian groups
Exts,tA (M,N) are understood as groups of extensions of length s between modules over Steenrod
algebra N [t] and M , where [t] denotes the shift of grading by t. Notations A∧2 stands for 2-completion
of the abelian group A. We refer to [21] as a brief review of necessary definitions and techniques in
stable homotopy theory that requires a minimal prior background.

At 2-torsion and in degree n < 8 the Thom spectrum MSpin is equivalent to ko, the connective
version (stable homotopy groups in negative degree are zero) of the real K-theory KO. Therefore, if
the abelian group G has only 2-torsion (which means that G is a product of finite abelian groups of
the form Z2m), one have

ΩSpin
n (BG) ∼= kon(BG). (4.3)

This relation can be used to immediately give answer for ΩSpin
n (BG) for certain cases of G, where

kon(BG) were already calculated in the literature ([22, 23]). We consider one of such cases in the next
subsection.

We would like to remark that such statement about classification of interacting fermionic SPTs
with finite symmetry G via the real connective K-theory (ko) should not be confused with a different
statement about classification of certain free fermionic SPTs with via real or complex periodic K-theory
(K or KO) given in [24].

16Note that in the case of spin structure Thom spectrum is equivalent to Madsen-Tillmann spectrum: MSpin ∼=
MTSpin.
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Below we present the calculations of bordism group ΩSpin
n (BG) which classifies the invertible

fermionic spin-TQFTs with the fermionic parity symmetry Zf2 and internal symmetryG. The invertible
fermionic spin-TQFTs include all the interacting fermionic SPTs (short-ranged entangled states) and
some invertible fermionic topological orders (long-ranged entangled states). To recall the definitions,
see (2.16) and (2.25). Here the n corresponds to the spacetime dimension n in physical systems.

4.1 ΩSpin
n (BZk2)

4.1.1 Computation

When G = Zk2 one can use the known results in the literature

Theorem 2. [22] Let (BZ2)k denote the k-fold smash product of the classifying space of Z2. Then

kon((BZ2)k) =



Z2 ⊕ Ck,n for n = 8l + 1, k < 4l + 2

for n = 8l + 2, k < 4l + 3

Z24l+4−k ⊕ Ck,n, for n = 8l + 3, k < 4l + 4

Z24l+5−k ⊕ Ck,n, for n = 8l + 7, k < 4l + 5

Ck,n, otherwise

where Ck,n is a F2-vector space, whose dimension is the coefficient of tn in the series

Pk(t) =
tk

(1− t4)(1 + t3)(1− t)k−1
(4.4)

with

Qk(t) =


tk−1 for k ≡ 0, 1 mod 4

tk−2(1 + t− t2 + t3 − t5) for k ≡ 2 mod 4

tk−3(1 + t3 − t5) for k ≡ 3 mod 4

Since we have B×k = (∨(k1)
B)
∨

(∨(k2)
B∧2)

∨
· · ·
∨

(∨(kk)
B∧k), from above theorem, we have the

following

Theorem 3.

ΩSpin
3 (BZk2) = Zk8 ⊕ Z

k2−k
2

4 ⊕ Z
k3−3k2+2k

6
2 , (4.5)

ΩSpin
4 (BZk2) = Z⊕ Z

k4+2k3+11k2−14k
24

2 . (4.6)

As described in section 2.2 there is a natural map from spin-bordism groups to integer homology
groups (2.21) which provides a relation with Dijkgraaf-Witten theories. Therefore it is instructive to
compare (4.5)-(4.6) with:

H3(BZk2,Z) = Zk+ k2−k
2

+ k3−3k2+2k
6

2 , (4.7)

H4(BZk2,Z) = Z⊕ Z
k4+2k3+11k2−14k

24
2 . (4.8)

In particular we see that Tor ΩSpin
4 (BZk2) ∼= H4(BZk2,Z). Therefore in this case we do not get any

fermionic TQFTs (according to the terminology explained in section 2.2).
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4.1.2 Bordism invariants

Let us explicitly describe the corresponding bordism invariants. In dimension 3, the isomorphism
above is explicitly given by:

ΩSpin
3 (BZk2)

∼−→ Zk8 ⊕ Z
k2−k

2
4 ⊕ Z

k3−3k2+2k
6

2 ,

(M3, g1, . . . gk) 7−→ ⊕ni=1β(gi)
⊕
⊕i 6=jδ(gi, gj)

⊕
⊕i 6=j 6=k, i6=k

∫
M3 gigjgk

(4.9)

where β, δ are functions defined in section 3.3. In the right hand side gi : M3 → BG are treated
as the elements of H1(M3,Z2) and the multiplication is performed with respect to the usual cup
product. The non-underlined bordism invariants, considered as elements of Hom(ΩSpin

3 (BG), U(1))
(by embedding a cyclic group in U(1)), belong to the subgroup H3(BG,U(1)) embedded via the map
(2.22)17.

The underlined bordism invariants, considered as elements of Hom(ΩSpin
3 (BG), U(1)), are fermionic

(in the terminology explained in in section 2.2), but provide refinement of bosonic elements from
H3(BG,U(1)). That is, a certain power of them gives an element from subgroup H3(BG,U(1)). For
example, from (3.14) it follows that δgi,gj =

∫
M3 g

2
i gj mod 2.

In dimension 4 we have:

ΩSpin
4 (BZk2)

∼−→ Z⊕ Z
k4+2k3+11k2−14k

24
2 ,

(M4, g1, . . . gk) 7−→ p1(TM4)
48

⊕
⊕i,j,k,l

∫
M4 gigjgkgl / {g4

i , g
2
i g

2
j , gigjg

2
k + gjgkg

2
i + gkgig

2
j }

(4.11)

where p1 is the first Pontryagin class and the denominator of the quotient contains identically van-
ishing polynomials in elements of H1(M4,Z2) of degree 4. Note that in dimension 4 none of the
invariants actually depends on the spin structure. Therefore their gauging does not give proper spin-
TQFTs. Moreover, Hom(Tor ΩSpin

4 (BZk2), U(1)) ∼= H4(BZk2, U(1)) and the gauged TQFTs coincide
with Dijkgraaf-Witten TQFTs [25].

Hence we have the following theorem:

Theorem 4.

n ΩSpin
n (B(Zk2)) Hn(B(Zk2),Z) fermionic SPTs classes

0 Z Z
1 Zk+1

2 Zk2
2 Z1+k+(k2)

2 Z(k2)
2 Zk+(k2)

2

3 Zk8 × Z(k2)
4 × Z(k3)

2 Zk+(k2)+(k3)
2 Zk8 × Z(k2)

4 × Z(k3)
2

4 Z× Z
k4+2k3+11k2−14k

24
2 Z

k4+2k3+11k2−14k
24

2 Z
k4+2k3+11k2−14k

24
2

(4.12)

where in the second column, for comparison, we list the known homology groups. Note that
k4+2k3+11k2−14k

24 = 2
(
k
2

)
+ 2
(
k
3

)
+
(
k
4

)
.

17Note that via Yoneda lemma there is one-to-one correspondence between cohomology operations

H1( · , G) −→ Hn( · , U(1)) (4.10)

and elements of Hn(BG,U(1)).
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4.2 ΩSpin
n (B(Z2 × Z4))

4.2.1 Computation

As was mentioned in the beginning of the section, the computation involves no odd torsion and we
can use the Adams spectral sequence

Es,t2 = Exts,tA (H∗(MSpin ∧ (B(Z2 × Z4))+),Z2)⇒

πt−s(MSpin ∧ (B(Z2 × Z4))+)∧2 = ΩSpin
t−s (B(Z2 × Z4)). (4.13)

The mod 2 cohomology of Thom spectrum MSpin is

H∗(MSpin) = A⊗A(1) {Z2 ⊕M} (4.14)

where M is a graded A(1)-module with the degree i homogeneous part Mi = 0 for i < 8. Here A
stands for Steenrod algebra and A(1) stands for F2-algebra generated by Sq1 and Sq2. Thus, for
t− s < 8, we can identify the E2-page with

Exts,tA(1)(H
∗(B(Z2 × Z4)),Z2). (4.15)

The mod 2 cohomology is the following: H∗(BZ2) = Z2[a] where |a| = 1, H∗(BZ4) = Z2[y] ⊗ Λ(x)
where |x| = 1, |y| = 2, Sq1(y) = Sq1(x) = 0. The differential on the second page are the following:
d2(y) = xh2

0, d2(yα) = xyh3
0, d2(ya3 + y2a) = (xa3 + xya)h2

0. We use the standard notation in the
stable homotopy theory where h0 denotes an element of18 Ext1,1

A(1)(Z2,Z2) corresponding to extension

Z2[1] → H∗(RP2)[−1] → Z2. The A(1)-module structure of H∗(B(Z2 × Z4)) and the E2 page are
depicted in Figures 1 and 2.

Hence we have the following theorem:

Theorem 5.

n ΩSpin
n (B(Z2 × Z4)) Hn(B(Z2 × Z4),Z) fermionic SPTs classes

0 Z Z
1 Z2

2 × Z4 Z2 × Z4

2 Z4
2 Z2 Z3

2

3 Z3
2 × Z2

8 Z2
2 × Z4 Z3

2 × Z2
8

4 Z× Z2 × Z4 Z2
2 Z2 × Z4

(4.17)

where in the last column, for comparison, we list the known homology groups.

4.2.2 Bordism invariants and manifold generators

The bordism groups are explicitly realized as follows:

ΩSpin
n (B(Z2 × Z4)) = {spin n-manifolds Mn with maps f : M → BZ4, g : M → BZ2}/ ∼ . (4.18)

18There is natural action

Exts,tA(1)(Z2,Z2)⊗ Exts
′,t′

A(1)(M,Z2)→ Exts+s
′,t+t′

A(1) (M,Z2) (4.16)

realized by

18
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Figure 1: The A(1)-module structure of H∗(B(Z2 × Z4))
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Figure 2: The E2 page of the Adams spectral sequence for Z2 × Z4

Equivalently, f ∈ H1(Mn,Z4), g ∈ H1(Mn,Z2). The functions f and g can be used to pull back

19



the generators of the mod 2 cohomology of classifying spaces to Mn:

H∗(BZ4,Z2)
f∗−→ H∗(M,Z2)

x 7→ f∗(x) = f mod 2

y 7→ f∗(y)

H∗(BZ2,Z2)
g∗−→ H∗(M,Z2)

a 7→ g∗(a) = g

Consider in particular the dimension n = 4. Reading out from the E2 page of Adams spec-
tral sequence, the bordism group Z4 ⊕ Z2 is mapped to Z2 ⊕ Z2 by sending an element (M4, f ∈
H1(M,Z4), g ∈ H1(M4,Z2)) to the invariants f∗(x) ∪ g∗(a3) and f∗(xy) ∪ g∗(a), we can see that

Theorem 6. (S1×RP3, f, g) generates Z4 and (S1×L(4, 1), h, `) generates Z2, where L(4, 1) ∼= S3/Z4

is the Lens space, f is the generator of H1(S1,Z4), g is the generator of H1(RP3,Z2), h is the generator
of H1(L(4),Z4), and ` is the generator of H1(S1,Z2).

It follows that complete bordism invariant in dimension n < 5 read

(M1, f, g) 7−→ η(M1)⊕
∫
M1 g ⊕

∫
M1 f

(M2, f, g) 7−→ Arf(M2)⊕ q̃(f∗(x))⊕ q̃(g)⊕
∫
M2 g (f∗(x))

(M3, f, g) 7−→
∫
M3 f

∗(y)g ⊕Arf(PD(f∗(x)))⊕ q̃PD(f∗(x))(g)⊕ β(g)⊕ γ̂(f)

(M4, f, g) 7−→ p1(TM4)
48 ⊕

∫
M4 f

∗(xy) g∗(a)⊕ δPD(f)(g, g)

(4.19)

where, as before, functions q, β, δ are the ones defined in section 3. Below we elaborate on the
notations and the definition of the bordism invariants listed above. The expressions written in terms
of PD(f) or PD(f∗(x)) assume that the Poincaré duals of f and f∗(x) ≡ f mod 2 can be represented
by an embedding19 of a smooth oriented20 manifold Nn−1 of codimension one in Mn. In particular,
this is automatically the case when f = h mod 4 for some element h ∈ H1(Mn,Z). In this case it
is known that the Poincaré dual to h can be always represented by a smooth oriented submanifold
of codimension one inside Mn and one can take Nn−1 to be this submanifold. An embedding of an
oriented Nn−1, together with the orientation of the ambient space Mn provides a trivialization of the
normal bundle. The spin structure on Mn then induces a spin structure on Nn−1. In the expressions
above PD(f) or PD(f∗(x)) are used to denote the spin manifold Nn−1.

As in Section 4.1.2 non-underlined elements (understood as elements of Hom(ΩSpin
n (BG), U(1)))

are bosonic (i.e. belong to Hn(BG,U(1)) subgroup), and elements underlined with a single line are

19In fact, for the purposes of inducing spin structure from the ambient space, as described below, it is enough to have
an immersion.

20Note that if f∗(x) ≡ f mod 2 6= 0 and a smooth representative Nn−1 of the Poincaré dual of f exists, it will
be necessarily orientable, because [PD(f)] ∈ Hn−1(Mn,Z4) can be obtained by the pushforward of [Nn−1] under the
embedding. On the other hand, if f mod 2 = 0 this implies that f ∈ H1(Mn,Z4) is the image of some g′ ∈ H1(Mn,Z2)
under the canonical map induced by the non-trivial homomorphism Z2 → Z4. Such homomorphism also induces a
homomorphism ΩSpinn (BZ4 × BZ2) → ΩSpinn (BZ2 × BZ2) and the corresponding bordism invariant for G = Z2 × Z4

should reduce (i.e. pulled back) to the one of the invariants in Section 4.1.2. A naive argument shows that it should be∫
M4

g′g3.
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fermionic that provide refinement of the bosonic elements from Hn(BG,U(1)). In particular, from
the formulae of Section 3 we have:

β(g) mod 2 =

∫
M3

g3, (4.20)

γ̂(f) mod 4 =

∫
M4

fBf, (4.21)

δPD(f)(g, g) mod 2 =

∫
M4

f∗(x)g3. (4.22)

The elements in (4.19) underlined with a double line are fermionic and do not refine any elements of
Hn(BG,U(1)).

4.3 ΩSpin
n (BZ2

4)

4.3.1 Computation

As in the previous case the computation involves no odd torsion and we can use the Adams spectral
sequence:

Es,t2 = Exts,tA (H∗(MSpin ∧ (BZ2
4)+),Z2)⇒ πt−s(MSpin ∧ (BZ2

4)+)∧2 = ΩSpin
t−s (BZ2

4). (4.23)

Using again the expression (4.14) for mod 2 cohomology of MSpin, for t− s < 8, we can identify the
E2-page with

Exts,tA(1)(H
∗(BZ2

4),Z2). (4.24)

The mod 2 cohomology and the differential are the following: H∗(BZ4) = Z2[y]⊗Λ(x) where |x| = 1,
|y| = 2, Sq1(y) = Sq1(x) = 0. d2(yi) = xih

2
0, d2(yiα) = xiyih

3
0 for i = 1, 2, d2(y1x2) = d2(x1y2) =

x1x2h
2
0, d2(y1y2) = x1y2h

2
0 + y1x2h

2
0, d2(x1y1y2) = x1y1x2h

2
0, d2(y1x2y2) = x1x2y2h

2
0 where x1, y1 and

x2, y2 are generators of two copies of H∗(BZ4).

The A(1)-module structure of H∗(BZ2
4) and the E2 page are presented in Figures 3 and 4 respec-

tively.

Hence we have the following theorem

Theorem 7.
n ΩSpin

n (BZ2
4) Hn(BZ2

4,Z) fermionic SPTs classes

0 Z Z
1 Z2 × Z2

4 Z2
4

2 Z3
2 × Z4 Z4 Z2

2 × Z4

3 Z3
2 × Z4 × Z2

8 Z3
4 Z3

2 × Z4 × Z2
8

4 Z× Z2
4 × Z2 Z2

4 Z2
4 × Z2

(4.25)

4.3.2 Bordism invariants and manifold generators for G = Z2
4

The bordism groups are explicitly realized as follows:

ΩSpin
n (B(Z4 × Z4)) = {spin n-manifolds Mn with maps f1 : Mn → BZ4, f2 : Mn → BZ4}/ ∼ .

(4.26)
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Figure 3: The A(1)-module structure of H∗(BZ2
4)
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Figure 4: The E2 page of the Adams spectral sequence for Z2
4

Equivalently, f1 ∈ H1(Mn,Z4), f2 ∈ H1(Mn,Z4). As before, the functions f1 and f2 can be used to
pull back the generators of the mod 2 cohomology of the classifying spaces to Mn:

H∗(BZ4,Z2)
f∗1−→ H∗(M,Z2)

x 7→ f∗1 (x) = f1 mod 2

y 7→ f∗1 (y)
22



H∗(BZ4,Z2)
f∗2−→ H∗(M,Z2)

x 7→ f∗2 (x) = f2 mod 2

y 7→ f∗2 (y)

Reading out from the E2 page of Adams spectral sequence, the complete bordism invariants in dimen-
sion n < 5 read as follows

(M1, f1, f2) 7−→ η(M1)⊕
∫
M1 f1 ⊕

∫
M1 f2

(M2, f1, f2) 7−→ Arf(M2)⊕ q̃(f∗1 (x))⊕ q̃(f∗2 (x))⊕
∫
M2 f1 f2

(M3, f1, f2) 7−→ Arf(PD(f∗1 (x)))⊕Arf(PD(f∗2 (x)))⊕ q̃PD(f∗1 (x))(f
∗
2 (x))⊕

∫
M3 f1 Bf2 ⊕ γ̂(f1)⊕ γ̂(f2)

(M4, f1, f2) 7−→ p1(TM4)
48 ⊕

∫
M4 f1 f2 Bf2 ⊕

∫
M4 f2 f1 Bf1 ⊕Arf(PD(f∗1 (x)) ∩ PD(f∗2 (x)))

(4.27)
where B : H1(Mn,Z4) → H2(Mn,Z4) is the Bockstein homomorphism w.r.t. to the short exact
sequence Z4 → Z16 → Z4. The codimension one submanifolds PD(f∗1 (x)) and PD(f∗2 (x)) are chosen
such that they intersect transversally along a smooth 2-manifold. The spin structure on PD(f∗1 (x)) ∩
PD(f∗2 (x)) is induced as follows. The pair of normal vectors to PD(f∗1 (x)) and PD(f∗2 (x)) define a
trivialization of the normal bundle to PD(f∗1 (x))∩PD(f∗2 (x)). As described before, together with the
spin structure on the ambient space M4 this unambiguously defines a spin-structure on PD(f∗1 (x)) ∩
PD(f∗2 (x)).

It follows that in dimension 4 the generators of the bordism group are given by the following

Theorem 8. (S1×L(4, 1), f, g) and (S1×L(4, 1), h, `) generates two Z4 individually and (S1× S1×
S1×S1, k, j) generates Z2, where L(4, 1) = S3/Z4 is the Lens space, f is the generator of H1(S1,Z4),
g is the generator of H1(L(4),Z4), h is the generator of H1(L(4),Z4), ` is the generator of H1(S1,Z4),
k is the generator of the first H1(S1,Z4), j is the generator of the second H1(S1,Z4) and there are
odd spin structures on the last two S1.

4.4 ΩSpin
n (B(Z2

2 × Z4))

4.4.1 Computation

We can again use the Adams spectral sequence, since the computation involves no odd torsion:

Es,t2 = Exts,tA (H∗(MSpin∧(B(Z2
2×Z4))+),Z2)⇒ πt−s(MSpin∧(B(Z2

2×Z4))+)∧2 = ΩSpin
t−s (B(Z2

2×Z4)).
(4.28)

Using (4.14), for t− s < 8, we can identify the E2-page with

Exts,tA(1)(H
∗(B(Z2

2 × Z4)),Z2). (4.29)

The cohomology rings of the classifying spaces are the following: H∗(BZ2) = Z2[a] where |a| = 1,
H∗(BZ4) = Z2[y] ⊗ Λ(x) where |x| = 1, |y| = 2, Sq1(y) = Sq1(x) = 0. The second page differential
acts as follows: d2(y) = xh2

0, d2(yα) = xyh3
0, d2(ya3

i + y2ai) = (xa3
i + xyai)h

2
0 for i = 1, 2, where ai

are generators of the two copies of H∗(BZ2).
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Figure 6: The E2 page of the Adams spectral sequence for Z2
2 × Z4

The A(1)-module structure of H∗(B(Z2
2 × Z4)) and the E2 page are shown in Figures 5 and 6.

Hence we have the following

Theorem 9.

n ΩSpin
n (B(Z2

2 × Z4)) Hn(B(Z2
2 × Z4),Z4) fermionic SPTs classes

0 Z Z
1 Z3

2 × Z4 Z2
2 × Z4

2 Z7
2 Z3

2 Z6
2

3 Z6
2 × Z4 × Z3

8 Z6
2 × Z4 Z6

2 × Z4 × Z3
8

4 Z× Z5
2 × Z3

4 Z8
2 Z5

2 × Z3
4

(4.30)

24



4.4.2 Bordism invariants

The bordism groups are explicitly realized as follows:

ΩSpin
n (B(Z2

2 × Z4)) = {spin n-manifolds Mn with maps g1,2 : M → BZ2, f : M → BZ4}/ ∼ . (4.31)

The complete bordism invariant in dimension n < 5 read as follows

(M1, f, g1, g2) 7−→ η(M1)⊕
∫
M1 g1 ⊕

∫
M1 g2 ⊕

∫
M1 f

(M2, f, g1, g2) 7−→ Arf(M2)⊕ q̃(g1)⊕ q̃(g2)⊕ q̃(f∗(x))⊕
∫
M2 g1 g2 ⊕

∫
M2 g1 f

∗(x)⊕
∫
M2 g2 f

∗(x)

(M3, f, g1, g2) 7−→
∫
M3 g1 f

∗(y)⊕
∫
M3 g2 f

∗(y)⊕
∫
M3 g1 g2 f

∗(x)⊕

Arf(PD(f∗(x)))⊕ q̃PD(f∗(x))(g1)⊕ q̃PD(f∗(x))(g2)⊕

δ(g1, g2)⊕ β(g1)⊕ β(g2)⊕ γ̂(f)

(M4, f, g1, g2) 7−→ p1(TM4)
48 ⊕

∫
M4 g1 g

3
2 ⊕

∫
M4 g2 g

3
1 ⊕

∫
M4 g1 f

∗(xy)⊕
∫
M4 g2 f

∗(xy)⊕
∫
M4 g1 g2 f

∗(y)⊕

δPD(f)(g1, g1)⊕ δPD(f)(g2, g2)⊕ δPD(f)(g1, g2)

(4.32)

4.5 ΩSpin
n (B(Z2 × Z2

4))

4.5.1 Computation

As in the previous sections we use the Adams spectral sequence

Es,t2 = Exts,tA (H∗(MSpin ∧ (B(Z2 × Z2
4))+),Z2)⇒

πt−s(MSpin ∧ (B(Z2 × Z2
4))+)∧2 = ΩSpin

t−s (B(Z2 × Z2
4)). (4.33)

and the fact (4.14). For t− s < 8, we can then identify the E2-page with

Exts,tA(1)(H
∗(B(Z2 × Z2

4)),Z2). (4.34)

The cohomology ring of the classifying space is given by: H∗(BZ2) = Z2[a] where |a| = 1,
H∗(BZ4) = Z2[y] ⊗ Λ(x) where |x| = 1, |y| = 2, Sq1(y) = Sq1(x) = 0. The second page dif-
ferential acts as follows: d2(yi) = xih

2
0, d2(yiα) = xiyih

3
0, d2(yia

3 + y2
i a) = (xia

3 + xiyia)h2
0 for

i = 1, 2. d2(y1x2) = d2(x1y2) = x1x2h
2
0, d2(y1y2) = x1y2h

2
0 + y1x2h

2
0, d2(x1y1y2) = x1y1x2h

2
0,

d2(y1x2y2) = x1x2y2h
2
0, where x1, y1 and x2, y2 are generators of two copies of H∗(BZ4).

The A(1)-module structure of H∗(B(Z2×Z2
4)) and the E2 page are shown in Figures 7 and 8 where

we use the known result for Z2
4 in Figure 4.

Hence we have the following
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Figure 8: The E2 page of the Adams spectral sequence for Z2 × Z2
4

Theorem 10.

n ΩSpin
n (B(Z2 × Z2

4)) Hn(B(Z2 × Z2
4),Z) fermionic SPTs classes

0 Z Z
1 Z2

2 × Z2
4 Z2 × Z2

4

2 Z6
2 × Z4 Z2

2 × Z4 Z5
2 × Z4

3 Z8
2 × Z4 × Z3

8 Z4
2 × Z3

4 Z8
2 × Z4 × Z3

8

4 Z× Z6
2 × Z4

4 Z6
2 × Z2

4 Z6
2 × Z4

4

(4.35)
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4.5.2 Bordism invariants

The bordism groups are explicitly realized as follows:

ΩSpin
n (B(Z2 × Z2

4)) = {spin n-manifolds Mn with maps g : M → BZ2, f1,2 : M → BZ4}/ ∼ . (4.36)

The complete bordism invariant in dimension n < 5 read as follows

(M1, f1, f2, g) 7−→ η(M1)⊕
∫
M1 g ⊕

∫
M1 f1 ⊕

∫
M1 f2

(M2, f1, f2, g) 7−→ Arf(M2)⊕ q̃(f∗1 (x))⊕ q̃(f∗2 (x))⊕ q̃(g)⊕
∫
M2 g f

∗
1 (x)⊕

∫
M2 g f

∗
2 (x)⊕

∫
M2 f1 f2

(M3, f1, f2, g) 7−→
∫
M3 g f

∗
1 (x) f∗2 (x)⊕

∫
M3 g f

∗
1 (y)⊕

∫
M3 g f

∗
2 (y)⊕

Arf(PD(f∗1 (x)))⊕Arf(PD(f∗2 (x)))⊕ q̃PD(f∗1 (x))(g)⊕ q̃PD(f∗2 (x))(g)⊕

q̃PD(f∗1 (x))(f
∗
2 (x))⊕

∫
M3 f1 Bf2 ⊕ γ̂(f1)⊕ γ̂(f2)⊕ β(g)

(M4, f1, f2, g) 7−→ p1(TM4)
48 ⊕

∫
M4 g f

∗
1 (xy)⊕

∫
M4 g f

∗
2 (xy)⊕

∫
M4 g f

∗
1 (x)f∗2 (y)⊕

∫
M4 g f

∗
2 (x)f∗1 (y)⊕

Arf(PD(f∗1 (x)) ∩ PD(f∗2 (x)))⊕
∫
M4 f1f2Bf2 ⊕

∫
M4 f2f1Bf1⊕

q̃PD(f∗1 (x))∩PD(f∗2 (x))(g)⊕ δPD(f1)(g, g)⊕ δPD(f2)(g, g)

(4.37)

4.6 ΩSpin
n (BZ3

4)

4.6.1 Computation

As before, we can use the Adams spectral sequence

Es,t2 = Exts,tA (H∗(MSpin ∧ (BZ3
4)+),Z2) ⇒ πt−s(MSpin ∧ (BZ3

4)+)∧2 = ΩSpin
t−s (BZ3

4). (4.38)

and, for t− s < 8, we can identify the E2-page with

Exts,tA(1)(H
∗(BZ3

4),Z2). (4.39)

The mod 2 cohomology ring and the second page differential are determined by the following formulas.
H∗(BZ4) = Z2[y]⊗Λ(x) where |x| = 1, |y| = 2, Sq1(y) = Sq1(x) = 0. d2(yi) = xih

2
0, d2(yiα) = xiyih

3
0

for i = 1, 2, 3, d2(y1x2) = d2(x1y2) = x1x2h
2
0, d2(y1y2) = x1y2h

2
0 + y1x2h

2
0, d2(x1y1y2) = x1y1x2h

2
0,

d2(y1x2y2) = x1x2y2h
2
0. d2(x1y2x3) = d2(x2y1x3) = d2(x1x2y3) = x1x2x3h

2
0, d2(y1y2x3) = x1y2x3h

2
0 +

x2y1x3h
2
0, d2(y1y3x2) = x1x2y3h

2
0 + x3y1x2h

2
0, d2(y2y3x1) = x3y2x1h

2
0 + x2y3x1h

2
0.

The A(1)-module structure of H∗(BZ3
4) is depicted in Figure 9.

The calculation and the result are similar to the previous ones. Here we only present the result in
dimension 4:

Theorem 11.
ΩSpin

4 (BZ3
4) = Z× Z4

2 × Z8
4. (4.40)
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Figure 9: The A(1)-module structure of H∗(BZ3
4)

which can be compared with
H4(BZ3

4,Z) = Z8
4. (4.41)

4.6.2 Bordism invariants

ΩSpin
n (B(Z3

4)) = {spin n-manifolds Mn with maps f1,2,3 : M → BZ4}/ ∼ . (4.42)

(M4, f1, f2, f3) 7−→ p1(TM4)
48 ⊕

∫
M4 f1f2Bf2 ⊕

∫
M4 f1f3Bf3 ⊕

∫
M4 f2f1Bf1 ⊕

∫
M4 f2f3Bf3⊕∫

M4 f3f1Bf1 ⊕
∫
M4 f3f2Bf2 ⊕

∫
M4 f1f2Bf3 ⊕

∫
M4 f1f3Bf2⊕

Arf(PD(f∗1 (x)) ∩ PD(f∗2 (x)))⊕Arf(PD(f∗2 (x)) ∩ PD(f∗3 (x)))⊕

Arf(PD(f∗1 (x)) ∩ PD(f∗3 (x)))⊕ η(PD(f∗1 (x)) ∩ PD(f∗2 (x)) ∩ PD(f∗3 (x)))

(4.43)
Note that the last invariant can be equivalently written in a following not explicitly symmetric way:
q̃PD(f∗1 (x))∩PD(f∗2 (x))(f

∗
3 (x)).

4.7 ΩSpin
n (BG) for general finite abelian G.

We do not present a calculation for general finite abelian G, however the result is expected to be
qualitatively similar. In particular, the odd torsion part will coincide with the odd torsion part the
oriented bordism group ΩSO

n (BG) and will not provide any fermionic spin-TQFTs (that is, TQFTs
depending non-trivially on spin-structure). Moreover, for n ≤ 4, Tor ΩSO

n (BG) = Hn(BG,Z). There-
fore one can restrict to the case of G =

∏
i Z2mi . Therefore, the result is expected to be of the similar

form as in the examples considered above.

5 Fermionic topological invariants of links and surface links

An n-dimensional TQFT, when evaluated on a closed n-manifold gives a numerical invariant of this
manifold, valued in21 C. The TQFT structure also provides invariants of embedded submanifolds

21As Hom(C,C) ∼= C
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with respect to ambient isotopy. Namely, consider a possibly disjoint closed oriented k-manifold
Y k embedded via a map ι into a n-manifold Mn. Denote the image ι(Y k) = L and its tabular
neighborhood as N (L). The complement Mn \ N (L) then can be considered as a bordism from the
empty manifold ∅ to Y k×Sn−k−1. The value of a TQFT Z on it then can be considered as an element
in the complex vector space22 Z(Y k ×Sn−k−1). If one fixes a basis in this vector space, for each basis
element there is a numeric invariant of ι : Y k ↪→Mn under ambient isotopy.

A very well known example of this construction is Witten-Reshetikhin-Turaev 3d TQFTs which
provide “quantum” invariants of both closed 3-manifolds and links. Similarly, the 3d and 4d spin-
TQFTs Zµgauged considered in this article give rise to invariants of links in 3-manifolds and surface
links in 4-manifolds respectively.

We will restrict our attention on the codimension 2 oriented submanifolds in Sn where n = 3
or n = 4. In this case the normal bundle NL to L = ι(Y n−2) is always trivial. This follows, for
example from the triviality of the Euler class (see e.g. Corollary 11.4 in [26]). Let us fix the framing of
L = ι(Y n−2), that is a trivialization of the normal bundle. Since the normal bundle is two-dimensional,
the choice of the framing is equivalent to a choice of non-vanishing section of the normal bundle (up
to homotopy), that is a choice of normal vector at each point of L. Without loss of generality the
end of the vector can lie on the boundary of the tabular neighborhood N . The framing thus fixes
a homeomorphism Y n−2 × S1 ∼= ∂(Sn \ N (L)) by mapping a fixed point on S1 to the end of the
framing vector. The framing also provides a spin-structure on Y n−2 × S1 induced from the unique
spin-structure on Sn. Namely, the trivialization of of normal bundle NL together with spin structure

on Sn, via the decomposition NL ⊕ TL = TSn, fixes a spin structure on TL
dι∼= TY n−2 [2]. Spin

structure induced from Sn on the S1 factor in S1 × Y n−1 is even (i.e. bounding), since it is identified
with a circle bounding a small disk surrounding Y n−2. Together they give a product spin structure on
Y n−2 × S1. Thus a framed oriented codimension 2 submanifold (possible disconnected) L embedded
in Sn gives a well defined element of [Sn \ N (L)] ∈ Hom(∅, Y n−1 × S1) in the spin-bordism category
BordSpinn and one can consider the evaluation of the spin-TQFT functor on it:

Zµgauged(Sn \ N (L)) ∈ Zµgauged(Y n−2 × S1) (5.1)

for different values of µ ∈ Hom(ΩSpin
n (BG), U(1)).

There is always distinguished choice of the “zero” framing on each connected component Li of
L = tiLi in the following sense. The space of homotopy classes of framings on the normal bundle to
Li is non-canonically isomorphic to H1(Li,Z). However there is a distinguished isomorphism for which
the element a ∈ H1(Li,Z) corresponding to the given framing is determined by a([`]) = `k(`′, Li),
where ` is a smooth curve on Li representing a class [`] ∈ H1(Li,Z) and `′ is its push-off in Sn towards
the framing vector. For framing corresponding to the zero element in H1(Li,Z) there is always exist
oriented Seifert hyper-surface V n−1

i smoothly embedded in Sn such that ∂V n−2
i = Li and the framing

vector field on Σ is the normal vector to Li inside Vi (see e.g. [27]). For such choice of framing Li,
with the spin-structure induced from Sn, represents a trivial element in ΩSpin

n−2 (pt).

Note that knowledge of invariants of (surface) links (5.1) in Sn allows easy calculation of the
invariants Zµgauged(Mn) on closed manifolds Mn constructed via surgery, by using the functoriality of

Zµgauged.

In what follows we consider a few examples of particular choices µ ∈ Hom(ΩSpin
n (BG), U(1)) in

more detail, extending and clarifying some of the statements appeared in [25]. All other choices are

22As Hom(C, Z(Y k × Sn−k−1)) ∼= Z(Y k × Sn−k−1).
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analogous. Note that the cases when µ is “bosonic” (i.e. belongs to the Hn(BG,U(1)) subgroup) were
already considered in great detail in [25]. We provide a list of examples the invariant of (surface) links
produced by 3- and 4-dimensional fermionic finite group gauge theories in Table 1.

Dim
symmetry group

G× Zf2

spin TQFTs
from gauging fSPTs :

Action
Values

Link
invariants

3d (2+1D) Z2 × Zf2 π
4
β(g) Z8

Arf/ABK
ABK(V1)

3d (2+1D) (Z2)2 × Zf2 π
2
δ(g1, g2) Z4

unoriented
Sato-Levine
qV1(V1 ∩ V2)

4d (3+1D) Z4 × Z2 × Zf2 π
2
δPD(f)(g, g) Z4 ABK(V1 ∩ V2) mod 4

4d (3+1D) (Z4)2 × Zf2 πArf(PD(f1 mod 2) ∩ PD(f2 mod 2)) Z2
Sato-Levine
Arf(V1 ∩ V2)

4d (3+1D) (Z4)3 × Zf2 πη(PD(f1 mod 2) ∩ PD(f2 mod 2) ∩ PD(f3 mod 2)) Z2 η(V1 ∩ V2 ∩ V3)

Table 1: A list of some of the (surface) link invariants produced by fermionic finite group gauge
theories, which is meant to be an update and improvement of the previous study in Ref. [25]’s Section
8 and its Table 3. Here, as in the main text, Vi denote Seifert surfaces (volumes) of the (surface)
link components. In the next subsections we elaborate on how the spin-structure is induced on their
intersections.

5.1 G = Z2, in 3 dimensions

Consider a framed oriented knot23 L in M3 = S3, that is an embedding ι : S1 ↪→ S3. As described
above the unique spin-structure on S3 together with framing defines a spin structure on T 2 ∼= ∂(S3 \
N (L)). The framings of L ↪→ S3 are in one-to-one correspondence with integers numbers. The
correspondence is given by the self-linking number of L:

`k(L,L) := `k(L,L′) ∈ Z (5.2)

where L′ is a push-off of L towards the framing vector. The framing with `k(L,L) = 0 is often called
Seifert framing. In this case the framing vector can be realized as a normal vector to L pointing inwards
an oriented Seifert surface (which always exist) Σ smoothly embedded in S3 such that ∂Σ = L. The
spin structure induced on L ∼= S1 is then even, since L is the spin-boundary of oriented Σ which has
a spin-structure canonically induced from S3. Any non-zero even framing (i.e. `k(L,L) ∈ 2Z) can be
realized by taking the normal vector pointing inwards an unorientable surface Σ, such that ∂Σ = L.
Such surfaces can be realized by taking band-connected sums of an orientable Seifert surfaces with
a Möbius band. Each such sum changes framing by 2. Any even framing than induces an even spin
structure on L ∼= S1 and, as a spin-manifold ∂(S3 \ N (L)) = T 2

++
∼= S1

+ × S1
+ where two circles are

identified with the meridian and longitude cycles24. For odd framings Seifert surface, orientable or
not, that is compatible with the framing does not exist. The spin structure on the knot complement
is then ∂(S3 \N (L)) ∼= S1

+ × S1
−. This follows, for example, from the realization of spin-structures on

T 2 as quadratic forms on H1(T 2,Z2) and the fact that changing framing by one corresponds to the

23The case of the multi-component link is analogous.
24Meridian cycle is a small cycle surrounding the knot and longitude is the cycle given by the push-off L′ towards the

framing vector.
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action
H1(T 2,Z2) −→ H1(T 2,Z2),

[m] 7−→ [m],
[`] 7−→ [`] + [m].

(5.3)

where [m] and [`] are representatives of the median and longitude of L respectively.

Let us take µ to be the generator of Hom(ΩSpin
3 (BZ2), U(1)) ∼= Z8:

µ : ΩSpin
3 (BG) −→ U(1),

[M3, f ] 7−→ exp πi
4 β(f) ≡ exp πi

4 ABK[PD(f)].
(5.4)

Let us choose an even framing. The value of the spin-TQFT functor on T 2
++ is the following

complex 3-dimensional space (see general formula (2.6) and the calculation in Section 5.2 of [28])

Zµgauged(T 2
++) = Zµ(T 2

++, 0)⊕ Zµ(T 2
++, [`])⊕ Zµ(T 2

++, [m]) (5.5)

where we specify the elements f ∈ H1(T 2
++,Z2) (i.e. the homotopy class of the map f : T 2

++ → BZ2)
by their Poincaré duals in H1(T 2

++,Z2). Since Zµ is an invertible TQFT, each component in the sum
is a one-dimensional vector space. However, in order to obtain numerical invariants of knots one still
has to fix a basis, that is provide unit maps

C −→ Zµ(T 2
++, f) (5.6)

for each component in (5.5). This can be realized by using the value of the TQFT on the complement
of an unknot L = U with trivial framing (that is a solid torus D2 × S1):

Zµgauged(S3 \ N (U)) = 1⊕ 1⊕ 0 (5.7)

Note that the value in Zµ(T 2
++, [m]) vanishes because the map f = [m] : T 2 → BZ2 cannot be

extended to interior of the solid torus and the corresponding term in (2.13) is absent. The choice of
the basis in Zµ(T 2

++, [m]) can be done by swapping meridian and the longitude.

On closed 3-manifolds the value of the invertible Z2-equivariant TQFT Zµ is given by the right hand
side of (5.4). It can be extended to a general element of the bordism (M3, g) ∈ Hom((M2

1 , f1), (M2
2 , f2))

in BordSpin3 (BZ2) as follows25:

Zµ(M3, g) = exp
πi

4
ABK[PD(g)] : Zµ(M2

1 , f1)→ Zµ(M2
2 , f2) (5.8)

where now PD(g) is a smooth surface (in general non-orientable and with boundary) inside M3 repre-
senting an element in the relative homology H2(M3,M2

1 tM2
2 ;Z2) Poincaré dual to g ∈ H1(M3,Z2).

The condition g|M2
i

= fi ∈ H1(M2
i ,Z2) is equivalent to the requirement that the boundary of PD(g) is

a collection of smooth curves on M2
1 and M2

2 representing Poincaré duals to fi. The spin structure on

25The identification of the map between one-dimensional complex spaces with C itself requires a choice of basis
for each Zµ(M2, f), that is a linear map C → Zµ(M2, f). Due to the monoidal property Zµ(M2

1 t M2
2 , f1 t f2) =

Zµ(M2
1 , f1)⊗Zµ(M2

2 , f2) and existence of a canonical bordism between disjoint union and connected sum, it is sufficient
to consider only for genus one Riemann surfaces. For the case when M2 = S1

+×S1
+ and f is such that (M2, f) represents

a zero class in ΩSpin2 (BZ2) ∼= Z2
2 the basis has been fixed above. All other null-bordant pairs (M2, f) can be related by

the mapping class group action on T 2. For pairs (M2, f) which represent non-trivial elements in ΩSpin2 (BZ2) one can
first obtain a map C→ Zµ(M2, f)⊗Zµ(M2, f) by cutting a 3-torus T 3 in half. This fixes a basis in Zµ(M2, f) up to a
sign. Since such (M, f) only appear in pairs in the boundary of the bordism (M3, g), different choices do not affect the
choice of the isomorphism Zµ(M3, g) ∼= C.
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M3 induces a spin structure on PD(g) analogously to the closed case discussed in Section 3.3. In the for-
mula above ABK[Σ] denotes the extension of the Z8 valued Arf-Brown-Kervaire invariant to pin− sur-
face Σ with boundary (see e.g. [29]). As in the case of closed Σ discussed in Section 3.2, pin− structures
are in one-to-one correspondence with quadratic enhancements q : H1(Σ,Z2) ∼= H1(Σ, ∂Σ;Z2) → Z4

of the intersection pairing. The ABK invariant is then defined by a formula similar to (3.9). The
functoriality property of (5.8) then follows from the additivity of ABK invariant under gluing surfaces
with pin− structure.

The value of the spin-TQFT on the complement of a general oriented knot L with even framing
inside S3 is given by

Zµgauged(S3 \ N (L)) = 1⊕ e
πi
4

ABK(Σ) ⊕ 0 ∈ Zµgauged(T 2
++) (5.9)

where Σ is a possibly unorientable surface embedded in S3 with ∂Σ = L and inducing the given
framing on L. We used the fact that, as in the case of unknot, there is a unique g ∈ H1(S3 \N (L),Z2)
with a fixed f = g|∂(S3\N (L)) ∈ H1(T 2,Z2). The pin− structure on Σ is induced from the unique
spin-structure on S3. The values of the corresponding quadratic enhancement qΣ : H1(Σ,Z2) → Z4

geometrically can be realized as follows [29]. Take a smooth curve in Σ that represents an element
α ∈ H1(Σ,Z2). Then q(α) is the number of half-twists mod 4 of the thin band embedded in Σ, that
is a tabular neighborhood of the curve.

The mod 8 valued invariant of a knot L in (5.9) appeared in [29] and is simply related to more
usual Arf invariant of L (which is defined using an oriented Seifert surface Σ):

ABK(L) = 4 Arf(L0) +
`k(L,L)

2
mod 8 (5.10)

where L0 is the same knot but with zero framing. The relation can be shown by changing Σ to an
orientable surface by taking a band-connected sum with appropriate number of Möbius bands. A
simple example of a knot L0 with Arf(L0) = 1 mod 2 is given by the trefoil (31 in the classification
table).

5.2 G = Z2 × Z2, in 3 dimensions

Let us take µ to be a generator of a Z4 subgroup in Hom(ΩSpin
3 (BG), U(1)) (see Section 4.1):

µ : ΩSpin
3 (BG) −→ U(1),

[M3, f1, f2] 7−→ exp πi
2 δ(f1, f2).

(5.11)

In this case the interesting situation is when L = L1 t L2 is a two component framed oriented link in
S3 such that each component has even framing. The case of larger number of components is similar.
Denote by Σ1,2 possibly unorientable surfaces such that ∂Σi = Li and they induce framings on L1,2

respectively. We also assume that Σ1 ∩ L2 = ∅, Σ2 ∩ L1 = ∅ and Σ1 intersect with Σ2 transversely.
Such surfaces exist if and only if the link is proper, that is `k(L1, L2) = 0 mod 2 [30]. The unique
spin structure on S3 induces a pin− structure on each Σi which is represented by a quadratic function
qΣi : H1(Σi,Z2)→ Z4. The same reasoning as in the previous section can be used to show that:

Zµgauged(S3 \ N (L))|Zµ(T 2
++,[`]⊕0)⊗Zµ(T 2

++,0⊕[`]) =

{
exp πi

2 qΣ1([Σ1 ∩ Σ2]), L is proper,
0, otherwise.

(5.12)

where we only listed the projection on the functor on the one-dimensional subspace of Zµgauged(T 2
++ t

T 2
++) in the decomposition (2.6) that gives a non-trivial invariant of the link L. Geometrically qΣ1([Σ1∩
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Σ2]) counts the number of half-twists of the thin band in Σ1 containing the curve Σ1 ∪ Σ2. Since Σ1

and Σ2 intersect transversely, qΣ1([Σ1 ∩Σ2]) = qΣ2([Σ1 ∪Σ2]). Such mod 4 valued invariant of proper
links is known as unoriented Sato-Levine invariant [30]. The examples of 2-component proper links
with non-trivial values of unoriented Sato-Levine invariant are shown in Figure 10.

Figure 10: Left: Whitehead link, a link with the vanishing linking number. The value of unoriented
Sato-Levine invariant is 2 mod 4. Note that the value of the ordinary Sato-Levine invariant is 1 ∈
π3(S2) ∼= Z. Right: A link with even intersection number with value 1 mod 4 of unoriented Sato-
Levine invariant.

5.3 G = Z4 × Z4, in 4 dimensions

Take µ to be a generator of a Z2 subgroup in Hom(ΩSpin
4 (BG), U(1)) (see Section 4.1):

µ : ΩSpin
3 (BG) −→ U(1),

[M3, f1, f2] 7−→ (−1)Arf(PD(f∗1 (x))∩PD(f∗2 (x))).
(5.13)

Let L = L1 t L2 be a two-component oriented surface-link in S4, so that Li is the image of a closed
oriented Riemann surface Σi under the embedding map ι : Y 2 ≡ Σ1 tΣ2 ↪→ S4. Choose zero framing
on both components Li as described in the beginning of the section. Then there exist three-dimensional
Seifert volumes Vi such that ∂Vi = Σi and each Σi with the induced spin structure is a spin-boundary.
Moreover, let us assume that L is semiboundary, that is, by definition, there exist Seifert volumes such
that V1 ∩L2 = ∅ and V2 ∩L1 = ∅ [27]. One can choose V1, V2 to intersect transversally so that V1 ∩V2

is an oriented Riemann surface. The normal bundle to V1 ∩ V2 in S4 has a natural framing given by
the two normal vectors pointing inward Vi. Given this framing, the spin structure on S4 induces a
spin structure on V1 ∩ V2. Then, by an argument similar to the one in the three-dimensional case,

Zµgauged(S4 \ N (L))|Zµ(Σ1×S1
+,[Σ1]⊕0)⊗Zµ(Σ2×S1

+,0⊕[Σ2]) = (−1)Arf(V1∩V2), L is semi-boundary.

(5.14)
This Z2-valued invariant of a semi-boundary link is equal to the Sato-Levine invariant of a two-
component semi-boundary surface link in S4 [27] (see also [31] for an alternative realization of the
same invariant, very close to the one described here) which follows from the canonical isomorphism
between ΩSpin

2 (pt) ∼= Z2 and two-dimensional framed bordism group Ωfr
2 (pt) ∼= πS2 , which is in turn,

by Pontryagin-Thom, isomorphic to the second stable homotopy group of spheres. An example of a
surface link with non-trivial value of the invariant is shown in Figure 11.

5.4 G = Z4 × Z4 × Z4, in 4 dimensions

Take µ to be a generator of a Z2 subgroup in Hom(ΩSpin
4 (BG), U(1)) (see Section 4.6):

µ : ΩSpin
3 (BG) −→ U(1),

[M3, f1, f2, f3] 7−→ (−1)
q̃PD(f∗1 (x1))∩PD(f∗2 (x2))(f

∗
3 (x3))

.
(5.15)
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Figure 11: A twisted spun of Whitehead link. This 2-component surface link L ⊂ S4 can be realized
inside (topologically trivially) embedded D3 × S1 ⊂ S4 where D3 is a solid ball. For each t ∈ [0, 2π)
parametrizing S1, L∩ (D3 × {t}) is a copy of a Whitehead link where one component is a fixed circle
and the other component is rotated by angle t around the axis orthogonal to that circle and passing
through its center, as shown in the picture. This construction can be understood as 4-dimensional
generalization of a braid representation of a link.

Let L = L1tL2tL3 be now a three-component oriented surface-link in S4, where each Li is the image
of a closed oriented Riemann surface Σi under embedding map ι : Y 2 ≡ Σ1 t Σ2 t Σ3 ↪→ S4. Choose
again zero framing on each Li and assume that L is semi-boundary, that is, for each component Li
there exist a Seifert volume Vi such that it induces the framing and Vi ∩ (L \Li) = ∅. One can choose
V1, V2, V3 all intersect transversally so that V1∩V2 is an oriented Riemann surface and V1∩V2∩V3 is a
smooth curve in it. As in the previous subsection, the spin-structure on S4 induces a spin-structure on
V1 ∩ V2 described by a certain quadratic form qV1∩V2 : H1(V1 ∩ V2)→ Z2. Moreover, there is a natural
framing on the 1-manifold V1∩V2∩V3 embedded in S4 given by the two three normal vectors pointing
inward Vi. Given this framing, the spin structure on S4 induces a spin structure on V1∩V2∩V3. Then

Zµgauged(S4 \ N (L))|Zµ(Σ1×S1
+,[Σ1]⊕0⊕0)⊗Zµ(Σ2×S1

+,0⊕[Σ2]⊕0)⊗Zµ(Σ3×S1
+,0⊕0⊕[Σ3]) =

(−1)q̃V1∩V2
(V1∩V2∩V3) ≡ (−1)η(V1∩V2∩V3), L is semiboundary. (5.16)

where η is the invariant of spin 1-manifolds described in Section 3.1. Note that using the isomorphism
ΩSpin

1 (pt) ∼= Ωfr
1 (pt) ∼= πS1 Z2, one can define the value as the class of V1∩V1∩V3 in Ωfr

1 (pt), similarly to
the original Sato-Levine invariant. An example of a surface link with non-trivial value of the invariant
is shown in Figure 12.

Figure 12: A twisted spun of Borromean rings. This 3-component surface link L ⊂ S4 can be realized
inside (topologically trivially) embedded D3 × S1 ⊂ S4 where D3 is a solid ball. For each t ∈ [0, 2π)
parametrizing S1, L ∩ (D3 × {t}) is a copy of a Borromean rings link where one component is a fixed
circle and the other two components are rotated by angle t around the axis orthogonal to that circle
and passing through its center, as shown in the picture. This construction can be understood as
4-dimensional generalization of a braid representation of a link.
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5.5 Categorification of invariants of links and 3-manifolds

Before we proceed, let us briefly review the general definition of Sato-Levine invariants [27] of higher
dimensional links. Let Ln−2 = Ln−2

1 tLn−2
2 be a pair of disjoint oriented dimension (n− 2) manifolds

embedded in Rn (one can replace it with Sn by adding a point at infinity). Each Ln−2
i , i = 1, 2 is not

necessarily connected. There always exist Seifert volumes V n−1
i such that ∂V n−1

i = Li. By definition
the link L is semiboundary if one can find Vi such that Vi ∩ Lj = ∅, i 6= j. Then the n-dimensional
Sato-Levine invariant is defined as follows26:

SLn :

 semiboundary
links in Rn


∼ ambient isotopy −→ πn(S2),

Ln−2 = Ln−2
1 t Ln−2

2 7−→ [V n−2
1 ∩ V n−2

2 ]
via Pontryagin-Thom

(5.17)

where, as in Section 5.3, we use vectors tangential to Vi to define a framing on the normal bundle to
V n−1

1 ∩ V n−1
2 . Given this dimension (n− 2) submanifold in Rn with a framing of the normal bundle,

Pontryagin-Thom construction27 then provides an element in the n-homotopy group of S2.

Similarly, one can define stable Sato-Levine invariant:

S̃Ln :

{
semiboundary

links in Rn
}

∼ ambient isotopy
−→ πsn−2 = lim

k→∞
πn+k(S

2+k) (5.18)

where we replace the ambient Rn with Rn+k, and L with L× pt and then take k →∞.

As was explained Section 5.3, the 4d spin-TQFT obtained by gauging G = Z4 × Z4-equivariant
invertible spin-TQFT with action Arf(PD(f1 mod 2) ∩ PD(f2 mod 2)) provides a realization of S̃L4

invariant of surface links. By a similar argument one can show that 3d spin-TQFT obtained by gauging
invertible G-equivariant spin-TQFT with the same G and action η(PD(f1 mod 2) ∩ PD(f2 mod 2))

(where η is the invariant of ΩSpin
1 (pt) ∼= Z2) provides a realization of S̃L3 invariant of surface links. In

both cases one can see this from the fact that ΩSpin
n (pt) ∼= πsn for n ≤ 2. Namely, if the invariants S̃L3

are understood to be valued in {±1} (i.e. multiplicative realization of Z2):

S̃L3(L1
1 t L1

2) = (−1)η(V 2
1 ∩V 2

2 ), (5.19)

S̃L4(L1
1 t L1

2) = (−1)Arf(V 3
1 ∩V 3

2 ), (5.20)

where we used the notations for Seifert surfaces/volumes as before.

Now we would like to claim that, in a certain sense, S̃L4 categorifies S̃L3 . In order to make this
statement meaningful one has to extend S̃L4 from invariant of (semiboundary) surface links in R4 to

26The more usual notation is β, however we are already using this symbol for a different invariant.
27For completeness, let us remind it. Let Nn−m be a codimension n submanifold in Rn with a framing on the normal

bundle. The corresponding continuous map Sn → Sm then can be explicitly constructed as follows. First let us identify
the source Sn with the ambient Rn with added point at infinity, and the target Sn as Dn/∂Dn where Dn is a unit ball.
Pick a tabular neighborhood T (Nn−m) ⊂ Rn of Nn−m. The framing on the normal bundle then provides an explicit
isomorphism T (Nn−m) ∼= Nn−m × Dm where Dm is the m-dimensional unit ball. The map Sn → Sm is then given
by taking all the points outside of the tabular neighborhood to ∂Dm (collapsed to a single point in Sm) and the points
inside to be projected on Dm.

35



the functor from the category of (semiboundary) link-bordisms to the category of complex Z2-vector
spaces VectZ2

C :

S̃L4 : LinkBordsb
4 → VectZ2

C . (5.21)

The objects in the category LinkBordsb
4 are semiboundary links in R3:

Ob(LinkBordsb
4 ) =

{
semiboundary

links L1
1 t L1

2 in R3

}
(5.22)

The morphisms are pairs of 2-manifolds embedded in R3 × [0, 1] with boundaries coinciding with the
links sitting in R3 × {0, 1} and satisfying semiboundary property (see Fig. 13):

Hom(L1
1 t L1

2, L
1
1
′ t L1

2
′
) =


N2

1 tN2
2 ⊂ R3 × [0, 1], s.t. ∂N2

i ⊂ R3 × {0, 1},
∂N2

i ∩ R3 × {0} = L1
i , ∂N2

i ∩ R3 × {1} = L1
i
′

∃V 3
i , s.t. ∂V 3

i = N2
i ∪ V 2

i ∪ V 2
i
′
, V 3

i ∩N2
j = ∅, i 6= j

 / ∼ diffeo.

(5.23)
The value of the functor (5.21) on objects is given by
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Figure 13: A schematic picture of a morphism in the category LinkBordsb
4 where, for visualization

purpose, all dimensions are reduced by one.

S̃L4(L1
1 t L1

2) =

{
C[0], S̃L3(L1

1 t L1
2) = 1,

C[1], S̃L3(L1
1 t L1

2) = −1,
= ZArf(V 2

1 ∩ V 2
1 ) (5.24)

where C[n] denotes a one-dimensional complex vector space with Z2 grading n, and ZArf is the non-
trivial (fully extendable) invertible 2d spin-TQFT such that its value on a closed spin-surface Σ is

ZArf(Σ) = (−1)Arf(Σ). Such TQFT was considered in detail in [32] (see also [33]). The value of S̃L4

on morphisms (using the conventions in (5.23)) is

S̃L4(N2
1 tN2

2 ) = ZArf(V 3
1 ∩ V 3

2 ). (5.25)

where V 3
1 ∩ V 3

2 is a surface in R3 × [0, 1] with induced spin-structure and boundary components lying
in R3 × {0} and R3 × {1}. From the definition of semi-boundary link bordisms (5.23) the r.h.s. of
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(5.25) indeed provides a Z2-linear map between the Z2-vector spaces associated to the objects via
(5.24) which is functorial.

Then the functor S̃L4 categorifies link invariant S̃L3 in the sense that

S̃L3(L1
1 t L1

2) = dim S̃L
0

4(L1
1 t L1

2)− dim S̃L
1

4(L1
1 t L1

2) (5.26)

where, as before, the upper indices 0, 1 denote the components of the vector space with particular
grading. This categorification of link invariants can be understood as a toy version of Khovanov
homology [34], which categorifies Jones polynomial invariant of links (valued in Z[q, q−1]), and is also

functorial with respect to link bordisms. Moreover, S̃L3 invariant has a close relation to the Jones
polynomial invariant evaluated at q = i (see e.g. [29])).

As was described above, S̃L3,4 can be realized as Z
µ3,4

gauged with µ3,4 being particular elements of

Hom(Tor ΩSpin
3,4 (BZ2

4), U(1)). Namely

µ4 := Arf(PD(f1 mod 2) ∩ PD(f2 mod 2)),
µ3 := η(PD(f1 mod 2) ∩ PD(f2 mod 2)).

(5.27)

It is natural to ask if Zµ4

gauged also categorifies Zµ3

gauged. However, it is easy to see that categorification

in the most naive sense, is not possible, because generically the value of Zµ3

gauged on a closed spin

3-manifold is rational (e.g. Zµ3

gauged(S3) = 1/16), which cannot be interpreted as a (signed) sum of

dimensions. That is, it is not possible to have a simple relation of the form Zµ3

gauged( · ) = Z4d( · ×S1
±)

for any 4d spin-TQFT Z4d. But, as was shown in [28], the 3d and 4d TQFTs Zµ3

gauged and Zµ4

gauged are
still closely related. Namely:

Zµ4

gauged( · × S1
−) = (Zµ3

gauged)⊕ 4 ⊕ (Z
µ′3
gauged)⊕ 12

Zµ4

gauged( · × S1
+) = (Z0

gauged)⊕ 4 ⊕ (Z
µ3+µ′3
gauged)⊕ 12

. (5.28)

where ⊕ is the direct sum operation28 on TQFT functors and the summands are Z2
4 fermionic topolog-

ical gauge theories corresponding to different elements of Hom(Tor ΩSpin
3 (BZ2

4), U(1)). In particular,

µ′3 := Arf(PD(f1 mod 2)). (5.30)

6 Other bordism groups and computations: Ω
Spin×Z2m

Z2
n .

Let Spin(n)×Z2 Z2m ≡ (Spin(n)×Z2m)/Z2 where the quotient is with respect to the diagonal center
Z2 subgroup. Similarly to spin manifolds, one can consider manifolds with Spin ×Z2 Z2m tangential
structure. That is, manifolds equipped with Hn = Spin(n)×Z2 Z2m principle bundle which is a lift of
the SO(n) orthonormal tangent frame bundle with respect to the extension Z2m → Spin(n)×Z2Z2m →
SO(n).

28The crucial property of the direct sum operation on n-dimensional TQFTs is

(Z1 ⊕ Z2)(Mn−1) = Z1(Mn−1)⊕ Z2(Mn−1), if π0(Mn−1) = 1. (5.29)

The direct operation is then naturally extended to the TQFT values on disjoint (n − 1)-dimensional manifolds and
bordisms between them so that functoriality and symmetric monoidal property hold.
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The Pontryagin-Thom isomorphism provides a relation between the bordism groups of manifolds
with (stable29) tangential structure H and homotopy groups of the Madsen-Tillmann spectrum asso-
ciated to tangential structure H:

ΩH
n ≡ ΩH

n (pt) = πnMTH ≡ colimk→∞πn+kMTHk. (6.1)

On the other hand, in the work of Freed-Hopkins [6], there is a 1:1 correspondence 30

Tor


deformation classes of reflection positive

invertible n-dimensional extended topological
field theories with symmetry group Hn

 ∼= [MTH,Σn+1IZ]tors. (6.2)

The abelian group [MTH,Σn+1IZ] is denoted by TPn(H) in [6]. In particular, [MTH,Σn+1IZ]tors

stands for the torsion part of homotopy classes of maps from spectrum MTH to the (n + 1)-th
suspension of spectrum IZ. The Anderson dual IZ is a spectrum that is the fiber of IC→ IC× where
IC(IC×) is the Brown-Comenetz dual spectrum defined by

[X, IC] = Hom(π0X,C), (6.3)

[X, IC×] = Hom(π0X,C×). (6.4)

There is an exact sequence

0→ Ext1(πnMTH,Z)→ [MTH,Σn+1IZ]→ Hom(πn+1MTH,Z)→ 0. (6.5)

The torsion part [MTH,Σn+1IZ]tors is Ext1((πnMTH)tors,Z) = Hom((πnMTH)tors, U(1)). This
provides relation to the bordism groups in (6.1).

Now let H = Spin×Z2 Z2m. Write m = 2l · n where l ≥ 0 and k is odd, let H ′ = Spin×Z2 Z2l+1 .
Then H = H ′ × Zk and MTH = MTH ′ ∧ (BZk)+, ΩH

k = ΩH′
k (BZk). The 2-torsion part of ΩH

d is
ΩH′
d which is computed in [35] for l = 1, d ≤ 5 and l ≥ 2, d ≤ 4. The group ΩH

5 has been computed
in [36], but here we provide an alternative computation.

For l = 0, H ′ = Spin,

ΩSpin
d =



Z d = 0
Z2 d = 1
Z2 d = 2
0 d = 3
Z d = 4
0 d = 5

, invertible fermionic TQFT classes =


Z2 d = 1
Z2 d = 2
Z d = 3
0 d = 4
0 d = 5

. (6.6)

For l = 1, H ′ = Spin×Z2 Z4,

Ω
Spin×Z2

Z4

d =



Z d = 0
Z4 d = 1
0 d = 2
0 d = 3
Z d = 4
Z16 d = 5

, fSPTs classes =


0 d = 2
0 d = 3
0 d = 4
Z16 d = 5

. (6.7)

29In the cases when H = Spin and H = Spin×Z2 Z2m the stable and unstable structures are equivalent, see [2].
30Note that the free part of the classification contains Chern-Simons-like theories, which are not strictly topological.
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For l ≥ 2,

Ω
Spin×Z2

Z
2l+1

d =



Z d = 0
Z2l+1 d = 1
0 d = 2
Z2l−1 d = 3
Z d = 4
Z2l+3 × Z2l−1 d = 5

, fSPTs classes =


0 d = 2
Z2l−1 d = 3
0 d = 4
Z2l+3 × Z2l−1 d = 5

. (6.8)

where the d = 5 case is new.

Write n = pk1
1 · · · pkrr where pi are odd primes and ki ≥ 1. The pi-torsion part of ΩH

d is
ΩSO
d (BZ

p
ki
i

)∧pi .

Exts,tApi
(H∗(MSO,Zpi)⊗H∗(BZ

p
ki
i

,Zpi),Zpi)⇒ ΩSO
t−s(BZ

p
ki
i

)∧pi (6.9)

where Api is the mod pi Steenrod algebra.

H∗(BZ
p
ki
i

,Zpi) = ΛZpi (a)⊗ Zpi [b] (6.10)

where b = βa, β is the Bockstein homomorphism associated to 0 → Zpi → Zp2
i
→ Zpi → 0, a ∈

H1(BZ
p
ki
i

,Zpi), b ∈ H2(BZ
p
ki
i

,Zpi). The dual of Api = H∗(HZpi ,Zpi) is

Api∗ = H∗(HZpi ,Zpi) = ΛZpi (τ0, τ1, . . . )⊗ Zpi [ξ1, ξ2, . . . ] (6.11)

where τj = (P p
j−1
i · · ·P piP 1β)∗ and ξj = (P p

j−1
i · · ·P piP 1)∗, P i being standard generators of the mod

pi > 2 Steenrod algebra. Let C = Zpi [ξ1, ξ2, . . . ] ⊆ Api∗, then

H∗(MSO,Zpi) = C ⊗ Zpi [z1, z2, . . . ] (6.12)

where |zk| = 4k for k 6= pti−1
2 . The cohomology is then

H∗(MSO,Zpi) = (Zpi [z1, z2, . . . ])
∗ ⊗ C∗ (6.13)

where C∗ = Api/(β) and (β) is the two-sided ideal of Api generated by β.

If pi = 3,
H∗(MSO,Z3) = C∗ ⊕ Σ8C∗ ⊕ · · · (6.14)

· · · −→ Σ2A3 ⊕ Σ6A3 ⊕ · · · −→ ΣA3 ⊕ Σ5A3 ⊕ · · · −→ A3 −→ A3/(β) (6.15)

is an A3-resolution of A3/(β). Therefore we arrive at the following

Theorem 12.
d ΩSO

d (BZ3ki )
∧
3

0 Z
1 Z3

2 0
3 Z3

4 Z
5 Z9

(6.16)
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Figure 14: Adams chart for ΩSO
∗ (BZ3ki )

∧
3

The topological term of ΩSO
5 (BZ3ki )

∧
3 is P(b) where P is the Postnikov square operation

H2(−,Z3)→ H5(−,Z9).

If pi ≥ 5,
H∗(MSO,Zpi) = C∗ ⊕ Σ4C∗ ⊕ · · ·

· · · −→ Σ2Api ⊕ Σ2piApi ⊕ · · · −→ ΣApi ⊕ Σ2pi−1Api ⊕ · · · −→ Api −→ Api/(β)

is an Api-resolution of Api/(β).
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Figure 15: Adams chart for ΩSO
∗ (BZ

p
ki
i

)∧pi

Therefore we have

40



Theorem 13.
d ΩSO

d (BZ
p
ki
i

)∧pi

0 Z
1 Zpi
2 0
3 Zpi
4 Z
5 Z2

pi

(6.17)

for pi ≥ 5.

The topological terms of ΩSO
5 (BZ

p
ki
i

)∧pi are ab2 and a(σ mod pi) where σ is the signature.

7 Time-reversal, pin±-TQFTs and non-orientable manifolds

As was already mentioned in Section 2, the notion of spin-TQFT can be generalized to non-orientable
manifolds. The analogue of spin structure is pin± structure, that is the lift of O(n) principle bundle
of orthonormal tangent frames to Pin±(n) principle bundle with respect to the extensions (2.3).
Physically the O(1) subgroup of O(n) plays role of the time reversal symmetry and often denoted

as O(1) = ZT2 . It is extended by fermionic parity Zf2 to the subgroups Pin+(1) = Zf2 × ZT2 and

Pin−(1) = ZTf4 of Pin+(n) and Pin−(n) respectively, so that the diagram (2.3) commutes. A pin±

manifold is a manifold with a chosen pin± structure.

The definition of a pin±-TQFT is the same as the one for a spin-TQFT but with the spin bordism
category replaced by the pin± bordism category, that is the category with objects being closed pin±

manifolds and morphisms being bordisms between them equipped with pin± structure that is reduced
to the pin± structure of manifolds at the boundary. The corresponding bordism group is also defined
similarly to (2.17):

ΩPin±
n (BG) :=

{
pairs (Mn, f : Mn → BG),
Mn is pin± n-manifold

}
/ ∼ bordisms (7.1)

The non-orientable version of (2.16) then reads{
deformation classes of G-equivariant

reflection-positive invertible pin±-TQFTs

}
∼= Hom(ΩPin±

n (BG), U(1)) . (7.2)

Compared to (2.16) picking the torsion subgroup is not required because the bordism groups are
all torsion. Physically, such invertible TQFTs provide description of fSPT with time reversal (TR)
symmetry (TR-fSPT). Note that, after Wick rotation from Euclidean to Lorentzian signature, Pin+

and Pin− correspond respectively to T 2 = (−1)F and T 2 = 1 relations between the generators of
time-reversal symmetry and fermionic parity.

The gauging operation{
invertible G-equivariant

pin±-TQFTs

}
−→ {pin±-TQFTs}

Z 7−→ Zgauged

(7.3)
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is realized completely analogous the gauging in spin case, described in detail in Section (2.1).

Following the general Pontryagin-Thom isomorphism (cf. (6.1)), the pin± bordism groups of a
topological space X can be related to stable homotopy groups:

ΩPin±
∗ (X) = π∗(MTPin± ∧X+) (7.4)

where MTH denotes the Madsen-Tillmann spectrum corresponding to (stable) tangential H-
structure31, and, as before, X+ is X with a disjoint marked point added. The reduced Pin+/−

bordism groups of X are given by

Ω̃Pin±
∗ (X) = π∗(MTPin± ∧X). (7.5)

In particular, we have
ΩPin±
∗ (X) = ΩPin±

∗ ⊕ Ω̃Pin±
∗ (X). (7.6)

In what follows we provide the results of calculations of pin± bordism groups of BG, for a few simple
finite abelian groups G.

Since pin± bordism group are 2-torsion, we only need to consider the Adams spectral sequence at
prime 2:

Es,t2 = Exts,tA (H∗(MPin± ∧X),Z2)⇒ πs−t(MTPin± ∧X) = Ω̃Pin±
s−t (X). (7.7)

In particular, if r = 2km with m odd,

ΩPin+

∗ (BZr) = ΩPin+

∗ (BZ2k) (7.8)

7.1 Pin+ bordism groups

For calculation we use the fact that [6]

Σ−1MTPin+ ∼= MSpin ∧MTO1 (7.9)

Together with (4.14) it implies that the second page of the Adams spectral sequence (7.7) for s− t < 8
can be identified with

Exts,tA(1)(H
∗−1(MTO1 ∧X),Z2) (7.10)

7.1.1 ΩPin+

∗ (BZ2)

ΩPin+

∗ (BZ2) = ΩPin+

∗ ⊕ Ω̃Pin+

∗ (BZ2)

The A(1)-module structure of H∗(MTO1 ∧ BZ2) is shown in Figure 16. The E2-page of Adams
spectral sequence is shown in Figure 17. There are no further differentials due to degree reasons.
Hence we have the following theorem:

Theorem 14.
i ΩPin+

i (BZ2)

0 Z2

1 Z2

2 Z2
2

3 Z3
2

4 Z16 × Z8

(7.11)

31Unlike in the H = Spin case it is not the same as Thom spectrum MH. However, MTPin± ∼= MPin∓.
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Figure 16: The A(1)-module structure of H∗(MTO1)⊗H∗(BZ2).
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Figure 17: The E2 page of the Adams spectral sequence for Ω̃Pin+

∗ (BZ2)

The corresponding bordism invariants of (Mn, g : Mn → BZ2) in dimensions n = 3 and n = 4:

(M3, g) 7−→
∫
M3 g

3 ⊕Arf(PD(w1))⊕ q̃PD(w1)(g)

(M4, g) 7−→ ηPin+(M4)⊕ βPD(w1)(g)
(7.12)

where we used the fact that Poincaré dual to w1(TMn) can be represented by an orientable codimension
1 submanifold with spin structure induced from the pin− structure on Mn [2]. The invariant ηPin+(M4)
is Z16 valued eta-invariant of Dirac operator.

7.1.2 ΩPin+

∗ (BZ4)

ΩPin+

∗ (BZ4) = ΩPin+

∗ ⊕ Ω̃Pin+

∗ (BZ4). (7.13)

The A(1)-module structure of H∗(MTO1∧BZ4) is shown in Figure 18. The E2-page of Adams spectral
sequence is shown in Figure 19 .

Hence we have the following theorem:
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Figure 18: The A(1)-module structure of H∗(MTO1)⊗H∗(BZ4).
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Figure 19: The E2 page of the Adams spectral sequence for Ω̃Pin+

∗ (BZ4)

Theorem 15.
i ΩPin+

i (BZ4)

0 Z2

1 Z2

2 Z2
2

3 Z3
2

4 Z16 × Z8

(7.14)

The corresponding bordism invariants of (Mn, g : Mn → BZ4) in dimensions n = 3 and n = 4:

(M3, f) 7−→
∫
M3 f

∗(xy)⊕Arf(PD(w1))⊕ q̃PD(w1)(f
∗(x))

(M4, f) 7−→ ηPin+(M4)⊕ γ̂PD(w1)(f)
(7.15)
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7.2 Pin− bordism groups

For calculation we use the fact that [6]

Σ+1MTPin+ ∼= MSpin ∧MO1 (7.16)

Together with (4.14) it implies that the second page of the Adams spectral sequence (7.7) for s− t < 8
can be identified with

Exts,tA(1)(H
∗+1(MO1 ∧X),Z2) (7.17)

7.2.1 ΩPin−
∗ (BZ2)

ΩPin−
∗ (BZ2) = ΩPin−

∗ ⊕ Ω̃Pin−
∗ (BZ2) (7.18)

The A1-module structure of H∗(MO1 ∧BZ2) is shown in Figure 20. The E2-page of Adams spectral

u

w1 a

⊗ =

ua

w1a
w2

1a ua3

Figure 20: The A(1)-module structure of H∗(MO1)⊗H∗(BZ2)

sequence is shown in Figure 21.

0 1 2 3 4 5 t− s

0

1

2

3

s

Figure 21: The E2 page of the Adams spectral sequence for Ω̃Pin−
∗ (BZ2)

There is no further differential due to degree reasons. Hence we have the following theorem:
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Theorem 16.
i ΩPin−

i (BZ2)

0 Z2

1 Z2
2

2 Z4 × Z8

3 Z2
2

4 0

(7.19)

The corresponding bordism invariants of (Mn, g : Mn → BZ2) in dimensions n = 2 and n = 3:

(M2, g) 7−→ ABK(M2)⊕ qM2(g)

(M3, g) 7−→
∫
M3 w

2
1g ⊕

∫
M3 g

3
(7.20)

7.2.2 ΩPin−
∗ (BZ4)

ΩPin−
∗ (BZ4) = ΩPin−

∗ ⊕ Ω̃Pin−
∗ (BZ4) (7.21)

The A1-module structure of H∗(MO1 ∧BZ4) is shown in Figure 22.

u

w1

w2
1

x

y

xy⊗ =

ux

uy

uxy

Figure 22: The A(1)-module structure of H∗(MO1)⊗H∗(BZ4)

The E2-page of Adams spectral sequence is shown in Figure 23.

Hence we have the following theorem:

Theorem 17.
i ΩPin−

i (BZ4)

0 Z2

1 Z2
2

2 Z2
2 × Z8

3 Z2 × Z4

4 Z2

(7.22)
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0

1

2

3

s

Figure 23: The E2 page of the Adams spectral sequence for Ω̃Pin−
∗ (BZ4)

The corresponding bordism invariants of (Mn, f : Mn → BZ4) in dimension n = 3:

(M3, f) 7−→
∫
M3 f

∗(xy) ⊕ (ABK(PD(f∗(x))) mod 4) (7.23)

Notice that Ω̃Spin
4 (BZ2 ×BZ4)→ ΩPin−

3 (BZ4) is an isomorphism. The map is a spin 4-manifold M4

with g : M → B2 and f : M → BZ4 is sent to an submanifold N3 dual to g with N3 →M4 f−→ BZ4.

8 Symmetric anomalous Spin-TQFTs as the boundary state of
fermionic SPTs

In this section we construct gapped boundary theories coupled with some of the fSPTs protected by
finite group symmetry we have constructed. The construction works for the two cases. The one is
where the symmetry group G, or its subgroup large enough to trivialize the bordism invariant defining
the fSPT, is spontaneously broken at the boundary. Another, more nontrivial, case is when, in 4-
dimensions, the symmetry group G has the form of Z2

4×H and the bordism invariant can be formally
written as “f∗1 (x) ∪ f∗2 (x) ∪X”, where f∗1,2(x) is the modulo 2 reduction of the Z4 backgrounds f1,2,

and X is a bordism invariant in Hom(ΩPin−
2 (BH), U(1)). In Section 2, we have found three of such

invariants. In the latter case no subgroup of G is broken on the boundary. The summary of this
section can be found in Subsection 8.5.

What we would like to do is in precise the following. A n dimensional fSPT with symmetry G
is an invertible G-equivariant TQFT, which is in particular a functor BordSpinn (BG) → VectZ2

C , as
stated in section 2. We want to find a topological boundary condition for some of fSPTs we have
found. That is, we want to find an enhancement of a given TQFT functor BordSpinn (BG) → VectZ2

C
to a functor Z : BordSpin,∂n (BG) → VectZ2

C , where BordSpin,∂n is the bordism category whose objects
can have boundaries and morphisms can have corners.32 Further, since the fSPT is trivial when its
background is ignored (i.e. maps to BG are trivial), physically we expect that we can obtain the
boundary TQFT Z∂ : BordSpinn−1 → VectZ2

C from the bulk-boundary TQFT Z. The non-equivariant

32Here we are not trying to define a full-fledged extended TQFT, which also encodes the set of possible boundary
conditions, but we only describe a single boundary condition for a given fSPT.
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version Z0 : BordSpin,∂n → VectZ2
C of Z goes through the category of spin null-bordant manifolds,33

and we demand that this functor enhances to the boundary TQFT Z∂ : BordSpinn−1 → VectZ2
C . The

boundary TQFT cannot be trivial as long as the bulk fSPT is non-trivial.

Physically, it is expected that for any fSPT for a finite group there exists a boundary TQFT
on which the G symmetry is spontaneously broken. In such cases the vector space Z∂(Sn−2) is |G|
dimensional. While for 1 + 1d boundary there is no other option, for higher dimensional boundary we
would like to find a more non-trivial boundary TQFT where Z∂(Sn−2) is one dimensional, which will
turns out to be possibly in many cases.

8.1 General strategy

In [11] and more generally in [37], it is stated that a G-protected fSPT can be described by attaching
intrinsic (i.e. non-equivariant) invertible TQFTs on the G-symmetry defects. A good example of the
statement appeared in [11] is the 3d Z2 fSPT defined by β(g) where g is the Z2 background, since

β(g) = ABK(PD(g)). (8.1)

Physically, PD(g) is regarded as the subspace that the Z2 symmetry defect occupies, and therefore
we regard (8.1) as putting the invertible TQFT defined by the ABK invariant on the Z2 symmetry
defect.34 The pin− structure on PD(g) is induced by the spin structure of the total space. See [2]. (It
is also briefly explained in [28]). Another, more intricate, example is the 4d Z4 × Z4 fSPT defined by
the invariant

Arf(f∗1 (x), f∗2 (x)), (8.2)

where f1 and f2 are the Z4 backgrounds. We regard this invariant as decorating the intersection of
Z4 defects with the Arf invertible TQFT.

Now we want to put a fSPT on a manifold with boundary. We want to preserve the G symmetry on
the boundary (though it is spontaneously broken on boundary for a 3d fSPT case). In other words, we
take the symmetry background g in the cohomology group H1(M) (and not in the relative cohomology
cohomology H1(M,∂M)), so that its dual PD(g) is in the relative homology group H1(M,∂M). A
representative of PD(g) can have its boundary in ∂M , which is n − 2 dimensional. If a symmetry
defect PD(g) (or intersection of them) supports an intrinsic invertible TQFT, the value of the invertible
TQFT on the defect (e.g. ABK(PD(g))) is not well-defined when the defect have a boundary. A naive
way to fix this problem is to extend the symmetry defect along ∂M to close the boundary of the defect.
This operation would define an element of Hn−1(M) out of PD(g) ∈ Hn−1(M ; ∂M). However, the
way to close the boundary of the defect is not unique and the ambiguity is captured by Hn−1(∂M),
because of the exact sequence

Hn−1(∂M)→ Hn−1(M)
p→ Hn−1(M,∂M). (8.3)

Therefore, a way to define the bulk-boundary TQFT is to take the sum over Hn−1(∂M) (If PD(g) is
not in the image of p, simply we set the partition function to be zero). In this way, we arrive at the

33That is, Z0(Mn
1 ) and Z0(Mn

2 ) are the same if ∂Mn
1 is spin-diffeomorphic to ∂Mn

2 . This is because we can drill out
Mn \N∂ where N∂ is the tubular neighborhood of the boundary, and then fill there with the n-dimensional ball without
changing the value of Z0, since the bulk theory is trivial.

34This might seem contradicting since, while the ABK invariant is Z8 valued, the Z2 defect should vanish when two
of them are stacked. This is actually not the case because when PD(g) is oriented ABK has order 2, and when PD(g) is
unorientable it has non-vanishing self-intersection and therefore two of symmetry defect occupying the same unorientable
homology class cannot be stacked in a parallel way.
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partition function, for instance, for the β(g) fSPT on a spin manifold M3 with boundaries:

Z(M3, g) =
∑

c∈∂−1([∂ PD(g)])

e
2πi
8

ABK(c∪PD(g)), (8.4)

where ∂ : H∗(∂M
3, ∂ PD(g);Z2)→ H∗−1(∂ PD(g);Z2) is the boundary map, and [∂ PD(g)] is the class

in H1(∂ PD(g);Z2) that is the image of the fundamental class of PD(g) under the boundary map
H2(PD(g), ∂ PD(g);Z2)→ H1(∂ PD(g);Z2). The pin− structure on PD(c) ∩ PD(g) is induced by the
spin structure of M3.

For the invariant (8.2), we would like to propose the partition function on a spin manifold M4

with boundary in a similar fashion to (8.4). The construction is, however, more involved and thus we
postpone the discussion till Subsection 8.3.

In the rest of the section, we construct the (1-)functor for the bulk-boundary TQFT for the 3d
fSPT β(g), and then also discuss bulk-boundary systems for some of 4d bulk fSPTs.

8.2 Bulk-boundary TQFT for 2+1d Z2 fSPT β(g)

Let us construct the functor Z : BordSpin,∂3 (BZ2)→ VectZ2
C for the bulk Z2 fSPT β. We can promote

the partition function (8.4) into the functor Z in the following way. The value of Z on an object

(M2, g) ∈ Ob(BordSpin,∂3 ), with a (homotopy class of) map g : M2 → BZ2, is

Z(M2, g) =
⊕

c∈∂−1([∂ PD(g)])

(
Cvc ⊗ ZABK(c ∪ PD(g))

)
(8.5)

where vc is an indeterminate vector with Z2 degree zero corresponding to an element c and ZABK :
BordPin

−
2 → VectZ2

C is the functor representing the pin− fSPT defined by the ABK invariant. Such
(fully extended) 2d TQFT was considered in detail in [32]. The functor Z evaluated on a morphism
(M3, g) ∈ Hom

BordSpin,∂3
((M2

1 , g), (M2
2 , g)) is similarly constructed as:

Z(M3, g) =
⊕

c∈∂−1([∂ PD(g)])

(
Fc|

M2
1
,c|
M2

2

⊗ ZABK(c ∪ PD(g))

)
(8.6)

where Fφ,ψ is the linear map sending vφ 7→ vψ.

By setting g = 0, we obtain the boundary TQFT Z∂ : BordSpin2 → VectZ2
C . For example, the

functor evaluated on the object S1 gives

Z∂(S1) =
⊕

c∈H1(S1;Z2)

Cvc ⊗ ZABK(PD(φ))

= Cv0 ⊕ (Cv[S1] ⊗ ZABK(S1)).

(8.7)

In particular, Z∂(S1
+) = C2 and Z∂(S1

−) = C1|1.35 The ground state degeneracy of Z∂(S1
+) is inter-

preted as the spontaneous symmetry breaking of the Z2 symmetry on the boundary.

The construction here can be easily generalize to arbitrary G-fSPT with boundary condition with
spontaneously broken G symmetry (or its subgroup large enough to trivialize the fSPT anomaly).
Next, we would like to construct a more nontrivial boundary condition for a fSPT, that is the boundary
condition with which G symmetry is not spontaneously broken on boundary.

35The one-dimensional Z2-graded vector space ZABK(S1
−) has the odd Z2 degree, which can be understood from the

partition function of ZABK on a torus.
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8.3 Bulk-boundary TQFT for 3+1d Z4 × Z2 fSPT Arf(PD(f ∗1 (x)) ∩ PD(f ∗2 (x)))

Partition function We would like to generalize the above construction to the Z4×Z4 fSPT defined
by the invariant Arf(PD(f ′1) ∩ PD(f ′2)) where f1, f2 are the two Z4 backgrounds and f ′i = f∗i (x) (the
modulo 2 reductions of them). On boundary, we do not want neither Z4 symmetry to be broken. In
particular, the partition function of the boundary theory Z∂ on S1 × S2 should be 1.

As said in Subsection 8.1, the invariant Arf(PD(f ′1) ∩ PD(f ′2)) is interpreted as decorating the
intersection of the symmetry defects PD(f ′1) and PD(f ′2). The intersection of the defects PD(f ′1) ∩
PD(f ′2) intersects with the boundary ∂M4 of the space time M4 at a link L = PD(f ′1)∩PD(f ′2)∩∂M4.
The orientation of M4 induces the fundamental class [L] ∈ H1(L;Z2).

Imitating the previous section, naively one might think that we can define the boundary theory by
summing over the preimage ∂−1([L]) of the boundary map ∂ : H2(∂M,L;Z2)→ H1(L;Z2). However,
for a general element c ∈ ∂−1([L]), the pin− structures induced on c and PD(f ′1) ∩ PD(f ′2) are not
compatible along L. Hence we cannot define the invariant ABK(c∪L (PD(f ′1)∩PD(f ′2))) with a general
c ∈ ∂−1([L]). To avoid this problem, we propose to sum over the surfaces bounded by L with a pin−

compatible with PD(f ′1) ∩ PD(f ′2). This can be done as follows.

The spin structure on PD(f ′1)∩PD(f ′2) is induced form that of M4 using the framing of the normal
bundle with framing vectors tangential to PD(f ′1) and PD(f ′2). This also induces the framing of L
in ∂M4 in the same way. Let T (L) be the tubular neighborhood of L in ∂M4. By pushing each
component of L along one of the framing vectors, we can define a map H1(L;Z2) → H1(∂T (L);Z2).
We denote the image of [L] under this map by α ∈ H1(∂T (L);Z2). The homology class α does not
depends on the choice of the framing vector at each component. We have the long exact sequence

H2(∂T (L))
a→ H2(∂M4−T (L))→ H2(∂M4−T (L), ∂T (L))

∂′→ H1(∂T (L))
i→ H1(∂M4−T (L)), (8.8)

where all the coefficients of the cohomologies are Z2. For each element c ∈ ∂′−1(α), we define the
element in ĉ ∈ H2(∂M4, L;Z2) by extending c to L along the framing vector36 we used to define α. By
construction, the framing, and hence the spin structure, induced on L from c and from PD(f ′1)∩PD(f ′2)
are the same. Therefore, we can uniquely define the pin− structure on ĉ ∪L PD(f ′1) ∩ PD(f ′2).

Now, we propose that the partition function on a 4-manifold M4 with boundary ∂M4 is

Z(M4, f1, f2) =
1

2|π0(∂M4)|

∑
c∈∂′−1(α)

e
2πi
8

ABK(ĉ∪L(PD(f1)∩PD(f2))). (8.9)

The overall normalization factor 2|π0(∂M4)| is coming from the gauge redundancy H0(∂M4;Z2) on the
boundary theory. When ∂M4 = ∅, the partition function is just (−1)Arf(PD(f1)∩PD(f2)) as desired. If
i(α) = 0 (where i is defined in (8.8)), the partition function is zero. Otherwise, the preimage ∂′−1(α) is
a H2(∂M4−T (L))/a(H2(∂T (L)))-torsor, and thus we can non-canonically map the sum over ∂′−1(α)
to the sum over H2(∂M4 − T (L))/a(H2(∂T (L))). In particular, when the backgrounds are off, i.e.
f1 = f2 = 0, we have ∂′−1(α) = H2(∂M), and the partition function is

Z∂(∂M4) = Z(M4, f1 = 0, f2 = 0) =
1

2|π0(∂M4)|

∑
c∈H2(∂M4;Z2)

e
2πi
8

ABK(c), (8.10)

36Note that because ∂′(c) = α ∈ H1(T (L),Z2), in principle a smooth representative of c ends on a cycle in T (L)
which represents an element in integral homology H1(T (L),Z) that can be different from the one given by the map
H1(L,Z) → H1(T (L),Z) via pushoff towards a framing vector. However, by gluing the appropriate number of Möbius
strips to the boundary components of c one can always fix this mismatch. This can be seen from the fact that framings
at each component of L are (non-canonically) in one-to-one correspondence with integers and gluing a single Möbius
strip changes the integer by 2 and that the values of framings mod 2 is fixed by α ∈ H1(T (L),Z2). See [29].
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which is the partition function of the Z2 gauge theory with action 2πi
8 β(g) with g = PD(c) on ∂M4.

The boundary theory can be replaced by Z2 gauge theory with action 2πi
8 kABK with k = 3, 5, 7.

The interpretation of the system is that the lines L behave the ’t Hooft lines in the boundary
theory, and α is the framing of the operator. Although there is no naive 1-form symmetry coupled to
the operator since the operator requires a framing, the intersection of two 0-from symmetry defects
naturally caries a framing as explained, and therefore f ′1 ∪ f ′2 can couple with the ’t Hooft line of the
boundary Z2 gauge theory, with anomaly Arf(PD(f ′1) ∩ PD(f ′2)).

Functor Next, we describe the functor Z : BordSpin,∂4 (BZ4 × BZ4) → VectZ2
C for the bulk Z4 × Z4

fSPT Arf(PD(f ′1) ∩ PD(f ′2)) that is compatible with the partition function (8.9). The value of Z on

an object (M3, f1, f2) ∈ Ob(BordSpin,∂4 ), with maps f1 : M3 → BZ4 and f : M3 → BZ4, is

Z(M3, f1, f2) =
⊕

c∈∂′′−1(β)

(
Cvc ⊗ ZABK(ĉ ∪P (PD(f ′1) ∩ PD(f ′2))

)
, (8.11)

where P = ∂M3 ∩ PD(f ′1) ∩ PD(f ′2) are points with tubular neighborhood T (P ), β is the element in
H0(∂T (P )) induced from [P ], ∂′′ : H1(∂M3 − T (P ), ∂T (P );Z2) → H0(∂T (P );Z2) is the boundary
map in the exact sequence analogous to (8.8). ĉ ∈ H1(∂M3, P ) is the element obtained by extending
c ∈ ∂′′−1(β) to P .

Z evaluated on a morphism (M4, f1, f2) ∈ Hom
BordSpin,∂4

((M3
1 , g1), (M3

2 , g2)) is:

Z(M4, f1, f2) =
1

NM4

⊕
c∈∂′−1(α)

(
Fc|

M3
1
,c|
M3

2

⊗ ZABK(ĉ ∪L (PD(f ′1) ∩ PD(f ′2)))

)
, (8.12)

Here 1
NM4

is the normalization factor coming from the gauge redundancy on boundary, which is

essentially the same as the factors appeared in (2.13). Since the restriction of α on M3
1,2 coincides

with β appeared in (8.11), we have consistent restriction map from ∂′−1(α) to ∂′′−1(β) for each M3
1

and M3
2 .

One can directly observe that, as a functor, the boundary TQFT Z∂ : BordSpin3 → VectZ2
C is the

Z2 gauge theory with the action 2πi
8 β(g), namely:

Z∂ = Zβgauged, (8.13)

as expected above.

8.4 Bulk-boundary TQFT for 3+1d Z2
4 × Z2 fSPT q̃PD(f∗1 (x)∪f∗2 (x))(g)

In the previous two examples, the boundary TQFT Z∂ depends on the spin-structure on its argument,
when all the backgrounds are set to be trivial. This is not always the case even if the fSPT in the
bulk depends on the spin-structure. However, in such a case symmetry action on the boundary TQFT
depends on the spin-structure on the boundary.

Consider the 3+1d Z2
4 × Z2 fSPT q̃PD(f∗1 (x)∪f∗2 (x))(g), where f1,2 are the Z2

4 backgrounds and g is
the Z2 background. As before, we can construct a bulk-boundary TQFT as

Z(M3, f1, f2, g) =
⊕

c∈∂′′−1(β)

(
Cvc ⊗ Zq(g)(ĉ ∪ (PD(f ′1) ∩ PD(f ′2)))

)
(8.14)
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and Z evaluated on a morphism (M4, f, g) ∈ Hom
BordSpin,∂4

((M3
1 , g1), (M3

2 , g2)) is:

Z(M4, f1, f2) =
1

NM4

⊕
c∈∂′−1(α)

(
Fc|

M3
1
,c|
M3

2

⊗ Zq(g)(ĉ ∪ (PD(f ′1) ∩ PD(f ′2)))

)
. (8.15)

where Zq(g) : BordPin
−

2 (BZ2)→ VectZ2
C is the Z2 fSPT for the invariant q(g), and f ′i = f∗i (x). Here g

is understood to be restricted on the argument of Zq(g). Other notations are the same as those in the
previous subsection. The normalization factor NM4 is also the same as that in the previous example.

When all the backgrounds f1, f2 and g are turned off, the boundary TQFT Z∂ is identified with
the Z2 gauge theory Z0

gauged with the trivial action. Further, the boundary theory Z∂ can be promoted

into a Z2 equivariant TQFT Z∂ : BordSpin3 (BZ2) → VectZ2
C with Z2 background g. The value on an

object (M2, g) ∈ Ob(BordSpin3 (BZ2)) is

Z∂(M2, g) =
⊕

c∈H1(M2)

Cvc ⊗ Zq(g)(c). (8.16)

This Z2-graded vector space homogeneously have even degree (i.e. there is no fermionic states), but
is non-trivially acted on by the global Z2 symmetry, due to the second factor. For example, on the
torus with the even spin structure T 2

+ (meaning that a fermion is anti-periodic along at least one of
the directions of T 2), the vector space Z∂(T 2

+, 0) has 3 states neutral under the global Z2 symmetry
(not to be confused with the Z2 of the Z2 grading, which is related to the fermion parity symmetry)
and 1 charged state, and on the torus T 2

− = T 2
PP with the odd spin-structure (meaning that a fermion

is periodic along both directions of T 2), the vector space Z∂(T 2
−, 0) has 1 neutral state and 3 charged

states.

8.5 General structure and comments

Here we summarize the results we have found on 3+1d fSPTs so far in this section, and add a several
discussions. For a G-protected spin-SPT listed in Table 2, we can construct bulk-boundary TQFT
Z : BordSpin,∂4 → VectZ2

C as follows. Here, the first column was discussed in Subsection 8.3, the second
was in Subsection 8.4, and the third is a generalization of them. In all the cases, the symmetry group
G has the form of Z2

4 × H, and the bordism invariant defining the fSPTs formally has the form of

”f∗1 (x)∪f∗2 (x)∪X” with an invariant X ∈ Hom(ΩPin−
2 , U(1)). For an object (M4, b) ∈ Ob(BordSpin,∂4 )

with background b : M4 → BG, the value of Z is

Z(M3, b) =
⊕

c∈∂′′−1(β)

(
Cvc ⊗ ZX(ĉ ∪ (PD(f∗1 (x) ∩ PD(f∗2 (x))))

)
(8.17)

The notations here was introduced in Subsection 8.3. Similarly, the value of Z on a morphism (M4, b) ∈
Hom((M3

1 , b1), (M3, b2)) is

Z(M4, b) =
1

NM4

⊕
c∈∂′−1(α)

(
Fc|

M3
1
,c|
M3

2

⊗ ZX(ĉ ∪ (PD(f∗1 (x) ∩ PD(f∗2 (x))))

)
(8.18)

As before, the value of the normalization constant NM4 is 2|π0(∂M3
1 )|+|π′0(∂M4)|, where π′0(∂M4) is the

set of the connected components of ∂M4 that does not intersect with neither M3
1 or M3

2 .

In all the cases listed in Table 2, the boundary TQFT Z∂ is a Z2 gauge theory. Its action is νβ,
where ν is specified in Table 2. When ν is odd the ground state degeneracy on a torus T 2 is 3 (all
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G = Z2
4 ×H fSPTs X ν D(T 2) DH(T 2

PP) DH(T 2
other)

Z2
4 × {1} kArf(PD(f ′1) ∩ PD(f ′2)) k′ABK k′ 3 – –
Z2

4 × Z2 kq̃PD(f ′1)∩PD(f ′2)(g) k′′qPD(φ1)(g) 0 4 3 1

Z2
4 × Z4 η(PD(f ′1) ∩ PD(f ′2) ∩ PD(f ′3)) k′′qPD(φ1)(f

′
3) 0 4 3 1

Table 2: Data defining bulk-boundary TQFT for G-protected spin-SPTs. k is a coefficient in the
action of the SPT, which is in Z2, X is to be substituted in (8.17) and (8.18). f1,2,3 denotes Z4

backgrounds, g denotes a Z2 background. The modulo 2 reduction of f or fi is denoted by f ′ or f ′i .
k′, k′′ are arbitrary elements of Z8 and Z4, respectively, whose modulo 2 reduction are k. In all the
cases the boundary TQFT is a Z2 gauge theory Zνβgauged, and ν is the coefficient in the action. The

fifth column D(T 2) is the ground state degeneracy (GSD, abbreviated as D) of the boundary TQFT.
For more information about the Z2 gauge theory with odd ν, see Sec. 8.1 of [25]. In the last two rows
the boundary TQFT is the Z2 gauge theory with the trivial action tensored with the trivial {1, f}
fermion line, and the action of H symmetry on the states depends on the spin structure on the space.
The last two columns are the numbers of states acted nontrivially by H on T 2 with double periodic
(odd) and the other (even) spin structure, respectively. In the third row with H = Z4, the states are
acted only by the odd generator of Z4. The Z2 subgroup of H = Z4 case acts trivially both on bulk
and boundary, and the action of the quotient Z2 = Z4/Z2 on the system is the same as the H = Z2 of
the second column. The action of Z2

4 = G/H part of the symmetry on the boundary TQFT is more
subtle, see the main text.

bosonic for even spin-structure and all fermionic for odd spin-structure), and otherwise it is 4 (all
bosonic).

Let us make a comment about a physics interpretation of the construction. As stated in Sub-
section 8.3, the intersection of the symmetry defects acts like a Z2 one-form symmetry defect on the
boundary Z2 gauge theory. In fact, the Z2 gauge theory with the trivial action S = 0×β have electric
and magnetic Z2 one-form symmetries, with a mixed anomaly

∫
a1∪a2 between them, where a1, a2 are

the backgrounds for the one-form symmetries.37 Roughly speaking, the equations (8.17) and (8.18)
can be regarded as the theory obtained by “substituting X” into the magnetic one-form symmetry
background a2 and substituting f ′1 ∪ f ′2 into the electric one-form symmetry background realizes the
anomaly “

∫
f ′1 ∪ f ′2 ∪ X”, which is the rough structure of the precise invariants in Table 2. In this

sense, the construction of the boundary TQFT for the fSPT we presented is an analog of what is done
in [10] for bosonic SPTs.

However, it is not very precise to say we substituted f ′1 ∪ f ′2 into the magnetic one-form symmetry
background of Zν ABK

gauged, since the ’t Hooft loop of the theory requires a framing, which cannot be
specified just by a 1-cycle or 2-cocycle, which is supposed to be the background field for a one-form
symmetry. Therefore, in some see, the theory have ”framed one-form symmetry”, meaning that the
background is a 1-cycle equipped with framing, and the construction (8.17) and (8.18) amounts to
substituting f ′1 ∪ f ′2 into the background of ”framed one-form symmetry”. It would be interesting to
find a precise physics meaning of such a concept.

In this paper, the authors could not find a construction of a bulk-boundary TQFT for the bulk
4d Z4 × Z2 fSPT δPD(f)(g, g). This invariant involves, unlike other invariants we have discussed in
this section, the Z4 background f itself, which is not modulo 2 reduction. This indicates we need a
Z4 gauge theory on boundary. Indeed, in [38], a boundary Z4 gauge theory is proposed. It would be

37This means that the Z0β
gauged can be a boundary theory of the invertible TQFT defined on orientable manifolds with

structure maps (a1, a2) : M4 → K(Z2, 2)×K(Z2, 2) that have the partition function (−1)
∫
M4 a1∪a2 .
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interesting to try to reconstruct the system in the language we have used in this section. In addition,
the boundary TQFTs for pin+ bordism invariants βPD(w1)(g) and γ̂PD(w1)(f) for the global symmetries
Z2 and Z4 are also remained to be constructed. Although the former only involves the Z2 symmetry
defects, the method developed in this section is not applicable since there is no known way to give a
pin− structure inside a codimension-1 submanifold in the 3-dimensional pin+ boundary manifold.

In this paper we have only considered fSPTs with finite group G. On the other hand, in [39] it is
proposed that a particular 9d Sp(N) fSPT should have boundary TQFT. It would be intriguing if the
method in this section can be generalized into the continuous group case.

9 Crystalline fSPTs (fermionic Symmetry Protected Topological
states) and bordism groups ΩSpin

n (B(Z × Go)): Dimensional exten-
sion

y

z

x

↑

↑

↑

h

z1

z2

z3

z4

z5

Figure 24: From fSPTs to crystalline fSPTs via layer-stacking. More precisely, the figure shows a
construction of 4d (3+1D) crystalline fSPTs from 3d (2+1D) fSPTs. Several 3d fSPTs layers are
placed along the x-y plane, while the layers are stacked along the z-direction. Physical interpretations
and mathematical derivations are given in Section 9 and 10. The h is an example of the z-directional
gauge field to probe the background symmetry associated to a translational Z-symmetry. It can be
interpreted either as an element of H1(Mn,Z), or, as a map h : M → BZ = S1 considered up to
homotopy.

In the rest of the paper, for the sake of brevity, we denote the group that classifies fSPTs with
symmetry H as

Ωn
H,Tor(BG) := Hom(Tor ΩH

n (BG), U(1)), (9.1)

where H is a tangential structure (e.g. H = Spin, P in±, Spin ×Z2 Z2m), and refer to Ωn
H,Tor(BG)

as the cobordism group. Now we would like to re-organize spin-TQFT data obtained previously
in Section 4 and explore their relation to a different group, Ωn

Spin,Tor(B(Z × Go)). As explained in
Figure 9, there is a physical application of a part of Ωn

Spin,Tor(B(Z×Go)), namely the layer-stacking
of lower (n − 1)d Go-fSPTs to (n)d crystalline Z × Go-SPTs along an extra dimension, where Go is
interpreted as an internal onsite symmetry of (n−1)d fSPTs (associated to Ωn−1

Spin,Tor(BGo), where the
on-site internal symmetry Go represents the symmetry group G considered previously in Section 4).
Mathematically, we use the fact that a n-th bordism group associated to nd invertible spin-TQFTs
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with Z×Go-symmetry

Ωn
Spin,Tor(B(Z×Go)) ∼= Ωn

Spin,Tor(BGo)× Ωn−1
Spin,Tor(BGo), (9.2)

contains explicitly the subgroup ΩSpin
n−1 (BGo) associated to (n − 1)d invertible spin-TQFTs with Go-

symmetry. The (canonical) isomorphism (9.2) immediately follows from 38

ΩSpin
n (B(Z×Go)) ∼= ΩSpin

n (BGo)× ΩSpin
n−1 (BGo), (9.4)

that can be geometrically realized as follows:

(Mn, h : Mn → BZ, f : Mn → BGo) 7−→ (Mn, h)× (PD(h), f |PD(h)) (9.5)

where PD(h) is a smooth oriented codimension 1 submanifold (which always exist) of Mn representing
a Poincaré dual to h. The spin structure on PD(h) is induced from the spin structure on Mn as
previously described.

Thus, when we interpret Z as a translation symmetry along an extra dimension, all the spin-TQFTs
associated to ΩSpin

n−1 (BGo) survive and can be stacked into crystalline fSPTs in one higher dimension.
If the crystalline symmetry is more general as Gc instead of simply as Z, and if Gc commutes with
the internal symmetry Go, then we can evaluate instead ΩSpin

n (B(Gc ×Go)). More generally, one can
consider Gc and Go to be non-commutative, e.g. ΩSpin

n (B(Gc n Go)), but we will not need this in
this article, since ΩSpin

n (B(Z×Go)) already provides a non-trivial relations between fSPTs in nd and
(n − 1)d, see Section 9.2 for the details. In the next section, we will focus on ΩSpin

n (B(Z ×Go)) and
relate topological terms between nd and (n− 1)d associated to ΩSpin

n−1 (BGo).

9.1 Computations of ΩSpin
n (B(Z×Go)) for a finite abelian Go

Using the analogue of Künneth formula (9.2), we can obtain the cobordism groups Ωn
Spin,Tor(B(Z ×

Go)), and associate this data to crystalline fermionic SPTs classes. In the data below, the crystalline
fermionic SPTs classes in nd are directly given by Ωn−1

Spin,Tor(BGo) again thanks to (9.2).

We remark that the 2d Arf invariant spin-TQFT (1+1D Kitaev chain) is not an SRE fSPTs but
is an LRE invertible fermionic topological order (see Section 2.3, eqs.(2.16) and (2.25)). However,
stacking LRE 1+1D Kitaev chains into a 2+1D system protected by Z-translational symmetry, it
becomes an SRE 2+1D crystalline fSPTs.39 Therefore, all 2d invertible spin-TQFTs withGo symmetry
can contribute to 3d crystalline (Z×Go)-fSPTs.

We only list crystalline fSPTs classes for dimensions n = 3 and 4, since we have more clear
definitions of fSPTs with internal onsite symmetry Go in 1+1D (2d) or above, which then can be
stacked along one extra dimension to crystalline fSPTs in 2+1D (3d) and 3+1D (4d). See below.

38Note that the classifying space BZ = S1. The formula (9.4) can be understood as a generalization of the particular
case of the Künneth formula for integral homology: Hn(B(Z × Go)) = Hn(BGo) × Hn−1(BGo) to the spin-bordism
generalized homology. The isomorphism (9.4) can be derived, for example, from the Adams spectral sequence for the
bordism groups considered earlier in the paper. It follows from the fact that

H∗(S1 ×BGo,Z2) ∼= H∗(BGo,Z2)×H∗−1(BGo,Z2) (9.3)

and that the are no non-trivial differentials in the Adams spectral sequence coming fromH∗(BGo,Z2) andH∗−1(BGo,Z2)
terms.

39Thanks to the local unitary transformation, this 2+1D crystalline fSPTs can be deformed to a trivial tensor product
state once we break the Z-translational symmetry.
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Theorem 18.

n ΩSpin
n (B((Z2)× Z)) Hn(B((Z2)× Z))

crystalline fermionic SPTs classes

via Ωn−1
Spin,Tor(B(Z2))

0 Z Z
1 Z× Z2

2 Z× Z2

2 Z4
2 Z2

3 Z2
2 × Z8 Z2 Z2

2

4 Z× Z8 Z2 Z8

(9.6)

Theorem 19.

n ΩSpin
n (B((Z4)× Z)) Hn(B((Z4)× Z))

crystalline fermionic SPTs classes

via Ωn−1
Spin,Tor(B(Z4))

0 Z Z
1 Z× Z2 × Z4 Z× Z4

2 Z3
2 × Z4 Z4

3 Z3
2 × Z8 Z4 Z2

4 Z× Z2 × Z8 Z4 Z2 × Z8

(9.7)

Theorem 20.

n ΩSpin
n (B((Z2

2)× Z)) Hn(B((Z2
2)× Z))

crystalline fermionic SPTs classes

via Ωn−1
Spin,Tor(B(Z2

2))

0 Z Z
1 Z× Z3

2 Z× Z2
2

2 Z7
2 Z3

2

3 Z4
2 × Z4 × Z2

8 Z4
2 Z4

2

4 Z× Z2
2 × Z4 × Z2

8 Z5
2 Z4 × Z2

8

(9.8)

Theorem 21.

n ΩSpin
n (B((Z2 × Z4)× Z)) Hn(B((Z2 × Z4)× Z))

crystalline fermionic SPTs classes

via Ωn−1
Spin,Tor(B(Z2 × Z4))

0 Z Z
1 Z× Z2

2 × Z4 Z× Z2 × Z4

2 Z6
2 × Z4 Z2

2 × Z4

3 Z7
2 × Z2

8 Z3
2 × Z4 Z4

2

4 Z× Z4
2 × Z4 × Z2

8 Z4
2 × Z4 Z3

2 × Z2
8

(9.9)

Theorem 22.

n ΩSpin
n (B((Z2

4)× Z)) Hn(B((Z2
4)× Z))

crystalline fermionic SPTs classes

via Ωn−1
Spin,Tor(B((Z4)2))

0 Z Z
1 Z× Z2 × Z2

4 Z× Z2
4

2 Z4
2 × Z3

4 Z3
4

3 Z6
2 × Z2

4 × Z2
8 Z4

4 Z3
2 × Z4

4 Z× Z4
2 × Z3

4 × Z2
8 Z5

4 Z3
2 × Z4 × Z2

8

(9.10)
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9.2 Relations between fSPTs and crystalline-fSPTs:
Ωn
Spin,Tor(B(ZN ×Go)) and Ωn−1

Spin,Tor(B(Go)) ⊂ Ωn
Spin,Tor(B(Z×Go))

We now relate the crystalline-(Z×Go)-fSPTs in nd associated to Ωn−1
Spin,Tor(BGo) (within the bordism

group Ωn
Spin,Tor(B(Z × Go)) thanks to (9.2)) to the fSPTs protected by an internal onsite symmetry

(ZN ×Go), obtained from Ωn
Spin,Tor(B(ZN ×Go)). Namely, we study the map

Ωn
Spin,Tor(B(ZN ×Go))→ Ωn

Spin,Tor(B(Z×Go)), (9.11)

dual to the map between the corresponding bordism groups:

ΩSpin
n (B(Z×Go)) −→ ΩSpin

n (B(ZN ×Go)),
(Mn, h : Mn → BZ, f : Mn → BGo) 7−→ (Mn, h mod N, f)

(9.12)

We also use the map

ΩSpin,Tor
n−1 (B(Go))→ ΩSpin,Tor

n (B(ZN ×Go)). (9.13)

obtained by composing the embedding via (9.2) with (9.4).

In Table 3, we consider the map (9.11) in the case of spacetime dimension n = 4 and for Go = Z2

or Z4, while ZN = Z2 or Z4. In Table 4, we consider the map of (9.11) for Go = (Z2)2,Z2 × Z4 or
(Z4)2, while ZN = Z2 or Z4. We denote the topological terms/bordism invariants in terms of the
notations introduced in Section 4, and also the more informal notations used in our previous work
[28]. Furthermore, we denote f : M → BZ4, g : M → BZ2, and h : M → BZ are the maps from the
manifold M to the classifying space defining background gauge fields for the corresponding groups.
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(Z2
2)-fSPTs : Ω4

Spin,Tor(BZ2
2) = Z× Z8

2

ssΩ4
Spin,Tor(B(Z× Z2))

= Z8︸ ︷︷ ︸
Ω3
Spin,Tor(B(Z2))= Z8

:
{

Z8 : βPD(h)(g) = h ∪ (g ∪ABK)

(Z2 × Z4)-fSPTs:

Ω4
Spin,Tor(B(Z2 × Z4))

= Z2 × Z4

:

{
Z4 : δPD(f)(g, g)

= f ∪ (g ∪ABK) [Ab]

Yes

jj

No

ttΩ4
Spin,Tor(B(Z× Z4))

= Z2 × Z8︸ ︷︷ ︸
Ω3
Spin,Tor(B(Z4))= Z2 × Z8

:


Z2 : Arf(PD(f mod 2) ∩ PD(h mod 2))

= (h mod 2) ∪ (f mod 2) ∪Arf
Z8 : γ̂PD(h)(f)

= invert. U(1)1 spin-CS with U(1) broken to Z4 |PD(h)

(Z2
4)-fSPTs:

Ω4
Spin,Tor(B(Z2

4))

= Z2
4 × Z2

:

{
Z2 : Arf(PD(f1 mod 2) ∩ PD(f2 mod 2))

= (f1 mod 2) ∪ (f2 mod 2) ∪Arf [NAb]

Yes

jj

Table 3: We consider the map (9.11) from fSPTs with symmetries Go × ZN (Go = Z2 or Z4, N = 2 or 4)
to Ω4

Spin,Tor(B(Z × Go)), which contains the crystalline fSPTs from Ω3
Spin,Tor(BGo) subgroup. The left hand

side of the arrows shows the classes associated to fSPTs with Z-symmetry, the right hand side of arrows shows
the classes associated to fSPTs with finite abelian group symmetries. The group-valued classification whose
generators associated to “intrinsically fermionic” (spin-TQFTs) are “boxed.” The arrows dressed with labels
“Yes” mean that all fermionic states survive under the map; thus the maps labeled “Yes” are injective. The
arrow dressed with a label “No” means that fermionic states do not survive under the map from the left to the
right classes; thus the maps labeled “No” are not injective. We also list topological invariants using a more
informal notation used in [28]. For example, h∪ (g∪ABK) actually means ABK(PD(h)∩PD(g)) where we first
induce spin structure on PD(g) and then pin− structure on PD(h)∩PD(g) as described previously in the main
text.
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(Z3
2)-fSPTs : Ω4

Spin,Tor(BZ3
2) = Z× Z8

2

ssΩ4
Spin,Tor(B(Z× Z2

2))

= Z2
2 × Z4 × Z2

8︸ ︷︷ ︸
Ω3

Spin,Tor
(B(Z2

2))= Z4 × Z2
8

:

{ Z4 : δPD(h)(g1, g2) = h ∪ (g1 ∪ g2 ∪ η̃)
Z8 : βPD(h)(g1) = h ∪ (g1 ∪ABK)
Z8 : βPD(h)(g2) = h ∪ (g2 ∪ABK)

(Z2
2 × Z4)-fSPTs :

Ω4
Spin,Tor(B(Z2

2 × Z4))

= Z5
2 × Z3

4

:


Z4 : δPD(f)(g1, g1)

= f ∪ (g1 ∪ABK) [Ab]
Z4 : δPD(f)(g2, g2)

= f ∪ (g2 ∪ABK) [Ab]
Z4 : δPD(f)(g1, g2)

= f ∪ (g1 ∪ g2 ∪ η̃) [NAb]

Yes

ii

Partially

uu
Ω4
Spin,Tor(B(Z× Z2 × Z4))

= Z2
2 × Z2

2 × Z4 × Z2
8︸ ︷︷ ︸

Ω3
Spin,Tor

(B(Z2×Z4))=Z2× Z2
2 × Z2

8

:



Z2 : Arf(PD(f mod 2) ∩ PD(h mod 2))
= (h mod 2) ∪ (f mod 2) ∪Arf

Z2 : q̃PD(f mod 2)∩PD(h mod 2)(g)
= (h mod 2) ∪ (f mod 2) ∪ g ∪ η

Z8 : βPD(h)(g) = h ∪ (g ∪ABK)
Z8 : γ̂PD(h)(f) = Z4 ⊂ U(1)1-spin-CS |PD(h)

Z4 : δPD(f)(g, g) = f ∪ (g ∪ABK)︸ ︷︷ ︸
[Non-stacking]

(Z2 × Z2
4)-fSPTs :

Ω4
Spin,Tor(B(Z2 × Z2

4))
= Z4

2 × Z2
4

× Z2
2 × Z2

4

:


Z2 : Arf(PD(f1 mod 2) ∩ PD(f2 mod 2))

= (f1 mod 2) ∪ (f2 mod 2) ∪Arf [NAb]
Z2 : q̃PD(f1 mod 2)∩PD(f2 mod 2)(g)

= (f1 mod 2) ∪ (f2 mod 2) ∪ g ∪ η [NAb]
Z4 : δPD(f1)(g, g) = f1 ∪ (g ∪ABK) [Ab]
Z4 : δPD(f2)(g, g) = f2 ∪ (g ∪ABK) [Ab]

Yes

ii

Partially

vv
Ω4
Spin,Tor(B(Z× Z2

4))

= Z3
4 × Z4

2 × Z2
8︸ ︷︷ ︸

Ω3
Spin,Tor

(B(Z2
4))=Z4× Z3

2 × Z2
8

:



Z2 :

[Non-stacking]︷ ︸︸ ︷
Arf(PD(f1 mod 2) ∩ PD(f2 mod 2))
= (f1 mod 2) ∪ (f2 mod 2) ∪Arf

Z2 : Arf(PD(f1 mod 2) ∩ PD(h mod 2))
= (h mod 2) ∪ (f1 mod 2) ∪Arf

Z2 : Arf(PD(f2 mod 2) ∩ PD(h mod 2))
= (f2 mod 2) ∪ (h mod 2) ∪Arf

Z2 : q̃PD(f1 mod 2)∩PD(h mod 2)(f2 mod 2)
= (f1 mod 2) ∪ (f2 mod 2) ∪ (h mod 2) ∪ η

Z8 : γ̂PD(h)(f1) = Z4 ⊂ U(1)1-spin-CS |PD(h).
Z8 : γ̂PD(h)(f2) = Z4 ⊂ U(1)1-spin-CS |PD(h).

(Z3
4)-fSPTs :

Ω4
Spin,Tor(BZ3

4)

= Z8
4 × Z4

2

:



Z2 : Arf(PD(f1 mod 2) ∩ PD(f2 mod 2))
= (f1 mod 2) ∪ (f2 mod 2) ∪Arf [NAb]

Z2 : Arf(PD(f2 mod 2) ∩ PD(f3 mod 2))
= (f2 mod 2) ∪ (f3 mod 2) ∪Arf [NAb]

Z2 : Arf(PD(f1 mod 2) ∩ PD(f3 mod 2))
= (f1 mod 2) ∪ (f3 mod 2) ∪Arf [NAb]

Z2 : q̃PD(f1 mod 2)∩PD(f2 mod 2)(f3 mod 2)
= (f1 mod 2) ∪ (f2 mod 2) ∪ (f3 mod 2) ∪ η [NAb]

Yes

gg

Table 4: We consider the map (9.11) from fSPTs with symmetries Go × ZN (Go = (Z2)2,Z2 × Z4 or (Z4)2, N = 2
or 4) to Ω4

Spin,Tor(B(Z × Go)), which contains the crystalline fSPTs from Ω3
Spin,Tor(BGo) subgroup. The left hand

side of arrows shows the classes associated to fSPTs with Z-symmetry, the right hand side of arrows shows the classes
associated to fSPTs with finite abelian group symmetry. The group-valued classifications whose generators associated
to intrinsically fermionic (spin-TQFTs) are boxed. The arrows dressed with labels “Yes” mean that all fermionic states
can completely map from the left to the right classes; thus the maps labeled “Yes” are injective. The arrows dressed
with labels “Partially” mean that some fermionic states do not survive under the map; thus the maps labeled “Partially”
are not injective. We warn the readers, however, the maps from 4d fSPTs Ω4

Spin,Tor(B(ZN × Go)) to crystalline 4d

fSPTs Ω3
Spin,Tor(B(Go)) (a subgroup of Ω4

Spin,Tor(B(Z × Go))) are different, see Sec. 10 for discussions. In particular,
those topological invariants brace-labeled with non-stacking cannot be obtained from a layer-stacking construction as a
crystalline SPTs.
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Fermionic topological terms. Stacking vs. Non-stacking : In Table 3 and 4, we list down the classi-

fications associated to Ωn
Spin,Tor(B(Z × Go)) or Ωn−1

Spin,Tor(B(Go)). The boxed classification groups
are such that their generators are intrinsically fermionic (i.e. they are not generated by bosonic
Dijkgraaf-Witten topological term). There we only list down their intrinsically fSPT invariants. Since
Ωn
Spin,Tor(B(Z×Go)) ⊃ Ωn−1

Spin,Tor(B(Go)), those fermionic topological terms that occur in the former
(the right hand side of (9.11)) but not in the latter (the left hand side of (9.13)’s) cannot be obtained
from a 3d-layer-stacking construction as a crystalline 4d-SPT — We brace-labeled those topological
terms with “non-stacking” label in Table 4. The non-stacking terms lack the dependence on the
h : Mn → BZ (equivalently h ∈ H1(Mn,Z)) gauge field.

In Tables 3 and 4, “Z4 ⊂ U(1)1-spin-CS” means an invertible (that is, depending on background
gauge fields) U(1) spin-CS theory with minimal non-zero level (i.e. level 1, in a proper normalization)
with U(1) broken to Z4 subgroup, see Sec. 10.1.1 for detailed discussions.

Interestingly, as shown in Table 3 and 4, it is not possible to always map injectively from
ΩSpin

4 (B(Z2×Go))→ ΩSpin
4 (B(Z×Go)), see the arrows labeled with “No” or “Partially.”40 However,

it is always allowed to map injectively from the Ω4
Spin,Tor(B(Z4 ×Go))→ Ω4

Spin,Tor(B(Z×Go)). One
formal way to understand this fact is because Poincaré duals (which physically correspond to domain
walls) for elements of H1(M,Z2) are in general non-orientable manifolds, while for both H1(M,Z4) and
H1(M,Z) are oriented (Z4-orientation is equivalent to Z-orientation). This is why one can reproduce
fSPTs with Z4, but not Z2, symmetry from the fSPTs with Z symmetry.

In Table 3 and 4, we put labels [Ab] (abelian) or [NAb] (non-abelian) on the right-hand-side
of some invertible spin TQFTs with G-symmetry (or G-fSPTs). What we mean there is that the
corresponding spin-TQFTs with dynamically gauged G, are [Ab] (abelian) or [NAb] (non-abelian).
The criteria for determining, whether spin TQFTs with dynamically gauged G symmetry in 3d, 4d
or above is [Ab] or [NAb], have been given in Ref. [28]’s Sec. 1.2. We briefly remind the readers our
definition in Section 9.3.

9.3 Abelian vs. Non-Abelian gauged spin-TQFTs: Criteria

In this work, the criteria we define for determining if the topological gauge theories, of finite gauge
group G, are non-abelian [NAb] instead of abelian [Ab] for spacetime dimensions n ≥ 3, are the
following:

Criteria: If (and only if, in our work), the partition function Zgauged(Mn) of the gauged spin-TQFT
defined in eqns. (2.5) computed on a n-torus (M = Mn−1 × S1

+ = Tn−1 × S1
+ = Tn) is reduced to a

smaller value from a particular power of the order finite gauge group, namely |G|n−1, then the gauged
spin-TQFT is non-abelian [NAb].

Physically, the partition function Zgauged(Tn) represents the dimensions of Hilbert space, or equiv-

40 For example, it is not possible to obtain the Z8 classes generated by γ̂PD(h)(f) in Ω4
Spin,Tor(B(Z×Z4)) from the Z4

classes generated by δPD(f)(g, g) = f ∪ (g ∪ ABK) in ΩSpin4 (B(Z2 × Z4)), via obtaining a new the Z2 gauge field g from
the Z gauge field h by mod 2 reduction. We can prove it is impossible by contradiction. Suppose it is possible, then

δPD(f)(h mod 2, h mod 2)
?
= γ̂PD(h)(f) mod 4 (9.14)

for any f ∈ H1(M4,Z4), h ∈ H1(M4,Z) and any spin M4. But then one can take M4 = S1×M3, h to be the generator
of H1(S1,Z), and f to be in H1(M3,Z4). Then the right hand side of the above formula (9.14) becomes

∫
M3 fBf (where

B : H1(M4,Z4)→ H2(M4,Z4) is Bockstein morphism) and in general is not zero, while the left hand side is identically
zero in this setup (because self-intersection of PD(h mod 2) inside PD(f) is trivial), so we have a contradiction. The
formula (9.14) is false.
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alently the ground state degeneracy (GSD) on a (n−1)-torus (see various examples computed in [28]).
If Zgauged(Tn) < |G|n−1 is reduced, this implies that the certain extended surface operator (physi-
cally, the open ends of a surface have anyonic extended/string excitations attached) have the quantum
dimension dα (associated to the local or non-local Hilbert space of such anyonic extended/string exci-
tations α) larger than 1, namely dα > 1. This non-abelian property can be seen, for example, from the
quantum representation of the mapping class group MCG(Tn−1)=SL(n,Z), in which case the modular
S-matrix (a generator of SL(n,Z)) will have at least one entry that satisfies (S0α/S00) > 1.41 The
non-abelian property also implies that a certain 3-loop braiding process will have non-abelian unitary
matrix acting on the eigenstate-vector of the Hilbert space after the completion of adiabatic evolution
of braiding process.

From Tables 3 and 4, we learn, example by example, that the fact that the dynamically gauged spin-
TQFTs defined by Zgauged become non-abelian spin-TQFTs, when the original un-gauged invertible
G-spin-TQFT theories (with abelian G) involve either of the following:

1. an odd multiple of Arf invariant (generating Z2),

2. an odd multiple of ABK (generating Z8),

3. an odd multiple of η (generating Z2 class)

4. an odd multiple of η̃ (generating Z4 class, see Ref. [28]’s Sec. 5.)

In physics, this means that the above non-abelian TQFTs must induce lower dimensional 2d spin-
TQFT (such as based on dimensional reduction [28] or compactification) that involve the Kitaev’s
Majorana fermionic chain [16], which corresponds to 2d Arf or ABK invariants. We give more accounts
on this phenomena in the next Section 10.

To summarize Section 9, the physical meaning of Z global symmetry is a discrete translation
symmetry in one extra spatial dimension. Applications to realistic systems of Z × G0-crystalline
fSPTs make sense when we consider the spin bordism group of G0 up to dimension d− 1. In Section
10, we would like to explain all of the above in a more down to earth way and in a setting suitable for
condensed matter community.

10 Interpretation of the results in quantum matter and more

Now we reorganize our results into an alternative understanding: in terms of the setting and the
language of current developments of condensed matter and topological quantum matter, and also in
comparison to the tools developed by physics setting (versus the mathematical settings).

We will relate various fSPTs protected by internal onsite symmetry, to crystalline-fSPTs protected
by the translational symmetry of infinite Z integer symmetry (i.e. space group symmetry). We had
presented the summary of new cobordism calculations involving the BZ = S1 and the classifications
of crystalline-fSPTs, altogether in Sec. 9.1. Note that we explain the first example in more details in
Sec. 10.1, while we go through later examples rather quickly based on the similar strategy.

41See for example, Ref. [13] on the computation of modular Sxyz-matrix (a generator of modular SL(3,Z) data)
that shows this non-abelian property with (S0α/S00) > 1 for certain non-abelian TQFTs and a certain anyonic string
excitation from a surface operator labeled by α. More examples of non-abelian TQFTs are given in Ref. [28] and in
Table 3 and 4.
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Then we will discuss more general crystalline-fSPTs (c-fSPT). We first clarify the differences and
the meanings of the crystalline symmetry and the internal symmetry in Sec. 10.6. Then we include
various examples of crystalline symmetries and their complete classifications via cobordism approach:

• Reflection/Mirror c-fSPT in Sec. 10.7.

• Inversion c-fSPT in Sec. 10.8.

• Rotation c-fSPT in Sec. 10.9.

Then we discuss the partially gauging of fSPTs to obtain fermionic SETs (Symmetry Enriched Topo-
logically ordered states) in Sec. 10.10. These fermionic SETs are fermionic gauge theories but enriched
by the additional global symmetry protection.

10.1 4d Z4 × Z2 and crystalline-Z× Z2-fSPTs

Here we particularly aim to understand the 4d cobordism/SPT invariant δPD(f)(g, g) given in

eqn. (4.19) and in Table 3, where we have the spin n-manifolds Md with maps f : M → BZ4,
g : M → BZ2 (equivalently, f ∈ H1(M,Z4) and g ∈ H1(M,Z2)). Following the informal physical
notation in [28], this corresponds to the partition function42

exp(
iπk

2

∫
M4

(f ∪ (g ∪ABK)) ≡ exp(
iπk

2

∫
PD(f)

g|PD(f) ∪ABK), (10.1)

where k ∈ Z4 and we focus on the minimal generator with k = 1 below.

10.1.1 Construction from 2d to 3d to 4d

How do we construct this 4d Z4 × Z2-fSPTs starting from lower dimensions, say from 2d and 3d?

Decorated domain wall construction: We can start from the 2d ZT2 -fSPTs (with ZT2 ×Z
f
2 symmetry)

classified by ΩPin−
2 (pt) = Z8, whose generator is the ABK invariant (see a recent exploration [40] and

reference therein) — Physically this is the so-called 2d Kitaev’s fermionic chain [16, 41] with each
isolated 0+1D edge on an open chain has a Majorana zero mode. Now we can place the ABK
invariants (i.e. Kitaev chains) on all the 2d Z2-symmetry-breaking domain walls of 3d Z2-fSPTs (with

Z2×Zf2 symmetry) classified by Pontryagin dual group to ΩSpin
3 (BZ2) = ΩPin−

2 (pt) = Z8. Then we can

restore the full Z2×Zf2 symmetry by, in condensed matter language, proliferating or condensing the 2d
domain wall. This is known as the decorated domain walls proliferation construction of SPTs, proposed
by [42].43 Although the 3d Z2-fSPTs is placed on an oriented spin 3-manifold, the 2d domain wall can
have an induced pin− structure thanks to Smith isomorphism [2, 11]: ΩSpin

3 (BZ2)→ ΩPin−
2 (pt). This

construction matches the 3d partition function exp( iπk
′

4

∫
M3(a ∪ABK)) with k′ ∈ Z8 [25].

Continuing from 3d Z2-fSPTs, we can further construct both the 4d crystalline-Z×Z2-fSPTs and
4d Z4×Z2-fSPTs by stacking 3d systems layer by layer. In that case, we need to have k′ = 2 as 2-copies

42As discussed in Section 4, in such expression we assume that there exists a representation of Poincaré dual of f by
an immersed manifold PD(f).

43See a field theory derivation of decorated domain walls proliferation construction of SPTs and topological terms
related to bosonic TQFTs and Dijkgraaf-Witten gauge theory in Ref. [43]. Similar construction for fermionic SPTs is
discussed in Ref. [37]
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of ABK or Kitaev chain proliferated-domain walls in order to construct k′ = 2 ∈ Z8 of 3d Z2-fSPTs.
Physically, a single k′ = 2 3d Z2-fSPTs has two copies of px + ipy and px − ipy superconductors,44 so
called the chiral and anti-chiral-p-wave superconductors. The 2d boundary of each chiral-p-wave TSC
(living on a 3-manifold) hosts a conformal field theory (CFT) described by a single free left moving
the real Majorana-Weyl fermion with chiral central charge c− = 1/2. So for a single k′ = 2 3d Z2-
fSPTs boundary, there are left-chiral central charge cL = 2 × 1/2 = 1 and right-chiral central charge
cR = 2× 1/2 = 1, combining into a 1+1D Dirac spinor fermion (with a total c− = cL − cR = 0). The
corresponding mathematical 3d bulk spin-TQFTs (as dynamically gauged fSPTs) and 2d boundary
theories are given in Section 8 and Table 2 of [25]. Although a total central charge of 2d edge states
c− = cL − cR = 0 is non-chiral, but the global Z2-symmetry assignment is actually chiral, anomalous
and non-onsite on the 2d edge modes.

Layer-stacking : Now we can, along the spatial z-direction, stack integral layers of k′ = 2 of 3d Z2-
fSPTs placed at the spatial x-y-direction, following the idea of [38]. In this way, we can construct a 4d
crystalline-Z×Z2-fSPTs placed in the spatial x-y-z space, protected by the internal Z2-symmetry and
the spatial lattice translational symmetry Z along the z-direction. How do we classify the interacting
4d crystalline-Z × Z2-fSPTs for this particular construction? Mathematically this question can be
answered by computing ΩSpin

n (B((Z2)× Z)), which we show in Theorem 18. Physically this question
can be answered by asking how many (say, a number of k̃) layers of this k′ = 2 of 3d Z2-fSPTs do we
need in order to fully gap out the boundary gapless modes without breaking any global symmetries?
Namely, how many layers we need to add with non-perturbative interactions among these k̃ copies of
k′ = 2 of 2d boundary CFTs, in order to fully generate the energy gap for a symmetric topological
gapped boundary? Our answer is k̃ = 4. Because the k̃ · k′ = 4 · 2 = 8, since 8 layers of 3d
Z2-fSPTs indeed can be fully gapped, thanks to their classification ΩSpin

3 (BZ2) = ΩPin−
2 (pt) = Z8

(physically, derived from gapping the boundary Majorana modes). By adding the interactions among
the neighbor 4 layers (k̃ = 4) along z-direction, we actually break the Z-translation down to 4Z-
translation symmetry, which again is still a lattice translation symmetry (redefined the 4Z as a new
integer Z by rescaling the translational lattice constant by 4 times). So physically we predict that
there must be at least Zk̃ = Z4-class for 4d crystalline-Z×Z2-fSPTs thus also for ΩSpin

4 (B((Z2)×Z)).
Indeed the answer agrees between our math result (Theorem 18’s 4d Z8 classification45 contains the
Zk̃ = Z4 normal subgroup) and physics arguments.

Moreover, we can view this 4d crystalline-Z× Z2-fSPTs for the ν = 1 ∈ Zk̃ = Z4-class as another
4d fSPTs protected only by internal symmetries, without the need of translational symmetry.46 Which
additional internal symmetry is required? The answer is constrained by what the internal symmetry
can still be preserved when we add non-perturbative interactions among the z-directional neighbors of
4d crystalline-Z×Z2-fSPTs (4 layers of k′ = 2 of 3d Z2-fSPTs). For 8 Majorana zero modes in 1d, or
8 left-moving + 8 right-moving (8L+8R) chiral Majorana-Weyl fermions in 2d, Ref. [41] shows that,
under quartic-interaction fermion gapping terms, there is an internal symmetry of SO(7) ⊂ SO(8)
rotating between Majorana modes that can still be preserved (also there is the obvious fermion parity

Zf2 -symmetry preserved). Apparently, the SO(7) rotates between 8L+8R Majorana-Weyl fermions
in 2d, while we wish to keep the subgroup of SO(7) acting only among each 2L+2R Majorana-Weyl
fermions, as a proper internal symmetry. Thus, we can take the intersection between the 2-flavor

44 Hereby the chiral and anti-chiral-p-wave superconductors, or the px ± ipy superconductors, we mean the Cooper
pairing of two fermions are in the px ± ipy-orbital of p-orbital pairing states (p in terms of the angular momentum
` = 1 in the spherical harmonics, or the p in the s, p, d, f , etc. of atomic orbitals). The pairing function results in the
superconductor order parameter ∆(k) ∝ kx ± iky, where kx, ky are spatial momentum in the x, y-directions.

45Which is generated by
∫
M4(g ∪ ABK) ∪ (h mod 8) with the Z2 gauge field g and the Z gauge field of h along the

z-direction.
46This means we can also re-interpret the role of crystalline-Z lattice translation as a new internal symmetry instead.
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symmetry of left and right SO(2)L × SO(2)R ⊂ SO(8) and the SO(7). The finite group Z4 × Z2-
internal symmetry of 4d Z4 × Z2-fSPTs is within the overlapped subgroup. Therefore, we derive
physically the relation of constructions between 4d crystalline-Z × Z2-fSPTs and 4d Z4 × Z2-fSPTs.
Formally, Table 3’s map labeled “Yes” for Ω4

Spin,Tor(B(Z4 × Z2))→ Ω4
Spin,Tor(B(Z× Z2)) is given by

exp(
2πi

8
k′βPD(h)(g)) = exp(

2πi

4
k̃ δPD(f)(g, g)), (10.2)

with f = h mod 4 and k′ ∈ Z8, k̃ ∈ Z4. The correspondence is that k̃ = 0, 1, 2, 3 mod 4 is mapped
to k′ = 0, 2, 4, 6 mod 8. Namely, the map is

Z4 3 k̃ 7→ k′ = 2k̃ ∈ Z8. (10.3)

For this reason, we see that k̃ ∈ Z4 from 2d-to-3d-to-4d construction starts from an even number of
Kitaev chains. The corresponding gauged 4d spin-TQFT will be abelian [Ab].

Although 4d crystalline-Z × Z4-fSPTs contains a Z8 classification subgroup (Theorem 19), it is
distinct from the Z8 subgroup of crystalline-Z × Z2-fSPTs. The reason is the following. The former
Z8-classes are associated to the 3d Z4-fSPTs, which can be described by ungauged (i.e. depending
on a background gauge field) U(1)-spin-CS theory given in (3.19) with a single U(1) broken down
to Z4 subgroup and K = (p), p ∈ Z8. The corresponding Z8-classes of dynamically gauged 3d
Z4-fSPTs become Z8-classes of gauged spin-CS theory with U(1)2 gauge group and K-matrix ( 0 4

4 p )
with p ∈ Z8, potentially with an additional fully gapped fermionic sector (a fermionic trivial tensor
product state). This spin-CS theory is therefore distinct from the ungauged and gauged theory of
(10.1). Thus, it turns out that we cannot relate the constructions between 4d crystalline-Z × Z4-
fSPTs and 4d Z4 × Z2-fSPTs. This explains the fact that in Table 3’s the map is labeled “No” for
Ω4
Spin,Tor(B(Z2 × Z4))→ Ω4

Spin,Tor(B(Z× Z4)).

10.1.2 Symmetric anomalous gapped boundary TQFT

We would like to comment the symmetric gapped boundary topological orders (TQFT) of SPTs (see
a systematic study on this subject in [44]). Recently, Ref. [38] derives a 3d anomalous Z4-gauge
theory preserving the full global symmetry and living on the boundary of 4d Z4 × Z2-fSPTs. Namely
Ref. [38]’s 3d anomalous Z4-gauge theory can capture all the ’t Hooft anomalies of the boundary of
4d Z4 × Z2-fSPTs.

Symmetry Extension and Dimensional Reconstruction from 2d to 3d to 4d : We first apply some
simple arguments to construct a potential symmetry-preserving gapped boundary state. Our strategy
is to firstly follow the so-called symmetry extension construction developed in Ref. [44]. It is known
that for any bosonic types of ’t Hooft anomalies of ordinary 0-form finite group global symmetries,
there always exists a symmetry-extension constructed gapped boundary when spacetime dimensions
≥ 2, proven in [44], also later confirmed in a more mathematical setting in [45]. However, we are
facing now the fermionic types of ’t Hooft anomalies. It is not guaranteed that symmetry extension
[44] necessarily apply to all these cases. Following Sec. 10.1.1, we can reduce the problem from 4d
to 2d, by asking how to obtain symmetry extended gapped boundary for 2 layers of Kitaev chains
(k′ = 2 class in Ω2

Pin−,Tor(pt) = Z8). The attempt was made recently in Ref. [15] (Section 4.3),

which finds that the finite symmetry group of a finite extension, say a group N (usually a normal

subgroup), must not commute with the fermion parity symmetry Zf2 . Thus N does not commute with
the n-dimensional spacetime symmetry Spin(n) group [15]! Similar outcome happens to 2 layers of
3d Z2-fSPTs (k′ = 2 class in Ω3

Spin,Tor(BZ2) = Z8), where the finite symmetry group N of a finite
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extension must not commute with the fermion parity symmetry Zf2 . Going from 2d to 3d back to 4d,
for 4d Z4×Z2-fSPTs, if symmetry extension gapped boundary construction applies, its finite extension
N still cannot commute with the fermion parity symmetry Zf2 . This indicates that in putative N gauge
theory (after gauging the extension N), the anyon (at the ends of open line operators) can be permuted
under the Z4 × Z2-symmetry transformation. This 2d-to-3d-to-4d argument leads to agreement with
the anyon-permuting anomalous global symmetry, on the 3d boundary of 4d SPTs, emphasized in
[38]!

10.2 4d Z4 × Z4 and crystalline-Z× Z4-fSPTs

Construction from 2d to 3d to 4d : To obtain 4d crystalline-Z×Z4-fSPTs in Table 3, we can stack the
3d Z4-fSPTs which have Ω3

Spin,Tor(B(Z4)) = Z8 × Z2-classes. The Z8-sub-classes are can be realized
as the level 1 U(1)-spin-CS theory given in (3.19) with a symmetric bilinear form K = (1) and U(1)
broken to Z4 subgroup (See the construction in the last paragraph of Sec. 10.1.1.) The generator of
the Z2 subgroup can be obtained from the decoration and proliferation of 2d Kitaev chain into the
Z4-symmetry breaking domain wall of 3d Z4-fSPTs. Thus, in the above construction, we can gain
all 4d crystalline-Z×Z4-fSPTs from lower dimensions via the stacking and proliferation of condensed
matter methods.

In fact, the Z2-classes in Ω2
Spin,Tor(pt) are directly mapped to the Z2-classes in Ω3

Spin,Tor(BZ4),

and then to the Z2-classes in Ω4
Spin,Tor(B((Z4) × Z)), which are also the image of the Z2-classes in

Ω4
Spin,Tor(B((Z4)2)) w.r.t. the map (9.11). All these Z2 sub-classifications are related to the fact

that two layers of 1+1D Kitaev chains (i.e. 2 Arf) becomes trivial. Physically, it means that the two
nearest-neighbored layers of Kitaev chains (in 2d, 3d or 4d) can be fully gapped by adding interactions
but without breaking any symmetry.

10.3 4d Z2
2 × Z4, crystalline-Z× (Z2)2 and Z× Z2 × Z4-fSPTs

Construction from 2d to 3d to 4d for Z× (Z2)2-fSPTs: We first construct the intrinsically fermionic

4d Z× (Z2)2-fSPTs, which have Z2
8 × Z4 classes, shown in Table 4. Both Z8 subgroups obviously can

be constructed from the Z8-classes of Kitaev chain (ABK invariants) from 2d to 3d to 4d via stacking
and proliferation as shown in Sec. 10.1.1, which we will not repeat again. The generator of Z4 classes
has an interesting 4d topological term δPD(h)(g1, g2) = h ∪ (g1 ∪ g2 ∪ η̃), which can be constructed by

stacking (see h) along the z-direction a Z4 generator g1 ∪ g2 ∪ η̃ (from Z4 ∈ ΩSpin
3 (B((Z2)2))). Each

3d slice of the gauged g1 ∪ g2 ∪ η̃ is a 3d non-abelian spin-TQFT, due to the ground state degeneracy
(GSD) reduction on the 3-torus. (See Sec. 9.3 and Ref.[28]’s Sec. 5’s calculation on this GSD.) Thus,
the gauged version of this minimal generator of Z4 class of 4d fSPT is also a non-abelian [NAb] spin-
TQFT. Therefore we construct above all fermionic states of Z2

8 × Z4 classes of 4d Z × (Z2)2-fSPTs
from the 2d-to-3d-to-4d procedure.

Next, given 4d Z2
2×Z4-fSPTs, we construct 4d Z×(Z2)2-fSPTs. Namely, we would like to know the

fermionic states mapped in Table 3 from the Z3
4-classes of Ω4

Spin,Tor(B(Z2
2×Z4)) to the Z4 × Z2

8-classes

of Ω4
Spin,Tor(B(Z× Z2

2)). The classes in the Z4 → Z4 subgroups are obviously and directly related to
the 3d theory described earlier associated to g1∪g2∪ η̃. The remaining classes are related by to copies
of the map Z4 → Z8, the same as (10.2), where g in (10.2) can be replaced to either g1 or g2 to get
two different Z8 subgroups. Then for k′ ∈ Z8 and k̃ ∈ Z4 as in (10.2), the correspondence again is
k = 0, 1, 2, 3 mod 4 mapped to k̃ = 0, 2, 4, 6 mod 8. The (Z4)2-classes of spin-TQFTs obtained from
dynamical gauged fSPTs, are again abelian [Ab].
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Construction from 2d to 3d to 4d for Z× Z2 × Z4-fSPTs:

We first construct the intrinsically fermionic 4d Z × Z2 × Z4-fSPTs that are crystalline fSPTs,
which has Z2

8 × Z2
2 classes (from Ω3

Spin,Tor(B(Z2 × Z4)) = Z2
8 × Z2

2, box labeled), shown in Table 4.

• One Z8 classification subgroup (involving ABK invariant) obviously can be constructed from
the Z8-class generated by Kitaev chain from 2d to 3d to 4d via stacking and proliferation.
The generator βPD(h)(g) = h ∪ (g ∪ ABK) is explicitly obtained from stacking the generator of
Z8-classes of 3d Z2-fSPTs (given by a topological term g ∪ABK) along the z direction.

• The generator of another Z8 classification subgroup (involving a spin-CS) can be constructed
from the Z8 class of a K = (1) ungauged U(1)-spin-CS theory, given in (3.19), with U(1) broken
to Z4 as shown in Sec. 10.1.1, which we will not repeat again.

• The non-trivial Z2-class Arf(PD(f mod 2) ∩ PD(h mod 2)) = (h mod 2) ∪ (f mod 2)) ∪ Arf
can be constructed via the 2d-3d-4d procedure: from the 2d Kitaev chain via Arf invariant
generating Ω2

Spin,Tor(pt) = Z2, we can map it to the generator of Ω3
Spin,Tor(BZ4) = Z2, then

to the generator of Z2 subclass in Ω4
Spin,Tor(B(Z × Z4)). This fSPTs is already discussed in

Sec. 10.1.1.

• Another non-trivial Z2 class q̃PD(f mod 2)∩PD(h mod 2)(g) = (h mod 2) ∪ (f mod 2) ∪ g ∪ η in-
volves all Z-, Z4- and Z2-gauge fields. Consider the 1d intersection of the Z- Z4- and Z2-
symmetry-breaking domain walls with trapped η term (i.e. fermionic mode trapped at the 1d
(=0+1D) intersection of domain wall decorated by the induced spin structure [43]) and then
proliferate it to restore the full symmetry. This gives rise to the desired 4d fSPTs.

Next we would like to relate the above Z2
8 × Z2

2 classes of intrinsically fermionic 4d Z × Z2 × Z4-
crystalline fSPTs (l.h.s.) to the Z3

4 classes of 4d Z2
2 ×Z4-fSPTs (r.h.s., within Ω4

Spin,Tor(B(Z2
2 ×Z4))).

Depend on the meaning of Z2 gauge field g (treated as g1 or g2), we can use the same map as (10.2),
taking k̃ ∈ Z4 to k′ = 2k̃ ∈ Z8. Moreover, we can map between one of the Z4 of r.h.s. and the Z2 of
r.h.s. is given by:

exp(
2πi

2
p q̃PD(f mod 2)∩PD(h mod 2)(g)) = exp(

2πi

4
p′ δPD(f mod 2)(g, g

′)), (10.4)

with g′ = h mod 2 and p ∈ Z2, p′ ∈ Z4. We find that p = p′ mod 2, so the map Z4 → Z2 is given
by mod 2 reduction. Alternatively, we can say that the topological term δPD(f mod 2)(g, g

′) maps to
2q̃PD( mod 2)∩PD(h mod 2)(g). In summary, we have the r.h.s. fSPTs map to the l.h.s. fSPTs:

Z4 × Z4 × Z4 3 (k′1, k
′
2, p
′) 7→ (0, p, k1, 0) = (0, p′ mod 2, 2k′1, 0) ∈ Z2 × Z2 × Z8 × Z8. (10.5)

This explains the map (labeled “Partially”) from 4d Z2
2×Z4- fSPTs to the 4d Z×Z2×Z4-crystalline-

fSPTs.

10.4 4d Z2 × Z2
4, crystalline-Z× Z2 × Z4 and Z× (Z4)2-fSPTs

We had constructed the intrinsically fermionic 4d Z × Z2 × Z4-fSPTs that are crystalline fSPTs
with Z2

8 × Z2
2 classes in Sec. 10.3 from the 2d-to-3d-to-4d stacking procedure. By writing down the

topological terms, in Table 4, we can see explicitly the injective map (labeled “Yes”) between the 4d
Z2 × Z2

4-fSPTs and 4d Z× Z2 × Z4-crystalline fSPTs via

Z2 × Z2 × Z4 × Z4 3 (p1, p2, k
′
1, k
′
2) 7→ (p1, p2, k1, k2) = (p1, p2, 2k

′
1, 2k

′
2) ∈ Z2 × Z2 × Z8 × Z8.

(10.6)
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Construction from 2d to 3d to 4d for Z× (Z4)2-fSPTs: We now construct the intrinsically

fermionic 4d Z× (Z4)2-fSPTs, which form Z3
2 × Z2

8 classification, shown in Table 4. The Z3
2-classes of

4d fSPTs involve either the 2d Arf invariant or the 1d η invariant. All these can be obtained from the
decoration and proliferation of the domain-wall trapping 1+1D Kitaev chain or the 0+1D fermionic
mode (with an induced spin structure along an S1). We shall not repeat these constructions.

Next we construct the map between the above Z3
2×Z2

8 classes of intrinsically fermionic 4d Z×(Z4)2-
crystalline fSPTs (l.h.s.) and the Z2

2 × (Z4)2 classes of 4d Z2×Z2
4-fSPTs (r.h.s., within Ω4

Spin,Tor(B(Z2×
Z2

4))). In Table 4, we can see explicitly the map (labeled “Partially”) between the 4d Z2 × Z2
4-fSPTs

and 4d Z× (Z4)2-crystalline fSPTs via

Z2 × Z2 × Z4 × Z4 3 (p1, p2, k
′
1, k
′
2) 7→ (p1, 0, p2, 0, 0) ∈ Z2 × Z2 × Z2 × Z8 × Z8. (10.7)

10.5 4d Z3
4 and crystalline-Z× (Z4)2-fSPTs

We had constructed the intrinsically fermionic 4d Z × (Z4)2-fSPTs that are crystalline fSPTs with
Z3

2 × Z2
8 classes in Sec. 10.4. By writing down the topological terms, in Table 4, we see explicitly the

surjective map (labeled “Yes”) between the 4d (Z4)3-fSPTs and 4d Z× (Z4)2-crystalline fSPTs via

(p, p1, p2, p123) ∈ Z2 × Z2 × Z2 × Z2 → (p, p1, p2, p123, 0, 0) ∈ Z2 × Z2 × Z2 × Z2 × Z8 × Z8. (10.8)

Strictly speaking the first p ∈ Z2, the coefficient multiplying Arf(PD(f1 mod 2) ∩ PD(f2 mod 2)) =
(f1 mod 2) ∪ (f2 mod 2) ∪Arf, is from a non-stacking 4d SPTs, since it does not involve the h-gauge
field. This generator, however, maps to the generator of the first and the same Z2 group in the 4d
(Z4)3-fSPTs. Note that here all dynamically gauged theories become non-abelian [NAb].

10.6 Crystalline Symmetry Gc v.s. Internal Symmetry Go

In previous sections, we mainly consider our spin TQFTs as either the fermionic SPTs (fSPT) protected
by onsite internal global symmetryG = Go, or considering their fermionic finite groupG gauged theory.
In this section 10.6 and later on, we will map our results and classifications obtained from cobordism
theory to other new types of fSPTs protected by crystalline global symmetry G = Gc. These crystalline
fSPTs (c-fSPT) not only can include the translational symmetry of the space group (discussed in Sec. 9
and Sec. 10.1 to 10.5), but also other crystalline symmetries. Crystalline symmetries, of great interest
and applicable to condensed matter system and topological phases [46], include:

• Space group, in crystallography, which means the symmetry of the underlying lattice and crystal.
In 3 dimensional spatial lattice, there are 230 possible space groups (e.g. [47, 48] and references
therein). Each element contains a collection of symmetry operations, like translation, glide, skew
axis, etc.

• Point group (e.g. [49, 50] and references therein on their SPTs) which corresponds to the
symmetries or isometries that keep at least one point fixed on the underlying lattice and crystal.
Point group is the quotient group of the space group by the translational symmetry group. Here
we will focus on the reflection/mirror c-fSPT in Sec. 10.7, inversion c-fSPT in Sec. 10.8, and the
rotation c-fSPT in Sec. 10.9.

Part of our work is inspired by Ref. [47]’s Crystalline Equivalence Principle: “Euclidean crystalline-
SPTs with symmetry group G are in 1-to-1 correspondence with SPTs protected by the internal
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symmetry G, where if G has an orientation-reversing, it is mapped to an anti-unitary symmetry in the
internal symmetry.” We would like to apply their principles to include reflection/mirror, inversion and
rotation SPTs, and compute explicit classifications from cobordism theory approach — the cobordism
theory will also suggest the appropriate relations between the topological terms of c-fSPTs and internal
symmetric fSPTs. Moreover, we can compare with another independent approach on lattice models
from the recent Ref. [51] on interacting rotational fSPTs, which we find in agreement. Additional
comments on other recent works can be found Sec. 10.11.3.

10.7 Reflection/Mirror SPTs

Reflection symmetry transformation means one of spatial coordinates (say x1) is sent to its negative
value (Fig. 25), say with respect to the origin:

x1 → −x1, (10.9)

while others on the mirror hyperplane (say xj , j = 2, ..., d− 1) remain the same.

x1

x3

x2

x1

x3

x2

Figure 25: Reflection or mirror symmetry. The xj , j = 1, 2, 3 (more generally j = 1, 2, ..., d − 1)
illustrate the local spatial coordinates with respect to an origin (the filled circle  ) which can be
understood as a lattice site. The unfilled circles © mean some quantum degrees of freedom (e.g.
complex fermion [a pair of real Majorana fermion modes], iso-spin or boson) associated to a local site.

• The local internal symmetry is applied to all local sites, each within a local region around the
unfilled circles ©.

• The spatial crystalline symmetry (like space group or point group) is applied to as the symmetry
transformations between local sites, implemented between the unfilled circles ©.

In Table 5, we list down the complete classification of reflection/mirror c-fSPTs. The r is the
general of reflection/mirror symmetry (up to the fermion parity, it is a Z2 group). For fermionic
system, there is a choice of r2 = +1 or r2 = (−1)F . The latter means that r2 = (−1)F is locked with
the fermion parity symmetry. The (−1)F is +1 or -1 for an even or odd number of fermions. The −1
is obviously related to the fermion statistics, rotating a fermion by 2π gives rise to a −1 sign.

Since the reflection (x1 → −x1) and the time-reversal symmetry (t → −t) is the same for the
reflection symmetry of Euclidean field theory, we can map the “r2 = +1” or “r2 = (−1)F ” to Pin+

or Pin− Euclidean field theory. This leads to the result summarized in Table 5.
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dim \ Gc ×Go r2 = +1 c-fSPTs classes r2 = (−1)F c-fSPTs classes

1+1D (2d) ZTf4 Ω2
Pin+,Tor(pt) = Z2. ZT2 × Zf2 Ω2

Pin−,Tor(pt) = Z8.

2+1D (3d) ZTf4 Ω2
Pin+,Tor(pt) = Z2. ZT2 × Zf2 Ω3

Pin−,Tor(pt) = 0.

3+1D (4d) ZTf4 Ω4
Pin+,Tor(pt) = Z16. ZT2 × Zf2 Ω4

Pin−,Tor(pt) = 0.

(d− 1) + 1D (dd) ZTf4 Ωd
P in+,Tor(pt) ZT2 × Zf2 Ωd

P in−,Tor(pt)

d ≥ 2 ZTf4 ×Go Ωd
P in+,Tor(BGo) ZT2 × Zf2 ×Go Ωd

P in−,Tor(BGo)

Table 5: The classification of reflection/mirror c-fSPTs for dimensions 1+1D, 2+1D, 3+1D and others.
The r is the generator of reflection/mirror symmetry. Below the column of crystalline symmetry “r2 =
+1” or “r2 = (−1)F ”, we list down the corresponding internal symmetry (in Minkowski signature,
where TR operator is anti-unitary and T 2 = (±1)F corresponds to Pin∓ [11]) by a map from the
crystalline symmetry (which map is explained in the main text). Below the column of “c-fSPTs
classes”, we list down the corresponding the bordism groups and the group classification of c-fSPTs.
In the last row we list down the Gc × Go-fSPTs where Gc is the reflection/mirror symmetry and Go
is an additional internal symmetry. The corresponding bordism groups can be obtained from our
approach in Sec. 7.

10.8 Inversion SPTs

Inversion symmetry transformation means all spatial coordinates (xj , j = 1, 2, ..., d − 1) are inverted
(Fig. 26), say respect to the origin (the black dot at xj = 0):

xj → −xj , (10.10)

x1

x3

x2

x1

x2

x3

Figure 26: Inversion. See the caption to Fig. 25 for conventions.

In Table 6, we list down the complete classification of inversion c-fSPTs. Let I denote the inversion
symmetry (up to the fermion parity, it is a Z2 group). Again, for fermionic system, there is a choice
of I2 = +1 or I2 = (−1)F locked with the fermion parity symmetry, as already explained in Sec. 10.7.

1. In an even-d dimensional spacetime, both the inversion (xj → −xj , inverting all the odd-
dimensional spatial coordinates, which gives rise to an overall sign (−1)d−1 = (−1)) and the
time-reversal symmetry (t→ −t) are exactly the same as the reflection symmetry of Euclidean
field theory. We can again map the “I2 = +1” or “I2 = (−1)F ” to Pin+ or Pin− spacetime
symmetries of Euclidean field theory, the same as for reflection/mirror symmetry in Sec. 10.7.

2. In an odd-d dimensional spacetime, the inversion (xj → −xj , inverting all gives rise to an overall
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dim \ Gc ×Go I2 = +1 c-fSPTs classes I2 = (−1)F c-fSPTs classes

1+1D (2d) ZTf4 Ω2
Pin+,Tor(pt) = Z2. ZT2 × Zf2 Ω2

Pin−,Tor(pt) = Z8.

2+1D (3d) Zf4 Ω3
(Spin×Z4)/Z2,Tor(pt) = 0. Z2 × Zf2 Ω3

Spin,Tor(B(Z2)) = Z8.

3+1D (4d) ZTf4 Ω4
Pin+,Tor(pt) = Z16. ZT2 × Zf2 Ω4

Pin−,Tor(pt) = 0.

(d− 1) + 1D (dd) Zf4 Ωd
(Spin×Z4)/Z2,Tor(pt) Z2 × Zf2 Ωd

Spin,Tor(B(Z2))

d ≥ 2, d ∈ odd Zf4 ×G0 Ωd
(Spin×Z4)/Z2,Tor(BGo) Z2 × Zf2 ×G0 Ωd

Spin,Tor(B(Z2 ×Go))
(d− 1) + 1D (dd) ZTf4 Ωd

P in+,Tor(pt) ZT2 × Zf2 Ωd
P in−,Tor

d ≥ 2, d ∈ even ZTf4 ×G0 Ωd
P in+,Tor(BGo) ZT2 × Zf2 ×G0 Ωd

P in−,Tor(BGo)

Table 6: The classification of inversion c-fSPTs. Let I be the generator of inversion symmetry. In the
columns under “I2 = +1” or “I2 = (−1)F ”, we list down the corresponding internal symmetry (again,
in Minkowski signature, where TR operator is anti-unitary). The relation is explained in the main
text. We also list down Gc × Go-fSPTs where Gc is the inversion symmetry and Go is an additional
internal symmetry.

sign +1) is rather distinct from the reflection symmetry. We can map the inversion instead to
(Spin× Z4)/Z2 or (Spin× Z2) spacetime symmetries of Euclidean field theory.47

This leads to the result summarized in Table 6.

10.9 Rotation SPTs

Here we only consider a rotation within a 2-plane, say with coordinates x1 and x2, such that rotation
by a θ-angle on this 2-plane with respect to the origin is given by

x1 → x1 cos(θ)− x2 sin(θ), x2 → x1 sin(θ) + x2 cos(θ). (10.11)

When θ = π, we have, x1 → −x1 and x2 → −x2. On a lattice or crystal, we have the rotation group
Cn (C for cyclic) group, which is the finite Zn group. The generator is the rotation by angle θ = 2π

n ,
with n = 1, 2, 3, 4, 6, due to the constraint of the lattice periodicity. See for example in Fig. 27.

1. In an 1+1D (2d) spacetime, the C2-rotation is the same as the inversion and the reflection. So
the first row of data in 1+1D (2d) of Table 5, 6 and 7 exactly coincide and give the same fSPTs.

2. In an 2+1D (3d) spacetime, the C2-rotation is the same as the spatial inversion, but not the
same as the reflection. So the first row of data in 2+1D (3d) of Table 6 and 7 exactly coincide
and give the same fSPTs.

47For even d, the internal symmetry corresponds to extensions

1→ Zf2 → G→ ZT2 → 1,

where G = ZTf4 (Pin+) for I2 = +1, while G = ZT2 × Zf2 (Pin−) for I2 = (−1)F . For odd d, the internal symmetry
corresponds to extension

1→ Zf2 → G→ Z2 → 1,

where G = Zf4 ((Spin× Z4)/Z2-structure in the cobordism approach) for I2 = +1, while G = Z2 × Zf2 ((Spin× Z2)-
structure in the cobordism approach) for I2 = (−1)F .
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(a)

x1

x3

x2

x1

x3

x2

(b)

Figure 27: Rotation: (a) In particular the π-rotation from a cyclic group C2 in the x1-x2-plane. See
the caption in Fig. 25 for conventions. (b) In the bottom we show an example of 2D lattice (on
the x1-x2-plane) with C6 rotational symmetry (the generator of C6 is a rotation by angle 2π

6 on any
lattice site around the x3 axis pointing out of the x1-x2-plane); in addition, this lattice also has two
independent Z-translational symmetries, reflection/mirror symmetry, inversion symmetry (which is
the same as the C2 as a subgroup of C6 rotation symmetry), among others.

dim \ Gc ×Go R2 = +1 c-fSPTs classes R2 = (−1)F c-fSPTs classes

1+1D (2d) ZTf4 Ω2
Pin+,Tor(pt) = Z2. ZT2 × Zf2 Ω2

Pin−,Tor(pt) = Z8.

2+1D (3d) Zf4 Ω3
(Spin×Z4)/Z2,Tor(pt) = 0. Z2 × Zf2 Ω3

Spin,Tor(B(Z2)) = Z8.

3+1D (4d) Zf4 Ω4
(Spin×Z4)/Z2,Tor(pt) = 0. Z2 × Zf2 Ω4

Spin,Tor(B(Z2)) = 0.

(d− 1) + 1D (dd) Zf4 Ωd
(Spin×Z4)/Z2,Tor(pt) Z2 × Zf2 Ωd

Spin,Tor(B(Z2))

d > 2 Zf4 ×Go Ωd
(Spin×Z4)/Z2,Tor(BGo) Z2 × Zf2 ×Go Ωd

Spin,Tor(B(Z2 ×Go))

Table 7: The classification of rotation c-fSPTs. Let R be the generator of rotation symmetry C2. In
the columns under “R2 = +1” or “R2 = (−1)F ” crystalline symmetries, we list down the corresponding
internal symmetry. The relation to the is explained in the main text. We also list down Gc×Go-fSPTs
where Gc is the rotation symmetry and Go is an additional internal symmetry.

3. In any dimension larger than 1+1D (dd where d > 2), the rotation symmetry acts on the
2-dimensional spatial subspace. We can map the Cm-rotation instead to (Spin× Z2m)/Z2 or
(Spin× Zm) spacetime symmetry of Euclidean field theory.48

This leads to the result summarized in Table 7 and 8.

48For all d-dimensions where d > 2, the internal symmetry corresponds to the extension

1→ Zf2 → G→ Z2m → 1,

where G = Zf2m (in terms of bordism of (Spin× Z2m)/Z2-structure) for Rm = +1, while G = Zm × Zf2 (in terms of
bordism of (Spin× Zm)-structure) for Rm = (−1)F . This is a natural generalization from m = 2 of C2-symmetry in
2+1D to generic m in other dimensions. Note that R is the generator of crystalline rotation symmetry group, not the
internal symmetry G. The difference between two (factor (−1)F in the m-th power of the generator) has been discussed
e.g. in [51].
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dim \ Gc ×Go Rm = +1 c-fSPTs classes Rm = (−1)F c-fSPTs classes

2+1D (3d) Zf2m Ω3
(Spin×Z2m)/Z2,Tor(pt) Zm × Zf2 Ω3

Spin,Tor(B(Zm))

m = 2 0 m = 2 Z8

m = 3 Z3 m = 3 Z3

m = 4 Z2 m = 4 Z8 × Z2

m = 6 Z3 m = 6 Z24 = Z8 × Z3

Zf2m ×Go Ω3
(Spin×Z2m)/Z2,Tor(BGo) Zm × Zf2 ×Go Ω3

Spin,Tor(B(Zm ×Go))
3+1D (4d) Zf2m Ω4

(Spin×Z2m)/Z2,Tor(pt) Zm × Zf2 Ω4
Spin,Tor(B(Zm))

m = 2 0 m = 2 0
m = 3 0 m = 3 0
m = 4 0 m = 4 0
m = 6 0 m = 6 0

Zf2m ×Go Ω4
(Spin×Z2m)/Z2,Tor(BGo) Zm × Zf2 ×Go Ω4

Spin,Tor(B(Zm ×Go))
(d− 1) + 1D (dd) Zf2m Ωd

(Spin×Z2m)/Z2,Tor(pt) Zm × Zf2 Ωd
Spin,Tor(B(Zm))

d > 2 Zf2m ×Go Ωd
(Spin×Z2m)/Z2,Tor(BGo) Zm × Zf2 ×Go Ωd

Spin,Tor(B(Zm ×Go))

Table 8: Rotation symmetry generated by the 2π
m -rotation (from a cyclic group Cm) in the x1-x2-

plane, where m = 2, 3, 4, 6 due to the lattice packing constraint on a 2-plane. Our result can be
compared with a recent Ref. [51] on interacting rotation fSPTs which used a different method based
on physical lattice models. It produces the same group classification output as far as we are concerned.
Importantly, the last two rows show that our bordism group data calculated in Sec. 4 and 6, coincide
with Ωd

Spin,Tor(B(Zm ×Go)) and Ωd
(Spin×Z2m)/Z2,Tor(BGo). This means that our previous fSPTs have

the exact correspondence to the new rotation c-fSPTs found here (and in Ref. [51]).

10.10 Fermionic SETs (Symmetry Enriched Topologically ordered states)

We can partially gauge the symmetry group of G-fSPT of an internal symmetry G. This becomes the
so-called Symmetry Enriched Topologically ordered states (SETs):

• Fermionic SETs (fSETs), if we only dynamically gauge a subgroup G′ ⊂ G and leave Zf2 fermion
parity ungauged.

• Bosonic SETs (bSETs), if we dynamically gauge a subgroup G′ ⊂ G and also dynamically gauge

Zf2 fermion parity. The gauging Zf2 process is known as a higher dimensional bosonization [52].

We can define the fSET partition function via generalizing the gauging discussion in Sec. 2.1 . Gauging
subgroup G′ ⊂ G produces the fSET with symmetry Gsym (i.e. Gsym-equivariant spin-TQFT), where
Gsym is the centralizer of G′ in G, i.e. Gsym = CG(G′). Then, for a given gsym : Mn−1 → BGsym, the
Hilbert space of the resulting n-dimensional fSET on Mn−1 is given by a generalization of eqn. (2.6)
as:

Zgauged(Mn−1, gsym) =
⊕

[f ′]∈CMn−1,gsym

Z(Mn−1, µ ◦ (gsym × f ′)), (10.12)

where µ : BGsym × BG′ → BG is the map induced by the multiplication map Gsym ×G′ → G (note
that here, to define µ, we use the fact that Gsym and G′ are commuting subgroups in G so that the
map Gsym × G′ → G is a group homomorphism) and CMn−1,gsym

is the following subset of the set of
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homotopy classes of maps Mn−1 → BG′:

CMn−1,gsym
:=

{
[f ′]

∣∣∣ Z(Mn−1 × S1, µ ◦ (pr∗gsym × g′)) ∈ C is the same
for all g′ : Mn−1 × S1 → BG′, s.t. g′|Mn−1×pt ∼ f ′

}
⊂ [Mn−1, BG′].(10.13)

Similarly, we can define bSETs via combining the formalism in Sec. 2.2 to obtain bosonic theory
and the partial gauging in eqn. (10.12). A related gauging procedure from 4d fSPTs to 4d bSETs and
to 4d fSETs was recently given in [53]. A worthwhile remark is that Ref. [53] gives a strong conjecture,
stating that gauging 4d fSPTs with finite group unitary internal symmetry, may give a large subclass
of all 4d bSETs of finite gauge group, and likely also a complete classification of all 4d fSETs of finite
gauge group. If so, our formulation provides a systematic study of all 4d bSETs and fSETs of finite
gauge group.

10.11 Other aspects

In this subsection, we make some remarks on how our work can be related to the previously existed
literature.

10.11.1 Fermionic higher global symmetries vs. Higher-form global symmetries

Ref. [54] proposes the generalized global symmetry for QFTs. For TQFTs, the generalized global
symmetry is intrinsically related to the link invariants between two set of extended operators; one
is regarded as a “charged” object (being measured), the other is regarded as a “charge” operator
(measuring the “charged” object).

First let us note that the usual fermionic parity in many aspects behaves as a Z2 0-form global
symmetry. In particular, one can insert a Wilson loop that measures both holonomy of a gauge field for
an ordinary 0-form symmetry and the action of invertible spin-TQFT η coupled to the spin-structure
induced from the ambient space via framing on the normal bundle.

Similarly, in many aspects, one can treat Arf-TQFT as a connection for fermionic Z2 1-form
symmetry. For our fermionic spin-TQFTs, there are fermionic loops that are not only charged under
1-form global symmetry, but also “charged under Z2 1-form symmetry generated by Arf invertible
spin-TQFT.” So when we parallel transport them along some surface Σ connecting L1 loop with loop
L2 (i.e. ∂Σ = L1 t L2), they obtain a phase given by

exp((2πik

∫
Σ
B) + πiArf(Σ)) (10.14)

where B is a background 2-form field for 1-form symmetry (ZN or U(1), with charge k ∈ ZN or Z
respectively) and the spin-structure on Σ is induced from the spin structure of the ambient space using
framing of the normal bundle to Σ.

In the context of generalized global symmetry, we not only have [54]’s higher-form global symme-
tries, but also additional fermionic higher global symmetries which may not be written as differential
forms.
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10.11.2 Adams spectral sequence vs. Atiyah-Hirzebruch spectral sequence

In this section we compare between our classifications and [55, 56]’s classification scheme for fermionic
SPTs (fSPTs). Our classification relies on Adams spectral sequence. To our best knowledge, [55, 56]’s
structure is similar to Atiyah-Hirzebruch spectral sequence (see also [57, 58]).

Based on a fermionic lattice model for fSPTs, Ref. [55, 56] derives a generalized cohomology group
theory, such that there are two layers of short exact sequences and other constraints upon their set of
data.

For 3d (2+1D) fSPTs with a total symmetry Gf = G × Zf2 , with a bosonic internal symmetry G

and fermion parity Zf2 symmetry, Ref. [59, 55, 56] (and references therein) summarize three sets of
group cohomology data of the symmetry group G, namely

(H3(G,UT (1)), BH2(G,Z2), H1(G,Z2)). (10.15)

BH2(G,Z2) is the obstruction-free subgroup of H2(G,Z2), generated by n2 ∈ H2(G,Z2) that satisfy
Sq2(n2) = 0 in H4(G,UT (1)), where Sq2 is the Steenrod square.49 H3(G,UT (1)) is the classification
of bosonic SPTs. Physically, the H1(G,Z2) layer can be constructed by decorating a 1+1D Kitaev
fermionic chain [16], which is a 2d invertible spin TQFT onto the G-symmetry domain walls. The
BH2(G,Z2) layer is constructed by decorating complex fermions, which are 1d invertible spin TQFT
onto the G-symmetry domain walls.

For 4d (3+1D) fSPTs with Gf = G× Zf2 , with a bosonic symmetry G, Ref. [55, 56] propose three
sets of group cohomology data of the symmetry group G, namely

(H4
rigid(G,UT (1)), BH3(G,Z2), B̃H2(G,Z2)) (10.16)

to classify these 4d fSPT. For the meaning of the first two entries H4
rigid(G,U(1)T ) and BH3(G,Z2),

see the original reference [55, 56]. The third entry B̃H2(G,Z2) is an obstruction-free subgroup of
H2(G,Z2), generated by ñ2 ∈ H2(G,Z2) that obey Sq2(ñ2) = 0 in H4(G,Z2) and O(ñ2) = 0 in
H5(G,UT (1)). Here O is a certain cohomology operation that maps ñ2 satisfying Sq2(ñ2) = 0 in
H2(G,Z2) into an element in H5(G,Z8) ⊆ H5(G,UT (1)). As far as we are concerned, the “mysterious”
O discussed in [55] is actually, in Atiyah-Hirzebruch spectral sequence, the dual of the secondary
cohomology operation Θ : H2(X,Z)→ H5(X,Z2) based on the relation Sq2Sq2ρ = 0, where ρ is the
induced coefficient mod 2 reduction from 0 → Z → Z → Z2 → 0. In general, there is a bijection
between stable homology operations E∗ → F∗−k and stable cohomology operations E∗ → F ∗+k. So
the dual of Θ is H5(X,Z) → H2(X,Z2). Apply the functor Hom(−, U(1)), we get H2(X,Z2) →
H5(X,U(1)), here X = BGb is the classifying space of Gb. Other details of cohomology group
notations are explained in [55, 56].

Below we fill in some background knowledge of Atiyah-Hirzebruch spectral sequence for compari-
son. Here

Hp(X,Ωq
Spin)⇒ Ωp+q

Spin(X) (10.17)

where Ωn
Spin(X) = Hom(ΩSpin

n (X), U(1)).

There is a filtration

0 = Fn+1,−1 ⊂ Fn,0 ⊂ Fn−1,1 ⊂ · · · ⊂ F p,n−p ⊂ · · · ⊂ Ωn
Spin(X) (10.18)

49UT (1) is the notation indicating that the coefficient U(1) of the cohomology group is non-trivially acted by the
antiunitary time-reversal symmetry if exists. Here we do not pay attention to the antiunitary symmetry, and assume
that all the (considered) symmetries are unitary.
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Figure 28: Atiyah-Hirzebruch spectral sequence

and an isomorphism
F p,q/F p+1,q−1 ∼= Ep,q∞ . (10.19)

The first layer is the extension
En,0∞ → Fn−1,1 → En−1,1

∞ . (10.20)

Their second layer is the extension

Fn−1,1 → Fn−2,2 → En−2,2
∞ . (10.21)

Following Ref. [55, 56]’s notation, we find the following correspondence for X = BGb (where Gb,
denoted as G previously, is the bosonic internal symmetry group). If n = 3:

E3,0
∞ = H3(Gb, UT (1)), E2,1

∞ = BH2(Gb,Z2), E1,2
∞ = H1(Gb,Z2). (10.22)

If n = 4:

E4,0
∞ = H4

rigid(Gb, UT (1)), E3,1
∞ = BH3(Gb,Z2), E2,2

∞ = B̃H2(Gb,Z2). (10.23)

On the other hand, our work uses Adams spectral sequence. Our “layer” structure has physical and
mathematical interpretations (To recall, the topological terms underlined with a single or double lines
are our notations introduced in Sec. 4, such as eq. (4.19)):

• Non-underlined topological terms are bosonic (i.e. belong to Hn(BG,U(1)) subgroup), they
corresponds to the elements in En,0∞ of Atiyah-Hirzebruch spectral sequence.

• Topological terms underlined with a single line are fermionic that provide refinement of the
bosonic elements from Hn(BG,U(1)).

• Topological terms underlined with double lines are fermionic and do not refine any elements of
Hn(BG,U(1)). Here “refine” means the fermionic topological term is a nontrivial extension of
the elements of Hn(BG,U(1)).

Examples by examples, our fSPT classification results show general agreements with Ref. [55, 56].
It is worth noticing that similar explicit layer structures of the spin bordism group have been explored
in [57, 58]. However, we remain direct comparison of our construction to [57, 58] to be studied.
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10.11.3 Relations to other recent works

Here are some final remarks related to the literature and recent works. We also highlight potential
future directions.

1. We have discussed the topological invariants and link invariants of fermionic spin G-TQFTs. In
condensed matter physics, the topological invariants corresponds to SPTs partition function; the
link invariants corresponds the braiding statistical Berry phases of time-evolution trajectory of
world-line/world-volume of anyonic particles of anyonic strings (either weakly gauged as probed
field defect, or dynamically gauged as topological orders). For the physical meanings of link
invariants, one can refer to systematic work [13, 60, 61, 62, 63, 25, 64, 65, 66]. It will be
interesting to explore the link invariants in terms of geometric-topology aspects like the surgery
theory on submanifolds, along the ideas of [67, 62] in 3 and 4 dimensions.

2. The SPTs protected by crystalline lattice symmetry has generated broad interests recently, rang-
ing from the earlier work on crystalline topological insulator [46] to the recent work on intrin-
sic interacting crystalline insulator/superconductor [68], and recent reviews [69] and references
therein.

Apart from our discussion and Ref. [47]’s Crystalline Equivalence Principle, other development of
general theory of cSPTs include general real-space recipe construction of topological crystalline
states [70] and field theory approaches [71] (and references therein).

It is worthwhile to mention that recent Ref. [72] applies generalized homology and Atiyah-
Hirzebruch spectral sequence (AHSS) in crystalline SPTs. Therefore, it will be interesting to
compare our understanding in Sec. 10.11.2 based on our work (Adams spectral sequence) not
only to [55, 56]’s work (AHSS) on fSPT with internal symmetry, but also to [72]’s work (AHSS)
on crystalline symmetry. This may guide us to construct analogous lattice models, from our
models, for internal [55, 56] and crystalline symmetry [72]. Another approach to construct our
models on a lattice or condensed mater systems can be fermion decoration construction [73],
similar to our discussion in Sec. 10.1.1.
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