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We hypothesize a new and more complete set of anomalies of certain quantum field theories
(QFTs) and then give an eclectic proof. First, we propose a set of ’t Hooft anomalies of 2d CP

N−1-
sigma models at θ = π, with N = 2, 3, 4 and others, by enlisting all possible 3d cobordism invariants
and selecting the matched terms. Second, we propose a set of ’t Hooft higher anomalies of 4d time-
reversal symmetric SU(N)-Yang-Mills (YM) gauge theory at θ = π, via 5d cobordism invariants
(higher symmetry-protected topological states) such that compactifying YM theory on a 2-torus
matches the constrained 3d cobordism invariants from sigma models. Based on algebraic/geometric
topology, QFT analysis, manifold generator dimensional reduction, condensed matter inputs and
additional physics criteria, we derive a correspondence between 5d and 3d new invariants, thus
broadly prove a more complete anomaly-matching between 4d YM and 2d CP

N−1 models via a
twisted 2-torus reduction, done by taking the Poincaré dual of specific cohomology class with Z2

coefficients. We formulate a higher-symmetry analog of “Lieb-Schultz-Mattis theorem” to constrain
the low-energy dynamics.
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I. INTRODUCTION AND SUMMARY

Determining the dynamics and phase structures of
strongly coupled quantum field theories (QFTs) is a chal-
lenging but important problem. For example, one of
Millennium Problems is partly on showing the quantum
Yang-Mills (YM) gauge theory [1] existence and mass
gap: The fate of a pure YM theory with a SU(N) gauge
group (i.e. we simply denote it as an SU(N)-YM), with-
out additional matter fields, without topological term
(θ = 0), is confined and trivially gapped in Euclidean
spacetime R4 [2]. A powerful tool to constrain the dy-
namics of QFTs is based on non-perturbative methods
such as the ’t Hooft anomaly-matching [3]. Although
anomaly-matching may not uniquely determine the quan-
tum dynamics, it can rule out some impossible quan-
tum phases with mismatched anomalies, thus guiding us
to focus only on favorable anomaly-matched phases for
low energy phase structures of QFTs. The importance
of dynamics and anomalies is not merely for a formal
QFT side, but also on a more practical application to
high-energy ultraviolet (UV) completion of QFTs, such
as on a lattice regularization or condensed matter sys-
tems. (See, for instance [4] and references therein, a re-
cent application of the anomalies, topological terms and
dynamical constraints of SU(N)-YM gauge theories on
UV-regulated condensed matter systems, obtained from
dynamically gauging the SU(N)-symmetric interacting

generalized topological superconductors/insulators [5, 6],
or more generally Symmetry-Protected Topological state
(SPTs) [7–9]).
In this work, we attempt to identify the potentially

complete ’t Hooft anomalies of 4d SU(N)-YM gauge

theory and 2d CP
N−1-sigma model (here dd for d-

dimensional spacetime) in Euclidean spacetime. Our
main result is summarized in Fig. 1 and 2.
By completing ’t Hooft anomalies of QFTs, we need to

first identify the relevant (if not all of) the global sym-
metry G of QFTs. Then we couple the QFTs to classical
background-symmetric gauge field of G, and try to de-
tect the possible obstructions of such coupling [3]. Such
obstructions, known as the obstruction of gauging the
global symmetry, are named “ ’t Hooft anomalies.”
In the literature, when people refer to “anomalies,” it can

means different things. To fix our terminology, we refer
“anomalies” to one of the followings:

1. Classical global symmetry is violated at the quan-
tum theory, such that the classical global symme-
try fails to be a quantum global symmetry, e.g. the
original Adler-Bell-Jackiw anomaly [10, 11].

2. Quantum global symmetry is well-defined and pre-
served. (Global symmetry is sensible, not only at a
classical theory [if there is any classical description],
but also for a quantum theory.) However, there
is an obstruction to gauge the global symmetry.
Specifically, we can detect a certain obstruction to
even weakly gauge the symmetry or couple the sym-
metry to a non-dynamical background probed gauge

field.1 This is known as “’t Hooft anomalies,” or
sometimes regarded as “weakly gauged anomaly”
in condensed matter.

3. Quantum global symmetry is well-defined and pre-
served. However, once we promote the global
symmetry to a gauge symmetry of the dynami-
cal gauge theory, then the gauge theory becomes
ill-defined. Some people call this as a “dynamical
gauge anomaly” which makes a quantum theory ill-
defined.

Now “’t Hooft anomalies” (for simplicity, from now
on, we may abbreviate them as “anomalies”) have at
least three intertwined interpretations:

Interpretation (1): In condensed matter physics, “’t
Hooft anomalies” are known as the obstruction to lattice-
regularize the global symmetry’s quantum operator in
a local on-site manner at UV due to symmetry-twists.
(See [12–14] for QFT-oriented discussion and references
therein.) This “non-onsite symmetry” viewpoint is
generically applicable to both, perturbative anomalies,
and non-perturbative anomalies:
• perturbative anomalies — Computable from perturba-
tive Feynman diagram calculations.
• non-perturbative or global anomalies — Examples of
global anomalies include the old and the new SU(2)
anomalies [15, 16] (a caveat: here we mean their ’t
Hooft anomaly analogs if we view the SU(2) gauge field
as a non-dynamical classical background, instead of
dynamical field) and the global gravitational anomalies
[17]. The occurrence of which types of anomalies are
sensitive to the underlying UV-completion of, not only
fermionic systems, but also bosonic systems [13, 18–20].
We call the anomalies of QFT whose UV-completion
requires only the bosonic degrees of freedom as bosonic
anomalies [18]; while those must require fermionic

1 We will refer this kind of field simply as a background (non-
dynamical gauge) field, abbreviated as “bgd.field.”
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degrees of freedom as fermionic anomalies.

Interpretation (2): In QFTs, the obstruction is on
the impossibility of adding any counter term in its
own dimension (d-d) in order to absorb a one-higher-
dimensional counter term (e.g. (d + 1)d topological
term) due to background G-field [21]. This is named the

“anomaly-inflow [22].” The (d + 1)d topological term is
known as the (d+1)d SPTs in condensed matter physics
[7, 8].

Interpretation (3): In math, the dd anomalies can
be systematically captured by (d + 1)d topological
invariants [15] known as cobordism invariants [23–26].

N = 2, 4d/2d anomalies and 5d/3d topological terms of 4d SU(N) YM theory and 2d CP
N−1-model:

5d topological invariant:

(4d anomaly)

3d topological invariant:

(2d anomaly)

5d manifold generator:

3d manifold generator:

B2Sq
1B2 + Sq2Sq1B2 +w1(TM)2Sq1B2

= 1
2
w̃1(TM)P2(B2) + w1(TM)3Ba

(RP
2 × RP

3, B = α ∪ β)

T 2 reduction

(reduce αβ)

(S1 × RP
2, w1(E) = γ,w2(VSO(3)) = γ ∪ α)

detects

w1(TM)w2(VSO(3)) or w1(E)w1(TM)2

(RP
2 × RP

3, B = α ∪ β + α2)

T 2 reduction

(reduce αβ)

(S1 × RP
2, w1(E) = γ,w2(VSO(3)) = γ ∪ α)

detects

w1(TM)w2(VSO(3)) or w1(E)w1(TM)2

3d topological invariant:

(2d anomaly)

5d manifold generator:

3d manifold generator:

(S1 × RP
2 × RP

2, B = γ ∪ α1)

T 2 reduction

(reduce γα2)

(S1 × RP
2, w1(E) = γ + α,w2(VSO(3)) = 0)

detects

w1(E)3 or w1(E)w1(TM)2

3d topological invariant:

(2d anomaly)

5d manifold generator:

3d manifold generator:

(S1 × RP
2 × RP

2, B = γ ∪ α1)

T 2 reduction

(reduce α1α2)

(S1 × S1 × S1, w1(E) = γ2 + γ3, w2(VSO(3)) = γ1γ2)

detects

w1(E)w2(VSO(3))

(S1 × RP
4, B = γ ∪ ζ + ζ2)

T 2 reduction

(reduce γζ)

(RP
3, w1(E) = β, w2(VSO(3)) = β2)

detects

w1(E)3 or w1(E)w2(VSO(3))

a This formula is proved in Sec. VIII. Note that
Sq2Sq1B2 = (w2(TM) + w1(TM)2)Sq1B2 = (w3(TM) +w1(TM)3)B2,
B2Sq

1B2 = ( 1
2
w̃1(TM)P2(B2)− (w3(TM) + w1(TM)3)B2) and w1(TM)2Sq1B2 = w1(TM)3B2.

FIG. 1. The main result of our work, for the (higher) anomalies of 4d SU(N) YM and 2d CP
N−1 at N = 2. The 4d (higher) / 2d

anomalies are uniquely specified by 5d /3d topological (cobordism) invariants and their manifold (bordism group) generators.
Here B = B2 is the 2-form gauge field in the YM gauge theory (at N = 2). E is a principal O(3) = SO(3) × Z2 bundle over
a 3-manifold, the corresponding principal SO(3) bundle is VSO(3). α is the generator of H1(RP

2,Z2), β is the generator of

H1(RP
3,Z2), γ is the generator of H1(S1,Z2), and ζ is the generator of H1(RP

4,Z2). “Reduce” means taking the Poincaré dual
of certain cohomology class with Z2 coefficients. For N = 2, we gain an accidental Z

C
2 ≡ Z

x
2 from the Z

x
2 -translation symmetry

(see Sec. IIC 2); this provides an explanation of the map from ΩO
5 (B

2
Z2) to ΩO

3 (BO(3)): The w1(E) is reduced from w1(TM),
namely w1(E) = w1(TM)|N . The w2(VSO(3)) is reduced from B, namely w2(VSO(3)) = B|N . Here (N,E) is reduced from
(M,B) by a 2-torus. More details are discussed in subsection VIIA, the upper left panel is in 1.(a), the upper right panel is in
2.(a), the middle left panel is in 5.(a), the middle right panel is in 4.(a), the lower left panel is in 5.(b).
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N = 4, 4d/2d anomalies and 5d/3d topological terms of 4d SU(N) YM theory / 2d CP
N−1-model:

5d topological invariant:

(4d anomaly)

5d manifold

generator:

3d manifold

generator:

3d topological

invariant:

(2d anomaly)

B̃2β(2,4)B2 + A2β(2,4)B2 + AB2w1(TM)2

= 1
4
w̃1(TM)P2(B2) + A2β(2,4)B2 + AB2w1(TM)2a

(S1 ×K × T 2, A,B = α′β′ + ζ′)

T 2 reduction

reduce ζ′ mod 2

(S1 ×K,w1(E), w2(E) = α′β′)

detects

β(2,4)w2(E)

= 1
2
w̃1(TM)w2(E)b

(S1 ×K × T 2, A,B = α′β′ + ζ′)

T 2 reduction

reduce (α′ mod 2)(β′ mod 2)

(S1 × T 2, w1(E), w2(E) = ζ′)

detects

w1(E)w2(E)

5d manifold

generator:

3d manifold

generator:

3d topological

invariant:

(2d anomaly)

(S1 ×K × RP
2, A = α,B = α′β′)

T 2 reduction

reduce (β′ mod 2)α

(S1 × T 2, w1(E) = γ, w2(E) = ζ′)

detects

w1(E)w2(E)

(S1 × T 2 × RP
2, A = γ + γ2, B = ζ′)

T 2 reduction

reduce γγ1

(S1 × RP
2, w1(E) = γ2, w2(E) = 0)

detects

w1(E)w1(TM)2

a This formula is proved in Sec. VIII.
b This formula holds since we can prove that both LHS and RHS are bordism invariants of ΩO

3 (B(Z2 ⋉ PSU(4))) and they coincide on
the manifold generators of ΩO

3 (B(Z2 ⋉ PSU(4))).

FIG. 2. The main result of our work, for the (higher) anomalies of 4d SU(N) YM and 2d CP
N−1 at N = 4. The 4d (higher) / 2d

anomalies are uniquely specified by 5d /3d topological (cobordism) invariants and their manifold (bordism group) generators.
Here B = B2 is the 2-form gauge field in the YM gauge theory (at N = 4). K is the Klein bottle. E is a principal Z2 ⋉PSU(4)
bundle over a 3-manifold. α′ is the generator of H1(S1,Z4), β

′ is the generator of the Z4 factor of H1(K,Z4) = Z4 × Z2 (see
Appendix C), ζ′ is the generator of H2(T 2,Z4). α is the generator of H1(RP

2,Z2), γ is the generator of H1(S1,Z2). Here
ζ′ = α′

1α
′

2 and α′

i mod 2 = γi. “Reduce” means taking the Poincaré dual of certain cohomology class with Z2 coefficients. The
w1(E) is reduced from A, namely w1(E) = A|N . The w2(E) is reduced from B, namely w2(E) = B|N . Here (N,E) is reduced

from (M,A,B) by a 2-torus. B̃2 = B2 mod 2. More details are discussed in subsection VIIB, the upper left panel is in 2.(b),
the upper right panel is in 2.(a), the lower left panel is in 4.(a), the lower right panel is in 9.(b).

There is a long history of relating these two particular
4d SU(N)-YM and 2d CP

N−1 theories, since the work of
Atiyah [27], Donaldson [28] and others, in the interplay
of QFTs in physics and mathematics. Recently three
key progresses shed new lights on their relations further:

(i) Higher symmetries and higher anomalies: The
familiar 0-form global symmetry has a charged object
of 0d measured by the charge operator of (d − 1)d.
The generalized q-form global symmetry, introduced
by [29], demands a charged object of qd measured by
the charge operator of (d − q − 1)d (i.e. codimension-
(q + 1)). This concept turns out to be powerful to
detect new anomalies, e.g. the pure SU(N)-YM at

θ = π (See eq. (4)) has a mixed anomaly between
0-form time-reversal symmetry ZT

2 and 1-form center
symmetry ZN,[1] at an even integer N, firstly discovered
in a remarkable work [30]. We review this result in
Sec. IV, then we will introduce new anomalies (to our
best understanding, these have not yet been identified
in the previous literature) in later sections (Fig. 1 and 2.).

(ii) Relate (higher)-SPTs to (higher)-topological invari-
ants: Follow the condensed matter literature, based on
the earlier discussion on the symmetry twist, it has been
recognized that the classical background-field partition
function under the symmetry twist, called Zsym.twist in
(d + 1)d can be regarded as the partition function of
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(d + 1)d SPTs ZSPTs. These descriptions are applicable
to both low-energy infrared (IR) field theory, but also to
the UV-regulated SPTs on a lattice, see [12, 13, and 24]
and Refs. therein for a systematic set-up. Schematically,
we follow the framework of [13],

Z
(d + 1)d
sym.twist = Z

(d + 1)d
SPTs = Z

(d + 1)d
topo.inv = Z

(d + 1)d
Cobordism.inv

←→ dd-(higher) ’t Hooft anomaly. (1)

In general, the partition function Zsym.twist =
ZSPTs[A1, B2, wi, . . . ] is a functional containing back-
ground gauge fields of 1-form A1, 2-form B2 or higher
forms; and can contain characteristic classes [31] such as
the i-th Stiefel-Whitney class (wi) and other geometric
probes such as gravitational background fields, e.g. a
gravitational Chern-Simons 3-form CS3(Γ) involving the
Levi-Civita connection or the spin connection Γ. For
convention, we use the capital letters (A,B, ...) to de-
note non-dynamical background gauge fields (which, how-
ever, later they may or may not be dynamically gauged),
while the little letters (a, b, ...) to denote dynamical gauge

fields.
More generally,
• For the ordinary 0-form symmetry, we can couple the
charged 0d point operator to 1-form background gauge
field (so the symmetry-twist occurs in the Poincaré dual
codimension-1 sub-spacetime [dd] of SPTs).
• For the 1-form symmetry, we can couple the charged
1d line operator to 2-form background gauge field
(so the symmetry-twist occurs in the Poincaré dual
codimension-2 sub-spacetime [(d− 1)d] of SPTs).
• For the q-form symmetry, we can couple the charged

qd extended operator to (q + 1)-form background gauge
field. The charged qd extended operator can be mea-
sured by another charge operator of codimension-(q+ 1)
[i.e. (d− q)d]. So the symmetry-twist can be interpreted
as the occurrence of the codimension-(q + 1) charge

operator. Namely, the symmetry-twist happens at
a Poincaré dual codimension-(q + 1) sub-spacetime
[(d − q)d] of SPTs. We can view the measurement
of a charged qd extended object, happening at any
q-dimensional intersection between the (q + 1)d form
background gauge field and the codimension-(q + 1)
symmetry-twist or charge operator of this SPT vacua.

For SPTs protected by higher symmetries (for generic
q, especially for any SPTs with at least a symmetry of
q > 0), we refer them as higher-SPTs. So our princi-
ple above is applicable to higher-SPTs [32–34]. In the
following of this article, thanks to eq. (1), we can inter-
change the usages and interpretations of “higher SPTs
ZSPTs,” “higher topological terms due to symmetry-twist

Z
(d + 1)d
sym.twist,” “higher topological invariants Z

(d + 1)d
topo.inv” or

“cobordism invariants Z
(d + 1)d
Cobordism.inv” in (d + 1)d. They

are all physically equivalent, and can uniquely determine
a dd higher anomaly, when we study the anomaly of any
boundary theory of the (d+1)d higher SPTs living on a
manifold with dd boundary. Thus, we regard all of them

as physically tightly-related given by eq. (1). In short,
by turning on the classical background probed field (de-
noted as “bgd.field” in eq. (2)) coupled to dd QFT, under
the symmetry transformation (i.e. symmetry twist), its
partition function Zdd

QFT can be shifted

Zdd
QFT

∣

∣

bgd.field=0

−→ Zdd
QFT

∣

∣

bgd.field6=0
· Z(d + 1)d

SPTs (bgd.field), (2)

to detect the underlying (d + 1)d topological
terms/counter term/SPTs, namely the (d + 1)d

partition function Z
(d + 1)d
SPTs . To check whether the

underlying (d + 1)d SPTs really specifies a true dd ’t
Hooft anomaly unremovable from dd counter term, it

means that Z
(d + 1)d
SPTs (bgd.field) cannot be absorbed by a

lower-dimensional SPTs Zdd
SPTs(bgd.field), namely

Zdd
QFT

∣

∣

bgd.field
· Z(d + 1)d

SPTs (bgd.field)

6= Zdd
QFT

∣

∣

bgd.field
· Zdd

SPTs(bgd.field). (3)

(iii) Dimensional reduction: A very recent progress
shows that a certain anomaly of 4d SU(N)-YM theory

can be matched with another anomaly of 2d CP
N−1

model under a 2-torus T 2 reduction in [35], built upon
previous investigations [36, 37]. This development,
together with the mathematical rigorous constraint from
4d and 2d instantons [27, 28], provides the evidence
that the complete set of (higher) anomalies of 4d YM

should be fully matched with 2d CP
N−1 model under a

T 2 reduction.2

In this work, we draw a wide range of knowledges,
tools, comprehensions, and intuitions from:
• Condensed matter physics and lattice regulariza-
tions. Simplicial-complex regularized triangulable mani-
folds and smooth manifolds. This approach is related to
our earlier Interpretation (1), and the progress (ii).
• QFT (continuum) methods: Path integral, higher sym-
metries associated to extended operators, etc. This is re-
lated to our earlier Interpretation (2), and the progress
(i), (ii) and (iii).
• Mathematics: Algebraic topology methods include
cobordism, cohomology and group cohomology theory.
Geometric topology methods include the surgery theory,
the dimensional-reduction of manifolds, and Poincaré du-
ality, etc. This is related to our earlier Interpretation (3),

2 The complex projective space CPN−1 is obtained from the
moduli space of flat connections of SU(N) YM theory. (See
[36] and Fig. 4.) This moduli space of flat connections do not
have a canonical Fubini-Study metric and may have singulari-
ties. However, this subtle issue, between the CP

N−1 target and
the moduli space of flat connections, only affects the geometry
issue, and should not affect the topological issue concerning non-
perturbative global discrete anomalies that we focus on in this
work.
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and the progress (ii) and (iii).
Built upon previous results, we are able to derive a consis-
tent story, which identifies, previously missing, thus, new
higher anomalies in YM theory and in CP

N−1 model. A
sublimed version of our result may count as an eclectic
proof between the anomaly-matching between two the-
ories under a 2-torus T 2 reduction from the 4d theory
reduced to a 2d theory.

The outline of our article goes as follows.

In Sec. II, we comment and review on QFTs (relevant

to YM theory and CP
N−1 model), their global symme-

tries, anomalies and topological invariants. This sec-
tion can serve as an invitation for condensed matter col-
leagues, while we also review the relevant new concepts
and notations to high energy/QFT theorists and mathe-
maticians.

In Sec. III, we provide the solid results on the cobor-
disms, SPTs/topological terms, and manifold generators.
This is relevant to our classification of all possible higher
’t Hooft anomalies. Also it is relevant to our later eclectic
proof on the anomalies of YM theory and CP

N−1 model.

In Sec. IV, we review the known anomalies in 4d YM
theory and 2d CP

N−1 model, and explain their physical
meanings, or re-derive them, in terms of mathematically
precise cobordism invariants.

In Sec. V, Sec. VII and Fig. 4, we should cautiously
remark that how 4d SU(N)-YM theory is related to 2d

CP
N−1 model.

In Sec. V, in particular, we give our rules to constrain
the anomalies for 4d YM theory and 2d CP

N−1 model,

and for 5d and 3d invariants.
In Sec. VI, we present new anomalies for 2d CP

N−1

model.
In Sec. VII, we present mathematical formulations

of dimensional reduction, from 5d to 3d of cobor-
dism/SPTs/topological term, and from 4d to 2d of
anomaly reduction.
In Sec. VIII, we present new higher anomalies for 4d

SU(N) YM theory.
In Sec. IX, with the list of potentially complete ’t Hooft

anomalies of the above 4d SU(N)-YM and 2d CP
N−1-

model at θ = π, we constrain their low-energy dynam-
ics further, based on the anomaly-matching. We discuss
the higher-symmetry analog Lieb-Schultz-Mattis theo-
rem. In particular, we check whether the ’t Hooft anoma-
lies of the above 4d SU(N)-YM and 2d CP

N−1-model can
be saturated by a symmetric TQFT of their own dimen-
sions, by the (higher-)symmetry-extension method gen-
eralized from the method of Ref. [14].
We conclude in Sec. X.

II. COMMENTS ON QFTS: GLOBAL
SYMMETRIES AND TOPOLOGICAL

INVARIANTS

A. 4d Yang-Mills Gauge Theory

Now we consider a 4d pure SU(N)-Yang-Mills gauge
theory with θ-term, with a positive integer N ≥ 2, for a
Euclidean partition function (such as an R4 spacetime)
The path integral (or partition function) Z4d

YM is formally
written as,

Z4d
YM ≡

∫

[Da] exp
(

− SYM+θ[a]
)

≡
∫

[Da] exp
(

− SYM[a]
)

exp
(

− Sθ[a]
)

≡
∫

[Da] exp
(

(

−
∫

M4

(
1

g2
TrFa ∧ ⋆Fa) +

∫

M4

(
iθ

8π2
TrFa ∧ Fa)

)

)

. (4)

• a is the 1-form SU(N)-gauge field connection ob-
tained from parallel transporting the principal-SU(N)
bundle over the spacetime manifold M4. The a =
aµdx

µ = aαµT
αdxµ; here Tα is the generator of Lie al-

gebra g for the gauge group (SU(N)), with the commu-
tator [Tα, T β] = ifαβγT γ, where fαβγ is a fully anti-
symmetric structure constant. Locally dxµ is a differ-
ential 1-form, the µ runs through the indices of coordi-
nate of M4. Then aµ = aαµT

α is the Lie algebra valued
gauge field, which is in the adjoint representation of the
Lie algebra. (In physics, aµ is the gluon vector field for
quantum chromodynamics.) The [Da] is the path inte-
gral measure, for a certain configuration of the gauge
field a. All allowed gauge inequivalent configurations are
integrated over within the path integral measures

∫

[Da],

where gauge redundancy is removed or mod out. The
integration is under a weight factor exp

(

iSYM+θ[a]
)

.
• The Fa = da− ia∧a is the SU(N) field strength, while
d is the exterior derivative and ∧ is the wedge product;
the ⋆Fa is Fa’s Hodge dual. The g is YM coupling con-
stant.
• The Tr (Fa ∧ ⋆Fa) is the Yang-Mills Lagrangian [1]
(a non-abelian generalization of Maxwell Lagrangian of
U(1) gauge theory). The Tr denotes the trace as an in-
variant quadratic form of the Lie algebra of gauge group
(here SU(N)). Note that Tr[Fa] = Tr[da − ia ∧ a] = 0
is traceless for a SU(N) field strength. Under the varia-
tional principle, YM theory’s classical equation of motion
(EOM), in contrast to the linearity of U(1) Maxwell the-
ory, is non-linear.



7

• The ( θ
8π2TrFa ∧ Fa) term is named the θ-topological

term, which does not contribute to the classical EOM.
• This path integral is physically sensible, but not pre-
cisely mathematically well-defined, because the gauge
field can be freely chosen due to the gauge freedom. This
problem occurs already for quantum U(1) Maxwell the-
ory, but now becomes more troublesome due to the YM’s
non-abelian gauge group. One way to deal with the path
integral and the quantization is the method by Faddeev-
Popov [38] and De Witt [39]. However, in this work,
we actually do not need to worry about of the subtlety of
the gauging fixing and the details of the running coupling
g for the full quantum theory part of this path integral.
The reason is that we only aim to capture the 5d classical

background field partition function Z
(d + 1)d
sym.twist = Z

(d + 1)d
SPTs

in eq. (1) that 4d YM theory must couple with in or-
der to match the ’t Hooft anomaly. Schematically, by
coupling YM to background field, under the symmetry
transformation, we expect that

Z4d
YM

∣

∣

bgd.field=0
→ Z5d

SPTs(bgd.field) · Z4d
YM

∣

∣

bgd.field6=0
.

(5)
For example, when a bgd.field is B,

Z4d
YM(B = 0)→ Z5d

SPTs(B 6= 0) · Z4d
YM(B 6= 0). (6)

Our goal will be identifying the 5d topological term (5d
SPTs) eq. (5) under coupling to background fields. We
will focus on the Euclidean path integral of eq. (4).

B. SU(N)-YM theory: Mix higher-anomalies

Below we warm up by re-deriving the result on the
mix higher-anomaly of time-reversal ZT

2 and 1-form cen-
ter ZN-symmetry of SU(N)-YM theory, firstly obtained
in [30], from scratch. Our derivation will be as self-
contained as possible, meanwhile we introduce useful no-
tations.

1. Global symmetry and preliminary

For 4d SU(N)-Yang-Mills (YM) theory at θ = 0 and
π mod 2π, on an Euclidean R4 spacetime, we can iden-
tify its global symmetries: the 0-form time-reversal ZT

2

symmetry with time reversal T (see more details in
Sec. II B 4), and 0-form charge conjugation ZC

2 with sym-
metry transformation C (see more details in Sec. II B 6).
Since the parity P is guaranteed to be a symmetry due
to CPT theorem (see more details in Sec. II B 6, or a ver-
sion for Euclidean [40]), we can denote the full 0-form
symmetry as G[0] = ZT

2 × ZC
2 . We also have the 1-form

electric G[1] = Z
e
N,[1] center symmetry [29].

So we find that the full global symmetry group
“schematically” as

G = Z
e
N,[1] ⋊ (ZT

2 × Z
C
2 ), (7)

which we intentionally omit the spacetime symmetry
group.3

For N = 2, we actually have the semi-direct product
“⋊” reduced to a direct product “×,” so we write

G = Z
e
2,[1] × Z

T
2 , (8)

here we also do not have the ZC
2 charge conjugation

global symmetry, due to that now becomes part of the
SU(2) gauge group of YM theory. The non-commutative
nature (the semi-direct product “⋊”) of eq. (7) between
0-form and 1-form symmetries will be explained in the
end of Sec. II B 6, after we first derive some preliminary
knowledge below:

• The 0-form Z
T
2 symmetry can be probed by “back-

ground symmetry-twist” if placing the system on non-
orientable manifolds. The details of time-reversal sym-
metry transformation will be discussed in Sec. II B 4.
• The 1-form electric Z

e
N,[1]-center symmetry (or simply

1-form ZN-symmetry) can be coupled to 2-form back-
ground field B2. The charged object of the 1-form Ze

N,[1]-

symmetry is the gauge-invariant Wilson line

We = TrR(P exp(i

∮

a)). (9)

The Wilson line We has the a viewed as a connection
over a principal Lie group bundle (here SU(N)), which
is parallel transported around the integrated closed loop
resulting an element of the Lie group. P is the path
ordering. The Tr is again the trace in the Lie algebra
valued, over the irreducible representation R of the Lie
group (here SU(N)). The spectrum of Wilson line We

includes all representations of the given Lie group (here
SU(N)). Specifying the local Lie algebra g is not enough,
we need to also specify the gauge Lie group (here SU(N))
and other data, such as the set of extended operators
and the topological terms, in order to learn the global
structure and non-perturbative physics of gauge theory
(See [41], and [4] for many examples).
For the SU(N) gauge theory we concern, the spectrum

of purely electric Wilson line We includes the fundamen-
tal representation with a ZN class, which can be regarded
as the ZN charge label of 1-form Ze

N,[1]-symmetry.

The 2-surface charge operator that measures the 1-
form Z

e
N,[1]-symmetry of the charged Wilson line is the

3 One may wonder the role of parity P (details in Sec. II B 6), and
a potential larger symmetry group (ZT

2 × ZC
2 × ZP

2 ) for G[0].
As we know that CPT transformation is almost a trivial and a
tightly related to the spacetime symmetry group. It is at most
a complex conjugation and anti-unitary operation in Minkowski
signature. It is trivial in the Euclidean signature. It will become
clear later we write down the full spacetime symmetry group and
the internal symmetry group, when we show our cobordism calcu-
lation for the full global symmetry group including the spacetime
and internal symmetries in Sec. III. More discussions on discrete
symmetries in various YM gauge theories can be found in [4].
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electric 2-surface operator that we denoted as Ue. The
higher q-form symmetry (q > 0) needs to be abelian [29],
thus the 1-from electric symmetry is associated to the
ZN center subgroup part of SU(N), known as the 1-form
Ze
N,[1]-symmetry.

If we place the Wilson line along the S1 circle of the
time or thermal circle, it is known as the Polyakov loop,
which nonzero expectation value (i.e. breaking of the
0-form center dimensionally-reduced from 1-form center
symmetry) serves as the order parameter of confinement-
deconfinement transition.
Below we illuminate our understanding in details for

the SU(2) YM theory (so we set N=2), which the discus-
sion can be generalized to SU(N) YM.

1. We write the SU(2)-YM theory with a background
2-form B ≡ B2 field coupling to 1-form Ze

N,[1] as:

Z4d
SU(2)YM[B] (10)

=

∫

[Dλ] Z4d
YM exp

(

iπλ ∪ (w2(E)−B2) + i
π

2
pP2(B2)

)

,

where w2(E) is the Stiefel-Whitney (SW) class of
gauge bundle E, and B2 is 2-form background field
(or Z2-valued 2-cochain), both are non-dynamical
probes. We see that integrating out λ, set (w2(E)−
B2) = 0 mod 2, thus B2 = w2(E) is related. For
B2 = 0, there is no symmetry twist w2(E) = 0.
For B2 = w2(E) 6= 0, there is a twisted bundle or a
so called symmetry twist. So we have an additional
i π2 pP2(w2(E)) depending on p ∈ Z4. The Pontrya-

gin square term P2 : H2(−,Z2k) → H4(−,Z2k+1),
here is given by

P2(B2) = B2 ∪B2 +B2 ∪
1
δB2 = B2 ∪B2 +B2 ∪

1
2Sq1B2,

(11)
see more Sec. II B 3. With ∪ is a normal cup prod-
uct and ∪

1
is a higher cup product. For readers

who are not familiar with the mathematical de-
tails, see the introduction to mathematical back-
ground in [34]. The physical interpretation of
adding π

2 pP2(B2) with p ∈ Z4, is related to the fact
of the YM vacua can be shifting by a higher-SPTs
protected by 1-form symmetry, see Sec. II B 3.

2. The electric Wilson lineWe in the fundamental rep-
resentation is dynamical and a genuine line opera-
tor. Wilson line We is on the boundary of a mag-
netic 2-surface Um = exp(iπw2(E)) = exp(iπB2).
However, we can set B2 = 0 since it is a probed
field. So We is a genuine line operator, i.e. without
the need to be at the boundary of 2-surface [29].

3. The magnetic ’t Hooft line is on the boundary of
an electric 2-surface Ue = exp(iπλ). Since λ is
dynamical, ’t Hooft line is not genuine thus not in
the line spectrum.

4. The electric 2-surface Ue = exp(iπλ) measures 1-
form e-symmetry, and it is dynamical. This can
be seen from the fact that the 2-surface w2(E) is
defined as a 2-surface defect (where each small 1-
loop of ’t Hooft line linked with this w2(E) get-
ting a nontrivial π-phase e iπ). The w2(E) has its
boundary with Wilson loop We, such that UeUm ∼
exp(iπλ∪w2(E)) specifies that when a 2-surface λ
links with (i.e. wraps around) a 1-Wilson loop We,
there is a nontrivial statistical π-phase e iπ = −1.
This type of a link of 2-surface and 1-loop in a
4d spacetime is widely known as the generalized
Aharonov-Bohm type of linking, captured by a
topological link invariant, see e.g. [42, 43] and ref-
erences therein.

2. YM theory coupled to background fields

First we make a 2-form ZN field out of 2-form and 1-
form U(1) fields. The 1-form global symmetry G[1] can
be coupled to a 2-form background ZN-gauge field B2.
In the continuum field theory, consider firstly a 2-form
U(1)-gauge field B2 and 1-form U(1)-gauge field C1 such
that

B2 as a 2-form U(1) gauge field, (12)

C1 as a 1-form U(1) gauge field, (13)

NB2 = dC1, B2 as a 2-form ZN gauge field. (14)

that satisfactorily makes the continuum formulation of
B2 field as a 2-form ZN-gauge field when we constrain an
enclosed surface integral

∮

B2 =
1

N

∮

dC1 ∈
1

N
2πZ. (15)

Now based on the relation PSU(N) = SU(N)
ZN

= U(N)
U(1) ,

we aim to have an SU(N) gauge theory coupled to a back-
ground 2-form ZN field. Here

a as an SU(N) 1-form gauge field,

Fa = da− ia ∧ a, as an SU(N) field strength,

Tr[Fa] = Tr[da− ia ∧ a] = 0 traceless for SU(N).(16)

We then promote the U(N) gauge theory with 1-form
U(N) gauge field a′, such that its normal subgroup U(1) is
coupled to the background 1-form probed field C1. Here
we can identify the U(N) gauge field to the SU(N) and
U(1) gauge fields via, up to details of gauge transforma-
tions [30],

a′ as an U(N) 1-form gauge field,

a′ ≃ a+ I
1

N
C1,

Tra′ ≃ Tra+ C1 = C1, (17)

Fa′ = da′ − ia′ ∧ a′, as a U(N) field strength,

Tr[Fa′ ] = Tr[da′ − ia′ ∧ a′] = Tr[da′] = dC1,

its trace is a U(1) field strength. (18)
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To associate the U(1) field strength Tr[Fa′ ] = Tr[da′] =
dC1 to the background U(1) field strength, we can impose
a Lagrange multiplier 2-form u,

∫

[Du] exp
(

i

∫

M4

1

2π
u ∧ (TrFa′ − dC1)

)

=

∫

[Du] exp
(

i

∫

M4

1

2π
u ∧ d(Tra′ − C1)

)

. (19)

We also have NB2 = dC1, so we can impose another

Lagrange multiplier 2-form u′,
∫

[Du′] exp
(

i

∫

M4

1

2π
u′ ∧ (NB2 − dC1)

)

(20)

From now we will make the YM kinetic term implicits,
we focus on the θ-topological term associated to the sym-
metry transformation. The YM kinetic term does not
contribute to the anomaly (in QFT language) and is not
affected under the symmetry twist (in condensed matter
language [13]). Overall, with only a pair (B2, C1) as back-
ground fields (or sometimes simply written as (B,C)), we
have,

∫

[Da][Du][Du′] exp
(

i

∫

M4

(
θ

8π2
TrFa ∧ Fa) + i

∫

M4

1

2π
u ∧ d(Tra′ − C1) + i

∫

M4

1

2π
u′ ∧ (NB2 − dC1)

)

=

∫

[Da][Du] exp
(

i

∫

M4

(
θ

8π2
TrFa ∧ Fa)

)

exp
(

i

∫

M4

1

2π
u ∧ d(Tra′ − C1)

)

|NB2=dC1

=

∫

[Da] exp
(

i

∫

M4

(
θ

8π2
TrFa ∧ Fa)

)

|Tr(Fa′)=Trda′=dC1=NB2=B2(Tr I), (21)

here I is a rank-N identity matrix, thus (Tr I) = N.

Next we rewrite the above path integral in terms of
U(N) gauge field, again up to details of gauge transfor-
mations [30],

a′ ≃ a+ I
1

N
C1,

Fa′ = da′ − ia′ ∧ a′

= (da+ I
1

N
dC1)− i(a+ I

1

N
C1) ∧ (a+ I

1

N
C1)

= (da+B2I)− ia ∧ a+ 0 = Fa +B2I (22)

Now, to fill in the details of gauge transformations,

B2 → B2 + dλ, (23)

C1 → C1 + dη +Nλ, (24)

a′ → a′ − λI + dηa, (25)

a→ a+ dηa, (26)

The infinitesimal and finite gauge transformations are:

aαµ → aαµ +
1

g
∂µη

α
a + fαβγaβµη

γ
a , (27)

a→ V (a+
i

g
d)V † ≡ e iηα

a Tα

(a+
i

g
d)e− iηα

a Tα

, (28)

where we denote 1-form λ and 0-form η, ηa for gauge
transformation parameters. Here ηa with subindex a is
merely an internal label for the gauge field a’s transfor-
mation ηa. Here αβγ are the color indices in physics, and
also the indices for the adjoint representation of Lie al-
gebra in math, which runs from 1, 2, . . . , d(Ggauge) with
the dimension d(Ggauge) of Lie group Ggauge (YM gauge
group), especially here d(Ggauge) = d(SU(N)) = N2 − 1.
By coupling Z4d

YM to 2-form background field B, we ob-
tain a modified partition function

Z4d
YM[B] =

∫

[Da] exp
(

i

∫

M4

(
θ

8π2
Tr (Fa′ −B2I) ∧ (Fa′ −B2I))

)

|Tr(Fa′ )=Trda′=dC1=NB2=B2(TrI) (29)

=

∫

[Da] exp
(

i

∫

M4

(
θ

8π2
Tr (Fa′ ∧ Fa′)− 2θN

8π2
B2 ∧B2 +

θN

8π2
B2 ∧B2)

)

=

∫

[Da] exp
(

i

∫

M4

(
θ

8π2
Tr (Fa′ ∧ Fa′)− θN

8π2
B2 ∧B2)

)

.

3. θ periodicity and the vacua-shifting of higher SPTs

Normally, people say θ has the 2π-periodicity,

θ ≃ θ + 2π. (30)

However, this identification is imprecise. Even though
the dynamics of the vacua θ and θ + 2π is the same, the
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θ and θ+2π can be differed by a short-ranged entangled
gapped phase of SPTs of condensed matter physics. In
[30]’s language, the vacua of θ and θ+2π are differed by a
counter term (which is the 4d higher-SPTs in condensed
matter physics language). We can see the two vacua are
differed by exp(− i

∫

M4
∆θN
8π2 B2 ∧B2) |∆θ=2π, which is

exp(i

∫

M4

−N
4π

B2∧B2) = exp(i

∫

M4

−π
N

B2∪B2), (31)

where on the right-hand-side (rhs), we switch the nota-
tion from the wedge product (∧) of differential forms to
the cup product (∪) of cochain field, such that B2 →
2π
N
B2 and ∧ → ∪. More precisely, when N = 2k as a

power of 2, the vacua is differed by

exp(i

∫

M4

−π
N
P2(B2)), (32)

where a Pontryagin square term P2 : H2(−,Z2k) →
H4(−,Z2k+1) is given by eq. (11) P2(B2) = B2∪B2+B2∪

1

δB2 = B2 ∪ B2 + B2 ∪
1
2Sq1B2. This term is related to

the generator of group cohomology H4(B2Z2,U(1)) = Z4

when N=2, and H4(B2
ZN,U(1)) for general N. This

term is also related to the generator of cobordism group
Ω4

SO(B
2Z2,U(1)) ≡ TorΩSO

4 (B2Z2) = Z4 when N=2, and
Ω4

SO(B
2ZN,U(1)) ≡ TorΩSO

4 (B2ZN) for general N. For
the even integer N = 2k, we have Ω4

SO(B
2ZN=2k ,U(1)) =

Z2N=2k+1 via a Z2k -valued 2-cochain in 2d to Z2k+1 in
4d. For our concern (e.g. N = 2, 4, etc.), we have

Ω4
SO(B

2ZN,U(1)) = Z2N, and the Pontryagin square is
well-defined. For the odd integer N that we concern (e.g.
N = 3 or say N = p an odd prime), Pontryagin square still
can be defined, but it is H2n(−,Zpk)→ H2pn(−,Zpk+1).
So we do not have Pontryagin square at N = 3 in 4d.
See more details on the introduction to mathematical
background in [34]. Since we know that the probed-
field topological term characterizes SPTs [13], which are
classified by group cohomology [7, 9] or cobordism the-
ory [24–26]; we had identified the precise SPTs (eq. (31),
eq. (32)) differed between the vacua of θ and θ + 2π.

4. Time reversal T transformation

As mentioned in eq. (7), the global symmetry of YM
theory (at θ = 0 and θ = π) contains a time reversal
symmetry T . We denote the spacetime coordinates µ for
2-form B ≡ B2 and 1-form C1 gauge fields as B2,µν and
C1,µ respectively. Then, time reversal acts as:

T :a0 → a0, ai → −ai, (t, xi)→ (−t, xi).

C1,0 → C1,0, C1,i → −C1,i.

B2,0i → B2,0i, B2,ij → −B2,ij . (33)

Thus the path integral transforms under time reversal,
schematically, becomes Z4d

YM[T B]. By T B, we also mean
T BT −1 in the quantum operator form of B (if we canon-
ically quantize the theory). More precisely,

Z4d
YM[B] =

∫

[Da] exp
(

i

∫

M4

(
θ

8π2
Tr (Fa′ ∧ Fa′)− θN

8π2
B2 ∧B2)

) T−→

Z4d
YM[T B] =

∫

[Da] exp
(

i

∫

M4

(
−θ
8π2

Tr (Fa′∧Fa′)−−θN
8π2

B2∧B2)
)

= Z4d
YM[B]·

∫

[Da] exp
(

i

∫

M4

(
−2θ
8π2

Tr (Fa′∧Fa′ )−−2θN
8π2

B2∧B2)
)

.

(34)

• When θ = 0, this remains the same Z4d
YM[T B] = Z4d

YM[B].
• When θ = π, this term transforms to

Z4d
YM[B] ·

∫

[Da] exp
(

i(−2π)
∫

M4

(
1

8π2
Tr (Fa′ ∧ Fa′)− N

8π2
B2 ∧B2)

)

= Z4d
YM[B] · exp

(

i(−2π)(−c2) +
(−2π)i
8π2

∫

M4

(TrFa′ ∧ TrFa′ −NB2 ∧B2)
)

|Tr(Fa′ )=NB2

= Z4d
YM[B] · exp

(

i2πc2 +
(−2π)i
8π2

∫

M4

(N(N− 1)B2 ∧B2)
)

= Z4d
YM[B] · exp

(− iN(N − 1)

4π

∫

M4

(B2 ∧B2)
)

(35)

where we apply the 2nd Chern number c2 identity:

1

8π2

∫

M4

(TrFa′ ∧TrFa′ −Tr (Fa′ ∧Fa′)) = c2 ∈ Z. (36)

We can add a 4d SPT state (of a higher form symmetry)
as a counter term. Consider again a 1-form ZN-symmetry
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(Ze
N,[1]) protected higher-SPTs, classified by a cobordism

group Ω4
SO(B

2ZN,U(1)),

exp(i

∫

M4

pπ

N
P2(B2)) ∼ exp(i

pN

4π

∫

B2 ∧B2), (37)

here we again convert the 2-cochain field B2 to 2-form
field B2 (to recall, see Sec. II B 3). For any 4-manifold,
according to [29, 43],

Np

2
∈ Z (For even N, p ∈ Z. For odd N, p ∈ 2Z).(38)

p ≃ p+ 2N. (39)

For even N, there are 2N classes of 4d higher SPTs for
p ∈ Z. For odd N, there are N classes of 4d higher SPTs
for p ∈ 2Z.
For spin 4-manifolds (when p and N are odd):

p ∈ Z. (40)

p ≃ p+N. (41)

In this case, there are N classes on the spin manifold.
This 4d higher SPTs (counter term) under TR sym

changes to: pN
4π

∫

B2 ∧ B2 → − pN
4π

∫

B2 ∧ B2, or more
precisely,

∫

pπ

N
P2(B2)→ −

∫

pπ

N
P2(B2). (42)

5. Mix time-reversal and 1-form-symmetry anomaly

Now we discuss the mix time-reversal T and 1-form ZN

symmetry anomaly of [30] in details. We re-derive based
on our language in [13]. The charge conjugation C, parity
P and time-reversal T form CPT . Since CPT is a global
symmetry for this YM theory, we can also interpret this
anomaly as a mix CP and 1-form ZN symmetry anomaly.

So overall, Z4d
YM[B], say with a 4d higher-SPT

pN
4π

∫

B2 ∧B2 labeled by p, is sent to

Z4d
YM[B] · exp

(

i(
−N(N − 1)

4π
+
−2pN
4π

)

∫

M4

(B2 ∧ B2)
)

= Z4d
YM[B] · exp

(− iN(N − 1 + 2p)

4π

∫

M4

(B2 ∧ B2)
)

. (43)

1. For even N, and θ = π, here the 4d higher SPTs
(counter term) labeled by p becomes labeled by
−(N − 1) − p. To check whether there is a mixed
anomaly or not, which asks for the identification of
two 4d SPTs before and after time-reversal trans-
formation. Namely (N − 1 + 2p) = 0 (mod out
the classification of 4d higher SPTs given below
eq. (32)) cannot be satisfied for any p ∈ Z (actu-
ally p ∈ Z2k+1 via the Pontryagin square, which
sends a Z2k -valued 2-form in 2d to Z2k+1 -class of
4d higher SPTs. For N = 2, we have p ∈ Z4.)

So this indicates that for any p (with or without
4d higher SPTs/counter term) in the YM vacua,
we detect the mixed time-reversal T and 1-form
ZN symmetry anomaly, which requires a 5d higher
SPTs to cancel the anomaly. We will write down
this 5d higher SPTs/counter term in Sec. III.

2. For even N, and θ = 0, we have Z4d
YM[T B] =

Z4d
YM[B] without 4d SPTs. With 4d SPTs, the

only shift is eq. (42), so to check the anomaly-free
condition, we need p = −p, or 2p = 0, mod out
the classification of 4d higher SPTs given below
eq. (32). This anomaly-free condition can be satis-
fied for p = 0. For N = 2, we can also have 2p = 0
mod 4, which is true for p = 0, 2, even with the
p = 2-class of 4d SPTs. In that case, there is no
mixed higher anomaly of T and Ze

N,[1] symmetry,

3. For odd N, and θ = π, the (N − 1 + 2p) = 0 (mod

out the classification of 4d higher SPTs given below
eq. (32)) can be satisfied for some p = 1−N

2 ∈ Z,
but p needs to be even p ∈ 2Z on a non-spin man-
ifold. If p = 1−N

2 ∈ 2Z, the 4d SPTs can be de-

fined on a non-spin manifold. If p = 1−N
2 ∈ Z,

the 4d SPTs can only be defined on a spin man-
ifold. So, for an odd N, there can be no mixed
anomaly at θ = π, a 4d higher SPTs/counter term
of p = 1−N

2 preserves the T -symmetry and 1-form
ZN-symmetry (such that two symmetries can be
regulated locally onsite [12–14]).

6. Charge conjugation C, parity P, reflection R, CT , CP
transformations, and Z

CT
2 × (Ze

N,[1] ⋊ Z
C
2 ) and Z

CT
2 × Z

e
2,[1]

-symmetry, and their higher mixed anomalies

Follow Sec. II B 4 and discrete T transformation in
eq. (33), we list down additional discrete transformations
including charge conjugation C, parity P , CT , CP :

C : aµ → −a∗µ, (t, xi)→ (t, xi). (44)

ajµ(t, x)→ ajµ(t, x), T j → −T j∗. (45)

P : a0 → a0, ai → −ai, (t, xi)→ (t,−xi).(46)

CT :−a0 → a0, ai → ai, (t, xi)→ (−t, xi). (47)

CP : a0 → −a0, ai → ai, (t, xi)→ (t,−xi).(48)

CPT : aµ → −aµ, (t, xi)→ (−t,−xi). (49)
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The ∗ means the complex conjugation. In Euclidean
spacetime, we can regard the former T in eq. (33) (or
CT eq. (47)) as a reflection R transformation [40], which
we choose to flip any of the Euclidean coordinate. See
further discussions of the crucial role of discrete symme-
tries in YM gauge theories in [4].
We can ask whether there is any higher mixed anoma-

lies between the above discrete symmetries and the 1-
form center symmetry. We can easily check that whether
the θTr (Fa′ ∧ Fa′) term flips under any of the discrete
symmetries. Among the C,P , and T , only the C does not
flip the θ term and C is a good global symmetry for all θ
values. So the answer is that each of the

T , P , CT and CP, (50)

have itself mixed anomalies with the 1-form center sym-
metry. Only, C, PT and CPT do not have mixed anoma-
lies with the 1-form center symmetry.
Now, we come back to explain the non-commutative

nature (the semi-direct product “⋊”) of eq. (7) between
0-form and 1-form symmetries

Z
e
N,[1] ⋊ (ZT

2 × Z
C
2 ).

Obviously (ZT
2 × ZC

2 ) is due to that C and T commute,
and the combined diagonal group diag(ZT

2 ×Z
C
2 ) = Z

CT
2

has the group generator CT .
We note that to physically understand some of the fol-

lowing statements, it may be helpful to view the symme-
try transformation in the Minkowski/Lorentz signature
instead of the Euclidean signature.4

• The non-commutative nature Ze
N,[1]⋊ZT

2 is due to that

the ZT
2 keeps 1-Wilson loop We = TrR(P exp(i

∮

a)) →
TrR(P exp((− i)(−

∮

a))) = We invariant, while ZT
2 flips

the 2-surface Ue → U †
e = U−1

e due to the orientation of
Ue and its boundary ’t Hooft line is flipped. Thus, the
1-form Ze

N,[1]-symmetry charge of We, measured by the

topological number of linking between We and Ue, now
flips from n ∈ ZN to −n = N−n ∈ ZN. Since the charge
operator of Z

e
N,[1] symmetry, Ue, is flipped thus does not

commute under the ZT
2 symmetry, this effectively defines

the semi-direct product in a dihedral group like structure
of Ze

N,[1] ⋊ ZT
2 .

• The commutative nature Ze
N,[1] × ZCT

2 is due to that

the ZCT
2 flips 1-Wilson loop We = TrR(P exp(i

∮

a)) →
W †

e = W−1
e , while ZCT

2 keeps the 2-surface Ue → Ue

invariant. We can see that the ZCT
2 and ZT

2 flips the
1-loop and 2-surface oppositely. Thus, the 1-form Ze

N,[1]-

symmetry charge of We, measured by the topological
number of linking between We and Ue, again flips from
n ∈ ZN to −n = N−n ∈ ZN. But the charge operator of
Ze
N,[1] symmetry, Ue, is invariant thus does commute un-

der the ZCT
2 symmetry, this effectively defines the direct

product in a group structure of Ze
N,[1] × ZCT

2 .

• The non-commutative nature Ze
N,[1] ⋊ ZC

2 is due to

that the ZC
2 in eq. (44) flips We = TrR(P exp(i

∮

a))
→ TrR(P exp(i(−

∮

a∗)) = TrR(P exp(i(
∮

a))∗) =

TrR(P exp(i(
∮

a))†) = W †
e = W−1

e , while ZC
2 also flips

the 2-surface Ue → U †
e = U−1

e for the same reason. Thus,
the 1-form Ze

N,[1]-symmetry charge of We, measured by

the topological number of linking between We and Ue,
is invariant under ZC

2 . But the charge operator of Ze
N,[1]

symmetry, Ue, is flipped thus does not commute under
the ZC

2 symmetry, this effectively defines the semi-direct
product in a dihedral group like structure of Z

e
N,[1]⋊Z

C
2 .

Note that the potentially related dihedral group struc-
ture of Yang-Mills theory under a dimensional reduction
to R3 × S1 is recently explored in [30, 44].
When N = 2, it is obvious that we simply have the

direct product Ze
2,[1] × (ZT

2 × ZC
2 ) as eq. (8).

We can rewrite eq. (7)’s 0-form and 1-form symmetries

Z
CT
2 × (Ze

N,[1] ⋊ Z
C
2 ) . (51)

We can rewrite eq. (8) as

Z
CT
2 × Z

e
2,[1] . (52)

It is related to the fact that for SU(2) YM theory, the
charge conjugation ZC

2 is inside the gauge group, because
there is no outer automorphism of SU(2) but only an in-
ner automorphism (Z2) of SU(2). For N=2, the charge

conjugation matrix CSU(2) = e i π
2 σ

2 ∈ SU(2) is a matrix
that provides an isomorphism map between fundamen-
tal representations of SU(2) and its complex conjugate.
We have CSU(2)σ

jC−1
SU(2) = −σj∗. Let USU(2) be the uni-

tary SU(2) transformation on the SU(2)-fundamentals,
so CSU(2)USU(2)C−1

SU(2) = exp(− i θ2σ
j∗) = U∗

SU(2), which is

a Z2 inner automorphism of SU(2).
We propose that the structure of eq. (7), eq. (8),

eq. (51) and eq. (52) can be regarded as an analogous 2-
group. It can be helpful to further organize this 2-group
like data into the context of [45].

C. 2d CP
N−1-sigma model

Here we consider 2d CP
N−1-model [46], which is a 2d

sigma model with a target space CP
N−1. The CP

N−1

model is a 2d toy model which mimics some similar be-
haviors of 4d YM theory: dynamically-generated energy
gap and asymptotically-free, etc. We will focus on 2d
CP

N−1-model at θ = π.

1. Related Models

The path integral of 2d CP
N−1-model is
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Z2d
CPN−1 ≡

∫

[Dz][Dz̄][Da′] exp
(

− SCPN−1+θ[z, z̄, a
′]
)

≡
∫

[Dzj ][Dz̄j ][Da′] exp
(

− SCPN−1 [zj , z̄j, a
′]
)

exp
(

− Sθ[a
′]
)

≡
∫

[Dz][Dz̄][Da′]δ(|z|2 − r2) exp
(

(

−
∫

M2

d2x(
1

g′2
|Da′,µz|2) +

∫

M2

(
iθ

2π
Fa′)

)

)

. (53)

The zj ∈ C is a complex-valued field variable, with an
index j = 1, . . . ,N. (In math, the zj ∼ czj, identified
by any complex number c ∈ C

× excluding the origin,
is known as the homogeneous coordinates of the target
space CP

N−1.) The delta function imposes a constraint:

|z|2 ≡ ∑N
j=1 |zj |2 = r2, here r ∈ R specifies the size

of CP
N−1. The delta function δ(|z|2 − r2) may be also

replaced by a potential term, such as the λ
4 (|z|2 − r2)2

potential, at large λ coupling energetically constraining
|z|2 = r2. Here |Da′,µz|2 ≡ (Da′,µz)

†(Dµ
a′z). Here Fa′ =

da′ is the U(1) field strength of a′.

For 2d CP
1 (2d CP

N−1 at N = 2), we can rewrite
the model as the O(3) nonlinear sigma model (NLSM).
The O(3) NLSM is parametrized by an O(3) = SO(3)×
Z2 Néel vector ~n = (n1, n2, n3), which is related to

~n = 1
r2
z†i ~σijzj with |~n|2 = 1 and Pauli matrix ~σ =

(σ1, σ2, σ3). It is called Néel vector because the 2d CP
1

or O(3) NLSM describes the Heisenberg anti-ferromagnet
phase of quantum spin system [47, 48]. To convert
eq. (53) to eq. (56), notice that we do not introduce
the kinetic Maxwell term |Fa′ |2 for the U(1) photon
a′, thus a′ is an auxiliary field, that can be integrated
out and eq. (53) is constrained by the EOM: a′µ =

− i
r2

∑2
j=1 z̄j∂µzj = i

2r2

∑2
j=1(zj∂µz̄j − z̄j∂µzj), and we

can derive:

|Da′,µz|2 =
2

∑

j=1

|Da′,µzj |2 = ((
r

2
)2∂µ~n · ∂µ~n), (54)

iθ

2π
ǫµν∂µa

′
ν = (

iθ

8π
ǫµν~n · (∂µ~n× ∂ν~n)). (55)

Then we rewrite Z2d
CP1 as Z2d

O(3) of the O(3) NLSM path

integral:

Z2d
O(3) ≡

∫

[D~n]δ(|~n|2 − 1) exp
(

− SO(3)+θ[~n]
)

≡
∫

[D~n]δ(|~n|2 − 1) exp
(

(

−
∫

M2

d2x(
1

g′′2
∂µ~n · ∂µ~n) +

∫

M2

(
iθ

8π
ǫµν~n · (∂µ~n× ∂ν~n))

)

)

. (56)

Note that ( iθ
8π ǫ

µν~n · (∂µ~n× ∂ν~n)) = ( iθ
4π~n · (∂τ~n× ∂x~n)).

The O(3) NLSM coupling g′′ in (( 1
g′′

)2∂µ~n · ∂µ~n) =

(( r
2g′

)2∂µ~n · ∂µ~n) is related to the CP
1 model via g′′ =

(2g′/r), which is inverse proportional to the radius size

of the 2-sphere CP
1 = S2.

In fact, the UV high energy theory of Z2d
CP1 = Z2d

O(3) is

known to be, in Renormalization Group (RG), flowing to
the same IR conformal field theory CFT from another UV
model from SU(2)1-WZW model (Wess-Zumino-Witten
model [49–51]). The SU(N)k-WZW model is

ZWZW
SU(N)k

=

∫

[DU ][DU †] exp(− k

8π

∫

M2

d2xTr
(

∂µU
†∂µU

)

+
ik

12π

∫

M ′3

Tr
(

(U †dU)3
)

), (57)

4 In the Minkowski case, we also need to regard the time-reversal
symmetries (T and CT ) as anti-unitary symmetry, instead of the
unitary symmetry (as the Euclidean case).

with M2 = ∂(M ′3). At N = 2, the UV theory of Z2d
CP1 =

Z2d
O(3) flows to this 2d CFT called the SU(2)1-WZW CFT

at IR. The global symmetry can be preserved at IR.

For the general 2d CP
N−1-model, its global symmetry
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can also be embedded into another SU(N)1-WZW model

at UV; although unlike N = 2 case, CP
N−1-models for

N > 2 conventionally and generically do not flow to an
IR CFT. For N > 2, there exist UV-symmetry preserv-
ing relevant deformations driving the RG flow away from
an IR CFT. The global symmetry may be spontaneously
broken, and the vacua can be gapped and/or degener-
ated. See for example [52, 53] and references therein.

2. Global symmetry:

Z
CT
2 × PSU(2)× Z

C
2 and Z

CT
2 × (PSU(N)⋊ Z

C′

2 )

Let us check the global symmetry of 2d CP
N−1-model.

Continuous global symmetry: In eq. (53), it is easy to
see the continuous global SU(N) transformation rotating
between the SU(N) fundamental complex scalar multiplet
zj , z → V z = Vijzj = (e iΘαTα

)ijzj which has its ZN-
center subgroup being gauged away by the U(1) gauge
field a′. So we have the net continuous global symmetry

PSU(N) = SU(N)/ZN = U(N)/U(1), (58)

which acts on gauge invariant object faithfully (e.g.
the PSU(2) = SO(3) symmetry can act on the gauge-
invariant ~n vector in the 2d CP

1-model or O(3) NLSM
faithfully).

Now we explore 2d CP
N−1-model’s discrete global

symmetry as finite groups.

Discrete global symmetry for N = 2:

• ZT
2 , there is a T -symmetry for any θ, acting on fields

and coordinates of eq. (53) and eq. (56), whose transfor-
mations become

Z
T
2 : zi → ǫij z̄j , ~n→ −~n,

(a′t, a
′
x)→ (a′t,−a′x), (t, x)→ (−t, x). (59)

Here a Pauli matrix σ2
ij gives ǫij = iσ2

ij .

• Zx
2 -translation symmetry (≡ ZC

2 ) for θ = 0, π, acts as

Z
x
2 (≡ Z

C
2 ) : zi → ǫij z̄j , ~n→ −~n,

(a′t, a
′
x)→ −(a′t, a′x), (t, x)→ (t, x).(60)

It is easy to understand the role of Zx
2 -translation on the

UV-lattice model of Heisenberg anti-ferromagnet (AFM)
phase of quantum spin system [47, 48]. Its AFM Hamil-
tonian operator is

Ĥ =
∑

〈i,j〉

|J | ~̂Si · ~̂Sj + . . . (61)

where 〈i, j〉 is for the nearest-neighbor lattice site (i, j)

AFM interaction between spin operators ~̂S, and |J | > 0
is the AFM coupling. So Zx

2 -translation flips the spin
orientation, also flips the AFM’s Néel vector ~n→ −~n.

• ZC′

2 -charge conjugation symmetry of CP
N−1-model for

θ = 0, π acts as

Z
C′

2 : zi → z̄i, (n1, n2, n3)→ (n1,−n2, n3),

(a′t, a
′
x)→ −(a′t, a′x), (t, x)→ (t, x). (62)

• ZC′T
2 -symmetry for θ = 0, π acts as

Z
C′T
2 : zi → ǫijzj , (n1, n2, n3)→ (−n1, n2,−n3),

(a′t, a
′
x)→ (−a′t, a′x), (t, x)→ (−t, x). (63)

• ZxT
2 -symmetry (≡ ZCT

2 ) as another choice of time-
reversal for θ = 0, π, acts as

Z
xT
2 (≡ Z

CT
2 ) : zi → zi, ~n→ ~n, (64)

(a′t, a
′
x)→ (−a′t, a′x), (t, x)→ (−t, x).

Next we check the commutative relation between the
above continuous PSU(N) and the discrete symmetries
For N = 2, we see that Z

T
2 commutes with PSU(2),

because T V z = iσ2(V z)∗ = iσ2V ∗z̄ = V iσ2z̄ = V T z.
Similarly, Z

x
2 commutes with PSU(2). So, Z

xT
2 com-

mutes with PSU(2). We see that ZC′

2 does not commute
with PSU(2), because C′V z = (V z)∗ = V ∗z̄ while

V C′z = V z̄. Therefore, Z
C′T
2 = diag(ZC′

2 ×Z
T
2 ) also does

not commute with PSU(2).

Global symmetry for N = 2:

Overall, for 2d CP
1 model at θ = 0, π, we can combine

the above to get the full 0-form global symmetries

Z
T
2 × PSU(2)× Z

x
2 = Z

T
2 ×O(3) , (65)

which is the same as

Z
T
2 × PSU(2)⋊ Z

C′

2

with a semi-direct product “⋊” since PSU(2) and ZC′

2 do
not commute.
It is very natural to regard ZxT

2 -symmetry as the new

ZCT
2 -symmetry, because it flips the time coordinates t→
−t, but it does not complex conjugate the z. So we may
define5

Z
CT
2 ≡ Z

xT
2 . (66)

Similarly, we may regard the Zx
2 -translation as a new

charge conjugation symmetry Z
C
2 ≡ Z

x
2 .

5 Above we discuss ZCT
2 ≡ ZxT

2 and ZT
2 both commute with

the PSU(2) (also SU(2)) for bosonic systems (bosonic QFTs).
Indeed, the ZCT

2 and ZT
2 reminisce the discussion of [4] (e.g.

Sec. II), for the case including the fermions (with the fermion
parity symmetry ZF

2 acted by (−1)F ), we have the natural
ZCT
2 -time reversal symmetry, without taking complex conjuga-

tion on the matter fields, which gives rise to the full symme-

try
Pin+

×SU(2)

ZF
2

; while the other ZT
2 -time reversal symmetry, in-

volving complex conjugation on the matter fields, gives rise to
Pin−

×SU(2)

ZF
2

.
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Therefore, 0-form global symmetries eq. (65) can also
be

Z
CT
2 × PSU(2)× Z

x
2 ≡ Z

CT
2 × PSU(2)× Z

C
2

≡ Z
CT
2 ×O(3) . (67)

Global symmetry for N > 2:

For 2d CP
N−1 model eq. (53) at θ = 0, π, N > 2, we follow

the above discussion and the footnote 5, we again can
define a natural definition of ZCT

2 (without involving the
complex conjugation of z fields). Then we have instead
the full 0-form global symmetries:

Z
CT
2 × (PSU(N)⋊ Z

C′

2 ) , (68)

where again ZC
2 acts on zi → z̄i, a

′
µ → −a′µ and (t, x)→

(t, x) as eq. (62).
We remark that the SU(2) (or N = 2 for CP

1 model)
is special because its order-2 automorphism is an inner
automorphism. The SU(2) fundamental representation
is equivalent to its conjugate. This is related to the fact
that both ZCT

2 and ZT
2 can commute with the SU(2) or

PSU(2), also the remark we made in the footnote 5.

For SU(N) (N > 2 for CP
N−1 model) has its order-

2 automorphism as an outer automorphism, which is
the Z2 symmetry of Dynkin diagram AN−1 swapping
fundamental with anti-fundamental representations. Al-
though we have ZCT

2 ×PSU(N) in eq. (68), we would have
Z
T
2 ⋉ PSU(N) for N > 2. See related and other detailed

discussions in [4].
The above we have considered the “full” global symme-

try (focusing on the internal symmetry) without precisely
writing down their spacetime symmetry group part. In
Sec. III, we like to write down the “full” global symmetry
including the spacetime symmetry group.

III. COBORDISMS, TOPOLOGICAL TERMS,
AND MANIFOLD GENERATORS:

CLASSIFICATION OF ALL POSSIBLE HIGHER
’T HOOFT ANOMALIES

A. Mathematical preliminary and co/bordism
groups

Since we have obtained the full global symmetry G
(including the 0-form and higher symmetries) of 4d YM

and 2d CP
N−1 model, we can now use the knowledge

that their ’t Hooft anomalies are classified by 5d and 3d
cobordism invariants of the same global symmetry [26].
Namely, we can classify the ’t Hooft anomalies by en-
listing the complete set of all possible cobordism invari-
ants from their corresponding 5d and 3d bordism groups,
whose 5d and 3d manifold generators endorsed with the
G structure.
To begin with, we should rewrite the global sym-

metries in previous sections (e.g. (eq. (7)/eq. (51)),

(eq. (8)/eq. (52))) into the form of

G ≡ (
Gspacetime ⋉ Ginternal

Nshared
), (69)

where the Gspacetime is the spacetime symmetry, the
Ginternal the internal symmetry,6 the ⋉ is a semi-
direct product specifying a certain “twisted” operation
(e.g. due to the symmetry extension from Ginternal by
Gspacetime) and the Nshared is the shared common normal
subgroup symmetry between the two numerator groups.
The theories and their ’t Hooft anomalies that we con-

cern are in dd QFTs (4d YM and 2d CP
N−1-model), but

the topological/cobordism invariants are defined in the
Dd = (d + 1)d manifolds. The manifold generators for
the bordism groups are actually the closed Dd = (d+1)d
manifolds. We should clarify that although there can
be ’t Hooft anomalies for dd QFTs so Ginternal may not
be gauge-able, the SPTs/topological invariants defined in
the closedDd = (d+1)d manifolds actually have Ginternal

always gauge-able in that Dd = (d+1)d.7 This is related
to the fact that in condensed matter physics, we say that
the bulk Dd = (d+1)d SPTs has an onsite local internal
Ginternal-symmetry, thus this Ginternal must be gauge-able.
The new ingredient in our present work slightly going

beyond the cobordism theory of [26] is that the Ginternal-
symmetry may not only be an ordinary 0-form global
symmetry, but also include higher global symmetries.
The details of our calculation for such “higher-symmetry-

group cobordism theory” are provided in [34].
Based on a theorem of Freed-Hopkin [26] and an ex-

tended generalization that we propose [34], there exists a
1-to-1 correspondence between “the invertible topologi-
cal quantum field theories (iTQFTs) with symmetry (in-
cluding higher symmetries)” and “a cobordism group.”
In condensed matter physics, this means that there is
a 1-to-1 correspondence between “the symmetric invert-
ible topological order with symmetry (including higher
symmetries)’ that can be regularized on a lattice in its
own dimensions’ and “a cobordism group,” at least at
lower dimensions.8 More precisely, it is a 1-to-1 corre-
spondence (isomorphism “∼=”) between the following two

6 Later we denote the probed background spacetime M connec-
tion over the spacetime tangent bundle TM , e.g. as wj(TM)
where wj is j-th Stiefel-Whitney (SW) class [31]. We may also
denote the probed background internal-symmetry/gauge connec-
tion over the principal bundle E, e.g. as wj(E) = wj(VGinternal

)
where wj is also j-th SW class. In some cases, we may alterna-
tively denote the latter as w′

j(E) = w′

j(VGinternal
).

7 This idea has been pursued to study the vacua of YM theories,
for example, in [4] and references therein. See more explanations
in Sec. X’s eq. (129)

8 We have used a mathematical fact that all smooth and dif-
ferentiable manifolds are triangulable manifolds, based on Morse
theory. On the contrary, triangulable manifolds are smooth man-
ifolds at least for dimensions up to D = 4 (i.e. the “if and only
if” statement is true below D ≤ 4). The concept of piecewise
linear (PL) and smooth structures are equivalent in dimensions
D ≤ 6. Thus all symmetric iTQFT classified by the cobordant
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mathematical well-defined objects:














Deformation classes of reflection positive
invertible D-dimensional extended

topological field theories (iTQFT) with

symmetry group
Gspacetime⋉Ginternal

Nshared















∼= [MT (
Gspacetime ⋉ Ginternal

Nshared
),ΣD+1IZ]tors. (70)

Let us explain the notation above: MTG is the Madsen-
Tillmann spectrum [55] of the group G, Σ is the sus-
pension, IZ is the Anderson dual spectrum, and tors
means taking only the finite group sector (i.e. the torsion
group).
Namely, we classify the deformation classes of sym-

metric iTQFTs and also symmetric invertible topological
orders (iTOs), via this particular cobordism group

ΩD
G ≡ ΩD

(
Gspacetime⋉Ginternal

Nshared
)

≡ TPD(G) ≡ [MT (G),Σn+1IZ]. (71)

by classifying the cobordant relations of smooth, dif-
ferentiable and triangulable manifolds with a stable G-
structure, via associating them to the homotopy groups
of Thom-Madsen-Tillmann spectra [55, 56], given by a
theorem in Ref. 26. Here TP means the abbreviation
of “Topological Phases” classifying the above symmetric
iTQFT, where our notations follow [26] and [34]. (For an
introduction of the mathematical background for physi-
cists, the readers can consult the Appendix A of [4].)
Moreover, there are only the discrete/finite Zn-classes

of the non-perturbative global ’t Hooft anomalies for YM
and CP

N−1 model (so-called the torsion group for Zn-
class); there is no Z-class perturbative anomaly (so-called
the free class) for our QFTs. So, we concern only the
torsion group part of data in eqn. (70), this is equivalent
for us to simply look at the bordism group:

ΩG
D ≡ Ω

(
Gspacetime⋉Ginternal

Nshared
)

D , (72)

in order to classify all the ’t Hooft anomalies for YM and
CP

N−1 model.
Therefore, below we focus on the unoriented bordism

groups (and later also some oriented bordism groups, re-
placing the orthogonal O group to a special orthogonal
SO group):

ΩO
D(X) = {a pair (M, f) where M is a closed

D-manifold and f : M → X is a map}/bordism. (73)

properties of smooth manifolds have a triangulation (thus a lat-
tice regularization) on a simplicial complex (thus a UV compe-
tition on a lattice). This implies a correspondence between “the
symmetric iTQFTs (on smooth manifolds)” and “the symmet-
ric invertible topological orders (on triangulable manifolds)” for
D ≤ 4. See a recent application of this mathematical fact on
the lattice regularization of symmetric iTQFTs and symmetric
invertible topological orders in [54] for various Standard Models
of particle physics.

where bordism is an equivalence relation, namely, (M, f)
and (M ′, f ′) are bordant if there exists a compact D+1-
manifold M and a map h : M → X , where X is a
generic topological space, such that the boundary ofM
is the disjoint union of M and M ′, while we set h|M = f
and h|M ′ = f ′.
In particular, when X = B2Zn, f : M → B2Zn is a

cohomology class in H2(M,Zn). When X = BG, with G
is a Lie group or a finite group (viewed as a Lie group
with discrete topology), then f : M → BG is a principal
G-bundle over M . To explain our notation, here BG is a
classifying space of G, and B2Zn is a higher classifying
space (Eilenberg-MacLane space K(Zn, 2)) of Zn.

Our conventions in the following subsections are:

• A map is always assumed to be continuous.

• For a top degree cohomology class with coeffi-
cients Z2 we often suppress explicit integration
over the manifold (i.e. pairing with the funda-
mental class [M ] with coefficients Z2), for example:
w2(TM)w3(TM) ≡

∫

M
w2(TM)w3(TM) where M

is a 5-manifold.

In the following subsections, we consider the poten-
tial cobordism invariants/topological terms (5d and 3d

[higher] SPTs for 4d YM and 2d CP
N−1 model), and their

manifold generators for bordism groups, as the complete
classification of all of their possible candidate higher ’t
Hooft anomalies.
First, we can convert the time reversal ZT ′

2 (≡ ZT
2

or Z
CT
2 ) to the orthogonal O(D)-symmetry group for

such an underlying UV-completion of bosonic system (all
gauge-invariant operators are bosons), where the O(D)
is an extended symmetry group from SO(D) via a short
extension:

1→ SO(D)→ O(D)→ Z
T ′

2 → 1. (74)

The SO(D) is the spacetime Euclidean rotational sym-
metry group for Dd bosonic systems.9

Then we can easily list their converted full symmetry
group G and their relevant bordism groups, for SU(2)
YM (eq. (8)/eq. (52)), SU(N) YM (eq. (7)/eq. (51)), CP

1

model (eq. (65)/eq. (67)), and CP
N−1 model (eq. (68)),

into the eq. (69)’s form:

(i) ΩO
5 (B

2Z2) ≡ Ω
(O×BZ2)
5 : This is the bordism group

for Z
CT
2 × (Ze

2,[1] × Z
C
2 ) in eq. (51) without Z

C
2 ,

which we will study in Sec. III B, here eq. (69)’s
G = O(D)× BZ2 or G = O(D)× Ze

2,[1].

9 For the case of time reversal symmetry, where there must be
an underlying UV-completion of fermionic system (some gauge-
invariant operators are fermions), the more subtle time reversal
extension scenario is discussed in [26] and [4].
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(ii) ΩO
5 (BZ2 × B2Z2) ≡ Ω

(O×Z2)×BZ2

5 : This is the bor-
dism group for ZCT

2 × (Ze
2,[1] × ZC

2 ) in eq. (51),

which we will study in Sec. III C, here eq. (69)’s
G = O(D)× Z2 × BZ2 or G = O(D)× ZC

2 × Ze
2,[1].

(iii) ΩO
3 (BO(3)): This is the bordism group for

ZCT
2 ×O(3) in eq. (67), which we will study in

Sec. III D, here eq. (69)’s G = O(D)×O(3).

(iv) ΩO
5 (B

2Z4): This is the bordism group for ZCT
2 ×

(Ze
N,[1] ⋊ ZC

2 ) in eq. (51) at N = 4 without ZC
2 ,

which we will study in Sec. III E, here eq. (69)’s
G = O(D)× BZ4 or G = O(D)× Z

e
4,[1].

(v) ΩO
5 (BZ2⋉B2

Z4) ≡ Ω
(O×(Z2⋉BZ4))
5 and Ω

O⋉

5 (BZ2⋉

B2Z4) ≡ Ω
(O×Z2)⋉BZ4

5 :
The first is the bordism group with a CT -time re-
versal, for ZCT

2 × (Ze
N,[1]⋊ZC

2 ) in eq. (51) at N = 4,

which we will study in Sec. III F, here eq. (69)’sG =
O(D)× (Z2 ⋉ BZ4) or G = O(D)× (ZC

2 ⋉ Ze
4,[1]).

The second is actually the re-written bordism group
with a T -time reversal, for Ze

N,[1] ⋊ (ZT
2 × ZC

2 ) at

N = 4, here eq. (69)’s G = (O(D)× Z2)⋉ BZ4

or G = (O(D)× ZC
2 )⋉ Ze

4,[1]. But we will not

study this, since it is simply a more complicated
re-writing of the same result of Sec. III F.

(vi) ΩO
3 (B(Z2 ⋉ PSU(4))): This is the bordism group

for ZCT
2 × (PSU(N) ⋊ ZC′

2 ) in eq. (68) at N = 4,
which we will study in Sec. IIIG, here eq. (69)’s

G = O(D)× (PSU(N) ⋊ ZC′

2 ).

Based on the relation between bordism groups and
their Dd = (d + 1)d cobordism invariants to the dd
anomalies of QFTs, below we may simply abbreviate “5d
cobordism invariants for 4d YM theory’s anomaly” as

“5d (Yang-Mills) terms.”

We may simply abbreviate “3d cobordism invariants for
2d CP

N−1 model’s anomaly” as

“3d (CP
N−1) terms.”

B. ΩO
5 (B

2
Z2)

Follow Sec. III A, now we enlist all possible ’t Hooft
anomalies of 4d pure SU(2) YM at θ = π (but when
the Z

C
2 -background field is turned off) by obtaining

the 5d cobordism invariants from bordism groups of
(eq. (8)/eq. (52)).
We are given a 5-manifold M and a map f : M →

B2Z2. Here the map f : M → B2Z2 is the 2-formB = B2

gauge field in the YM gauge theory eq. (10) (and eqn. (29)
at N = 2). We like to obtain the bordism invariants of

ΩO
5 (B

2Z2). We find the bordism group [34]10

ΩO
5 (B

2
Z2) = Z

4
2, (75)

whose cobordism invariants are generated by














B2 ∪ Sq1B2,
Sq2Sq1B2,
w1(TM)2Sq1B2,
w2(TM)w3(TM).

(76)

where TM means the spacetime tangent bundle over
M , see footnote 6. Note that we derive Sq2Sq1B2 =
(w2(TM)+w1(TM)2)Sq1B2 = (w3(TM)+w1(TM)3)B2,
w1(TM)2Sq1B2 = w1(TM)3B2 (See [34]).
Since Sq2Sq1B2 = (w2(TM) + w1(TM)2)Sq1B2,

we can rewrite the bordism invariants as B2 ∪
Sq1B2, w2(TM) ∪ Sq1B2, w1(TM)2 ∪ Sq1B2 and
w2(TM)w3(TM).
We have a group automorphism

Φ1 : ΩO
5 (B

2
Z2)→ Z

4
2

(M,B2) 7→ (B2 ∪ Sq1B2, w2(TM) ∪ Sq1B2,

w1(TM)2 ∪ Sq1B2, w2(TM)w3(TM)). (77)

1. Let α be the generator of H1(RP
2,Z2), β be the

generator of H1(RP
3,Z2).

Since Sq1(α ∪ β) = α2 ∪ β + α ∪ β2, w1(T (RP
2 ×

RP
3)) = α, w2(T (RP

2 × RP
3)) = α2, w3(T (RP

2 ×
RP

3)) = 0, Φ1 maps (RP
2×RP

3, α∪β) to (1, 0, 0, 0).

2. Let γ be the generator of H1(S1,Z2), ζ be the gen-
erator of H1(RP

4,Z2).

Since Sq1(γ ∪ ζ) = γ ∪ ζ2, w1(T (S
1 × RP

4)) = ζ,
w2(T (S

1 × RP
4)) = 0, Φ1 maps (S1 × RP

4, γ ∪ ζ)
to (0, 0, 1, 0).

3. Let W be the Wu manifold SU(3)/SO(3),

Sq1w2(TW) = w3(TW), Φ1 maps (W, w2(TW)) to
(1, 1, 0, 1), Φ1 maps (W, 0) to (0, 0, 0, 1).

So we conclude that a generating set of manifold gen-
erators for ΩO

5 (B
2Z2) is

{(RP
2 × RP

3, α ∪ β), (W, w2(TW)),

(S1 × RP
4, γ ∪ ζ), (W, 0)}. (78)

This information will be used later to match the SU(2)
YM anomalies at θ = π.

C. ΩO
5 (BZ2 × B2

Z2) ≡ Ω
(O×Z2)×BZ2
5

Follow Sec. III A, we enlist all possible ’t Hooft
anomalies of 4d pure SU(4) YM at θ = π (when the
ZC
2 -background field can be turned on) by obtaining

10 Interestingly, the bordism group has been studied recently in a
different context in [57].
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the 5d cobordism invariants from bordism groups of
(eq. (8)/eq. (52)).

We are given a 5-manifold M and a 1-form field A :
M → BZ2 = BZC

2 and a 2-form B = B2 : M → B2Z2

gauge field in the YM gauge theory eq. (10) (and eqn. (29)
at N = 2). We like to obtain the bordism invariants of
ΩO

5 (BZ2 × B2
Z2). We compute the bordism group [34]

ΩO
5 (BZ2 × B2

Z2) = Z
12
2 , (79)

whose cobordism invariants are generated by














































B2 ∪ Sq1B2,
Sq2Sq1B2,
w1(TM)2Sq1B2,
w2(TM)w3(TM),
A5, A2Sq1B2,
A3B2, A

3w1(TM)2,
AB2

2 , Aw1(TM)4,
AB2w1(TM)2, Aw2(TM)2.

(80)

where Sq2Sq1B2 = (w2(TM) + w1(TM)2)Sq1B2 =
(w3(TM) + w1(TM)3)B2, w1(TM)2Sq1B2 =
w1(TM)3B2 (See [34]).

A2Sq1B2 = w1(TM)A2B2.

We also compute the oriented bordism invariants of
ΩSO

5 (BZ2 × B2Z2), we find

ΩSO
5 (BZ2 × B2

Z2) = Z
6
2, (81)

whose cobordism invariants are generated by














B2 ∪ Sq1B2 = Sq2Sq1B2,
w2(TM)w3(TM),
A5, A3B2,
AB2

2 , Aw2(TM)2.

(82)

The 4d Yang-Mills theory at θ = π have no 4d ’t Hooft
anomaly once the CT (or T ) symmetry is not preserved
(as we discussed before that C-symmetry is a good sym-
metry for any θ which has no anomaly directly from mix-
ing with C by its own). This means that all 5d higher
SPTs/cobordism invariant for 4d YM theory must vanish
at ΩSO

5 (BZ2×B2Z2) when CT (or T ) is removed. So the
5d SPTs for this 4d YM are chosen among:















B2 ∪ Sq1B2 + Sq2Sq1B2,
w1(TM)2Sq1B2,
A2Sq1B2, A

3w1(TM)2,
Aw1(TM)4, AB2w1(TM)2.

(83)

Let α be the generator of H1(RP
2,Z2), β be the gen-

erator of H1(RP
3,Z2), γ be the generator of H1(S1,Z2),

ζ be the generator of H1(RP
4,Z2).

Sq1(α ∪ β) = α2 ∪ β + α ∪ β2, Sq2Sq1(α ∪ β) = 0,
w1(T (RP

2 × RP
3)) = α, Sq1(γ ∪ ζ) = γ ∪ ζ2, Sq2Sq1(γ ∪

ζ) = γ ∪ ζ4, w1(T (S
1 × RP

4)) = ζ.

So a generating set of manifold generators for the po-

tential candidate Yang-Mills terms11 is

{(RP
2 × RP

3, A = 0, B = α ∪ β),

(S1 × RP
4, A = 0, B = γ ∪ ζ),

(S1 × RP
4, A = ζ, B = γ ∪ ζ),

(RP
2 × RP

3, A = β,B = 0),

(S1 × RP
4, A = γ,B = 0),

(RP
2 × RP

3, A = β,B = β2)}. (84)

D. ΩO
3 (BO(3))

Follow Sec. III A, we enlist all possible ’t Hooft anoma-
lies of 2d CP

1 model, or equivalently O(3) NLSM, at
θ = π, by obtaining the 3d cobordism invariants from
bordism groups of (eq. (65)/eq. (67)). From physics side,
we will interpret the unoriented O(D) spacetime symme-
try with the time reversal from CT instead of T .
We are given a 3-manifold M and a map f : M →

BO(3). Here the map f : M → BO(3) is a principal
O(3) bundle whose associated vector bundle is a rank 3
real vector bundle E over M .
We like to obtain the bordism invariants of ΩO

3 (BO(3)).
We compute the bordism group [34]

ΩO
3 (BO(3)) = Z

4
2, (85)

whose cobordism invariants are generated by










w1(E)3,
w1(E)w2(E),
w3(E),
w1(E)w1(TM)2.

(86)

We have a group automorphism

Φ2 : ΩO
3 (BO(3))→ Z

4
2

(M,E) 7→ (w1(E)3, w1(E)w2(E),

w3(E), w1(E)w1(TM)2). (87)

Let lRPn denote the tautological line bundle over RP
n

(RP
1 = S1). If xn ∈ H1(RP

n,Z2) denotes the generator,
then w(lRPn) = 1 + xn, w(TRP

n) = (1 + xn)
n+1.

Let n denote the trivial real vector bundle of rank n,
+ denote the direct sum.
By the Whitney sum formula, w(E⊕F ) = w(E)w(F ).

Here w(E) = 1+w1(E)+w2(E)+ · · · is the total Stiefel-
Whitney class of E. Then we find:

1. Since w(3lRP3) = (1 + x3)
3 = 1 + x3 + x2

3 + x3
3,

w1(TRP
3) = 0, Φ2 maps (RP

3, 3lRP3) to (1, 1, 1, 0).

2. Since w(lRP3 +2) = 1+x3, Φ2 maps (RP
3, lRP3 +2)

to (1, 0, 0, 0).

11 We abbreviate the 5d cobordism invariants that characterize the
4d SU(N) YM theory’s anomaly as “Yang-Mills terms.”
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3. Since w(lS1 + 2) = 1 + x1, w1(T (S
1 × RP

2)) = x2,
Φ2 maps (S1 × RP

2, lS1 + 2) to (0, 0, 0, 1).

4. Since w(lS1 + lRP2 + 1) = (1 + x1)(1 + x2) = 1 +
x1 + x2 + x1x2, Φ2 maps (S1 ×RP

2, lS1 + lRP2 + 1)
to (1, 1, 0, 1).

So a generating set of manifold generators for
ΩO

3 (BO(3)) is

{(RP
3, 3lRP3), (RP

3, lRP3 + 2), (S1 × RP
2, lS1 + 2),

(S1 × RP
2, lS1 + lRP2 + 1)}. (88)

Note that (S1 × RP
2, lS1 + 2lRP2) is also a generator.

Note w(lS1+2lRP2) = (1+x1)(1+x2)
2 = 1+x1+x2

2+x1x
2
2,

therefore Φ2 maps (S1 × RP
2, lS1 + 2lRP2) to (0, 1, 1, 1).

E. ΩO
5 (B

2
Z4)

Follow Sec. III A, now we enlist all possible ’t Hooft
anomalies of 4d pure SU(4) YM at θ = π (but when
the ZC

2 -background field is turned off) by obtaining
the 5d cobordism invariants from bordism groups of
(eq. (7)/eq. (51)).
We are given a 5-manifold M and a map f : M →

B2
Z4. Here the map f : M → B2

Z4 is the 2-formB = B2

gauge field in the YM gauge theory eq. (10) (and eqn. (29)
at N = 4).
We compute the bordism invariants of ΩO

5 (B
2Z4), we

find the bordism group [34]

ΩO
5 (B

2
Z4) = Z

4
2, (89)

whose cobordism invariants are generated by














B2 ∪ β(2,4)B2,
Sq2β(2,4)B2,
w1(TM)2β(2,4)B2,
w2(TM)w3(TM).

(90)

where β(2,4) : H
∗(M,Z4)→ H∗+1(M,Z2) is the Bockstein

homomorphism associated to the extension Z2 → Z8 →
Z4 (see Appendix A).
We have a group automorphism

Φ3 : ΩO
5 (B

2
Z4)→ Z

4
2

(M,B2) 7→ (B2 ∪ β(2,4)B2, w2(TM)β(2,4)B2,

w2
1(TM)β(2,4)B2, w2(TM)w3(TM)). (91)

Let K be the Klein bottle.

1. Let α′ be the generator of H1(S1,Z4), β′ be
the generator of the Z4 factor of H1(K,Z4) =
Z4 × Z2 (see Appendix C), γ′ be the generator of
H2(S2,Z4). β(2,4)β

′ = σ where σ is the generator

of H2(K,Z2) = Z2 (see Appendix C).

Since β(2,4)(α
′ ∪ β′ + γ′) = α′ ∪ σ and w2(T (S

1 ×
K×S2)) = w1(T (S

1×K×S2))2 = 0, we find that
Φ3 maps (S1 ×K × S2, α′ ∪ β′ + γ′) to (1, 0, 0, 0).

2. Following the notation of [58], X2 is a simply-
connected 5-manifold which is orientable but non-
spin. Let θ′ and η′ be two generators of
H2(X2,Z4) = Z2

4, β(2,4)θ
′ is one of the two genera-

tors of H3(X2,Z2) = Z2
2. Since w2(TX2) = (θ′+η′)

mod 2, w1(TX2) = 0 and w3(TX2) = 0, we find
that Φ3 maps (X2, θ

′) to (1, 1, 0, 0).

3. Since w1(T (S
1 × K × RP

2))2 = w2(T (S
1 ×

K × RP
2)) = α2 where α is the generator of

H1(RP
2,Z2), we find that Φ3 maps (S1 × K ×

RP
2, α′ ∪ β′) to (0, 1, 1, 0).

4. W is the Wu manifold, Φ3 maps (W, 0) to
(0, 0, 0, 1).

So a generating set of manifold generators for
ΩO

5 (B
2Z4) is

{(S1 ×K × S2, α′ ∪ β′ + γ′), (X2, θ
′),

(S1 ×K × RP
2, α′ ∪ β′), (W, 0)} (92)

Note that

1. (S1×K×T 2, α′∪β′+ζ′) is also a generator where ζ′

is the generator of H2(T 2,Z4). Since β(2,4)(α
′∪β′+

ζ′) = α′ ∪σ and w2(T (S
1×K×T 2)) = w1(T (S

1×
K×T 2))2 = 0, we find Φ3 maps (S1×K×T 2, α′∪
β′ + ζ′) to (1, 0, 0, 0).

2. (K × S3/Z4, β
′ ∪ ǫ′ + φ′) is also a generator where

S3/Z4 is the Lens space L(4, 1), ǫ′ is the gen-
erator of H1(S3/Z4,Z4), φ′ is the generator of
H2(S3/Z4,Z4). Since β(2,4)(β

′ ∪ ǫ′ + φ′) = σ ∪ ǫ′ +

β′ ∪ φ where φ is the generator of H2(S3/Z4,Z2),
and w2(T (K×S3/Z4)) = w1(T (K×S3/Z4))

2 = 0,
we find that Φ3 maps (K × S3/Z4, β

′ ∪ ǫ′ + φ′) to
(1, 0, 0, 0).

The manifold generator of B2 ∪β(2,4)B2 can be chosen

to be S1 ×K × S2 or S1 ×K × T 2 or K × S3/Z4 or X2.
The manifold generator of w2

1(TM)β(2,4)B2 can be cho-

sen to be S1 ×K × RP
2.

F. ΩO
5 (BZ2 ⋉ B2

Z4) ≡ Ω
(O×(Z2⋉BZ4))
5

Follow Sec. III A, now we enlist all possible ’t Hooft
anomalies of 4d pure SU(4) YM at θ = π (when the
ZC
2 -background field can be turned on) by obtaining

the 5d cobordism invariants from bordism groups of
(eq. (7)/eq. (51)).
Note that again from physics side, we will interpret

the unoriented O(D) spacetime symmetry with the time
reversal from CT instead of T . So we choose the for-
mer ΩO

5 (BZ2 ⋉ B2Z4) ≡ Ω
(O×(Z2⋉BZ4))
5 for CT , rather

than the more complicated latter Ω
O⋉

5 (BZ2 ⋉ B2Z4) ≡
Ω

(O×Z2)⋉BZ4

5 for T .
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Before we dive into ΩO
5 (BZ2⋉B2Z4) ≡ Ω

(O×(Z2⋉BZ4))
5 ,

we first study the simplified “untwisted” bordism group
ΩO

5 (BZ2 × B2
Z4).

We are given a 5-manifold M and a 1-form field A :
M → BZ2 and a 2-form B = B2 : M → B2Z4 gauge field
in the YM gauge theory eq. (10) (and eqn. (29) at N = 4).
We compute the bordism invariants of ΩO

5 (BZ2×B2Z4),
we find the bordism group [34]

ΩO
5 (BZ2 × B2

Z4) = Z
12
2 , (93)

whose cobordism invariants are generated by










































B2 ∪ β(2,4)B2,
Sq2β(2,4)B2,
w1(TM)2β(2,4)B2,
w2(TM)w3(TM),
A5, A2β(2,4)B2,
A3B2, A

3w1(TM)2,
AB2

2 , Aw1(TM)4,
AB2w1(TM)2, Aw2(TM)2.

(94)

We also compute the bordism invariants of ΩSO
5 (BZ2×

B2
Z4), we find [34]

ΩSO
5 (BZ2 × B2

Z4) = Z
6
2, (95)

whose cobordism invariants are generated by














Sq2β(2,4)B2,
w2(TM)w3(TM),
A5, A3B2,
AB2

2 , Aw2(TM)2.

(96)

The 4d Yang-Mills theory at θ = π have no 4d ’t Hooft
anomaly once the CT (or T ) symmetry is not preserved
(as we discussed before that C-symmetry is a good sym-
metry for any θ which has no anomaly directly from mix-
ing with C by its own). This means that all 5d higher
SPTs/cobordism invariant for 4d YM theory must vanish
at ΩSO

5 (BZ2×B2Z4) when CT (or T ) is removed. So the
5d SPTs for this 4d YM are chosen among:











B2 ∪ β(2,4)B2,
w1(TM)2β(2,4)B2,
A2β(2,4)B2, A

3w1(TM)2,
Aw1(TM)4, AB2w1(TM)2.

(97)

Let α′ be the generator of H1(S1,Z4), β
′ be the gen-

erator of the Z4 factor of H1(K,Z4) = Z4 × Z2 (see
Appendix C), γ′ be the generator of H2(S2,Z4). Note
β(2,4)β

′ = σ where σ is the generator of H2(K,Z2) = Z2

(see Appendix C). Let α be the generator of H1(RP
2,Z2),

β be the generator of H1(RP
3,Z2), γ be the generator of

H1(S1,Z2).

Then a generating set of manifold generators for the

Yang-Mills terms is

{(S1 ×K × S2, A = 0, B = α′ ∪ β′ + γ′),

(S1 ×K × RP
2, A = 0, B = α′ ∪ β′),

(S1 ×K × RP
2, A = α,B = α′ ∪ β′),

(RP
2 × RP

3, A = β,B = 0),

(S1 × RP
4, A = γ,B = 0),

(S1 × S2 × RP
2, A = γ,B = γ′)}. (98)

Now we discuss this group, ΩO
5 (BZ2 ⋉ B2

Z4) ≡
Ω

(O×(Z2⋉BZ4))
5 , by Postnikov class. We have a fibration

B2Z4
// B(Z2 ⋉ BZ4)

��

BZ2

(99)

which is classified by Postnikov class in H3(BZ2,Z4) =

Z2. So ΩO
5 (BZ2 × B2Z4) ≡ Ω

(O×(Z2×BZ4))
5 is the trivial

class with a trivial fibration, while ΩO
5 (BZ2 ⋉ B2Z4) ≡

Ω
(O×(Z2⋉BZ4))
5 is the non-trivial Postnikov class with a

non-trivial fibration in H3(BZ2,Z4) = Z2.
B ∈ H2(M,Z4,A) which is the twisted cohomology where

A ∈ H1(M,Z2) can be viewed as a group homomorphism
π1(M)→ Aut(Z4) = Z2.
We claim that among the candidates of the 5d higher
SPTs/cobordism invariants for 4d SU(4) Yang-Mills the-
ory at θ = π, no one can vanish in ΩO

5 (BZ2 ⋉ B2Z4)
(see Appendix D and [34]). Namely, we obtain that
ΩO

5 (BZ2 ⋉ B2Z4) = Z11
2 , where only the A3B2 term is

dropped, compared with ΩO
5 (BZ2 × B2Z4).

G. ΩO
3 (B(Z2 ⋉ PSU(4)))

Follow Sec. III A, we enlist all possible ’t Hooft anoma-
lies of 2d CP

N−1 model at N = 4, at θ = π, by obtain-
ing the 3d cobordism invariants from bordism groups of
(eq. (68)). From physics side, we will interpret the unori-
ented O(D) spacetime symmetry with the time reversal
from CT instead of T .
We are given a 3-manifold M and a map f : M →

B(Z2 ⋉ PSU(4)) which corresponds to a principal Z2 ⋉

PSU(4) bundle E over M .
We compute the bordism invariants of ΩO

3 (BO(3)), we
find the bordism group [34]

ΩO
3 (B(Z2 ⋉ PSU(4))) = Z

4
2, (100)

whose cobordism invariants are generated by










w1(E)3,
w1(E)w1(TM)2,
β(2,4)w2(E),
w1(E)(w2(E) mod 2).

(101)

where E is a principal Z2⋉PSU(4) bundle over M which
is a pair (w1(E), w2(E)) ∈ H1(M,Z2)×H2(M,Z4,w1(E))

where H2(M,Z4,w1(E)) is the twisted cohomology, w1(E)
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can be viewed as a group homomorphism π1(M) →
Aut(Z4) = Z2.

In the following discussion, we use the ordinary coho-
mology instead of the twisted cohomology. The term
w1(E)(w2(E) mod 2) may be modified if we use the
twisted cohomology. The details of this case will be dis-
cussed in our upcoming future work.

We have a group automorphism

Φ4 : ΩO
3 (B(Z2 ⋉ PSU(4)))→ Z

4
2

(M,w1(E), w2(E)) 7→ (w1(E)3, w1(E)w1(TM)2,

β(2,4)w2(E), w1(E)(w2(E) mod 2)). (102)

1. Recall that β be the generator of H1(RP
3,Z2).

Since w1(TRP
3) = 0, Φ4 maps (RP

3, β, 0) to
(1, 0, 0, 0).

2. Recall that γ be the generator of H1(S1,Z2). Since
w1(T (S

1 × RP
2)) = α where α is the generator of

H1(RP
2,Z2), Φ4 maps (S1×RP

2, γ, 0) to (0, 1, 0, 0).

3. K is the Klein bottle. Recall that α′ is the gen-
erator of H1(S1,Z4), β

′ is the generator of the Z4

factor of H1(K,Z4) = Z4 × Z2 (see Appendix C).
Since β(2,4)(α

′ ∪ β′) = α′ ∪ σ where σ is the gener-

ator of H2(K,Z2), Φ4 maps (S1 ×K, 0, α′ ∪ β′) to
(0, 0, 1, 0).

4. Recall that γ is the generator of H1(S1,Z2), γ′

is the generator of H2(S2,Z4). Φ4 maps (S1 ×
S2, γ, γ′) to (0, 0, 0, 1).

So a generating set of manifold generators for
ΩO

3 (B(Z2 ⋉ PSU(4))) is

{(RP
3, β, 0), (S1 × RP

2, γ, 0),

(S1 ×K, 0, α′ ∪ β′), (S1 × S2, γ, γ′)} (103)

Note that

1. (S1 × T 2, γ, ζ′) is also a generator, where γ is
the generator of H1(S1,Z2), ζ

′ is the generator of
H2(T 2,Z4). Φ4 maps (S1 × T 2, γ, ζ′) to (0, 0, 0, 1)

2. (S3/Z4, ǫ, φ
′) is also a generator, where S3/Z4

is the Lens space L(4, 1), ǫ is the gener-
ator of H1(S3/Z4,Z2), φ′ is the generator

of H2(S3/Z4,Z4). Φ4 maps (S3/Z4, ǫ, φ
′) to

(0, 0, 0, 1).

IV. REVIEW AND SUMMARY OF KNOWN
ANOMALIES IN COBORDISM INVARIANTS

Follow Sec. III, we have obtained the co/bordism
groups relevant from the given full G-symmetry of 4d
YM and 2d CP

N−1 models. Therefore, based on the cor-
respondence between dd ’t Hooft anomalies andDd=(d+
1)d topological terms/cobordism/SPTs invariants, we
have obtained the classification of all possible higher ’t
Hooft anomalies for these 4d YM and 2d CP

N−1 models.
Below we first match our result to the known anoma-

lies found in the literature, and we shall put these known
anomalies into a more mathematical precise thus a more
general framework, under the cobordism theory. We
will write down the precise dd ’t Hooft anomalies and
Dd=(d + 1)d cobordism/SPTs invariants for them. We
will also clarify the physical interpretations (e.g. from
condensed matter inputs) of anomalies.

A. Mix higher-anomaly of time-reversal Z
CT
2 and

1-form center ZN-symmetry of SU(N)-YM theory

First recall in Sec. II B 5, we re-derives the mix higher-
anomaly of time-reversal ZT

2 and 1-form center ZN-
symmetry of 4d SU(N)-YM, at even N, discovered in [30].
By turning on 2-form ZN-background field B = B2 cou-
pling to YM theory, the ZT

2 -symmetry shifts the 4d YM
with an additional 5d higher SPTs term eq. (II B 5). We
also learned that the same mix higher-anomaly occur by
replacing ZT

2 to eq. (50),

Z
CT
2 , Z

P
2 , and Z

CP
2 ,

For our preference, we focus on CT instead of T . This
type of anomaly has the linear dependence on CT (thus
linear also T ) and quadratic dependence on B2. Compare
with our eq. (76), we find that the precise form for 5d
cobordism invariant/ 4d higher ’t Hooft anomaly is:

B2Sq
1B2 . (104)

We combine the Steenrod-Wu formula and the product
formula of Steenrod operation to derive the equality in
eq. (104). More precisely, we need to consider instead
eq. (123), B2Sq

1B2 +Sq2Sq1B2=
1
2 w̃1(TM)P2(B2)., see

Sec. VIII A for details and derivations.

B. Mix anomaly of Z
C
2 = Z

x
2- and time-reversal Z

CT
2

or SO(3)-symmetry of CP
1-model

Now we move on to 2d CP
1 or O(3) NLSM model at

θ = π, we get the full 0-form global symmetries eq. (67),

ZCT
2 ×PSU(2)×Zx

2 ≡ ZCT
2 ×PSU(2)×ZC

2 = ZCT
2 ×O(3).

It has been known that there is a non-perturbative
global discrete anomaly from the ZC

2 (a discrete trans-
lational Zx

2 symmetry) since the work of Gepner-Witten
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x

y

FIG. 3. An interpretation of ’t Hooft anomaly w1(E)(w2(VSO(3)) + w1(TM)2) (eq. (105)) for 2d CP
1 or O(3) NLSM model, is

obtained from the 2d dangling spin-1/2 gapless modes living on the 2d boundary a 3d layer-stacking system of the 2d spin-1
Haldane chain. Each vertical solid line represents a 2d spin-1 Haldane chain eq. (106). The 2d boundary combined from the
dangling spin-1/2 gapless modes, encircled by the dashed-line rectangle, on the top and on the bottom, are effectively the
2d CP

1 model. The w1(E)w2(VSO(3)) has been identified by [59]. The same trick of [59] applies to eq. (106) teaches us the

more complete anomaly eq. (105). The Z
x
2 ≡ Z

C
2 -translational nature of Heisenberg anti-ferromagnet (AFM) is purposefully

emphasized by the spin-1/2 orientation (↑ or ↓) and the two different sizes of the black dots (•). Notice that understand the 3d
bulk nature obtained from this stacking, inform us that the 3d bulk SPTs also includes a secretly hidden Ax ∪Ax ∪ Ax ≡ A3

x

or the w1(E)3 ≡ w1(Z
x
2)

3-anomaly [18, 59].

[60]. More recently, this non-perturbative global discrete
anomaly has been revisited by [61, 62] to understand the
nature of symmetry-protected gapless critical phases.
We can compare this anomaly (associated to Zx

2 sym-
metry and to the PSU(2)-symmetry) to the 3d cobordism
invariant/ 2d ’t Hooft anomaly we derive in eq. (86). We
find that w1(E)w2(VSO(3)), where w1(E) = w1(VO(3)) =
w1(Z

x
2), is the natural choice to describe the anomaly.

Ref. [63], detects a so-called mixed CPT -type anomaly.
We can interpret their anomaly as the mix C (ZC

2 = Zx
2)

with the CT (ZCT
2 ) type anomaly. We compare it to the

3d cobordism invariant/ 2d ’t Hooft anomaly we derive
in eq. (86), and find w1(E)w1(TM)2 = w1(Z

x
2 )w1(TM)2

is the natural choice to describe the anomaly.
So overall, compare with eq. (86), we can interpret

the above 2d anomalies are captured by a 3d cobordism
invariant for N = 2 case:

w1(E)w2(VSO(3)) + w1(E)w1(TM)2 . (105)

A very natural physics derivation to understand
eq. (105) is by the stacking 2d Haldane spin-1 chain pic-
ture [59], see Fig. 3. The Haldane spin-1 chain is a 2d
SPTs protected by spin-1 rotation SO(3) symmetries and
time-reversal (here ZCT

2 ); its 2d SPTs/topological term
is well-known as:

∫

2d spin-1 chain

w2(VSO(3)) + w1(TM)2, (106)

obtained from group cohomology data H2(BSO(3),U(1))
= Z2 and H2(BZ

T
2 ,U(1)) = Z2 [7]. If the time-reversal

or SO(3) symmetry is preserved, the boundary has 2-fold

degenerate spin-1/2 modes on each 1d edge. The layer
stacking of such spin-1/2 modes to a 2d boundary (en-
circled by the dashed-line rectangle in Fig. 3) can actu-
ally give rise to gapless 2d CP

1 / O(3) NLSM / SU(2)1-
WZW model. Part of its anomaly is captured by the
Zx
2 -translation (w1(E) = w1(Z

x
2)) times the eq. (106),

which renders and thus we derive eq. (105).
Ref. [64] studies the anomaly of the same system, and

detects the anomaly w3(E), we can convert it to

w3(E) = w3(VO(3)) (107)

= w1(VO(3))
3 + w1(VO(3))w2(VSO(3)) + w3(VSO(3))

= w1(Z
x
2 )

3 + w1(Z
x
2 )w2(VSO(3)) + w3(VSO(3))

= w1(E)3 + w1(E)w2(VSO(3)) + w3(VSO(3))

= w1(E)3 + w1(E)w2(VSO(3)) + w1(TM)w2(E) .

We also note that

w1(E)w2(E) = w1(VO(3))w2(VO(3))

= w1(VO(3))
3 + w1(VO(3))w2(VSO(3))

= w1(Z
x
2 )

3 + w1(Z
x
2 )w2(VSO(3))

= w1(E)3 + w1(E)w2(VSO(3)). (108)

Similar equality and anomaly are discussed in [65] in a
different topic on Chern-Simons matter theories.
To summarize, note that:

The w1(E)3 is (1, 0, 0, 0) in the basis of eq. (87).
The w1(E)w2(E) is (0, 1, 0, 0) in the basis of eq. (87).
The w1(E)w2(VSO(3)) is (1, 1, 0, 0) in the basis of eq. (87).
The w3(VSO(3)) = w3(E)+w1(E)w2(E) = w1(TM)w2(E)
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is (0, 1, 1, 0) in the basis of eq. (87).
The w3(E) = w3(VO(3)) is (0, 0, 1, 0) in the basis of our
eq. (87).

Therefore, Ref. [64]’s anomaly eq. (107) given by w3(E)
= w1(E)3 +w1(E)w2(VSO(3)) +w1(TM)w2(E) coincides
with one of the cobordism invariant as (0, 0, 1, 0) in the
basis of our eq. (87). We had explained the physical
meaning of w1(E)w2(VSO(3)) term in eq. (105). We will

explain the meaning of w1(E)3 in Sec. IVC and the
meaning of w1(TM)w2(E) in Sec. IVD

C. A cubic anomaly of Z
C
2 of CP

1-model

Now we like to capture the physical meaning of a cubic
anomaly of ZC

2 = Zx
2 -symmetry in eq. (107):

w1(E)3 ≡ w1(Z
x
2)

3 ≡ (Ax)
3 , (109)

which is a sensible cobordism invariant as the (1, 0, 0, 0)
in the basis of eq. (87). Ref. [59] also points out this
w1(E)3 or the A3

x-anomaly, where Ax is regarded as the
Zx
2 -translational background gauge field. We know that

the 2d boundary physics we look at in Fig. 3 (encircled
by the dashed-line rectangle) describes the gapless CFT
theory of SU(2)1 WZW model at k = 1. The SU(2)1
WZW model at k = 1 is equivalent to a c = 1 compact
non-chiral boson theory (the left and right chiral cen-
tral charge cL = cR = 1, but the chiral central charge
c− = cL − cR = 0) at the self-dual radius [66]. Although
properly we could use non-Abelian bosonization method
[51], here focusing on the abelian Z

x
2 -symmetry and its

anomaly, we can simply use the Abelian bosonization.
Since SU(2)1 WZW model at k = 1 is equivalent to a

c = 1 compact non-chiral boson theory at the self-dual
radius, we consider an action

S2d =
1

2πα′

∫

dzdz̄ (∂zΦ)(∂z̄Φ) + . . . (110)

S2d =
1

4π

∫

dt dx
(

KIJ∂tφI∂xφJ − VIJ∂xφI∂xφJ

)

+ . . . .

requiring a rank-2 symmetric bilinear form K-matrix,

KIJ =
(

0 1
1 0

)

⊕ . . . ; VIJ =
(

v 0
0 v

)

⊕ . . . . (111)

The first form of the action is familiar in string the-
ory and a c = 1 compact non-chiral boson theory at
the self-dual radius. (In string theory, we are looking at

R =
√
α
′
=
√
2.) The second form of the action is the

familiar 2d boundary of 3d bosonic SPTs. This second
description is also known as Tomonaga-Luttinger liquid
theory [67–69] in condensed matter physics. It is a K-
matrix multiplet generalization of the usual chiral boson
theory of Floreanini and Jackiw [70]. The reason we write
. . . in eq. (111) is that there could be additional 3d SPTs
sectors for 2d CP

1-model (e.g. eq. (116)), more than what
we focus on in this subsection. Here we trade the boson

scalar Φ to φ1, while φ2 is the dual boson field. We can
determine the bosonic anomalies [18] by looking at the
anomalous symmetry transformation on the 2d theory,
living on the boundary of which 3d SPTs. We use the
mode expansion for a multiplet scalar boson field theory
[18], with zero modes φ0I and winding modes PφJ

:

φI(x) = φ0I +K−1
IJ PφJ

2π

L
x+ i

n∈Z
∑

n6=0

1

n
αI,ne

− inx 2π
L ,

which satisfy the commutator [φ0I , PφJ
] = iδIJ . The

Fourier modes satisfy a generalized Kac-Moody alge-
bra: [αI,n, αJ,m] = nK−1

IJ δn,−m. For a modern but self-
contained pedagogical treatment on a canonical quanti-
zation of K-matrix multiplet (non-)chiral boson theory,
the readers can consult Appendix B of [71].
Follow [59], based on the identification of spin ob-

servables of Hamiltonian model eq. (61) and the abelian
bosonized theory, we can map the symmetry transforma-
tion to the continuum description on the boson multiplet
φI(x) = (φ1(x), φ2(x)). The commutation relation is
[φI(x1),KI′J∂xφJ (x2)] = 2π iδII′δ(x1− x2). The contin-
uum limit of 2d anomalous symmetry transformation is
[72] [18]:

S
(p)
N = exp[

i

N
(

∫ L

0

dx ∂xφ2 + p

∫ L

0

dx ∂xφ1)], (112)

S
(p)
N

(

φ1(x)
φ2(x)

)

(S
(p)
N )−1 =

(

φ1(x)
φ2(x)

)

+
2π

N

(

1
p

)

.

Here L is the compact spatial S1 circle size of the 2d
theory. For 2d CP

1-model, we have N = 2 and p = 1,
this is indeed known as the Type I bosonic anomaly in
[18], which also recovers one anomaly found in [59] and
in [64]’s eq. (107).

D. Mix anomaly of time-reversal Z
T
2 and 0-form

flavor ZN-center symmetry of CP
1-model

Ref. [36, 37] point out another anomaly of CP
1-model,

which mixes between time-reversal (which we have cho-
sen to be CT ) and the PSU(2) symmetry (which is viewed
as the twisted flavor symmetry in [36, 37]). Compare
with eq. (86), we can interpret the above 2d anomalies
are captured by a 3d cobordism invariant for N = 2 case:

w1(TM)w2(VSO(3)) = w1(TM)w2(E) = w3(VSO(3)) .

(113)
This also coincides with the last anomaly term in
eq. (107)’s w3(E). We derive the above first equality
in eq. (113) based on Sq1(w1(E)2) = 2w1(E)Sq1w1(E)
= 0 and combine Wu formula, Sq1(w1(E)2) =
w1(TM)(w1(E)2) = 0. Thus,

w1(TM)w2(VSO(3)) = w1(TM)(w2(E) + w1(E)2)

= w1(TM)w2(E) = w1(TM)w2(VO(3)). (114)
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The last equality in eq. (113) is due to
w1(TM)w2(VSO(3)) = Sq1w2(VSO(3)) = w3(VSO(3)).
We can combine the Steenrod-Wu formula, and Wu

formula:

w1(E)w2(E) + w3(E) = Sq1(w2(E)) = w1(TM)w2(E),

⇒ w3(E) = (w1(E) + w1(TM))w2(E)

⇒ w1(TM)w2(E) = w3(E) + w1(E)w2(E), (115)

so we derive w1(TM)w2(E) is (0, 1, 1, 0) in the basis
of eq. (87). The physical meaning of the 2d anomaly

eq. (113) will be explored later in Sec. V, Sec. VII and
in Fig.4, which can be understood as the dimensional re-
duction of 4d anomaly of YM theory compactified on a
2-torus with twisted boundary conditions [36] [35].
In Sec. IVC, We had checked some of the 2d bosonic

anomaly by dimensional reducing from 4d to 2d, can
be captured by abelian bosonization method as Type I
bosonic anomaly in [18]. Some of the anomalies in the
above may be also related to other (Type II or Type
III) bosonic discrete anomalies, when we break down the
global symmetry to certain subgroups.

4d SU(N)θ=π Yang-Mills gauge theory/
bdry of 5d higher-SPTs on M5

︷ ︸︸ ︷

S
1
y × S

1
z

︸ ︷︷ ︸

moduli space of
flat connections
of YM becomes
gauge bundle E /
target space CP

N−1

× S
1
x × R

︸ ︷︷ ︸

2d spacetime
of CP

N−1
θ=π -model/

bdry of 3d SPTs
on N3

︸ ︷︷ ︸

’t Hooft twisted bdry condition

FIG. 4. Follow the setup of the twisted boundary condition induced ’t Hooft boundary (bdry) condition [73] along the 2-torus
T 2
zx ≡ S1

z × S1
x, and the twisted compactification [36] [35], we examine that the (higher) anomaly of 4d SU(N) YM theory at

θ = π induces the anomaly of 2d CP
N−1 model at θ = π. The 4d YM on S1

x × S1
y × S1

z × R is compactified along the small

size of T 2
yz ≡ S1

y × S1
z , whose moduli space of flat connections becomes the target space CP

N−1 [74, 75], while the remained

S1
x × R becomes the 2d spacetime of 2d CP

N−1 model. Our goal, in Sec. V, VIII and VI is to identify the underlying ’t Hooft
anomalies of 4d SU(N) YM and 2d CP

N−1 model, namely identifying their living on the boundary (≡ bdry) of 5d and 3d
(higher) SPTs when all the (higher) global symmetries needed to be regularized strictly onsite and local (e.g. [12–14]). The
twisted boundary condition of 4d YM for 1-form ZN-center symmetry (as a higher symmetry twist of [13]) can be dimensionally
reduced to the 0-form ZN-flavor symmetry twisted [76] in the 2d CP

N−1 model. In Sec. VII, we generalize to impose twisted
boundary conditions along other novel 2-submanifolds U2 (such as RP

2, RP
2#T 2, or T 2#T 2, etc.).

V. RULES OF THE GAME FOR ANOMALY
CONSTRAINTS

With all the QFT and global symmetries information
given in Sec. II, and all the possible anomalies enumer-
ated by the cobordism theory computed in Sec. III, and
all the known anomalies in the literature derived and
re-written in terms of cobordism invariants organized
in Sec. IV, now we are ready to set up the rules of the
game to determine the full anomaly constraints for these
QFTs (4d SU(N) YM theory and 2d CP

N−1 model at

θ = π).

Below we simply abbreviate the “5d invariant” as the
5d cobordism/(higher) SPTs invariants which captures
the anomaly of 4d SU(N) YM at θ = π at even N, and
“3d invariant” as the 3d cobordism/SPTs invariants

which captures the anomaly of 2d CP
N−1 at θ = π

at even N. Our convention chooses the natural time
reversal symmetry transformation as CT .

Rules:
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Rule 1. For 5d invariant, for 4d SU(N) YM at θ = π of an
even integer N must have analogous anomaly cap-
tured by 5d cobordism term of∼ w1(TM)(B2)

2 (up
to some properly defined normalization and quan-
tization).

Rule 2. The chosen 5d invariants may be non-vanished in
O-bordism group, but they are vanished in SO-
bordism group.

Rule 3. The 3d invariant for 2d CP
1 model must include

the 3d cobordism invariants discussed in Sec. IV,
in particular, eq. (116).

Rule 4. The 3d invariant for other 2d CP
N−1 for even N

(e.g. 2d CP
3) model must include some of familiar

terms generalizing that of 2d CP
1 model.

Rule 5. Due to the physical meanings of CT and T (and
other orientation-reversal symmetries), we must
impose a swapping symmetry for 5d invariants.

Rule 6. Relating the 5d and 3d invariants: There is a
dimensional reductional constraint and physical
meanings between the 5d and 3d invariants, for ex-
ample, by the twist-compactification on 2-torus T 2.

Rule 7. The 5d invariants for a 4d pure YM theory must
involve the nontrivial 2-formB2 field. The 5d terms
that involve no B2 dependence should be discarded.

Rule 8. For 5d invariant, for 4d SU(N) YM at θ = π of an
even integer N > 2 must have analogous anomaly
captured by 5d cobordism term of ∼ w1(TM)A2B2

(up to some properly defined normalization and
quantization).

Here are the explanations for our rules.

Rule 1 is based on Sec. II B, for 4d SU(N) YM at
θ = π of an even integer N must have analogous anomaly
captured by 5d cobordism term of ∼ w1(TM)B2

2 (up to
some properly defined normalization and quantization),
where we choose the linear time reversal symmetry
transformation from CT and a quadratic term of 2-form
fields B2 coupling to 1-form center symmetry.

Rule 2’s physical reasoning is that the time-reversal
symmetry transformation from CT plays an important
role for the anomaly. We can see from Sec. II B 6
that only when time-reversal or orientation reversal is
involved (T , P , CT and CP), we have the mixed higher
anomalies for YM theory; while for the others (C, PT

and CPT ), we do not gain mixed anomalies (e.g. with
the 1-form center symmetry).

Rule 3 is dictated by the known physics derivations in
Sec. IV and in the literature.

Rule 4 will become clear in Sec. VI.

Rule 5, the swapping symmetry for 5d invariants
between CT and T (and other orientation-reversal
symmetries), we will interpret the unoriented O(D)
spacetime symmetry with the time reversal from
CT or from T can be swapped. This means that
we can choose the 5d topological invariant from

the former ΩO
5 (BZ2 ⋉ B2Z4) ≡ Ω

(O×(Z2⋉BZ4))
5

for CT , rather than the more complicated latter

Ω
O⋉

5 (BZ2 ⋉ B2Z4) ≡ Ω
(O×Z2)⋉BZ4

5 for T . We focus on
the 5d terms involving CT -symmetry.

Rule 6 about the dimensional reduction from 5d to 3d
(or 4d to 2d) is explained in Fig. 4 and the main text,
such as in Sec. VII. We should also find the mathematical
meanings behind this constraint in Sec. VII.

Rule 7 is based on the physical input that there should
be no obstruction to regularize a pure YM theory by
imposing only ordinary 0-form symmetry alone onsite.
The obstruction only comes from regularizing a pure
YM theory with the involvement of restricting both
the higher 1-form center symmetry and the ordinary
0-form symmetry to be onsite and local. Thus, it
is necessary to turn on the 2-form background field
B2 in order to detect the ’t Hooft anomaly of YM
theory. Namely, the 5d cobordism invariants of the
form w1(TM)t ∪ Aa with t + a = 5 should be discarded
out of the candidate list of 5d term for 4d YM anomalies.

Rule 8 is based on a QFT derivation directly from 4d
SU(N) YM theory at θ = π of an even integer N > 2. We
find a new higher mixed anomaly between time-reversal
(CT and T ), 0-form ZC

2 and 1-form center symmetry, cap-
tured by ∼ w1(TM)A2B2 (up to some properly defined
normalization and quantization).

VI. NEW ANOMALIES OF 2D CP
N−1-MODEL

For 2d CP
1-model at θ = π, now we combine all the

anomalies found above, including eq. (105), eq. (107),
eq. (109) and eq. (113), we obtain a concise way to ex-
press the potentially complete ’t Hooft anomalies of 2d
CP

1-model as:

2d CP
1-model anomaly : w1(E)3 + w1(E)w2(VSO(3)) + w1(TM)w2(VSO(3)) + w1(E)w1(TM)2

= w3(E) + w1(E)w1(TM)2. (116)
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Recall that, express in terms of our eq. (87), we get w1(E)3 is (1, 0, 0, 0) w1(E)w2(VSO(3)) is (1, 1, 0, 0)

w1(TM)w2(VSO(3)) is (0, 1, 1, 0) w1(E)w1(TM)2 is (0, 0, 0, 1), and w3(E) is (0, 0, 1, 0), under the basis

(w1(E)3, w1(E)w2(E), w3(E), w1(E)w1(TM)2) of eq. (87). To summarize, the overall anomaly of 2d CP
1-model

can be expressed as a 3d cobordism invariant/topological term eq. (116), which is (0, 0, 1, 1) under the basis
(w1(E)3, w1(E)w2(E), w3(E), w1(E)w1(TM)2) of eq. (87).

For 2d CP
N−1-model at θ = π, at even N, Ref. [64] proposes an important quantity (called u3 in Ref. [64]), which

is an element u3 ∈ H3(B(PSU(N) ⋊ ZC
2 ),Z

C) as an anomaly for that 2d theory. First notice that one needs to
generalize the second SW class from w2 ∈ H2(BPSU(2),Z2) = Z2 to w̃2 ∈ H2(BPSU(N),ZN) = ZN. Moreover, there
is an additional ZC

2 twist modify the PSU(2)-bundle to PSU(N)⋊ ZC
2 -bundle. Their definition u3 is an element of

H3(B(PSU(N) ⋊ ZC
2 ),Z

C) = ZN, where C specifies the symmetry as a charge conjugation ZC
2 . This means that

du3 6= 0, but dAu3 = 0, where dA is a twisted differential. The construction of these classes is a Bockstein operator
for the extension applied to u2 ∈ H2(B(PSU(N)⋊ ZC

2 ),Z
C
N). Eventually, the 3d invariant for the 2d anomaly term of

Ref. [64] is u3 ∈ H3(B(PSU(N) ⋊ ZC
2 ),U(1)) = Z2.

In our setup, we consider w̃3(E) ≡ w̃3(VPSU(N)⋊Z2
) ∈ H3(B(PSU(N) ⋊ ZC

2 ),Z2) = Z2 here E is the background
gauged bundle of PSU(N)⋊ Z2.
For N = 2, we derive that w̃3(E) = w3(E)= w1(E)w2(E) + w1(TM)w2(E) in eq. (107).
For N = 4, we derive that

w̃3(E) = w1(E)w2(E) + β(2,4)w2(E) = w1(E)w2(E) +
1

2
w1(TM)w2(E). (117)

Based on Rule 4 in Sec. V, we propose that 3d invariant for the anomaly of 2d CP
3-model is:

2d CP
3-model anomaly : w̃3(E) + w1(E)w1(TM)2 = w1(E)w2(E) + β(2,4)w2(E) + w1(E)w1(TM)2

= w1(E)w2(E) +
1

2
w1(TM)w2(E) + w1(E)w1(TM)2. (118)

This first expression is our concise way to express the potentially complete ’t Hooft anomalies of 2d CP
3-model. It

also guides us to make a proposal that, based on Rule 4 in Sec. V, 3d invariant for the anomaly of 2d CP
N−1-model

for general even N can be:

2d CP
N−1-model anomaly : w̃3(E) + w1(E)w1(TM)2 . (119)

We should mention our anomaly term contains the previous anomaly found in the literature for more generic
even N. For example, our w1(E)w2(E), with E the background gauged bundle of PSU(N)⋊ Z2, contains the
w1(Z

C
2 )w̃2(PSU(N)) term studied in [62, 64, 77].

VII. 5D TO 3D DIMENSIONAL REDUCTION

Now we aim to utilize the Rule 6 in Sec. V and the new
anomaly of 2d CP

N−1-model found in Sec. VI, to deduce
the new higher anomaly of 4d YM theory — which later
will be organized in Sec. VIII.
From the physics side, follow [36], see Fig.4, we choose

the 4d YM living on S1
x × S1

y × S1
z × R, such that we the

size Ly, Lz of S1
y × S1

z is taken to be much smaller than

the size Lx of S1
x, namely Ly, Lz ≪ Lx. Then, below the

energy gap scale

∆E ≪ Ly
−1 and Lz

−1,

the resulting 2d theory on S1
z × R is given by a sigma

model with a target space of CP
N−1. There are several

indications that the low energy theory is a 2d CP
N−1-

model:

• The 4d and 2d instanton matchings in [27, 28] and
other mathematical works. The θ = π-term of

SU(N) YM is mapped to the θ = π-term of 2d

CP
N−1-model.

• The moduli space of flat connections on the 2-torus
T 2 = S1

y × S1
z of 4d YM theory is the projective

space CP
N−1 [74, 75] (up to the geometry details of

no canonical Fubini-Study metric and singularities
mentioned in [36] and footnote 2). See Fig.4.

• The 1-form ZN-center symmetry of 4d YM is di-
mensionally reduced, in addition to 1-form symme-
try itself, also to a 0-form ZN-flavor of 2d CP

N−1

model. The twisted boundary condition of 4d YM
for 1-form ZN-center symmetry (as a higher sym-
metry twist of [13]) can be dimensionally reduced
to the 0-form ZN-flavor symmetry twisted [76] in

the 2d CP
N−1 model.

• Ref. [35] derives that the physical meaning of the
2d anomaly eq. (113) is directly descended from the
4d anomaly eq. (104) of YM theory by twisted T 2
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compactification.

Encouraged by the above physical and mathematical
evidences, in this section, we formalize the 4d and 2d
anomaly matching under twisted T 2 compactification,
into a mathematical precise problem of the 5d and 3d
cobordism invariants (SPTs/topological terms) match-
ing, under the T 2 dimensional reduction.
Below we follow our notations of the bordism groups in

Sec. III, and their Dd = (d+1)d cobordism invariants to
the dd anomalies of QFTs. We may simply abbreviate,

“5d cobordism invariants for 4d YM theory’s anomaly”

≡ “5d (Yang-Mills) terms.”

We may simply abbreviate,

“3d cobordism invariants for 2d CP
N−1 model’s anomaly”

≡ “3d (CP
N−1) terms.”

If f ∈ H2(M,Z2), since H2(M,Z2) = H2(M,Z2), then
f is represented by a submanifold ofM . Here a homology
class Hn(M,Z2) is represented by a submanifold N , if
there is an embedding h : N →M such that h∗([N ]) = f
where the pushforward h∗ : Hn(N,Z2) → Hn(M,Z2) is
the induced homomorphism on the homology groups, N
is an n-manifold, and [N ] is the fundamental class of N
with coefficients Z2.

A. From ΩO
5 (B

2
Z2) to ΩO

3 (BO(3))

Now we consider the 5d cobordism invariants that
characterize the 4d SU(2) YM theory’s anomaly (abbre-
viate them as “Yang-Mills terms”).
Below we follow eq. (73) to use the notation (M, f) to

denote the pair of manifold M and the map f : M → X
to a generic topological space X .
Below we define that:
• α is the generator of the singular cohomology
H1(RP

2,Z2),
• β is the generator of H1(RP

3,Z2),
• γ is the generator of H1(S1,Z2),
• ζ is the generator of H1(RP

4,Z2).
• # is the connected sum between manifolds.

The manifold generator of BSq1B + Sq2Sq1B can be
chosen to be (RP

2×RP
3, α∪β), (RP

2×RP
3, α∪β+α2),

or (S1 × RP
4, γ ∪ ζ).

The manifold generator of w1(TM)2Sq1B can be cho-
sen to be (S1 × RP

4, γ ∪ ζ), or (S1 × RP
4, γ ∪ ζ + ζ2), or

(S1 × RP
2 × RP

2, γ ∪ α1).
We already know that BSq1B + Sq2Sq1B must be a

summand of the Yang-Mills term, based on Sec. V’s Rule
1 and 2.

If the Yang-Mills term is BSq1B +Sq2Sq1B, then the
manifold generators of the Yang-Mills term are (RP

2 ×
RP

3, α∪β), (RP
2×RP

3, α∪β+α2), or (S1×RP
4, γ∪ζ).

The corresponding cases are 1, 2, and 3 below. We can-
not get the 3d topological term w1(E)w2(VSO(3)) under

the T 2 dimensional reduction (see the discussion below)
which is a contradiction to the known results.
If the Yang-Mills term is BSq1B + Sq2Sq1B +

w1(TM)2Sq1B, then the manifold generators of the
Yang-Mills term are (RP

2×RP
3, α∪β), (RP

2×RP
3, α∪β+

α2), (S1×RP
4, γ∪ζ+ζ2), or (S1×RP

2×RP
2, γ∪α1). The

corresponding cases are 1, 2, 4, and 5 below. We can get
the full 3d topological terms under the T 2 dimensional
reduction.
So we claim that the Yang-Mills term is BSq1B +

Sq2Sq1B + w1(TM)2Sq1B.
Since there is a short exact sequence

1→ ZN → SU(N)→ PSU(N)→ 1, (120)

we have an induced fiber sequence

BZN → BSU(N)→ BPSU(N)
w2→ B2

ZN. (121)

Following the idea in [36] and [35], the twisted bound-
ary condition along a 2-torus T 2

zx is twisted by the 2-form
background field B (See Fig. 4), or we can generalize the
twist to w1(TM)2, where the 2-torus T 2

zx has a common
S1
z with the dimensional reduced 2-torus T 2

yz (Again see

Fig. 4). Reducing a 2-torus (the effective T 2
yz) from the

5-manifold M , we get a 3-manifold N (obtained from
taking the Poincaré dual) and we set B|N ∈ H2(N,Z2).
Since πkBSU(N) = 0 for k ≤ 2, by the obstruction theory,
there is a principal SO(3) bundle VSO(3) over N such that

w2(VSO(3)) = B|N . Also since w1(TM)|N ∈ H1(N,Z2),
there is a principal O(3) = SO(3)× Z2 bundle E (whose
associated vector bundle is VO(3)) over N such that

w1(E) = w1(TM)|N , and w2(E)+w1(E)2 = w2(VSO(3)).

BSO(3)

w2

��

N

VSO(3)

;;
①
①
①
①
①
①
①
①
① B|N

// B2Z2

(122)

Ideally we aim to reduce a 2-torus T 2 (named as T 2
yz in

Fig. 4), and we also aim to impose the twisted boundary
condition along another T 2 (named as T 2

zx in Fig. 4). In
this case, we abbreviate this procedure below simply as

“reduce T 2, and twist T 2.”

More generally, however, we find that we sometimes need
to reduce other novel 2-submanifolds V2 (such as RP

2,
RP

2#T 2, or T 2#T 2, etc.) in order to do dimensional re-
duction successfully. In addition, we sometimes also need
to impose twisted boundary conditions along other novel
2-submanifolds U2 (such as RP

2, RP
2#T 2, or T 2#T 2,
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etc.). In this case, we abbreviate this procedure below
simply as

“reduce V2, and twist U2.”

Below we list down the 5d manifold generators, and the
reduced 2-submanifold, and another 2-submanifold where
the twisted boundary conditions are imposed.

1. If (M,B) = (RP
2 × RP

3, α ∪ β), w1(TM)2 = α2:

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of αβ, we get
N = S1 × RP

2, w1(E) = γ, and
w2(VSO(3)) = γα. So (N,E) detects

w1(E)w1(TM)2 or w1(TM)w2(VSO(3)).

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2, twist T 2:

Take the Poincaré dual of α2, we getN = RP
3,

w1(E) = w1(TM)|N = 0, and w2(VSO(3)) = 0.
So (N,E) does not detect any term.

(ii) Reduce RP
2, twist T 2:

Take the Poincaré dual of β2, we get N =
S1 × RP

2, w1(E) = α, and w2(VSO(3)) =
γα. So (N,E) detects w1(TM)w2(VSO(3)) or
w1(E)w2(VSO(3)).

(iii) Reduce RP
2#T 2, twist T 2:

Take the Poincaré dual of (α+β)β, we getN =
S1×RP

2#S1×RP
2 where # is the connected

sum. Here we denote that α1 and γ1 for the
first sector of S1× RP

2 of N , while α2 and γ2
for the second sector of S1×RP

2 of N , in the
connected sum. Then we get w1(E) = γ1+α2,
w2(VSO(3)) = γ1α1 + γ2α2. So (N,E) detects

w1(E)w2(VSO(3)) or w1(E)w1(TM)2.

(iv) Reduce RP
2#T 2, twist T 2:

Take the Poincaré dual of (α + β)α, we get
N = RP

3#S1 × RP
2, w1(E) = γ, and

w2(VSO(3)) = γ ∪ α. So (N,E) detects

w1(E)w1(TM)2 or w1(TM)w2(VSO(3)).

2. If (M,B) = (RP
2×RP

3, α∪β+α2), w1(TM)2 = α2:

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of αβ, we get N =
S1 × RP

2, w1(E) = γ, and w2(VSO(3)) =

γα. So (N,E) detects w1(E)w1(TM)2 or
w1(TM)w2(VSO(3)).

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2, twist RP

2#T 2:

Take the Poincaré dual of α2, we getN = RP
3,

w1(E) = 0, and w2(VSO(3)) = 0. So (N,E)
does not detect any term.

(ii) Reduce RP
2, twist RP

2#T 2:

Take the Poincaré dual of β2, we get N =
S1 × RP

2, w1(E) = α, and w2(VSO(3)) =

γα+α2. So (N,E) detects w1(TM)w2(VSO(3))
or w1(E)w2(VSO(3)). However, this case may

not be a reasonable choice, since β2 has no
common S1 with both B = α(α + β) and
w1(TM)2 = α2.

These are reducing RP
2.

(iii) Reduce RP
2#T 2, twist RP

2#T 2:

Take the Poincaré dual of (α + β)β, we get
N = S1 × RP

2#S1 × RP
2. Here we de-

note that α1 and γ1 for the first sector of
S1 × RP

2 of N , while α2 and γ2 for the sec-
ond sector of S1×RP

2 of N , in the connected
sum. Then we get w1(E) = γ1 + α2, and
w2(VSO(3)) = γ1α1 + (γ2 + α2)α2. So (N,E)

detects w1(E)w2(VSO(3)) or w1(E)w1(TM)2.

(iv) Reduce RP
2#T 2, twist RP

2:

Take the Poincaré dual of (α + β)α, we
get N = RP

3#S1 × RP
2, w1(E) = γ,

and w2(VSO(3)) = γα. So (N,E) detects

w1(E)w1(TM)2.

These are reducing RP
2#T 2.

3. If (M,B) = (S1 × RP
4, γ ∪ ζ), w1(TM)2 = ζ2:

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of γζ, we getN = RP
3,

w1(E) = β, and w2(VSO(3)) = 0. So (N,E)

detects w1(E)3.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2, twist T 2:

Take the Poincaré dual of ζ2, we get N =
S1 × RP

2, w1(E) = α, and w2(VSO(3)) =
γα. So (N,E) detects w1(TM)w2(VSO(3)) or
w1(E)w2(VSO(3)).

This is reducing RP
2.

(ii) Reduce RP
2#T 2, twist T 2:

Take the Poincaré dual of (γ + ζ)ζ, we get
N = RP

3#S1 × RP
2, w1(E) = β + α, and

w2(VSO(3)) = γα. So (N,E) detects w1(E)3

or w1(TM)w2(VSO(3)) or w1(E)w2(VSO(3)).

This is reducing RP
2#T 2.

4. If (M,B) = (S1×RP
4, γ ∪ ζ + ζ2), w1(TM)2 = ζ2:

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of γζ, we getN = RP
3,

w1(E) = β, and w2(VSO(3)) = β2. So (N,E)

detects w1(E)3 or w1(E)w2(VSO(3)).

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.
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(i) Reduce RP
2, twist RP

2#T 2:

Take the Poincaré dual of ζ2, we get N =
S1×RP

2, w1(E) = α, and w2(VSO(3)) = γα+

α2. So (N,E) detects w1(TM)w2(VSO(3)) or
w1(E)w2(VSO(3)).

This is reducing RP
2.

(ii) Reduce RP
2#T 2, twist RP

2:

Take the Poincaré dual of (γ + ζ)ζ, we get
N = RP

3#S1 × RP
2, w1(E) = β + α, and

w2(VSO(3)) = β2 + γα+α2. So (N,E) detects

w1(E)3 or w1(TM)w2(VSO(3)).

This is reducing RP
2#T 2.

5. If (M,B) = (S1 × RP
2 × RP

2, γ ∪ α1), w1(TM)2 =
(α1 + α2)

2:

(a) Reduce T 2, twist T 2:

Take the Poincaré dual of γα2, we get N =
S1×RP

2, w1(E) = γ+α, and w2(VSO(3)) = 0.

So (N,E) detects w1(E)3 or w1(E)w1(TM)2.

(b) Reduce T 2, twist T 2:

Take the Poincaré dual of α1α2, we get
N = S1 × S1 × S1, w1(E) = γ2 + γ3,
and w2(VSO(3)) = γ1γ2. So (N,E) detects
w1(E)w1(VSO(3)).

There are other cases where we can reduce other
topology (such as RP

2, T 2#T 2, etc) while we do
not reduce T 2, but we omit our discussions on those
cases.

B. From ΩO
5 (BZ2 ⋉ B2

Z4) to ΩO
3 (B(Z2 ⋉ PSU(4)))

Now we consider the 5d cobordism invariants that
characterize the 4d SU(4) YM theory’s anomaly (abbre-
viate them as “Yang-Mills terms”).
Following the idea in [36] [35], the twisted boundary

condition along a 2-torus T 2
zx is twisted by the 2-form

background field B (more precisely B̃ ≡ (B mod 2),
see Fig. 4), or we can generalize the twist to w1(TM)2,
or A2, where the 2-torus T 2

zx has a common S1
z with

the dimensional reduced 2-torus T 2
yz (Again see Fig. 4).

Reducing a 2-torus from the 5-manifold M , we get a
3-manifold N (obtained from taking the Poincaré dual)
and we set A|N ∈ H1(N,Z2), B|N ∈ H2(N,Z4), since
πkBSU(N) = 0 for k ≤ 2, by the obstruction theory,
there is a principal Z2 ⋉ PSU(4) bundle E over N such
that w1(E) = A|N , and w2(E) = B|N .

In this subsection, all of the below, we define that
• K is the Klein bottle,
• α′ is the generator of H1(S1,Z4),
• β′ is the generator of the Z4 factor of H1(K,Z4) =
Z4 × Z2 (see Appendix C),
• γ′ is the generator of H2(S2,Z4),

• ζ′ is the generator of H2(T 2,Z4).
• α is the generator of H1(RP

2,Z2),
• β is the generator of H1(RP

3,Z2),
• γ is the generator of H1(S1,Z2),
• ζ is the generator of H1(RP

4,Z2),
• # is the connected sum between manifolds.
Note that (β′ mod 2)2 = 2β(2,4)β

′ = 0.

We already know that B2β(2,4)B2 and A2β(2,4)B2 are
summands of the Yang-Mills term based on the Rule
1 and Rule 8 in Sec. V. Since the manifold generator
of A2β(2,4)B2 is (S1 × K × RP

2, A = α,B = α′ ∪ β′),

with w1(TM)2 = α2, which is also a manifold gener-
ator of w1(TM)2β(2,4)B2. If w1(TM)2β(2,4)B2 is also

a summand of the Yang-Mills term, then (S1 × K ×
RP

2, A = α,B = α′ ∪ β′) is no longer a manifold gen-
erator of the Yang-Mills term which is a contradiction.
So w1(TM)2β(2,4)B2 is not a summand of the Yang-Mills
term.
To get the full 3d topological terms under the T 2 di-

mensional reduction, we claim that the Yang-Mills term
is B2β(2,4)B2 +A2β(2,4)B2 +AB2w1(TM)2.

1. The manifold generator of B2∪β(2,4)B2 can be cho-

sen to be (S1 × K × S2, A,B = α′ ∪ β′ + γ′) and
w1(TM)2 = 0 where A is arbitrary.

(a) Reduce T 2, twist T 2 (but the two T 2 are the
same):
Take the Poincaré dual of (α′ mod 2)(β′

mod 2) = γ(β′ mod 2), we get N = S1 × S2,
w1(E) is arbitrary, and w2(E) = γ′. So (N,E)
can detect w1(E)w2(E).

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce S2, twist T 2:
Take the Poincaré dual of γ′ mod 2, we get
N = S1×K, w1(E) is arbitrary, and w2(E) =
α′β′. So (N,E) detects β(2,4)w2(E). However,
this case may not be a reasonable choice, since
there is no common S1 in the reduced S2 and
the twisted T 2.

This is reducing S2.

2. The manifold generator of B2∪β(2,4)B2 can also be

also chosen to be (S1×K×T 2, A,B = α′∪β′+ ζ′)
with w1(TM)2 = 0 where A is arbitrary, ζ′ = α′

1α
′
2

and α′
i mod 2 = γi.

(a) Reduce T 2, twist T 2#T 2:
Take the Poincaré dual of γ(β′ mod 2), we
get N = S1 × T 2, w1(E) is arbitrary,
and w2(E) = ζ′. So (N,E) can detect
w1(E)w2(E).

(b) Reduce T 2, twist T 2#T 2:
Take the Poincaré dual of ζ′ mod 2, we get
N = S1×K, w1(E) is arbitrary, and w2(E) =
α′β′. So (N,E) detects β(2,4)w2(E).
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(c) Reduce T 2, twist T 2#T 2:
Take the Poincaré dual of γγ1, we get N =
S1 × K, w1(E) is arbitrary, and w2(E) = 0.
So (N,E) does not detect any term.

(d) Reduce T 2, twist T 2#T 2:
Take the Poincaré dual of (β′ mod 2)γ1, we
get N = S1 × S1 × S1, w1(E) is arbitrary,
and w2(E) = ζ′. So (N,E) can detect
w1(E)w2(E).

3. The manifold generator of w1(TM)2β(2,4)B2 can be

chosen to be (S1 ×K × RP
2, A,B = α′ ∪ β′), with

w1(TM)2 = α2 where A is arbitrary but other than
α.

(a) Reduce T 2, twist T 2:
Take the Poincaré dual of (β′ mod 2)α, we
get N = S1 × S1 × S1, and w2(E) = ζ′.
So (N,E) does not detect any term whatever
w1(E) is since A 6= α.

(b) Reduce T 2, twist T 2:
Take the Poincaré dual of (α′ mod 2)α = γα,
we getN = S1×K, and w2(E) = 0. So (N,E)
does not detect any term whatever w1(E) is.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce T 2#T 2, twist T 2:
Take the Poincaré dual of (β′ mod 2)(γ +
α), we get N = S1 × RP

2#S1 × S1 × S1,
and w2(E) = ζ′. So (N,E) can detect
w1(E)w1(TM)2 if w1(E) = A = β′ mod 2.

(ii) Reduce T 2#T 2, twist T 2:
Take the Poincaré dual of γ(β′ mod 2+α), we
getN = S1×RP

2#S1×K, and w2(E) = 0. So
(N,E) can detect w1(E)w1(TM)2 if w1(E) =
A = β′ mod 2.

(iii) Reduce T 2#T 2, twist RP
2:

Take the Poincaré dual of α(γ+β′ mod 2), we
getN = S1×K#S1×S1×S1, and w2(E) = ζ′.
So (N,E) does not detect any term whatever
w1(E) is since A 6= α.

These are reducing T 2#T 2.

4. The manifold generator of A2β(2,4)B2 can be chosen

to be (S1 × K × RP
2, A = α,B = α′ ∪ β′), with

w1(TM)2 = α2.

(a) Reduce T 2, twist T 2:
Take the Poincaré dual of (β′ mod 2)α, we
get N = S1 × S1 × S1, w1(E) = γ, and
w2(E) = ζ′. So (N,E) detects w1(E)w2(E).

(b) Reduce T 2, twist T 2:
Take the Poincaré dual of (α′ mod 2)α = γα,
we get N = S1×K, w1(E) = γ, and w2(E) =
0. So (N,E) does not detect any term.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce T 2#T 2, twist T 2:
Take the Poincaré dual of (β′ mod 2)(γ+α),
we get N = S1×RP

2#S1×S1×S1, w1(E) =
α1 + γ2, and w2(E) = ζ′. So (N,E) detects
w1(E)w2(E).

(ii) Reduce T 2#T 2, twist T 2:
Take the Poincaré dual of γ(β′ mod 2+α), we
get N = S1×RP

2#S1×K, w1(E) = α1 + γ2,
and w2(E) = 0. So (N,E) does not detect
any term.

(iii) Reduce T 2#T 2, twist RP
2:

Take the Poincaré dual of α(γ + β′ mod 2),
we get N = S1 ×K#S1 × S1 × S1, w1(E) =
γ1 + γ2, and w2(E) = ζ′. So (N,E) detects
w1(E)w2(E).

These are reducing T 2#T 2.

5. The manifold generator of A3w1(TM)2 can be
chosen to be (RP

2 × RP
3, A = β,B = 0) with

w1(TM)2 = α2.

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of αβ, we get N =
S1 × RP

2, w1(E) = α, and w2(E) = 0. So
(N,E) does not detect any term.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2#T 2, twist RP

2:
Take the Poincaré dual of α(α + β), we get
N = RP

3#S1 × RP
2, w1(E) = β + α, and

w2(E) = 0. So (N,E) detects w1(E)3.

(ii) Reduce RP
2#T 2, twist RP

2:
Take the Poincaré dual of β(α + β), we get
N = S1 × RP

2#S1 × RP
2, w1(E) = α1 +

γ2, and w2(E) = 0. So (N,E) detects
w1(E)w1(TM)2.

These are reducing RP
2#T 2.

6. The manifold generator of Aw1(TM)4 can be cho-
sen to be (S1 × RP

4, A = γ,B = 0), with
w1(TM)2 = ζ2.

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of γζ, we getN = RP
3,

w1(E) = 0, and w2(E) = 0. So (N,E) does
not detect any term.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2#T 2, twist RP

2:
Take the Poincaré dual of (γ+ζ)ζ, we get N =
RP

3#S1 × RP
2, w1(E) = γ, and w2(E) = 0.

So (N,E) detects w1(E)w1(TM)2.
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This is reducing RP
2#T 2.

7. The manifold generator of AB2w1(TM)2 can be
chosen to be (S1 × S2 × RP

2, A = γ,B = γ′) with
w1(TM)2 = α2.

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of γα, we get N =
S1 × S2, w1(E) = 0, and w2(E) = γ′. So
(N,E) does not detect any term.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2#T 2, twist RP

2:
Take the Poincaré dual of (γ+α)α, we getN =
S1 × S2#S1 × S2, w1(E) = γ1, and w2(E) =
γ′
1 + γ′

2. So (N,E) detects w1(E)w2(E).

This is reducing RP
2#T 2.

8. The manifold generator of AB2w1(TM)2 can be
also chosen to be (S1 × T 2 × RP

2, A = γ,B = ζ′)
with w1(TM)2 = α2 where ζ′ = α′

1α
′
2 and α′

i

mod 2 = γi.

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of γα, we get N =
S1 × T 2, w1(E) = 0, and w2(E) = ζ′. So
(N,E) does not detect any term.

(b) Reduce T 2, twist T 2:
Take the Poincaré dual of γγ1, we get N =
S1 × RP

2, w1(E) = 0, and w2(E) = 0. So
(N,E) does not detect any term.

(c) Reduce T 2, twist T 2:
Take the Poincaré dual of αγ1, we get N =
S1 × S1 × S1, w1(E) = γ, and w2(E) = 0. So
(N,E) does not detect any term.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2#T 2, twist RP

2:
Take the Poincaré dual of (γ+α)α, we getN =
S1 × T 2#S1 × T 2, w1(E) = γ1, and w2(E) =
ζ′1 + ζ′2. So (N,E) detects w1(E)w2(E). This
is reducing RP

2#T 2.

(ii) Reduce T 2#T 2, twist T 2:
Take the Poincaré dual of (γ + α)γ1, we get
N = S1 × T 2#S1 × RP

2, w1(E) = γ1, and
w2(E) = 0. So (N,E) does not detect any
term. This is reducing T 2#T 2.

9. The manifold generator of AB2w1(TM)2 can also
be chosen to be (S1 × T 2 × RP

2, A = γ + γ2, B =
ζ′) with w1(TM)2 = α2 where ζ′ = α′

1α
′
2 and α′

i

mod 2 = γi.

(a) Reduce T 2, twist RP
2:

Take the Poincaré dual of γα, we get N =
S1 × T 2, w1(E) = γ2, and w2(E) = ζ′. So
(N,E) does not detect any term.

(b) Reduce T 2, twist T 2:
Take the Poincaré dual of γγ1, we get N =
S1 × RP

2, w1(E) = γ2, and w2(E) = 0. So
(N,E) detects w1(E)w1(TM)2.

(c) Reduce T 2, twist T 2:
Take the Poincaré dual of αγ1, we get N =
S1×S1×S1, w1(E) = γ+γ2, and w2(E) = 0.
So (N,E) does not detect any term.

However, below we elaborate other cases which do
not reduce a 2-torus T 2 but other 2-manifolds.

(i) Reduce RP
2#T 2, twist RP

2:
Take the Poincaré dual of (γ + α)α, we get
N = S1 × T 2#S1 × T 2, w1(E) = γ12 + γ21 +
γ22, and w2(E) = ζ′1 + ζ′2. So (N,E) detects
w1(E)w2(E). This is reducing RP

2#T 2.

(ii) Reduce T 2#T 2, twist T 2:
Take the Poincaré dual of (γ + α)γ1, we get
N = S1 × T 2#S1 × RP

2, w1(E) = γ11 +
γ12 + γ21, and w2(E) = 0. So (N,E) detects
w1(E)w1(TM)2. This is reducing T 2#T 2.

Next we can use the above results to deduce the new
higher anomaly of 4d YM theory in the next Sec. VIII.

VIII. NEW HIGHER ANOMALIES OF 4D
SU(N)-YM THEORY

We are ready to summarize and deduce the new higher
anomaly of 4d YM theory written in terms of invari-
ants given in Sec. III, and satisfying Rules in Sec. V and
following the physical/mathematical 5d to 3d reduction
scheme in Sec. VII.

A. SU(N)-YM at N = 2

Let us formulate the potentially complete ’t Hooft
anomaly for 4d SU(N)-YM at N = 2 at θ = π, written in
terms of a 5d cobordism invariant in Sec. III.
Base on Rule 3 and Rule 6 in Sec. V, we deduce that 4d

anomaly must match 2d CP
1-model anomaly’s eq. (116)

via the sum of following two terms (5d SPTs). The first
term is:

B2Sq
1B2 + Sq2Sq1B2 (123)

=
1

2
w̃1(TM)P2(B2).

which is dictated by Rule 1 in Sec. V. (Note that
Sq2Sq1B2= (B2 ∪1 B2) ∪1 (B2 ∪1 B2).) Here w̃1(TM) ∈
H1(M,Z4,w1) is the mod 4 reduction of the twisted first
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Stiefel-Whitney class of the tangent bundle TM of a 5-
manifold M which is the pullback of w̃1 under the clas-
sifying map M → BO(5). Here Zw1 denotes the ori-
entation local system, the twisted first Stiefel-Whitney
class w̃1 ∈ H1(BO(n),Zw1) is the pullback of the nonzero
element of H1(BO(1),Zw1) = Z2 under the determi-
nant map Bdet : BO(n) → BO(1). Since 2w̃1 = 0,
w̃1(TM)P2(B2) is even, so it makes sense to divide it by
2. If w1(TM) = 0, then Zw1 = Z and H1(BO(1),Zw1) =
H1(BO(1),Z) = 0, so w̃1 = 0. Namely, 1

2 w̃1(TM)P2(B2)
vanishes when w1(TM) = 0.
We can derive the last equality of eq. (123) by prov-

ing that both LHS and RHS are bordism invariants of
ΩO

5 (B
2Z2) and they coincide on manifold generators of

ΩO
5 (B

2Z2).
We can also prove that

β(2,4)P2(B2)

= β(2,4)(B2 ∪B2 +B2 ∪
1
δB2)

=
1

4
δ(B2 ∪B2 +B2 ∪

1
δB2)

= (
1

2
δB2) ∪B2 + (

1

2
δB2) ∪

1
(
1

2
δB2)

= B2Sq
1B2 + Sq1B2 ∪

1
Sq1B2

= B2Sq
1B2 + Sq2Sq1B2. (124)

The first term contains two appear together in order to
satisfy Rule 2.
The other term is:

w1(TM)2Sq1B2. (125)

We also check that the sum of two terms satisfy the
Rule 5 in Sec. V. Besides, Rule 7 restricts us to fo-
cus on the bordism group ΩO

5 (B
2Z2) and discards other

terms involving ΩO
5 (BZ2×B2Z2). Our final answer of 4d

anomaly and 5d cobordism/SPTs invariant is combined
and given in eq. (133). To our understanding, the whole
expression indicates a new higher anomaly for this YM
theory, new to the literature.

B. SU(N)-YM at N = 4

Let us formulate the potentially complete ’t Hooft
anomaly for 4d SU(N)-YM at N = 4 at θ = π, written in
terms of a 5d cobordism invariant in Sec. III.
Base on Rule 4 in Sec. V, we deduce the 2d CP

3-model
anomaly’s eq. (118) generalizing the eq. (116). Base on
Rule 3 and Rule 6, we deduce that 4d anomaly must
match 2d CP

3-model anomaly’s eq. (118) via the sum
of following two terms (5d SPTs). The first term is:

B2β(2,4)B2 =
1

4
w̃1(TM)P2(B2), (126)

which is dictated by Rule 1 in Sec. V. Here w̃1(TM) ∈
H1(M,Z8,w1) is the mod 8 reduction of the twisted
first Stiefel-Whitney class of the tangent bundle TM

of a 5-manifold M which is the pullback of w̃1 under
the classifying map M → BO(5). Here Zw1 denotes
the orientation local system, the twisted first Stiefel-
Whitney class w̃1 ∈ H1(BO(n),Zw1) is the pullback
of the nonzero element of H1(BO(1),Zw1) = Z2 under
the determinant map Bdet : BO(n) → BO(1). Since
2w̃1 = 0, w̃1(TM)P2(B2) is divided by 4, so it makes
sense to divide it by 4. If w1(TM) = 0, then Zw1 = Z

and H1(BO(1),Zw1) = H1(BO(1),Z) = 0, so w̃1 = 0.
Namely, 1

4 w̃1(TM)P2(B2) vanishes when w1(TM) = 0.
We can derive the last equality by proving that both

LHS and RHS are bordism invariants of ΩO
5 (B

2Z4) and
they coincide on manifold generators of ΩO

5 (B
2Z4).

We can also prove that

β(2,8)P2(B2)

= β(2,8)(B2 ∪B2 +B2 ∪
1
δB2)

=
1

8
δ(B2 ∪B2 +B2 ∪

1
δB2)

= (
1

4
δB2) ∪B2 + 2(

1

4
δB2) ∪

1
(
1

4
δB2)

= B2β(2,4)B2 + 2β(2,4)B2 ∪
1
β(2,4)B2

= B2β(2,4)B2 + 2Sq2β(2,4)B2

= B2β(2,4)B2. (127)

which is dictated by Rule 1 in Sec. V. (Note that B̃2 = B2

mod 2.) Other terms are:

A2β(2,4)B2 and AB2w1(TM)2. (128)

We also check that the sum of three terms satisfy the
Rule 2 and Rule 5 in Sec. V. By imposing Rule 7, we
can rule out thus discard many other 5d terms in the
bordism group ΩO

5 (BZ2 ⋉ B2Z4). By imposing Rule 8,
we have to select A2β(2,4)B2 in order to match our QFT

derivation of the 4d anomaly from ∼ w1(TM)A2B2 up
to a normalization. In summary, our final answer of 4d
anomaly and 5d cobordism/SPTs invariant is combined
and given in eq. (134). To our understanding, the whole
expression indicates a new higher anomaly for this YM
theory, new to the literature.

IX. SYMMETRIC TQFT,
SYMMETRY-EXTENSION AND

HIGHER-SYMMETRY ANALOG OF
LIEB-SCHULTZ-MATTIS THEOREM

Since we know the potentially complete ’t Hooft
anomalies of the above 4d SU(N)-YM and 2d CP

N−1-
model at θ = π, we wish to constrain their low-energy
dynamics further, based on the anomaly-matching. This
thinking can be regarded as a formulation of a higher-
symmetry analog of “Lieb-Schultz-Mattis theorem [78]
[79].” For example, the consequences of low-energy
dynamics, under the anomaly saturation can be:
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• Symmetry-breaking
- (say CT -symmetry or other G-symmetry).
• Symmetry-preserving
- Gapless, conformal field theory (CFT),
- Intrinsic topological orders.
(Symmetry-preserving TQFT)
- Degenerate ground states.
etc.
Recently Lieb-Schultz-Mattis theorem has been ap-

plied to higher-form symmetries acting on extended ob-
jects, see [80] and references therein.
In this section, we like to ask, whether it is possible to

have a fully symmetry-preserving TQFT to saturate the
higher anomaly we discussed earlier, for 4d SU(N)-YM

and 2d CP
N−1-model? We use the systematic approach

developed in Ref. [14].12

We will trivialize the 4d and 2d ’t Hooft anomaly of
4d YM and 2d-CP

N−1 models (we may abbreviate them

as Yang-Mills and CP
N−1 terms) by pullback the global

symmetry to the extended symmetry. If the pullback
trivialization is possible, then it means that we can use
the “symmetry-extension” method of [14] to construct a
fully symmetry-preserving TQFT, at least as an exact
solvable model.13

In below, when we write [BK]→ BG→ BG, we mean
that [BK] is the finite extension, while BG is the classify-
ing space of the original full symmetry G. Moreover, the
bracket in [BK] means that the (full-anomaly-free)K can
be dynamically gauged to obtain a dynamical K gauge
theory as a symmetry-G preserving TQFT, see [14].
The new ingredient and generalization here we need to

go beyond the symmetry-extension method of [14] are:
(1) Higher-symmetry extension: We consider a higher
group G or higher classifying space BG.
(2) Co/Bordism group and group cohomology of higher
group G or higher classifying space BG.
Another companion work of ours [85] also implements
this method, and explore the constraints on the low en-
ergy dynamics for adjoint quantum chromodynamics the-
ory in 4d.
We first summarize the mathematical checks, and then

we will explain their physical implications in the end of
this section and in Sec. X.

A. ΩO
5 (B

2
Z2)

We consider B2Sq
1B2 + Sq2Sq1B2 + w1(TM)2Sq1B2

of eq. (133) for 4d SU(N)-YM at N = 2 and at θ = π.

12 One can also formulate a lattice realization of version given in
[81]. Closely related work on this symmetry-extension method
include [19, 82–84] and references therein.

13 A caveat: One needs to beware that the dimensionality af-
fects the dynamics and stability of long-range entanglement, the
symmetry-preserving TQFT at 2d or below can be destroyed by
local perturbations. See detailed explorations in [14].

Since Sq2Sq1B2 = (w2(TM) + w2
1(TM))Sq1B2 and

Sq1B2 can be trivialized by B2Z4 → B2Z2 since when
B2 = B′

2 mod 2, B′
2 : M → B2Z4, Sq

1B2 = 2β(2,4)B
′
2 =

0 (see Appendix A).
So B2Sq

1B2+Sq2Sq1B2+w1(TM)2Sq1B2 can be triv-
ialized via [B2Z2,[1]] → BO(d) × B2Ze

4,[1] → BO(d) ×
B2Ze

2,[1].

B. ΩO
3 (BO(3))

We consider w1(E)
(

w2(VSO(3)) + w1(TM)2
)

+w1(TM)w2(VSO(3)) +w1(E)3 of eq. (130) for 2d

CP
N−1-model at N = 2 at θ = π.
Since w2(VSO(3)) can be trivialized in SU(2) = Spin(3).

Also w1(E)3 can be trivialized by ZC
4 → ZC

2 , and
w1(TM)2 can be trivialized by E(d) → O(d) where
E(d) ⊂ O(d) × Z4 is the subgroup of (A, λ) such that
detA = λ2. It was defined in [26].
In summary, w1(E)(w2(VSO(3)) + w1(TM)2)

+w1(TM)w2(VSO(3)) +w1(E)3 can be trivial-

ized via [B(Z2)
3] → BE(d) × BSU(2) × BZC

4 →
BO(d)× BPSU(2)× BZ

C
2 .

Since Sq2w1(E) = (w2(TM) + w1(TM)2)w1(E) = 0,
w1(E)w1(TM)2 = w1(E)w2(TM) can also be trivialized
by Pin+(d)→ O(d).
So w1(E)(w2(VSO(3)) + w1(TM)2)

+w1(TM)w2(VSO(3)) +w1(E)3 can also be trivial-

ized via [B(Z2)
3] → BPin+(d) × BSU(2) × BZC

4 →
BO(d)× BPSU(2)× BZC

2 .

C. ΩO
5 (BZ2 ⋉ B2

Z4)

We consider B̃2β(2,4)B2 +A2β(2,4)B2 +AB2w1(TM)2

of eq. (134) for 4d SU(N)-YM at N = 4 and at θ = π.
Notice β(2,4)B2 can be trivialized by B2Z8 → B2Z4,

and notice that B2 = B′
2 mod 4, B′

2 : M → B2Z8,
β(2,4)B2 = 2β(2,8)B

′
2 = 0 (see Appendix A). Also

w1(TM)2 can be trivialized by E(d)→ O(d)

So B̃2β(2,4)B2+A2β(2,4)B2+AB2w1(TM)2 can be triv-

ialized via [BZ2×B2Z2,[1]]→ BE(d)×BZC
2 ⋉B2Ze

8,[1] →
BO(d)× BZ

C
2 ⋉ B2

Z
e
4,[1].

D. ΩO
3 (B(Z2 ⋉ PSU(4)))

We consider w1(E)
(

w2(E) + w1(TM)2
)

+

1
2 w̃1(TM)w2(E) of eq. (131) for 2d CP

N−1-model
at N = 4 at θ = π.
Since there is a short exact sequence of groups: 1 →

Z4 → ZC
2 ⋉ SU(4)→ ZC

2 ⋉ PSU(4)→ 1, we have a fiber

sequence: BZ4 → B(ZC
2 ⋉ SU(4))→ B(ZC

2 ⋉ PSU(4))
w2→
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B2Z4, so w2(E) can be trivialized by B(ZC
2 ⋉ SU(4)) →

B(ZC
2 ⋉ PSU(4)).

Also w1(TM)2 can be trivialized by E(d)→ O(d).

So w1(E)
(

w2(E)+w1(TM)2
)

+ 1
2 w̃1(TM)w2(E) can

be trivialized via [B(Z2 × Z4)] → BE(d) × B(ZC
2 ⋉

SU(4))→ BO(d)× B(ZC
2 ⋉ PSU(4)).

Since Sq2w1(E) = (w2(TM) + w1(TM)2)w1(E) = 0,
w1(E)w1(TM)2 = w1(E)w2(TM) can also be trivialized
by Pin+(d)→ O(d).

So w1(E)
(

w2(E)+w1(TM)2
)

+ 1
2 w̃1(TM)w2(E) can

also be trivialized via [B(Z2×Z4)]→ BPin+(d)×B(ZC
2 ⋉

SU(4))→ BO(d)× B(ZC
2 ⋉ PSU(4)).

In summary, again, in this section, we obtain vari-
ous possible symmetry-G preserving TQFTs to saturate
(higher) ’t Hooft anomalies of YM theories and CP

N−1-
model, from the [BK] extension. This means that the
(full-anomaly-free) K can be dynamically gauged to ob-
tain a dynamical K gauge theory, subject to a caveat in
footnote 13, see [14].

X. CONCLUSION AND MORE COMMENTS:
ANOMALIES FOR THE GENERAL N

In this work, we propose a new and more complete set
of ’t Hooft anomalies of certain quantum field theories
(QFTs): time-reversal symmetric 4d SU(N)-Yang-Mills

(YM) and 2d-CP
N−1 models with a topological term

θ = π, and then give an eclectic “proof” of the existence
of these full anomalies (of ordinary 0-form global symme-
tries or higher symmetries) to match these QFTs. Our
“proof” is formed by a set of analyses and arguments,
combining algebraic/geometric topology, QFT analysis,
condensed matter inputs and additional physical criteria
We mainly focus on N = 2 and N = 4 cases. As known

in the literature, we actually know that N = 3 case is
absent from the strict ’t Hooft anomaly. The absence of
obvious ’t Hooft anomalies also apply to the more general
odd integer N case (although one needs to be careful
about the global consistency or global inconsistency, see
[30]). For a general even N integer, it has not been clear
in the literature what are the complete ’t Hoot anomalies
for these QFTs.

Physically we follow the idea that coupling the global
symmetry of dd QFTs to background fields, we can detect
the higher dimensional (d + 1d) SPTs/counter term as
eq. (2):

Zdd
QFT

∣

∣

bgd.field=0

−−−−−→ Z
(d + 1)d
SPTs (bgd.field) · Zdd

QFT

∣

∣

bgd.field6=0
,

that cannot be absorbed by dd SPTs. (Here, for con-
densed matter oriented terminology, we follow the con-
ventions of [13].) This underlying d+1d SPTs means that
the dd QFTs have an obstruction to be regularized with
all the relevant (higher) global symmetries strictly local
or onsite. Thus this indicates the obstruction of gauging,
which indicates the dd ’t Hooft anomalies (See [12–14]
for QFT-oriented discussion and references therein).

We comment that the above idea eq. (2) is distinct

from another idea also relating to coupling QFTs to
SPTs, for example used in [4]: There one couples dd
QFTs to dd SPTs/topological terms,

Zdd
QFT(A1, B2, .)

∣

∣

bgd.field

dynamical gauging + dd SPTs

−−−−−−−−−−−−−−−→
∫

[DA1][DB2] . . . Z
dd
QFT(A1, B2, .) · Zdd

SPTs(A1, B2, .),

(129)

with the allowed global symmetries, and then dynam-
ically gauging some of global symmetries. A similar
framework outlining the above two ideas, on coupling
QFTs to SPTs and gauging, is also explored in [21].

Follow the idea of eq. (2) and the QFT and global sym-
metries information given in Sec. II, we classify all the
possible anomalies enumerated by the cobordism theory
computed in Sec. III. Then constrained by the known
anomalies in the literature Sec. IV, we follow the rules
for the anomaly constraint we set in Sec. V and a di-
mensional reduction method in Sec. VII, we deduce the
new anomalies of 2d-CP

N−1 models in Sec. VI and of 4d
SU(N)-Yang-Mills (YM) in Sec. VIII. To summarize the
dd anomalies and the (d+1) cobordism/SPTs invariants
of the above QFTs,

we propose that a general anomaly formula (3d cobordism/SPT invariant) for 2d CP
N−1
θ=π model at N = 2 as:

Z2d
CP1

θ=π
(wj(TM), wj(E), . . . )Z3d

SPTs

≡ Z2d
CP1

θ=π
(wj(TM), wj(E), . . . ) exp(iπ

∫

M3

(

w1(E)3 + w1(E)w2(VSO(3)) + w1(TM)w2(VSO(3)) + w1(E)w1(TM)2
)

= Z2d
CP1

θ=π
(wj(TM), wj(E), . . . ) exp(iπ

∫

M3

(

w3(E) + w1(E)w1(TM)2
)

. (130)
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We propose that a general anomaly formula (3d cobordism/SPT invariant) for 2d CP
N−1
θ=π model at N = 4 as:

Z2d
CP3

θ=π
(wj(TM), w̃j(E), . . . )Z3d

SPTs

≡ Z2d
CP3

θ=π
(wj(TM), w̃j(E), . . . ) exp(iπ

∫

M3

(

w1(E)w2(E) +
1

2
w1(TM)w2(E) + w1(E)w1(TM)2

)

= Z2d
CP3

θ=π
(wj(TM), w̃j(E), . . . ) exp(iπ

∫

M3

(

w̃3(E) + w1(E)w1(TM)2
)

. (131)

For all the above case, we propose that a general anomaly formula (3d cobordism/SPT invariant) for 2d CP
N−1
θ=π model

at N is an even integer:

Z2d
CP

N−1
θ=π

(wj(TM), w̃j(E), . . . )Z3d
SPTs ≡ Z2d

CP
N−1
θ=π

(wj(TM), w̃j(E), . . . ) exp(iπ

∫

M3

(

w̃3(E) + w1(E)w1(TM)2
)

. (132)

w̃3(E) ∈ H3(B(PSU(N) ⋊ Z2),Z2) = Z2 when N is even. (Our w̃3(E) is related to Ref. [64] named u3, while our
convention of uj is normally called the Wu class instead.)
We propose that a general anomaly formula (5d cobordism/higher SPT invariant) for 4d SU(N)θ=π-YM theory at

N = 2 as:

Z4d
SU(2)YMθ=π

(wj(TM), A,B2, . . . )Z
5d
higher-SPTs

≡ Z4d
SU(2)YM

θ=π
(wj(TM), A,B2, . . . ) exp(iπ

∫

M5

(

B2Sq
1B2 + Sq2Sq1B2 + w1(TM)2Sq1B2

)

)

= Z4d
SU(2)YM

θ=π
(wj(TM), A,B2, . . . ) exp(iπ

∫

M5

(1

2
w̃1(TM)P2(B2) + w1(TM)2Sq1B2

)

). (133)

We propose that a general anomaly formula (5d cobordism/higher SPT invariant) for 4d SU(N)θ=π-YM theory at
N = 4 as:

Z4d
SU(4)YMθ=π

(wj(TM), A,B2, . . . )Z
5d
higher-SPTs

≡ Z4d
SU(4)YM

θ=π
(wj(TM), A,B2, . . . ) exp(iπ

∫

M5

(

B2β(2,4)B2 +A2β(2,4)B2 +AB2w1(TM)2
)

. (134)

When N = 2n is a power of 2, with some positive integer n > 1, we propose that a general anomaly formula (5d
cobordism/higher SPT invariant) for 4d SU(N)θ=π-YM theory

Z4d
SU(N)YMθ=π

(wj(TM), A,B2, . . . )Z
5d
higher-SPTs

≡ Z4d
SU(N)YM

θ=π
(wj(TM), A,B2, . . . ) exp(iπ

∫

M5

(

B2β(2,N)B2 +A2β(2,N)B2 +AB2w1(TM)2
)

. (135)

Note that we can derive B2β(2,N=2n)B2 = 1
N w̃1(TM)P2(B2), where Pontryagin square P2 : H2(−,Z2n) →

H4(−,Z2n+1). Only when N = 2 = 21, we have the exceptional result obtained in our eq. (133), distinct from
the form of our eq. (135) for N = 2n with n > 1.
We notice that the above anomalies we discussed all are (mod 2) classes, captured by cobordism invariants of Z2

classes. These all are non-perturbative global anomalies.

We have commented about the higher symmetry ana-
log of “Lieb-Schultz-Mattis theorem” in Sec. IX, for ex-
ample, the consequences of low-energy dynamics due to
the anomalies. (For the early-history and the recent ex-
plorations on the emergent dynamical gauge fields and
anomalous higher symmetries in quantum mechanical
and in condensed matter systems, see for example, [86]
and [87] respectively, and references therein.) We hope
to address more about the dynamics in future work.
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Appendix A: Bockstein Homomorphism

In general, given a chain complex C• and a short exact
sequence of abelian groups:

0→ A′ → A→ A′′ → 0, (A1)

we have a short exact sequence of cochain complexes:

0→ Hom(C•, A
′)→ Hom(C•, A)

→ Hom(C•, A
′′)→ 0. (A2)

Hence we obtain a long exact sequence of cohomology
groups:

· · · → Hn(C•, A
′)→ Hn(C•, A)→ Hn(C•, A

′′)
∂→ Hn+1(C•, A

′)→ · · · , (A3)

the connecting homomorphism ∂ is called Bockstein ho-
momorphism.
For example, β(n,m) : H∗(−,Zm) → H∗+1(−,Zn) is

the Bockstein homomorphism associated to the extension

Zn
·m→ Znm → Zm where ·m is the group homomorphism

given by multiplication bym. In particular, β(2,2n) =
1
2n δ

mod 2.
Since there is a commutative diagram

Zn
·m

// Znm
mod m

//

·k

��

Zm

·k

��

Zn
·km

// Zknm
mod km

// Zkm,

(A4)

by the naturality of connecting homomorphism, we have
the following commutative diagram:

H∗(−,Zm)
β(n,m)

//

·k

��

H∗+1(−,Zn)

H∗(−,Zkm)
β(n,km)

// H∗+1(−,Zn).

(A5)

Hence we prove that

β(n,m) = β(n,km) · k. (A6)

In particular, since Sq1 = β(2,2), we have Sq
1 = β(2,4) ·

2. This formula is used in Sec. IX.

Appendix B: Poincaré Duality

An orientable manifold is R-orientable for any ring R,
while a non-orientable manifold is R-orientable iff R con-
tains a unit of order 2, which is equivalent to having 2 = 0
in R. Thus every manifold is Z2-orientable.
Poincaré Duality: Let M be a closed connected n-

dimensional manifold, R is a ring, if M is R-orientable,
let [M ] ∈ Hn(M,R) be the fundamental class for M

with coefficients in R, then the map PD : Hk(M,R) →
Hn−k(M,R) defined by PD(α) = [M ] ∩ α is an isomor-
phism for all k.
Fact: Hk(M,R) can be represented by a submanifold

of M when
(1) R = Z2;
(2) R = Z, k ≤ 6.

Appendix C: Cohomology of Klein bottle with
coefficients Z4

In this Appendix, we derive the relation of β(2,4)x = z,

where x is the generator of the Z4 factor of H1(K,Z4) =
Z4 × Z2 and z is the generator of H2(K,Z2) = Z2.
One ∆-complex structure of Klein bottle is shown in

Fig. 5. Let αi denote the dual cochain of the 1-simplex ai
with coefficients Z4, λi the dual cochain of the 2-simplex
ui with coefficients Z4, let ˜ denote its mod 2 reduction
and let { } denote the cohomology class.

a1

a2

a1 a2

u1

u2

a3

FIG. 5. One ∆-complex structure of Klein bottle

The 2-simplexes and 1-simplexes are related by the
boundary differential ∂ of chains, namely ∂u1 = 2a1+a3,
∂u2 = 2a2−a3, so we deduce that the boundary differen-
tial δ of cochains have the following relation: δα1 = 2λ1,
δα2 = 2λ2, δα3 = λ1 − λ2. So we deduce that the coho-
mology classes {λ1} = {λ2} are the same.
Since δ(α1 − α2 − 2α3) = 0, δ(2α1) = 0, H1(K,Z4) =

Z4 × Z2. Let x = {α1 − α2 − 2α3}, y = {2α1}, then x
generates Z4, y generates Z2, x mod 2 = {α̃1 + α̃2}, y
mod 2 = 0.
By the definition of cup product, α2

1(u1) = α1(a1) ·
α1(a1) = 1, α2

1(u2) = α1(a2) · α1(a2) = 0, so α2
1 = λ1,

similarly α2
2 = λ2.

{α̃1 + α̃2}2 = {α̃1}2 + {α̃2}2 = 2z = 0 where z =

{λ̃1} = {λ̃2} is the generator of H2(K,Z2) = Z2, so
β(2,4)x = z.
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Appendix D: Cohomology of BZ2 ⋉ B2
Z4

In order to compute ΩO
5 (BZ2 ⋉ B2

Z4), we need the
data of Hn(BZ2 ⋉ B2Z4,Z2) for n ≤ 5.
Let G be a 2-group with BG = BZ2 ⋉ B2

Z4. By the
Universal Coefficient Theorem,

Hn(BG,Z2) = Hn(BG,Z) ⊗ Z2 ⊕
Tor(Hn+1(BG,Z),Z2). (D1)

So we need only compute Hn(BZ2 ⋉ B2Z4,Z) for n ≤ 6.
Hn(B2Z4,Z) is computed in Appendix C of [89].

Hn(B2
Z4,Z) =



































Z n = 0
0 n = 1
0 n = 2
Z4 n = 3
0 n = 4
Z8 n = 5
Z2 n = 6

(D2)

For the 2-group G defined by the nontrivial action ρ of
Z2 on Z4 and nontrivial fibration

B2Z4
// BG

��

BZ2

(D3)

classified by the nonzero Postnikov class π ∈
H3(BZ2,Z4). Here we consider the fiber sequence
B2Z4,[1] → BG → BZ2 → B3Z4,[1] → . . . induced from
a short exact sequence 1 → Z4,[1] → G → Z2 → 1. We
have the Serre spectral sequence

Hp(BZ2,H
q(B2

Z4,Z))⇒ Hp+q(BG,Z), (D4)

the E2 page of the Serre spectral sequence is the
ρ-equivariant cohomology Hp(BZ2,H

q(B2Z4,Z)). The
shape of the relevant piece is shown in Fig. 6.
Note that p labels the columns and q labels the rows.
The bottom row is Hp(BZ2,Z).
The universal coefficient theorem tells

us that H3(B2Z4,Z) = H2(B2Z4,R/Z) =
Hom(H2(B

2
Z4,Z),R/Z) = Hom(π2(B

2
Z4),R/Z)

= Hom(Z4,R/Z) = Ẑ4, so the q = 3 row is Hp(BZ2, Ẑ4),

where Z2 acts on Z4 via ρ. For example, H0(BZ2, Ẑ4) is

the subgroup of Z2-invariant characters in Ẑ4.
It is also known that H5(B2Z4,Z) = H4(B2Z4,R/Z) is

the group of quadratic functions q : Z4 → R/Z. The
group at (p, q) = (0, 5) is then the subgroup of Z2-
invariant quadratic forms.
The first possibly non-zero differential is on the E3

page:

H0(BZ2,H
5(B2

Z4,Z))→ H3(BZ2, Ẑ4). (D5)

Following the appendix of [90], this map sends a Z2-
invariant quadratic form q : Z4 → R/Z to 〈π,−〉q, where
the bracket denotes the bilinear pairing 〈x, y〉q = q(x +
y)− q(x) − q(y).

0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

Z 0 Z2 0 Z2 0 Z2 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

Z4 Z2 Z2 Z2 Z2 Z2 Z2 Z2

0 0 0 0 0 0 0 0

Z8 Z2 Z2 Z2 Z2 Z2 Z2 Z2

Z2 Z2 Z2 Z2 Z2 Z2 Z2 Z2

FIG. 6. Serre spectral sequence for (BZ2,B
2
Z4)

The next possibly non-zero differentials are on the E4

page:

Hj(BZ2, Ẑ4)→ Hj+3(BZ2,R/Z)
∼→ Hj+4(BZ2,Z).(D6)

The first map is contraction with π.
The last relevant possibly non-zero differential is on

the E6 page:

H0(BZ2,H
5(B2

Z4,Z))→ H6(BZ2,Z). (D7)

Following the appendix of [90], this differential is ac-
tually zero.
So the only possible differentials of Serre spectral se-

quence are d3 from (0, 5) to (3, 3) and d4 from the third
row to the zeroth row.
〈π, π〉q = 2q(π), 8q(π) = 0, there are 2 among the 8

choices of q(π) such that q → 〈π,−〉q maps to the dual

linear function of π, if we identify Ẑ4 with Z4, then the
nonzero element in the image of q → 〈π,−〉q is just π.

So the differential d
(0,5)
3 is nontrivial.

The differential d
(0,3)
4 : H0(BZ2, Ẑ4) → H3(BZ2,R/Z)

is defined by

d
(2,3)
4 (λ)(v0, . . . , v3) = λ(π(v0, . . . , v3))

which is actually zero since π(v0, . . . , v3) ∈ 2Z4.

The differential d
(2,3)
4 : H2(BZ2, Ẑ4) → H5(BZ2,R/Z)

is defined by

d
(2,3)
4 (χ)(v0, . . . , v5) = (χ(v0, . . . , v2))(π(v2, . . . , v5))

which is also actually zero since π(v2, . . . , v5) ∈ 2Z4.
So only the A3B2 is vanished in H5(BZ2 ⋉ B2

Z4,Z2),
hence in ΩO

5 (BZ2 ⋉ B2Z4).
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