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Abstract

We explore the higher-form generalized global symmetries and higher anomalies based
on a generalized cobordism theory. Our cobordism calculation guides us to classify higher
anomalies and topological terms for Yang-Mills (YM) gauge theories and sigma models in
various dimensions. Some of YM gauge theories can be obtained from dynamically gauging
the SU(N) time-reversal symmetric cobordism invariants (SU(N)-generalized topological
superconductors/insulators [arXiv:1711.11587]). We elaborate the cases of YM theory with
a compact Lie gauge group (such as SU(N) with N=2, 3 and others) particularly in a 4d
spacetime. We provide the relevant homotopy and cobordism group calculations of higher clas-
sifying spaces, based on mathematical tools of algebraic topology, to support the physics stories.

This is a companion article with further detailed calculations supporting other shorter articles.
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1 Introduction and Summary

1.1 A Preliminary Introduction

The purpose of this article is a companion article with further detailed mathematical calculations
in order to support other shorter articles [1].

The major motivation of our work is to generalize the calculations and the cobordism theory
of Freed-Hopkins [2] — such that we consider the cobordism theory with higher classifying spaces,
in order to study the higher-form generalized global symmetries and higher anomalies in physical
theories, such as quantum field theories (QFTs) including Yang-Mills gauge theories [3] and sigma
models.

Freed-Hopkins’s work [2] is motivated by the development of cobordism theory classification [4,5]
of so-called the Symmetry Protected Topological (SPT) state in condensed matter physics [6]. In a
very short summary, Freed-Hopkins’s work [2] applies the theory of Thom-Madsen-Tillmann spectra
[7,8], to prove a theorem relating the “Topological Phases” (which later will be abbreviated as TP)
or certain deformation classes of reflection positive invertible n-dimensional extended topological
field theories (iTQFT) with symmetry group (or in short, symmetric iTQFT), to Madsen-Tillmann
spectrum [8] of the symmetry group.

In this work, we will consider the generalization of [2] to include higher symmetries [9], for
example, including both 0-form symmetry of group G ) and 1-form symmetry of group Gy, or in
certain cases, as higher symmetry group of higher n-group.! Other physics motivations to study
higher group can be found in [11-14] and references therein.

We generalize the work of Freed-Hopkins [2]: there is a 1:1 correspondence

deformation classes of reflection positive
invertible n-dimensional extended topological 3 = [MT(H x G), X" IZ] . (1.1)
field theories with symmetry group H, x G

where H is the space time symmetry, G is the internal symmetry which is possibly a higher group,
MT(H x G) is the Madsen-Tillmann spectrum [8] of the group H x G, ¥ is the suspension, IZ is
the Anderson dual spectrum, and tors means the torsion part.

Since there is an exact sequence
0 — BExt!(1,B,2Z) — [B, X" 1Z] — Hom(m,41B,Z) — 0 (1.2)

for any spectrum B, especially for MT(H x G). The torsion part [MT(H x G), X" 1Z]ios is
Ext!(m, MT(H % G))tors, Z) = Hom((m, MT(H x G))tors, U(1)).

! For the physics application of our result, please see [1]. Some of these 4d non-Abelian SU(N) Yang-Mills [3]-like
gauge theories can be obtained from gauging the time-reversal symmetric SU(NN)-SPT generalization of topological
insulator/superconductor (TI/SC) [10]. We can understand their anomalies of 0-form symmetry of group Gy and
1-form symmetry of group G (1), as the obstruction to regularize the global symmetries locally in its own dimensions
(4d for YM theory). Instead, in order to regularize the global symmetries locally and onsite, the 4d gauge theories
need to be placed on the boundary of 5d higher SPTs. The 5d higher SPTs corresponds to the nontrivial generators
of cobordism groups of higher classifying spaces. We write G gy or G, to indicate some 0-form symmetry probed by
1-form a field. We write G (1) or Gy to indicate some 1-form symmetry probed by 2-form b field.



By the generalized Pontryagin-Thom isomorphism (6.27), 7, MT(H x G) = Q*¢ = Q1 (BG)
which is the bordism group defined in definition 114.

Namely, we can classify the deformation classes of symmetric iTQFTs and also symmetric
invertible topological orders (iTOs), via the particular group

TP,(H x G) = [MT(H x G),x""'1Z]. (1.3)

Here TP means the abbreviation of “Topological Phases” classifying the above symmetric iTQFT,
the torsion part of TP, (H x G) and Q(BG) are the same.

In this paper, we compute the (co)bordism groups QdH(BG) (TP4(H x G)) for H =
0/SO/Spin/Pin* and several G, we also consider Q¢ where BG is the total space of the nontrivial
fibration with base space BO and fiber B2Z5 in section 3.1.

For readers who wishes to explore other physics stories and introduction materials, we suggest
to look at the introduction of [10] and that of the shorter articles [1]. In particular, we encourage
to read the Section III of [1].

For readers who wishes to explore other mathematical introductory materials, we suggest to
look at the [2] and Appendices of [10].

Readers may be also interested in other recent work along the cobordism theory applications
to physics [15] [16] [17] [18].

1.2 The convention of notations

We explain the convention for our notations and terminology below. Most of our conventions
follow [2] and [10].

e We denote O an orthogonal group, SO a special orthogonal group, Spin the spin group, and
Pin® the two ways of Z; extension (related to the time reversal symmetry) of Spin group.

e Z, is the finite group of order n.
e A map between topological spaces is always assumed to be continuous.

e For a (pointed) topological space X, ¥ denotes a suspension XX = S'AX = (S'x X)/(S'VX)
where A and V are smash product and wedge sum (one point union) of pointed topological
spaces respectively. For a graded algebra A, ¥ A is obtained from A by shifting its degree by
1.

e For a (pointed) topological space X, QX is the loop space of X:

QX = {v: I — X continuous|y(0) = v(1)}. (1.4)

e A spectrum M is a collection of (pointed) topological spaces M, together with structure maps
>M, — My,11 such that the adjoints M,, — QM, 1 of the structure maps are homeomor-
phisms.



H*(M, A) is the reduced cohomology with coefficients in A if M is a spectrum and the ordinary
cohomology with coefficients in A if M is a topological space.

We will abbreviate the cup product x Uy by xy.
M, (or simply M) is a d-dimensional (possibly non-orientable) manifold.
T My (or simply TM) is the tangent bundle over My (or M).

Rank r real (complex) vector bundle V' is a bundle with fibers being real (complex) vector
spaces of real (complex) dimension r.

w;i(V') is the i-th Stiefel-Whitney class of a real vector bundle V' (which may be also complex
rank 7 but considered as real rank 27).

pi(V) is the i-th Pontryagin class of a real vector bundle V.

¢;(V') is the i-th Chern class of a complex vector bundle V. Pontryagin classes are closely
related to Chern classes via complexification:

pi(V) = (=1)’cy;(V ®@r C) (1.5)

where V' ®gr C is the complexification of the real vector bundle V. The relation between
Pontryagin classes and Stiefel-Whitney classes is

pi(V) = w2i(V)2 mod 2. (1,6)

For a top degree cohomology class with coefficients Zs we often suppress explicit integration
over the manifold (i.e. pairing with the fundamental class [M] with coefficients Z3), for
example: wo(TM)ws3(TM) = [, wo(TM)w3(TM) where M is a 5-manifold.

If = is an element of a graded vector space, |z| denotes the degree of z.

For an odd prime p and a non-negatively and integrally graded vector space V over Z,, let
veven and V4 be even and odd graded parts of V . The free algebra Fz,[V] generated by
the graded vector space V is the tensor product of the polynomial algebra on V*¥*" and the
exterior algebra on 17044

Fz,[V] = Z,[V™] @ Az, (Vo). (1.7)
We sometimes replace the vector space with a set of bases of it.
A, denotes the mod p Steenrod algebra where p is a prime.
Sq" is the n-th Steenrod square, it is an element of As.
Az(1) denotes the subalgebra of Ay generated by Sq' and Sq?.

Binm) * H (=, Zm) — H**1(—,Z,) is the Bockstein homomorphism associated to the exten-
sion Z, =5 Zpm — Zm, When n = m = p is a prime, it is an element of A,. If p =2, then
5(2,2) = Sql-

By H*(—,2Zp) — H*“‘Q”(i”_l)(—7 Z,) is the n-th Steenrod power, it is an element of A, where
p is an odd prime. For odd primes p, we only consider p = 3, so we abbreviate P35’ by P".



e P, is the Pontryagin square operation H* (M, Zyr) — HY(M, Zor11). Explicitly, Py is given
by

Py(z) =2zUz +xUdr mod 28 (1.8)
1

and it satisfies
Py(z) =x Uz mod 2~ (1.9)

Here U is the higher cup product.
1
e Postnikov square B3 : H*(—, Zgc) — H®(—, Zge11) is given by

Ps(u) = B(3k+1’3k)(u Uu) (1.10)

where 5341 3y is the Bockstein homomorphism associated to 0 — Zgki1 — Zgort1 — Zge —
0.

e For a finitely generated abelian group GG and a prime p, Gﬁ = lim,, G/p"G is the p-completion
of G.

e 7g(M) has two meanings: one is the d-th (ordinary) homotopy group of the M if M refers
to a topological space, the other one is the d-th stable homotopy group of M if M refers to
a spectrum,

TI'd(M) = Colimk_>007rd+kMk. (1.11)

The colimit above can be understood as a limiting group in the sequence mgMy — 7441 M7 —
s d+2M2 —

e For an abelian group G, the Eilenberg-MacLane space K(G,n) is a space with homotopy
groups satisfying

G, i=n.

0. itn (1.12)

7K (G,n) = {

The Eilenberg-MacLane spectrum HG is the spectrum whose n-th space is K(G,n).
e Let X, Y be topological spaces, [X, Y] is the set of homotopy classes of maps from X to Y.

e Let GG be a group, the classifying space of G, BG is a topological space such that
[X, BG] = {isomorphism classes of principal G-bundles over X } (1.13)

for any topological space X. In particular, if G is an abelian group, then BG is a group.

e There is a vector bundle associated to a principal G-bundle Pg: Pg xgV = (Pg x V)/G
which is the quotient of P x V by the right G-action

(p,v)g = (pg,9"0) (1.14)

where V is the vector space which G acts on. For characteristic classes of a principal G-bundle,
we mean the characteristic classes of the associated vector bundle.



af(—y| B2z, | B2z; | BPSU(2) | BPSU(3) EQZZQ X ;Z; X EEZSU(Q)X EEZSU(?’)X
2 3 2 3
9 50 Zo Zs: Zs Z3: Zo: Zs3: Z%: Z%:
T2 2 wy 22 T2 5 wh, To Ty, 2o
72 Zy X 72 . Zs X Z%: Zy X Z3: Z%: ZQXZ%:
2 Spin 2 A ; Zs: w% Arf Zs: o, Arf, Arf. 2! wh, T2, Arf, 2,
T2 AT AL ) 2 Arf, 29 a?f 2 A?I)'f 29
Z%: Zs: Z%: Zo: 222: Zs: Z%: Zs
2 O 2 2 / 2 2 a~, T2, 2 Wy, T2, 2
T2, Wy wy Wy, W7 w1 2 w1 2 wy
2 2 £ Z% :
2 Pint | 42 Z2~: Ly ZQ: wa N ZQi wh, o Z2~:
Lo, wif] | wif] wh, wif] | wi) a?, x, W] 2 w17
w17] -
22 X ZQ X ZZXZ4X Z2><th
9 Pin— | Zs : Zs: Zs Zs: Zs : Zs: w? " Zs:
: ' 3 29 )
29, ABK ABK wh, ABK ABK zgl,glfé(a) , | ABK ABK ABK
Table 1: 2d bordism groups.
BZ x | BZ x | BPSU(2)x | BPSU(3)x
Q)| B2Z B2Z; | BPSU(2) | BP 2 3
d( ) 2 3 SU( ) SU(B) B;Z2 2223 B222 B223
Z5: :
3 SO 2 3
0 0 0 0 axs,a’ a't',d'xl, 0 0
. 22 X Zg : Z% .
3 Spin | 0 0 0 0 ary, aABK | d'V,d'7) 0 0
Z, - Z, Z% : Z% :
30 s =0 wh = 0 3 =1 T3 /:_ 0
wW1T2 wlw’2 w1f§2, Csw% wle/’ v
72 72 % “:
a’, wixTe = wyw =
3 Pint | Y172 7 2y wiwh = 22 x o 22 w’1 uz; To = 22
zs3, wy Arf wh, wi Arf 3 - w1 Arf 39 WLE2 =y Arf
wy Arf wy Arf a2, Wi, 3)
! ! wiArf wi Arf
Zy: 72 .
Zs: Zy: a3,w%a, 2 '/_
3 Pin~ | wixy 0 wywh 0 r3 = 0 o 0
=3 = wjy w1 T, Ws
azs W1x9 = T3

Table 2: 3d bordism groups.
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BZ; % [ BZ; x| BPSU(2)x | BPSU(3)x
Q)| B2Z B2Z; | BPSU(2) | BPSU(3 2 3
d( ) 2 3 ( ) ( ) B222 B223 B222 B223
Z X Zy X
5. ZxZ3 |2 X2y x| 5o
450 ZxZy | ZxZ2Z3:| Z2 Z2. 04' o, Zy: o c 3
g, 7)2(‘7;2) g, :Z:/22 g, p/1 ag,C2 7 2 CL,.Z'é = b/wl27 g, p,17 ;2 2’/
ars = a*xs, 25, xhzo
a2 whro, Po(x2) ~27 72
Pz(xz) 2 L2, 72(L2
sz, ZXZ%: ZXZ%: ZQXZ%: 22 22
2' / >< .
) Zx2Zs | 72 Z2. e o o P 3
4 Spin %’ o /23 o P o 167 2 0, | 1627 %7627
Pa(z2) 16> T2 16> 2 16° €2 arg = a“xy, | a'wrg = b'xy,| wHws, 6
D) Pa(z2) 2 Pa(z2) Ly, LoZ2
2 T2 5
Zs: Z7:
26 |z |z |z ua |, wiag, |2
: : : : , W5, 72. , W5, :
40 3, wi, | wi, wi wi, | wi,wi, at, a’zs, wi w2 x3, Wi, wi, w3,
wiry, wi| wi wiwh, w3 | co(mod 2) ax23,2:17%,2 b2 xglw%,wéwl, ca(mod 2)
wia”, wiTrs Wo T2
Z3 x Z4 X
2
Z % Z, % Zg X 2163 24 X 216 X
Zi6: Zi6: Zi6: Zy X Zig: ars,wiary = Zis: Zo: Zo X Zig:
4 Pint . (3;2)4 ; ' . (w’ )6 ca(mod 2), | a?xy + axs, ; ’ qs(wh), ca(mod 2),
S 9 S 9
P ; 27 qs(x2), gs(x2), 7
wi1aABK, n, whe
n
Z%:
Z3:
Zo: Zs: Zo: 2 2 Zo:
4 Pin- | 72 0 . > Wit a3, wwh, 2
wix wiw, ca(mod 2) | wyaxs = : c2(mod 2)
a’zy + axs W12, W2

Table 3: 4d bordism groups.

1.3 Tables and Summary of Some Co/Bordism Groups

asymmetry).

Pin™ (M)) of the intersection form

Pin™ structure should satisfy

4(]53

(,): H'(M,Zs) x H'(M,Z5) — Z»

ie. so that fo(z +y) — fs(z) — fs(y) = 2(z,y) € Z4 (in particular fs(z) = (z,xz) mod 2)
The space of Pin™ structures is acted upon freely and transitively by H' (M, Zz), and the dependence of fs on the

foxn(x) — fo(z) = 2hx, for any h € H' (M, Zs)

(note that any two quadratic functions differ by a linear function)

Pin™ (M)) of the intersection form

(,): H*(M,Zs) x H*(M,Z5) — Z»

i.e. so that ¢s(z +y) — gs(z) — gs(y) = 2{x,y) € Z4 (in particular ¢s(z) = (xz,z) mod 2)

Pin™ structure should satisfy

gsin(z) — qs(x) = 2w (TM)hz, for any h € H' (M, Z5)

(note that any two quadratic functions differ by a linear function)

11

2 7 is the “mod 2 index” of the 1d Dirac operator (#zero eigenvalues mod 2, no contribution from spectral

3 fs ¢ Hl(M, Zy) — Z4 is a Z4 valued quadratic refinement (dependent on the choice of Pin™ structure s €

HZ(M, Zy) — Z4 is a Z4 valued quadratic refinement (dependent on the choice of Pint structure s €

The space of Pin? structures is acted upon freely and transitively by H* (M, Z5), and the dependence of gs on the




BZ5 x | BZ3 X BPSU(2)>< BPSU(B)X
Q=) | B2z, B%Z3 | BPSU(2) | BPSU(3
d( ) ( ) ( ) B222 B223 B222 B223
Z6. Zo X Z% X Z%:
2. 2° . !, _ o
Z2. 22' aa;2 (],5 Zg. WoWs3, 5 = 22 X 25'
s = | Zo: 2 Zo: 27 wows, Tox3, waws3,
5 SO waws, xIs = 110 1 ’ ’
Tox3, WoW3 cy WoWs a'b'zy, w3Ty = 22T3 =
Wy Ws L2X3, "2, | 4 s2 ! — st
Waws3 a Ty, Wy 3, Z3L
wgngau@ b/
B3 (') wow3
Z% X Zg: . X
Zy: oV ! Zs: Z3:
5 Spin | 0 0 0 0 3 e () 29Tl
a°xT a'x
2 2 — ol _ /
o Bs(V)
Z5°:
Z3: 3 a’,a’xs, z5:
Tox3 Z: a’zy, adw? whwh, xow!
0 ’ ZQZ waws, ZQ: 2 ’ 4 D Zg: % :,37 , 3 ZQZ
5 s, 2,/ axs, awy, WiWs3, WyX3,
2 worws wiws, wows 2 2 wows 2 wowWs;
w3, whw' ar2wy, aws;, T2X3,WiT3,
2W3 2
waw3 23, Wix3, Ty, WawW3
T5, Waws
Zi:
4
wia, Z5.
5 _,,2.3 2°
a —wla 9 2 /
9- Z2: WIT3= Ts, — whw'
23 2,/ T2X3 2
5 Pint | 757 0 wiwh 0 , 0 wiry =x5, | 0
wll‘g _ / / wlaxQ = /
= WoW ToT3, Wal
2%3 2 2 243, Wgl2,
= x5 arj+a“xs, / _
W1WyT2 =
wiars =
5 0 whHT3+WhTy
a~rs,
CLS.%‘Q
Zg:
2 3 3.
wia’, rars, Zs:
.| Za wiaxy, Tols, WhTa,
5 Pin 0 0 0 0 / 0
T2T3 wiary = W1 WyTo =
a’xs, whHT3+WhTy
a33;2

Table 4: 5d bordism groups.

If w1 (TM) = 0, then ¢s(x) is independent on the Pin™ structure s € Pint (M), it reduces to Pa(z) where P2(x) is
the Pontryagin square of z.
"Here 7 is the usual Atiyah-Patodi-Singer eta-invariant of the 4d Dirac operator (=“#zero eigenvalues + spectral
asymmetry”).

% one can also define this Z, invariant as

(nso(z) —3n)/4 € Za (%)

where 1 € Zi¢ is the (properly normalized) eta-invariant of the ordinary Dirac operator, and nsos) € Zis is the
eta invariant of the twisted Dirac operator acting on the S ® V3 where S is the spinor bundle and V3 is the bundle
associated to 3-dim representation of SO(3). Note that (x) is well defined because 703y = 37 mod 4.
Note that on non-orientable manifold, if w2(V3) = 0, then since w1 (V3) = 0, we also have ws(V3) = 0, hence V3 is
stably trivial, Nso(3) = 37]
Also note that on oriented manifold one can use Atiyah-Patodi-Singer index theorem to show that (here the




TP4(H x —) | BZ, BZ; | PSU(2) | PSU(3) | Zo x BZy | Z3 x BZ; giU(Q) X giU(?’) X
2 3
Zo Zs . Zs Z3: Zs - Zs: Z:: Z% :
2 SO ’ / / 7 /
T2 ) Wy Z2 T2 Lo Wy, T3 To, 22
3 .
: Z3: L2 z3: L2 x| Zy Zy x L3 Zy: Z> X 7
2 Spin :132 Aot Zs: ol Agf Zs: 2o, Arf, Arf. 2! wh, T3, Arf, 2,
2 Arf, o, 2 Arf, z9 ag 2 A?I)'f 29
Z%: Zs Z%; Zy: 222: Zs: Z?: Zs
20 2 2 / 2 2 a~,x2, 2 Wy, T2, 2
T2, Wy wy Wy, WY w1 2 w1 2 wy
wy wy
Z;5:
Z3:
9 Pint Z% : ) ZQi Z% : ) Zg~: w21a = wz,@’ Zs:
Zo,w1n win w27w1n win a~, T2, win
w17] -
22 X ZQ X 22 % Z4 % Z2 X Zg
9 Pin— Zs - Zs: Ze ! Zs: Zs : Zs: w% " Zs:
: : 29 )
o ABK| ABK | 0 apk] ABK | @2 fi(a), | ABK e ABK
’ 2 ABK
Table 5: TPs.
TP,(H x —) | BZs Bz, | PSU(2) | PSUB) |ZyxBZy | Zsx BZs giU(Q) X EEU(?’) X
- - Q:TM Z? N ZxZ3%: ZxZ3: Zz:2 2?
350 1CS(TM)7 1CS(TM) %ng )7 %CS:())T ), %ngTM)’ %CSgTM)’ %CSgTM)7 %CSgTM)’
3 3 3 3 CSéSO(?’))S CS;PSU(Z&))Q ars, a3 a’b’, a'm’Q CS;SO(3)) CSéPSU(?’))
2. 2. Z X Zy X 2 2. 2
: Z°: Z xZ5: : Z°:
. Z: Z: 1 CS(TM) 1 (T™m) | Zg : 1 8 (?;’FM) 1 CS(TM) 1 (TM)
38pin | L ogM)| 1) 18y Oy g | 508y, | OB | asC8y
48 3 48 73 %CS§SO(3)) CSéPSU(?))) ésxg,agABI% a’b’,a’xé %CSgSO(?;)) CS:())PSU(B))
1, 2.
30 w3 = 0 wh = 0 3 1o o =y
/ w1r2,ar2, w12, Wg =
w1x2 W1We 2 3 /
Z% : Z% : 232 : 23 :,
3 Pin* W19 = 22 : wlw’Q = Zg . Z » Wiz = 22 : w/lw2 __ ZQ .
x3, wi Arf wh, w1 Arf 3 | wArf W3, W12 =1 ) Arf
axg,wian, xs3,
wy Arf wy Arf wiArf w%Arf
Z5: Z5:
Zy: Zy: a®, wia, wiwh =
3 Pin~ wirs = | 0 wiwh = 0 T3 = 0 wh, 0
T3 w w12, w1T2 =
axro I3
Table 6: TPs.

normalization of eta-invariants is such that 7 is an integer mod 16 on a general non-oriented 4-manifold)

Nso@3) = —

3o(M)
2

+ 4p1
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TP4(H x —) | BZ, BZ, | PSU©2) | PSUB) | 2y xBZy | ZsxBzy | LSUR) x [ PSUE) X
BZ, BZ4
22 X Z4Z Zg
Zy: Zs: ars = a'zh = Zo X Z4: Z2.
4 SO 3 3
Po(xs) | 2% 0 0 a’xs, b, whxe, Pa(x2)| o, 220
Pa(z2) r
Zz Zz: 22.
Zs: Z3: ars = a'xh = z Z2:
4 Spi 3 WhHT9, 3
PR Bl g O ’ @, | Vb, Pae | T ah
Pa(w2) 22 —5
2 2
Z5: Zi:
2421: Z%: Z%: Z%: w%,w%, 22. w%,w%, Z%:
40 3 wi, | wi, wi wi, | wi,wé, at, a’xo, w%" w2 x3, W, wi, w3,
wiry, w3 | w3 wiwh, w3 cz(mod 2)| ars, z3, b2 wow?, whw?,| ca(mod 2)
w%cﬂ w%xg w’gl‘z
Z5 x Zy X
z % Z % 28 x 216: ZZ X 216 X
azx
Z4 7 Z4 22 X Zlﬁ: w iL’:E B 7 ZQ: 22 X ZIG:
4 Pin™ 16 16 16+ co(mod 2)) TR 16- qs(wh), ca(mod 2),
s(z2), | m qs(ws), axotazs, | 1
n QS(QS2)7 n
n U qs(w2), 0w
w1aABK, ache
n
z z z Z%: Z5: z
4 Pin~ 5 0 > > 42 wlx?’af?” 0 wiwh, 2 42
wyT2 WyWs c2(mod 2)| wiazy = 2 / c2(mod 2)
a“ro +axs
Table 7: TPy4.

In Section 3.1, we compute the topological terms (involving the cohomology classes of B2Z5) of Qg
where G is a 2-group with G, = O, G, = Zy We find that the term xows (or xzws) survives only
for 8 = 0,w} (the Postnikov class 3 € H3(BO, Z,) = Z3 which is generated by w3, wiws, ws). This
term also appears in eq. 2.57 of [19].

2 Difference between a previous cobordism theory and this work

Difference between a previous cobordism theory [10] and this work. In all Adams charts of the
computation in [10], there are no nonzero differentials, while in this paper we encounter nonzero
differentials d,, due to the (p,p™)-Bocksteins in the computation involving BQan and BZ,»

So
(nso@s) = 3n)/4 = p1(SO(3)) mod 4 = P2(w2(SO(3))).
gs(w2(S (3))) also reduces to Pa (w2 (SO( ))) in the oriented case.

SO(3 ) CS(SO(S)) is the Chern-Simons 3-form of the SO(3) gauge bundle.

(
(
9CS3(PSU(3)) = cs“’SU“” is the Chern-Simons 3-form of the PSU(3) gauge bundle.
10CS5(PSU(3)) = S(PSU(S)) is the Chern-Simons 5-form of the PSU(3) gauge bundle.

14




PSU(2) x | PSU(3) x
TPd(H X —) B22 B23 PSU(Q) PSU(?)) ZQ X B22 Zg X BZg BZ ( ) BZ ( )
5 2 3
76. Zy x Z5 % | Z5: Z X Z3 %
72. 2 Zo: whwh, x5 = | Z3:
2 Z3: Z x Zy: azr3,a’, 9 27035 Og(PSUG)
rs = Zy: (PSU(3))1q Waws, T2X3, 5 )
5 SO waws, CS5 y L5 = 1 /
roT3, wWoW3 7y a'b Ty, W3Ty = waws,
w2w3 w2w3 I2x3,a x2, /02 i /]
WoW3 a'xy, Wo T3, 22Xz =
WawW3s, AWy / /
‘1323(5 ) Waws3 — 2379
Z35 X Zg: Z X 232
3 9- Zo:
: PSU(3
: Z: Zy: a't'zh, 2 %CS% @)
5 Spin 0 0 0 1~a(PSUE)) 3 g W4T = S
§CS5 a~xo a Ty, whe T3 =
3
B (V) ’ — 234
T
ZZ- 12
xrox3, Z3' ZQ :
T5 = 2 a®,a’xs, Zg:
w2ws3 3 3,,2 i /
(w2+w%)m3 7o 5 4 7o a T2, AWy, | 5 . WaWs, L2W34 - .
50 2 wiWs = 2- 2 4 2 2.7 2:
- 3.,/ ary, awy, wiwWs, Wey3,
3 wawz | wiw), wows 5 1o | wows 2 21 wows
(ws + wy)xa, ! arswi, aws, ToX3, WiT3,
wirg = 27 Loz, WiTs, x5, Wows3
wi”xg, L5, WaWs3
wWwow3
zZi
wha, 23
2. a® = wia?, wiwh =
: 2 1o
wir3= T wHw
T3, Zy: wle > w%xsj_
5 Pin* T5 = 0 wiwh =| 0 203 0 13 0
2. ! oyl wyary = s,
wlxg — 'LUng 2 2 /
3 ars+a“xs, ToT3, W3T2,
w1$2 / _
wilaxrs = w1w2x2 =
a’xs, wyxz+WwhTo
alzsy
Zg:
3.
wia®, wows, Z3:
. Zs: 2 ToT3, WhT
5 Pin™ 2 0 0 0 wiarsy, 0 2 3; 3720 |
23 wi1ary = W WeTo =
a’zs, whHr3+WhTy
a3x2
Table 8: TPs.
3 Higher Group Cobordisms and Non-trivial Fibrations
If G, is a group, Gy is an abelian group, then BG} is a group. Consider the group extension
0—BG, —>G— G, — 0, (3.1)
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we have a fibration

B2G, —— BG (3.2)

BG,

which is classified by the Postnikov class 8 € H*(BG,, Gp).

3.1 (BG,, B%G,) : (BO,B?Z,)

If G, = O and Gy = Zy. Then H"(B2Z;,Z) is computed in Appendix C of [20].

(Z n=0

0 n=1

0 n=2
H"(B%Z5,2)={ Zy n=3 (3.3)

0 n=4

Z4 n=>5

ZQ n==~6

For the fibration
B%Z, —— BG (3.4)
BO,

the F5 page of the Serre spectral sequence is H?(BO, H?(B2Z3, Z)). The shape of the relevant piece
is shown in Figure 1.

Note that p labels the columns and ¢ labels the rows.
The bottom row is H?(BO, Z).

The universal coefficient theorem (6.15) tells us that H3(B222,;) = H?(B?Z,,R/Z) =
Hom(Hs(B%Z2,2),R/Z) = Hom(m(B?Z3),R/Z) = Hom(Zy,R/Z) = Zy, so the ¢ = 3 row is

A

HP(BO, Z,).

It is also known that H(B2Z,,Z) = H*(B%Z3,R/Z) is the group of quadratic functions q : Zy —
R/Z [21]. The isomorphism is discussed in detail in [22].

The first possibly non-zero differential is on the E3 page:

H°(BO, H*(B%Z,,Z)) — H3(BO, Z,). (3.5)

Following the appendix of [23], this map sends a quadratic form ¢ : Zy — R/Z to (8, —),, where
the bracket denotes the bilinear pairing (z,y), = q(z +vy) — q(x) — q(v).
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6 Zs Z, 72 z3 z3 zi ozt zp

5 Z4 * * * * * * *
4 0 0 0 0 0 0 0 0
3

Figure 1: Serre spectral sequence for (BO, B?Z)

The next possibly non-zero differentials are on the F, page:
H’(BO, Z,) — H/*3(BO,R/Z) — H/*4(BO, Z). (3.6)
The first map is contraction with 8. The second map comes from the long exact sequence
... — H"(BO,R) — H"(BO,R/Z) — H""1(BO,Z) — H""}(BO,R) — - -- . (3.7)
If H*(BO,R) = H""(BO,R) = 0, then H*(BO,R/Z) = H"*(BO,Z). Since H*(BO,R) =
H"(BO,Z) ® R and H"(BO, Z) is finite if n is not divisible by 4, H*(BO,R) = 0 if n is not di-
visible by 4, thus H*(BO,R/Z) = H"*}(BO, Z) for n = 1,2 mod 4.
The last relevant possibly non-zero differential is on the Fg page:

H°(BO, H?(B?Z,, Z)) — H%(BO, Z). (3.8)

Following the appendix of [23], this differential is actually zero.

So the only possible differentials of Serre spectral sequence are ds from (0,5) to (3,3) and dy4
from the third row to the zeroth row.

By the Universal Coefficient Theorem (6.20),

H"(BG, Z3) = H"(BG, Z) ® Z, ® Tor(H""(BG, Z), Z,). (3.9)
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The Madsen-Tillmann spectrum MTG = Thom(BG; —V') where V is the induced virtual bundle
over BG (of dimension 0) from BG — BO.

By Thom isomorphism, H*(MTG, Z3) = H*(BG, Z3)U where U is the Thom class with Sq'U =
w;U where (1 + w1 + w2+ -+ )(1+w +wa+---) =1

We have the Adams spectral sequence
Ext’i, (H*(MTG, Z5),Z5) = m—s(MTG) (3.10)

where As is the mod 2 Steenrod algebra.

The A-module structure of H*(MTG, Z2) below degree 5 is shown in Figure 2 where we inten-
tionally omit terms that don’t involve the cohomology classes of B2Zs.

z5U + x3 (w2 +w%)U
xgwlU + z3(wo + w%)U + zo (w3 + w:f)U z5U + z3(wo + w%)U + x%wlU + zowiwa U
ng+zg(w2 +wf)U+zgw1U ngwlU
z3U + zow1 U
x3U

zoU

z3woU + xowsU a:;;w%U+x2w:fU

I I z3waU(zaw3l) wgw%U(zgw?U} zoz3U
xowaU zgwa

Figure 2: The As-module structure of H*(MTG, Z3) below degree 5

Note that the position (0,3) contributes to both H?(B2Zy, Z5) which is generated by xo and

H3(B?Z,,Z,) which is generated by z3, Sqlas = 23. The position (2,3) corresponds to zwi, rws,

the position (3, 3) corresponds to zw$, rwiwe, Tws for x = x9, 3.
(B,8)q = —2q(B), 4¢(B) = q(28) = 0, there are 2 among the 4 choices of ¢(5) such that

q — (B,—)q maps to the dual linear function of 3, if we identify Z, with Zy, then the nonzero

element in the image of ¢ — (B, —)4 is just S. Imdé075) is spanned by x(.

The differential d*® : H%(BO, Z,) — H?(BO,R/Z) is defined by

dPV (@) (o, ..., v5) = (alvo, .., v2))(B(va, ..., v5)).

The differential d** : H¥(BO, Z,) — H®(BO,R/Z) is defined by

A (@) (v, .-, v5) = (v, -, v3))(Bvs, -, v6)):
Let B = aw? + bwywsy + cws, if we identify Z, with Z, Kerdf’g) is spanned by x7y where v =
a'w} + b'wiws + ws with aa’ + bb' + ¢/ =0 mod 2.

In the following cases, we only consider the topological terms involving the cohomology classes
of B2ZQ.

Case 1: 8 = 0, BG = BO x B2Z,, MTG = MO A (B2Z,)., 7gMTG = Q9 (B2Zy). The 5d
topological terms are xzwsy (or xows), r3w? (or zew;) and xex3. This case will be discussed later.
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Case 2: 3 = w}, zow} is killed in the E3 page, xows (or x3ws) survives in the E., page, so the
5d topological terms are xows (or xzws) and xaxs.

Case 3: 3 = wiwy, T3ws is killed in the Ey page, z3w? (or xow?) survives in the Ey, page, so

the 5d topological terms are x3w? (or xow}) and waxs.

Case 4: § = ws, xows is killed in the E3 page, ;ng% (or xgw:f’) survives in the F, page, so the

5d topological terms are zzw? (or row?) and zoxs.

Case 5: g = w{’ +wiws, Hﬁz’w% is identified with zowiws in the F3 page, but zowjwse = Sq3ac2 =
0, zzwo is killed in the E4 page, so the 5d topological term is xox3.

Case 6: § = wywy +ws, rows is identified with xow ws in the F3 page, but zowjws = Sq3x2 =

0, z3w? (or wow}) survives in the E., page, so the 5d topological terms are xsw? (or xow?3) and

ToT3.

Case T: 8 = w} + w3, Tows is identified with mow$ in the E3 page, zows is killed in the Fy
page, so the 5d topological term is xox3.

Case 8: g = wi” + wiwe + w3, rows is identified with azgwi{’ + xzowiws in the E3 page, but
ToWiWy = Sq3:c2 =0, wa‘;’ is killed in the E4 page, so the 5d topological term is xox3.

4 0/SO/Spin/Pin® bordism groups of classifying spaces

In this section, we compute the O/SO/Spin/Pin® bordism groups of the classifying space of the
group G = G, x BGy: BG = BG, x B2G,. Here BG), is a group since Gy, is abelian.

4.1 Introduction

For H = 0/SO/Spin/Pin® and the group H x G, define
MT(H x G) := Thom(B(H x G); —V) (4.1)

where V' is the induced virtual bundle over B(H x G) by the composition B(H x G) - BH — BO

where the first map is the projection, the second map is the natural homomorphism.

By the Pontryagin-Thom isomorphism (6.27) and the property of Thom space (6.24), QX (BG) =
ma(MTH ANBGL) = mg(MT(H x G)). Hence we can define

Q¢ .= ry(MT(H x G)) = Q (BG). (4.2)
TP,(H x G) := [MT(H x G), 2" 1Z] (4.3)
Here X is the disjoint union of X and a point. MTO = MO, MTSO = MSO, MTSpin = M Spin,

MTPint = MPin~, MTPin~ = MPin*. 74(B) is the d-th stable homotopy group of the spectrum
5.
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[B,X"*11Z] stands for the homotopy classes of maps from spectrum B to the (n + 1)-th sus-
pension of spectrum IZ. The Anderson dual IZ is a spectrum that is the fiber of IC — IC* where
IC(IC*) is the Brown-Comenetz dual spectrum defined by

[X,IC] = Hom(m X, C), (4.4)

[X, IC*] = Hom(mX,C*). (4.5)

By the work of Freed-Hopkins [2], there is a 1:1 correspondence

deformation classes of reflection positive
invertible n-dimensional extended topological p = [MT(H x G), " 1Z] 0. (4.6)
field theories with symmetry group H, x G

There is an exact sequence
0 — BExt!(1,B,2Z) — [B,X""'1Z] — Hom(m,1B,Z) — 0 (4.7)

for any spectrum B, especially for MT(H x G). The torsion part [MT(H x G), X" 1 1Z]ios is
Ext! (1, MT(H X G))tors, Z) = Hom((m, MT(H x G))tors, U(1)).

H*(BZ3,Z3) = Z3[a] (4.8)
where |a|] = 1.
Theorem 1 (Serre, Ref. [24]).
H*(B2Z,, Zy) = Z5[Sq x| admissible, ex(I) < 2] = Z5[Sq " ---Sq?Sq zai > 0] (4.9)

where x5 is the generator of H2(B2Z3, Z5).

Denote Squ_l --Sq%Sqlzs = Toiyq-

Here Sq/ = Sq'Sq2--- and I = (i1,ip,...) is admissible if i, > 2i,y1 for s > 1, ex(I) =
Zle(iS - 2is+1)~
Theorem 2 (Ref. [24]).

H*(BZ3,Z3) = Fo,|d, V] = Az,(a’) ® Z3[V] (4.10)

where [a| = 1 and V' = (3 3)a’.

Here (3 3) is the Bockstein homomorphism in Aj.

H*(B*Z3,Z3) = Fz,[ah, B(3 3)%h, Qih, B33 Qixy. i > 1] = Za[wh, B33 Qixy, i > 1|@Az, (B3 3)%h, Qixh, i > 1)

where |25 = 2 and Q; is defined inductively by Qo = B33), Qi = P3171Qi_1 - Qi_lP?’Fl for
i > 1. Let af = B(33)%%, Th.qi 1 = Qily, Thgi 5 = B(33)Qixy for i > 1.

Here P" is the n-th Steenrod power in Aj.
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H*(BPSU(2), Zs) = Zo[w), wh]. (4.11)
H*(BPSU(g), Zg) = 22 [CQ, 03]. (412)

Here w)} is the i-th Stiefel-Whitney class w;(PSU(2)) of the universal principal PSU(2)-bundle
over BPSU(2). Let p} be the i-th Pontryagin class p;(PSU(2)) of the universal principal PSU(2)-
bundle over BPSU(2), then p}( mod 2) = wf.

¢; is the i-th Chern class ¢;(PSU(3)) of the universal principal PSU(3)-bundle over BPSU(3).
Since %ﬁ“ﬂ = U(3), PSU(3) = PU(3).
Theorem 3 (Ref. [25]).
H* (BPSU(?)), Zg) == f‘jz3 [22, 23,2745 28, 212]/J (413)
where |z;| = i, J = (2923, 29227, 2228 + 2z327) is the ideal generated by z9z3, 2027, 2228 + 2327 and

23 = B(3,3)%2, 27 = Plzs, 24 = B(3,3)77- Note that co( mod 3) = 23, c3( mod 3) = z3.

In the following subsections, all bordism invariants are the pullback of cohomology classes along
classifying maps f: M — X and g: M — BH.

4.2 Point
421 Q9

Since the computation involves no odd torsion, we can use the Adams spectral sequence

Ey' = Bxt’} (H (MO, 25), Z5) = m_o(MO)) = 02 . (4.14)

Here m;—s(MO)% is the 2-completion of the group m;_s(MO).

The mod 2 cohomology of Thom spectrum MO is
H*(MO,ZQ) = Ay 0 QF (4.15)
where Q = Zs[y2, y4, Y5, Y6, Us, - - - | is the unoriented bordism ring, 2* is the Zy-linear dual of (2.

On the other hand, H*(MO, Z3) = Z3[wy, we, ws, ...|U where U is the Thom class of the virtual
bundle (of dimension 0) over BO which is the colimit of E,, —n and E,, is the universal n-bundle
over BO(n), w; is the i-th Stiefel-Whitney class of the virtual bundle (of dimension 0) over BO.
Note that the pullback of the virtual bundle (of dimension 0) over BO along the map g : M — BO
is just TM — d where M is a d-dimensional manifold and T'M is the tangent bundle of M, g is
given by the O-structure on M. We will not distinguish w; and w;(TM).
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Here y; are manifold generators, for example, y» = RP? ys = RP* y5 is Wu manifold
SU(3)/SO(3). By Thom’s result [7], two manifolds are unorientedly bordant if and only if they
have identical sets of Stiefel-Whitney characteristic numbers. The nonvanishing Stiefel-Whitney
numbers of yo = RP? are wy and w?, the nonvanishing Stiefel-Whitney numbers of y2 = RP? x RP?
are w% and wy, the nonvanishing Stiefel-Whitney numbers of y; = RP?* are w‘f and wy, the only
nonvanishing Stiefel-Whitney number of Wu manifold SU(3)/SO(3) is waws.

Soy; = w% or Wo, (y%)* = w%, yi = w‘ll, Yz = wows, etc, where y is the Zy-linear dual of y; € Q.

Below we choose y5 = w? by default, this is reasonable since Sq?(z4_2) = (w2 + w})z4_o on
d-manifold by Wu formula (6.62).

Hence we have the following theorem

~

T W N~ O
)

Theorem 4.

The bordism invariant of Q9 is w?.

The bordism invariants of Qf are w}, w3.

The bordism invariant of Q? is wows.

CUB WO R O
N
no

Theorem 5.

The 2d topological term is w?.

The 4d topological terms are w‘f, w%.

The 5d topological term is wows.
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4.2.2 050

Since the computation involves no odd torsion, we can use the Adams spectral sequence
By = Ext% (H*(MSO0, Z3), Z3) = m—s(MSO)5 = Q9. (4.16)
The mod 2 cohomology of Thom spectrum M SO is

H*(MSO, Z,) = .AQ/.AQSql 3 E4¢42/A28q1 EYA @ . (4.17)

ce = WAy — Y24y — B Ay — Ay — Ay /AsSqt (4.18)

is an Ajg-resolution where the differentials d; are induced by Sq'.

The FE» page is shown in Figure 3.

S

Figure 3: Q5°

Hence we have the following theorem

i Q%0
0 z
1 0
2 0
3 0
1 Z
5 Zy

Theorem 6.

The bordism invariant of Q$° is o.
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Tk W N~ O .
O NoO oo

Here o is the signature of a 4-manifold.

The bordism invariant of ng is wows.

Theorem 7.

Since o = @, p1(TM) = dCSgTM), the 3d topological term is %CS%TM).

The 5d topological term is wows.

G
4.2.3 Q"

Since the computation involves no odd torsion, we can use the Adams spectral sequence
By = Ext’{ (H"(MSpin, Z5), Z3) = m—(MSpin)} = Q5P (4.19)
The mod 2 cohomology of Thom spectrum M Spin is
H*(MSpin, Z) = A, ® A5 (1) {Zy ® M} (4.20)

where M is a graded Az(1)-module with the degree ¢ homogeneous part M; = 0 for i < 8. Here
A(1) stands for the subalgebra of As generated by Sq! and Sq?. For t — s < 8, we can identify the
FEs-page with
it
EXtilz(l) (ZQ, ZQ)

The FE> page is shown in Figure 4.

Hence we have the following theorem
-—QSET

Uk W N - O
o No NNNT

Theorem 8.
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Figure 4: QPrin

The bordism invariant of prin is 7.

Here 7 is the “mod 2 index” of the 1d Dirac operator (#zero eigenvalues mod 2, no contribution
from spectral asymmetry).

The bordism invariant of Qgpin is Arf (the Arf invariant).

The bordism invariant of Qipm is %

TP;(Spin)

Uk W N = O
SoNNNo

Theorem 9.

The 1d topological term is 7.
The 2d topological term is Arf.

The 3d topological term is 4—ISCS§TM).
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4.2.4 QFin"

Since the computation involves no odd torsion, we can use the Adams spectral sequence
Ey' = Ext%{ (H*(MPin~, Z5),Z3) = m_s(MPin™)} = Q™" (4.21)
MPin~ = MTPint ~ MSpin A ST A MTO(1).

For t — s < 8, we can identify the Fs-page with
Exti’é(l)(H*_l(MTO(l), Z5),2Z5).

By Thom'’s isomorphism,
H* Y (MTO(1),Z3) = Zs[w|U (4.22)

where U is the Thom class of the virtual bundle —E; over BO(1), Ej is the universal 1-bundle over
BO(1) and wy is the 1st Stiefel-Whitney class of E; over BO(1). The As(1)-module structure of
H*Y(MTO(1),Z5) and the E page are shown in Figure 5, 6.

U

Figure 5: The As(1)-module structure of H*~1(MTO(1), Z)

Hence we have the following theorem
Tgin-f
Zy

0

Zy

Zy
VAT

0

U W NP Ol

Theorem 10.

The bordism invariant of Qgin+ is wy U 7.
The bordism invariant of Qgin+ is wy U Arf.
The bordism invariant of Q}zi‘ﬁ is 7.

Here 7 is the usual Atiyah-Patodi-Singer eta-invariant of the 4d Dirac operator (=“#zero eigen-
values + spectral asymmetry”).
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Figure 6: inrﬁ

TP, (Pin™)

T W N = O .
N
N

Theorem 11.

The 2d topological term is wy U 1.
The 3d topological term is wy U Arf.

The 4d topological term is 7.

4.2.5 QFm

Since the computation involves no odd torsion, we can use the Adams spectral sequence
Ey' = Ext (H*(MPin", Z5), Z5) = m_(MPinT)y = Q7™ (4.23)
MPint = MTPin~ ~ MSpin A S™1 A MO(1).
For t — s < 8, we can identify the Fo-page with

Ext’y o (1 (MO(1), Z3), Zo).
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By Thom'’s isomorphism,
H*TY(MO(1),Zs) = Zo[wn|U (4.24)

where U is the Thom class of the universal 1-bundle E; over BO(1) and w; is the 1st Stiefel-Whitney
class of Ey over BO(1). The Ajy(1)-module structure of H**1(MO(1),Z3) and the E; page are
shown in Figure 7, 8.

U

Figure 7: The As(1)-module structure of H**1(MO(1), Z5)

S

Figure 8: QFin~

Hence we have the following theorem

Pin™
Qi

U W N~ O
cooNNN

Theorem 12.

The bordism invariant of Q"™ is 7.
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The bordism invariant of Q5™ is ABK (the Arf-Brown-Kervaire invariant).
TPi(Pin_)
Zs

Tk W N~ O
coo NN

Theorem 13.

The 1d topological term is 7.

The 2d topological term is ABK.

4.3 Atiyah-Hirzebruch spectral sequence

If H = 0/SO/Spin/Pin*, by the Atiyah-Hirzebruch spectral sequence, we have

H,(BG, Q) = afl, (BG). (4.25)

If H = O/Pin®, since QI are finite, Q*¢ = Q(BG) are also finite, so TP4(H x G) = Q}*¢
for H = O/Pin™.

If H = SO/Spin,

Z q=0
0 g=
0 g=2
Q=<0 ¢=3 . (4.26)
Z q=
22 q:5
( 0 q=
Z q=
Zy g=1
Z2 q:2
QPR =00 g¢=3 . (4.27)
Z q=4
0 g=5
0 gqg=

If H,(BG,Z) are finite for p > 0, then Q(BG) is finite and TP5(H x G) = QI (BG) for
H = SO/Spin.
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If G = PSU(2) = SO(3), since Hy(BSO(3),Z) and Hg(BSO(3),Z) are finite, Qf (BG) is also

finite and TP5(H x G) = Q(BG) for H = SO/Spin.

If G = PSU(3), then Hg(BPSU(3),Z) contains a Z while Ho(BPSU(3),Z) does not, so Q& (BG)

contains a Z and TP5(H x G) = Q¥ (BG) x Z for H = SO/Spin.

4.4 BQGb : BQZQ, B223
4.4.1 Q9(B%Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence

Ey' = Ext’y (H* (MO A (B*Z2)4,22),Z2) = m—s(MO A (B2Z5) 1) = QP (B?Z,).

H*(MOaZQ) & H*(B2227Z2) = A2 & ZQ[yQa Y4,Ys5,Y6, Y8y - - - ]* & Z2[x27 x3,T5,T9,. .

= Ay @222 A5 B X3 Ay AT Ay B AT A B - - -

Here X A5 is the n-th iterated shift of the graded algebra As.

Hence we have the following theorem (see 6.3.1 for detail)

Q? (BQZQ)
Zy
0
zZ3
Zs
zZ;
Z;

QU W N~ O,

Theorem 14.

The bordism invariants of QS (B2Z3) are x2, w?.

The bordism invariant of Q3O(BQZQ) is 3 = wyixs.

The bordism invariants of Q9 (B2Z3) are 23, wi, w?xq, wi.
The bordism invariants of Q5O(BQZQ) are Tor3, T, WiTs, Wols3.

Theorem 15.

The 2d topological terms are 2, w?.

The 3d topological term is x3 = wixs.
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The 4d topological terms are x3, wi, wixy, w3.

The 5d topological terms are xox3, 5, w%mg,, WowW3.

4.4.2 Q59(B%Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence

Ey' = Ext (H*(MSO A (B*Zy)4,Z5),Z) = m—s(MSO A (B*Z2)4)5 = Q7°,(B*Zy).  (4.30)

H*(B%Z3,2Z5) = Zs[xo, 3, 25,29, ...] where x5 is the generator of H?(B%Zy,Z5), 23 = Sqlaa,
5 = Sq’Sq'zwa, z9 = Sq*Sq’Sq'za, ete, Sq'za = w3, Sq'zs = 0, Sq'(z3) = 0, Sq'(wows) =
Sq'(z5) = 3. We have used (6.60) and the Adem relations (6.77).

There is a differential dp corresponds to the (2,4)-Bockstein B4y : H*(B?Z3,Z4) —

H*T1(B2Z,, Z5) associated to 0 — Zy — Zg — Zy — 0 [26]. See 6.5 for the definition of Bockstein
homomorphisms.

Note that 5(274)(732( )) 15(P2($2)) = %5(1‘2 Uxo + 29 LiJ 5IE2) = i(26{£2 Uxg + 0x9 LlJ 6.’E2) =
(ldxg) Uxg + (15:1:2) (%5 9) = x3Uxs + 23 LlJ x5 = x3 U z9 + Sq?z3 = zox3 + 5. We have used
6.12

the Steenrod’s formula ( ) and the definition Sq*z, = Uk T

So there is a differential such that dg(woxs + x5) = ¥3h32.
The FE» page is shown in Figure 9.

Hence we have the following theorem (see 6.3.1 for detail)

i Q9(B2Zy)
0 z

1 0

2 Z,

3 0

4 ZxZ

5 z3

Theorem 16.
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Figure 9: Q3°(B2Z,)

The bordism invariant of Q5°(B2Zs) is xs.

The bordism invariants of Q5°(B2Z3) are o and Pa(z2).

Here Pa(x2) is the Pontryagin square of .

The bordism invariants of QgO(BQZg) are s = xox3 and wows.

Here zox3+x5 = %1711732 (z2) [?] where w; is the twisted first Stiefel-Whitney class of the tangent
bundle, in particular, wq = 0 implies w1 = 0, so xox3 = x5 on oriented 5-manifold.

0
0
Zy
Z
Zy
Z3

G W N~ O .

Theorem 17.

The 2d topological term is x».

1os{™,

The 3d topological term is 3CS;3

The 4d topological term is Po(z2).

The 5d topological terms are x5 = xox3 and wows.
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4.4.3 QP"™(B%Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence

Eyt =Ex tA (H*(MSpin A (B?Z3)+,2Z5),Zs) = m—s(MSpin A (B%Z3) 1)) = Q?ELH(BQZQ). (4.31)

For t — s < 8, we can identify the Fs-page with

Ext®?

o H(B*Z2,Z5),Z,).

H*(B2Zy,Z5) = Zs[x2, 23,75, T9, . ..] where xo is the generator of H2(BQZQ,ZQ), r3 = Sqlz,

= Sq%Sq! :ng, T9 = Sq4SqQSq T9, etc, Sqlxg = 3:3, Sqlzy = 3, Sq* .7}3 = 0, Sq?z3 = xs,
Sq (a:2) =0, Sql(zoz3) = 23, Sqlzs = Sq*z2 = z3, Sq?zs = 0. Sq*(zex3) = z3x3 + T275. We have
used (6.60) and the Adem relations (6.77).

There is a differential dy corresponds to the (2,4)-Bockstein B4y : H*(B%Z,,Z4) —
H*1(B2Z,,Z,) associated to 0 — Zy — Zg — Z4 — 0 [26]. See 6.5 for the definition of Bockstein
homomorphisms.

Note that f(g.4)(Pa(r2)) = i (Pa(x2)) = %(5(3@2 U g + 22 U dzg) = l(2(531;2 Uz + 0o U dwg) =
(75x2) Uxo + (*(5%2) (

%5 9) = x3Ux2—|—:1:3Ua:3 = :E3Ua:2+Sq T3 = Tox3 + x5. We have used
the Steenrod’s formula (6.12

) and the deﬁmtlon Sq¥z, = zp U Ty

So there is a differential such that da(zoxs + z5) = 23h3.

The Az (1)-module structure of H*(B?Zy,Z5) and the Fs page are shown in Figure 10, 11.

23

Z2

—e

Figure 10: The As(1)-module structure of H*(B2Zy, Z5)

Hence we have the following theorem (see 6.3.1 for detail)

Theorem 18.
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Figure 11: Q3P"(B2Z,)

;7" (BZ,)
Z
Zs
3
0
Z x 22
0

U W N = O .

By Wu formula (6.62), 23 = Sq*(x2) = (wo(TM) + w1 (TM)?)z = 0 on Spin 4-manifolds,
x5 = Sq?(z3) = (wo(TM) + wi(TM)?*)z3 = 0 on Spin 5-manifolds, Pa(z2) = 22 = 0 mod 2 on
Spin 4-manifolds.

The bordism invariants of Qgpin(BQZg) are xg and Arf.

The bordism invariants of Qipin(BQZg) are {g and %

TPi(Spin X BZQ)
0
Zy
Z
Z
Zy
0

TR W N R O,

Theorem 19.

The 2d topological terms are xo and Arf.
The 3d topological term is 4—18CS§TM).
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Pa(z2) )

The 4d topological term is —=

4.4.4 QL (B2Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence
Ey' = Ext{ (H*(MPin~ A (B%Z3)4,Z3),Z2) = ms(MPin~ A (B?Z3),)5 = Q™7 (B?Z,). (4.32)

MPin~ = MTPin™ ~ MSpin A S* A MTO(1).

For t — s < 8, we can identify the Fo-page with

Ext’ o) (H T (MTO(1), Zo) © H (B?Z3, Z2), Zs).

The Az (1)-module structure of H*~1(MTO(1),Z3) ® H*(B?Z3, Z3) and the E page are shown
in Figure 12, 13.

Hence we have the following theorem (see 6.3.1 for detail)

QFin” (B2Z,)
Zy
0
Z3
Z
Z4 X ZIG
Z

TR W N R O .

Theorem 20.

The bordism invariants of Qgirﬁ (B%Z3) are z2 and w1 7.

The bordism invariants of Qgirﬁ (B2Z3) are wize = 3 and wiArf.
The bordism invariants of QEin+ (B%Z5) are gs(x2) and 7.

gs is explained in the footnotes of Table 3.

The bordism invariants of Qgin+ (B2Zy,) are zox3 and w?xs3(= 5).

TP;(PinT x BZ,)
Zy
0
Z3
Z3
Z4 X 216
Z3

TR W N~ O

Theorem 21.
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T2T3
x2
[ ]
U 1
wizzoz3lU
2
L3
wixoU

zoU

U

Figure 12: The Ay(1)-module structure of H*~1(MTO(1),Zs) ® H*(B2Z3, Z3)

The 2d topological terms are xs and wy7].
The 3d topological terms are wixs = x3 and wy Arf.
The 4d topological terms are gs(x2) and 7.

The 5d topological terms are roxg and w?z3(= xs5).

4.4.5 QI (B?Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence
Ey' = Ext (H*(MPin" A (B*Z2)+,Z2), Z2) = m—s(MPin™ A (B*Z2)4)5 = Q™ (B?Zy).(4.33)

MPint = MTPin~ ~ MSpin A S~ A MO(1).
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Figure 13: QFin" (B2Z,)
For t — s < 8, we can identify the Fs-page with

Ext’y. (" (MO(1), Z2) © H (B*Z3,22), Zy).

The Ajs(1)-module structure of H*™(MO(1),Z;) ® H*(B%Zy, Z3) and the E, page are shown in
Figure 14, 15.

Hence we have the following theorem (see 6.3.1 for detail)

QP (B%Zy)
Z
Zs
ZQ X Zg
Zs
Zs
Zs

T W N~ O .

Theorem 22.

The bordism invariants of Q5™ (B2Z3) are xo and ABK.
The bordism invariant of Qgin* (B2Zy) is wixe = x3.

The bordism invariant of QY™ (B2Zy) is w?x,.

The bordism invariant of QY™ (B2Zy) is zox3.

Theorem 23.
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€23

T2

:L’Q.IgU
2
wizoU
z3U
zoU

U

Figure 14: The A(1)-module structure of H*"1 (M O(1),Z2) ® H*(B2Z3, Z5)

TPi(Pin_ X BZQ)
Zs
Z
22 X Zg
Zy
Zs
Zy

Uk W N R O

The 2d topological terms are x5 and ABK.
The 3d topological term is wizo = x3.
The 4d topological term is wizs.

The 5d topological term is xoxs.

38



5
4
3
2
1
0 ° ° ° °
0 1 2 3 4 5 t—s
Figure 15: Q"™ (B2Z,)
4.4.6 QF(B%Z;)
Ext’ (H*(MO A (B*Z3)4,25),Z5) = QF (B*Z3)5. (4.34)
Ext’ (H*(MO A (B?Z3)4,Z3),Z3) = QF (B°Z3)3. (4.35)

Since MO is the wedge sum of suspensions of the Eilenberg-MacLane spectrum HZy, H* (MO, Z3) =
0, thus Q9 (B2Z3)% = 0.

Since H*(B?Z3,Zs) = Zs, we have QF (B2Z3)) = Q9.

Hence Q9 (B%Z3) = Q9.

Q9 (B%z;)
Zs
0
Zs
0
Z3
Zs

G W N~ O .

Theorem 24.

The bordism invariant of Q9 (B2Z3) is w?.
The bordism invariants of Q9 (B2Z3) are w}, w3.

The bordism invariant of QF(B2Z3) is wows.
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i TP;(O x BZ3)
0 Zy
1 0
2 Zy
3 0
4 z3
5 Zy
Theorem 25.
The 2d topological term is w?.
The 4d topological terms are w], w3.
The 5d topological term is wows.
4.4.7 Q50(B2Z3)
Ext%. (H*(MSO A (B*Z3)+, Z2), Z2) = °,(B*Zs)5. (4.36)

Since H*(B?Z3,Z2) = Zs, we have Q5°(B2Z;3)) = 030,
Ext’; (H*(MSO A (B*Zs)+,Z3),Zs) = 9, (B*Z3)3. (4.37)

The dual of A3 = H*(HZ3,Z3) is

As, = H*(H23,Zg) = AZS(To,Tl, .. ) ® 23[51,62, .. ] (438)
where T = (P3i71 N -nglﬁ(&?)))* and fl = (P3i71 . 'P3P1)*. Let C = 23[51,52, .. ] g Ag*, then
H*(MSO, Z3) =C® Zg[zi, Zé, .. ] (439)

where |z} | = 4k for k # %
H*(MSO,Z3) = (Z3[21,2,... ) @ C* =C* @ 2%C* @ - - (4.40)
where C* = A3/(B3,3)) and (B(33)) is the two-sided ideal of A3 generated by f(3 3).
o P A3 B YA @ SA3 DS As @ - — A3 — A3/ (B3 3) (4.41)

is an As-resolution of Aj3/(5(33)) where the differentials d; are induced by B3 3)..

H*(B2Z3,Z3) = Z3[xh, 2%, ...] @ Az, (x5, a5, ...) (4.42)

B3,3)Th = o, B3 305 = 2whak.
The FE» page is shown in Figure 16.

Hence we have the following
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Figure 16: Q$°(B2Z3)%

05°(B?z3)

CUR W= O
N
w

Theorem 26.

The bordism invariant of Q5°(B2Z;) is ).
The bordism invariants of Q35°(B2Z3) are o and z%.

The bordism invariant of Q5 (B2Z3) is waws.

TPZ‘ (SO X BZg)
0
0
Z3
Z
Z3
Zs

QU W N~ O .

Theorem 27.

The 2d topological term is 5.

The 3d topological term is %CSéTM).
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The 4d topological term is x3.

The 5d topological term is waws.

4.4.8 Q5P (B2Z;)

Ext’{. (H*(MSpin A (B*Z3)+, Z2), Z2) = Q" (BZ3)5. (4.43)
Since H*(B%Z3,Z5) = Z5, we have Qspin(B2Z3)§ _ QSpin_
Ext’{, (H*(MSpin A (B*Z3) 1, Z3), Z5) = QP (B*Zs)3. (4.44)
Since there is a short exact sequence of groups
1 — Zy — Spin — SO — 1, (4.45)
we have a fibration
BZ; —— BSpin (4.46)
|
BSO

Take the localization at prime 3, we have a homotopy equivalence BSpin(s) ~ BSO3) since the
localization of BZy at 3 is trivial. Take the Thom spectra, we have a homotopy equivalence
MSpingy ~ MSO 3. Hence

H*(MSpin, Z3) = H*(M SO, Z3). (4.47)
We have the following

;" (BZs)
Z
Zy
ZQ X 23
0
Z x Zg
0

TR W~ O

Theorem 28.

The bordism invariants of Qgpin(BQZg) are Arf and .

The bordism invariants of Q"™ (B2Z3) are & and 2.

Theorem 29.

The 2d topological terms are Arf and .
The 3d topological term is TlsCSéTM).

The 4d topological term is 3.
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TP;(Spin x BZ3)
0
Z
ZQ X Zg
y4
Z3
0

QU W N~ O .

4.4.9 QL (B2Z;)

Ext’ (H*(MPin~ A (B2Z3)+, Z2), Z2) = Q0 (B2Z3)3. (4.48)

Ext’y (H*(MPin® A (B*Z3)4,Z3), Zs) = Q™ (B*Z3)5. (4.49)

Since MTPintT = MPin~ ~ MSpin A S A MTO(1) and H*(MTO(1),Z3) = 0, we have
H*(MPin~,Z3) = 0, thus Q5" (B2Z;) =

Since H*(B%Z3,Z3) = Zs, we have 951“+(B223)§\ = dein+.

Hence dein+(B223) = QginJr.

P (57Z,)
Z
0
Zs
Zy
Zis
0

TR W N R O .

Theorem 30.

The bordism invariant of Qgin+ (B2Z3) is w1 7).
The bordism invariant of Qgilﬁ (B2Z3) is wiArf.

The bordism invariant of QF™" (B2Z3) is 7.

TPZ (Pin+ X BZg)
Zy

Zs

Zy

Zis
0

U W N~ O,

Theorem 31.
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The 2d topological term is wi1).
The 3d topological term is w Arf.

The 4d topological term is 7.

4.4.10 QY (B?Z3)

Ext’ (H*(MPin™ A (B%Z3)+,Z2),Z2) = Q™ (BZ3)5. (4.50)
Ext’ (H*(MPin*t A (B%Z3)4,Z5),Zs) = Q") (B?Z3)5. (4.51)
Since MTPin~ = MPin"™ ~ MSpin A S A MO(1) and H*(MO(1),Z3) = 0, we have

H*(MPin™,Z3) = 0, thus Q5" (B2Z3)5 = 0. Since H*(B2Z3,Z,) = Zy, we have QF™ (B?Z;3)) =
Qb

Hence QF™" (B%Z3) = Q0.

v (57Z,)
Zs

TU R W N = O
coo NN

Theorem 32.

The bordism invariant of QY™™ (B2Z3) is ABK.
TP;(Pin~ x BZ3)

CU N W N~ O
cooNNN

Theorem 33.

The 2d topological term is ABK.
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4.5 BG,:BPSU(2),BPSU(3)

4.5.1 Q9 (BPSU(2))

H*(MO,Zy) @ H*(BPSU(2),Z2) = Ay ® 252 A @ T3 A, @AY Ay @355 A0 @ -+ . (4.52)

Exti’é (H*(MO A (BPSU(2))4,22),2Z2) = Q?_S(BPSU(Q))Q (4.53)

Q9 (BPSU(2))
Zs
0
Z3
Zy
Z;
Z3

T W N~ Of .

Theorem 34.

The bordism invariants of QS (BPSU(2)) are w}, w?.
The bordism invariant of Q9 (BPSU(2)) is w} = wyw).
The bordism invariants of Q2 (BPSU(2)) are w, wi, wwh, wi.

The bordism invariants of Qf (BPSU(2)) are waws, wiw}, whws.

TP,(0 x PSU(2))
Zs
0
Z3
Zs
zZ;
z3

QU W N~ O .

Theorem 35.

The 2d topological terms are wh, w?.
The 3d topological term is wfs = wyw.
4,2 2

The 4d topological terms are wi?, w}, wiwh, w3.

The 5d topological terms are waws, wiw}, whw}.
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4.5.2 Q59(BPSU(2))

Ext’}’ (H*(MSO A (BPSU(2)),Z5), Z3) = 959, (BPSU(2))5. (4.54)
The FEs page is shown in Figure 17.

S

Figure 17: Q39 (BPSU(2))%
Q70(BPSU(2))

z

0

Zs

0

ZQ

Z3

QU W N~ O,

Theorem 36.

The bordism invariant of Q5°(BPSU(2)) is w}.

The bordism invariants of Q5°(BPSU(2)) are o, p}.

The bordism invariants of Q5°(BPSU(2)) are waws, whws.

The manifold generators of Q$°(BPSU(2)) are (CP?,3) and (CP?, Lc + 1) where n is the trivial
real n-plane bundle and Lc is the tautological complex line bundle over CP?. Note that the principal

SO(3)-bundle P associated to Lc + 1 is the induce bundle P’ xgp(2) SO(3) from P’

Sl =80(2) —— §° (4.55)

|

Cp?
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by the group homomorphism ¢ : SO(2) — SO(3) which is the inclusion map, that means P =
P’ x50(2) SO(3) = (P' x 80(3))/SO(2) which is the quotient of P’ x SO(3) by the right SO(2)

action

(p, 9)h = (ph,¢(h™")g). (4.56)

pi(Le +1) = pi(Le) = —c2(Le ®r C) = —ca(Le @ Le) = —c1(Le)er(Le) = ei(Le)?. (4.57)
So

/ pi(Lc+1) =1 (4.58)
CcP?

TP, (SO x PSU(2))
0
0
Zy
ZQ
0
Z3

TR W N~ O .

Theorem 37.

The 2d topological term is w}.
Since pj = dCSéSO(‘g)), the 3d topological terms are %CS%TM) and CSéSO@)).

The 5d topological terms are wows, whws.
<o
4.5.3 Q" (BPSU(2))

Ext’}’ (H*(MSpin A (BPSU(2))+, Z2), Z2) = Q"X (BPSU(2))5. (4.59)
Fort — s <8,

Ext? ) (H*(BPSU(2), Z3), Z5) = 277 (BPSU(2))5. (4.60)

The Ay (1)-module structure of H*(BPSU(2),Z3) and the E; page are shown in Figure 18, 19.
Theorem 38.

The bordism invariants of Q5P (BPSU(2)) are w), and Arf.

By Wu formula (6.62), wf = Sq*(wh) = (we(TM) + w1 (TM)?)wy = 0 on Spin 4-manifolds,
P} = w? =0 mod 2 on Spin 4-manifolds.

The bordism invariants of Q"™ (BPSU(2)) are & and &
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Figure 18: The A3(1)-module structure of H*(BPSU(2), Z5)

S

Figure 19: QP (BPSU(2)))

Q°P(BPSU(2))
Z
Zs
3
0
ZZ
0

T W N = O .

TP;(Spin x PSU(2))

T W N = O .
N
NI

Theorem 39.
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The 2d topological terms are w/, and Arf.

The 3d topological terms are 4—18(JS§TM) and %CS:(,)SO(?’)).

4.5.4 QLT (BPSU(2))

Ext’ (H*(MTPin* A (BPSU(2))+, Zs), Z2) = Q%" (BPSU(2))3. (4.61)
MTPin™ = MSpin A S* A MTO(1).
For t — s <8,

Ext’y ) (H 1 (MTO(1), Z5) @ H'(BPSU(2), Z5), Z) = O™ (BPSU(2))5. (4.62)

The Ay(1)-module structure of H* 1(MTO(1),Z,) ® H*(BPSU(2),Z3) and the E; page are
shown in Figure 20, 21.

®

2,/
wiwzU
2

wywhU

Figure 20: The Ay (1)-module structure of H* (M TO(1),Z,) ® H*(BPSU(2), Z)
Theorem 40.
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Figure 21: QPn" (BPSU(2))}

OPin" (BPSU(2))
Zs
0
Z3
Z3
Z4 X ZIG
Zy

QLU W N~ O,

The bordism invariants of Q5" (BPSU(2)) are w) and w1i.
The bordism invariants of Qgin+ (BPSU(2)) are wjw)y = wh and w; Arf.

The bordism invariants of QF™" (BPSU(2)) are g,(w)) (this invariant has another form, see the
footnotes of Table 3) and 7.

The bordism invariant of ng+ (BPSU(2)) is wiwh(= whws).
TP, (Pin" x PSU(2))

Zy

0

Z3

Z3

Z4 X 216
Zy

TR W N PR O

Theorem 41.

The 2d topological terms are wf and wi7.

The 3d topological terms are wywh = w4 and wi Arf.
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The 4d topological terms are gs(wj) and 7.

The 5d topological term is wiw}(= whw}).

4.5.5 QYn (BPSU(2))

Ext’ (H*(MTPin~ A (BPSU(2))4,Z2),Z5) = Q' (BPSU(2))5. (4.63)
MTPin~ = MSpin A S~ A MO(1).
For t — s <8,

Ext’y o) (H(MO(1),Zy) ® H*(BPSU(2), Z2), Z2) = ;™% (BPSU(2))5. (4.64)

(1)

The As(1)-module structure of H**1(MO(1), Zy) @ H*(BPSU(2), Z5) and the E5 page are shown
in Figure 22, 23.

®

2,/
wiwyU

Figure 22: The Ay(1)-module structure of H**1(MO(1), Zy) ® H*(BPSU(2), Z5)
Theorem 42.
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Figure 23: Q" (BPSU(2))%

inrﬁ (BPSU(2))
Z
Zs
ZQ X Zg
Zs
Zy
0

QUi W N = O .

The bordism invariants of Q5™ (BPSU(2)) are w) and ABK.
The bordism invariant of Q5™ (BPSU(2)) is wiwh = w}.

The bordism invariant of QY™ (BPSU(2)) is wiw).

TP;(Pin~ x PSU(2))
Z
Zs
ZQ X Zg
Zs
Zy
0

T W N = O .

Theorem 43.

The 2d topological terms are w), and ABK.
The 3d topological term is wjw) = w}.

The 4d topological term is wfwb.
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4.5.6 QP (BPSU(3))

Ext’ (H*(MO,Zs) @ H*(BPSU(3),Z3), Z3) = Q7 (BPSU(3))3. (4.65)

Since H*(MO, Z3) = 0, Q9(BPSU(3))4 = 0.

Ext’; (H*(MO,Z,) @ H*(BPSU(3), Z2), Z2) = Q (BPSU(3))5. (4.66)
H*(MO,Zs) @ H*(BPSU(3),Z3) = Ay @ X2 A, @35 Ay & X Ay @ - - - . (4.67)
i QP(BPSU(3))
0 Zs
1 0
2 Zs
3 0
4 z3
5 Z,
Theorem 44.

The bordism invariant of Q9 (BPSU(3)) is w?.
The bordism invariants of Q9 (BPSU(3)) are w}, w3, c2( mod 2).

The bordism invariant of Q2 (BPSU(3)) is waws.

TP,(0 x PSU(3))
Zs
0
Zs
0
z3
Zs

Tl W N~ O

Theorem 45.
The 2d topological term is w?.

The 4d topological terms are wi, w3, co( mod 2).

The 5d topological term is waws.

4.5.7 Q5°(BPSU(3))

Ext’} (H*(MSO, Z5) @ H*(BPSU(3), Z5), Z,) = Q7°,(BPSU(3))5. (4.68)
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H*(BPSU(3>, Zg) = 22 [CQ, 63].

The E> page is shown in Figure 24.

S

Figure 24: Q39 (BPSU(3)))

Ext®)’ (H*(MSO, Z3) ® H*(BPSU(3), Z3), Z3) = Q°,(BPSU(3))5.

S
3

H*(BPSU(3),Z3) = (Z3[z2, 28, 212] ® Az,(23, 27))/ (2223, 2227, 2228 + 2327)

Bas)72 = 23, Bz 23 = 22223 = 0, B3,323 = 0.

The F» page is shown in Figure 25.

Q59 (BPSU(3))
Z
0
Z3
0
Z2
Z
Z

SO W N~ O

Theorem 46.
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Figure 25: Q9 (BPSU(3))5

The bordism invariant of Q5°(BPSU(3)) is 22.
The bordism invariants of Q5°(BPSU(3)) are o, cs.
The bordism invariant of Q§°(BPSU(3)) is wows.
The bordism invariant of Q§°(BPSU(3)) is c3.

The manifold generators of Q5°(BPSU(3)) are (CP?,CP? x PSU(3)) and (S*, H) where H is
the induced bundle from the Hopf fibration H’

S3 =8U(2) —— 57 (4.72)

|

54

by the group homomorphism p : SU(2) — PSU(3) which is the composition of the inclusion map
SU(2) — SU(3) and the quotient map SU(3) — PSU(3), that means H = H' xgy) PSU(3) =
(H' x PSU(3))/SU(2) which is the quotient of H' x PSU(3) by the right SU(2) action

(p,9)h = (ph, p(h™")g). (4.73)

Theorem 47.

The 2d topological term is z».

Since ¢y = dCSéPSU(S)), the 3d topological terms are %CS%TM) and CSéPSU(S)).

PSU(3))

Since cg = dCSé (PSUEG)

, the 5d topological term are CSg and waws.
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TP,(SO x PSU(3))
0
0
Z3
ZQ
0
Z X 22

T W N~ O .

4.5.8 QP™(BPSU(3))

For t — s <8,

Ext’ ) (H*(BPSU(3), Z5), Zs) = QP! (BPSU(3))5.

The F»> page is shown in Figure 26.

S

Figure 26: QP™(BPSU(3)))

Exti’lg(H*(MSpin, Z3) @ H*(BPSU(3),2Z3),2Z3) = Q,SSI_’;H(BPSU(S))Q.

Since H*(MSpin, Z3) = H*(M SO, Z3), the Fy page is shown in Figure 27.

Theorem 48.

The bordism invariants of Qgpin(BPSU(?))) are Arf and zp.

The bordism invariants of QP™(BPSU(3)) are % and co.
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Figure 27: QP (BPSU(3))4

Q°P(BPSU(3))
Z
Zy
ZQ X Z3
0
Z2
0
Z

DT R W N~ O,

By Wu formula (6.62), c3 = Sq%ca = (wo(TM) +w?(TM))cz =0 mod 2 on Spin 6-manifolds.

The bordism invariant of Qgpin(BPSU(?))) is 5.
TP;(Spin x PSU(3))

T W N = O .
N
N
X
N
w

Theorem 49.

The 2d topological terms are Arf and zs.

The 3d topological terms are T%CSéTM) and CSéPSU(3)).

The 5d topological term is %CS%PSUB)).
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4.5.9 QFn"(BPSU(3))

Ext’ (H*(MPin~, Zs) @ H"(BPSU(3), Z3), Z3) = QF™" (BPSU(3))5. (4.76)

Since H*(MPin~,Z3) = H*(MO, Z3) = 0, Q™" (BPSU(3))4 = 0.

Ext’} (H*(MPin~, Z,) @ H*(BPSU(3), Z5), Z) = QL' (BPSU(3))5. (4.77)
For t — s <8,
s, *— * int
Ext’y o (H*™H(MTO(1), Z2) @ H*(BPSU(3),Z2), Zo) = Q™% (BPSU(3))5. (4.78)

The Ay (1)-module structure of H* 1 (MTO(1),Z,) ® H*(BPSU(3),Z3) and the E; page are
shown in Figure 28, 29.
® (

c2( mod 2)

co( mod 2)U

U

Figure 28: The Ay(1)-module structure of H*"}(MTO(1),Z,) ® H*(BPSU(3), Zs)
Theorem 50.

The bordism invariant of QZPH1+ (BPSU(3)) is w17.
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Figure 29: QFn" (BPSU(3))}

QPin™ (BPSU(3))
Zy
0
Zs
Zy
22 X ZlG
0

QU W N~ O .

The bordism invariant of Q™" (BPSU(3)) is w; Arf.

The bordism invariants of Q4Pin+ (BPSU(3)) are c2( mod 2) and 7.

TP,(Pin* x PSU(3))
Zs

Zy

T W N = O .

Theorem 51.

The 2d topological term is wi1).
The 3d topological term is w Arf.

The 4d topological terms are ca( mod 2) and 7.
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4.5.10 QFm (BPSU(3))

Ext’ (H*(MPin', Z3) ® H*(BPSU(3),Z3), Z3) = Q3 (BPSU(3))3. (4.79)

Since H*(MPint, Z3) = H*(MO, Zs) = 0, QP (BPSU(3))$ = 0.

Ext%. (H*(MPin", Zy) ® H(BPSU(3), Z2), Z2) = Q7™ (BPSU(3))5. (4.80)
Fort — s <8,
Ext’p o) (H*1(MO(1), Z2) ® H*(BPSU(3), Z2), Z2) = Q™) (BPSU(3))5. (4.81)

The A (1)-module structure of H*1 (M O(1), Z2) @ H*(BPSU(3), Z3) and the E5 page are shown

in Figure 30, 31.
® (

co( mod 2)

co( mod 2)U

U

Figure 30: The As(1)-module structure of H**1(MO(1),Zy) @ H*(BPSU(3), Z,)
Theorem 52.

The bordism invariant of Q5" (BPSU(3)) is ABK.
The bordism invariant of Q™ (BPSU(3)) is co( mod 2).

60



Figure 31: Q" (BPSU(3))%

QP (BPSU(3))
Zy
Zy
Zg
0
Zy
0

QUi W N = O .

TP;(Pin- x PSU(3))
Zy
Zy
Zg
0
Zy
0

T W N - O,

Theorem 53.

The 2d topological term is ABK.

The 4d topological term is cz( mod 2).
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4.6 (BGa, BQGb) : (BZQ, B2ZQ), (BZg, B223)
4.6.1 Q9(BZ, x B?Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence

Ey' = Ext (H* (MO A (BZy x B?Z3) 1, Z5), Z2)
= m_o(MOA (BZy x B2Zy) )5 = QP [(BZy x B2Zy). (4.82)

H*(MO,Zy) ® H*(BZy x B*Z5,Z5) = As ® Zs[y2, Y4, Y5, Y6, Us. - - - |* ® Zala, x2, 3, T5, Tg, . . .|
= AHOTA 034043408 e 12554 @ - - (4.83)

QP (BZ, x B*Z,)

Zy

TR W N PR O
N
N

Theorem 54.

The bordism invariants of Q(Z)(BZQ x B2Zy) are a2, 3, w%.
The bordism invariants of Q3O(BZQ x B2Zy) are x3 = w12, axe, aw?, a’.
The bordism invariants of Q9 (BZy x B2Zy) are wi, w3, a*, a’xq, axs, v3, wia?, wizs.

The bordism invariants of QF (BZy x B2Zy) are

5 2 3 3,2 2 4 2 2 2
a’,a’rs3,a"re, a”wy, ary, awy, AraWy, AWy, T2T3, WiT3, L5, WaW3.

TPZ(O X 22 X BZQ)
Zy
Zy
Z;
Z3
Z;
z

G W N~ O,

Theorem 55.

The 2d topological terms are a2, z2, w?.

The 3d topological terms are x3 = wis, ars, aw%, ad.
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The 4d topological terms are w‘f, w3, at, a’xy, axs, r3, wia?, wirs.

The 5d topological terms are

5 2 3 3,2 2 4 2 2 2
a’,a°r3,a”r2, a’wi, ary, AW, AT2W7 , QWs, TaX3, WIT3, L5, WaW3.

4.6.2 Q59(BZy x B%Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence
Ey' = Ext’y (H*(MSO A (BZy x B*Z3)4,Z5),Zs)
= m_s(MSO A (BZy x B%Z5), )5 = QF°,(BZ, x B2Z,). (4.84)

s

dg(l‘zl’g + 565) = :c%h%

The F»> page is shown in Figure 32.

S

Figure 32: Q59(BZ, x B2Z,)
QZ-SO(BZQ X B2ZQ)
Z
Zy
Zy
Z3
Z X ZQ X Z4
Z3

T W N~ O .

Theorem 56.

The bordism invariant of QEO(BZQ x B2Zy) is xo.
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The bordism invariants of QgO(B22 x B?Z,) are axy,a’.
The bordism invariants of Q5°(BZy x B%Zy) are o, axs(= a’x2) and P (x2).

The bordism invariants of QEO(BZQ x B%2Z,) are am%, a®, x5, adxo, wows, aw%.

) TPZ(SO X ZQ X BZQ)
0 0
1 Zy
2 Zy
3 ZxZ3
4 22 X Z4
) VA
Theorem 57.
The 2d topological term is x».
The 3d topological terms are %CS&TM), azry, a’.

The 4d topological terms are axs(= a’xs) and Pa(x2).
The 5d topological terms are ax%, a®, x5, adxe, wows, aw%.
4.6.3 QOSPM(BZy x B?Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence

E3' = Ext’y (H*(MSpin A (BZy x B?Z3)+,Z2), Z2)

= m_s(MSpin A (BZy x B2Z3) 1)y = QP (BZ, x B2Z,). (4.85)
For t — s <8,
s, * Spin
Ext Ai(l)(H (BZy x B?Z,2Z5),2Z5) = Q"™ (BZy x B2Z,). (4.86)
H*(BZy x B%Zy,Z5) = Zsla,x2, 23,25, 29, ...] where Sqlzy = x3, Sq?ze = 23, Sqlas = 0,

Sq?z3 = w5, Sqlas = qua:% = x%, Sq?zs = 0.
dg(l’gl‘g + 1’5) = :L’%h%

The Az(1)-module structure of H*(BZy x B2Z5,Z5) and the Eo page are shown in Figure 33,
34.

Theorem 58.

The bordism invariants of Qgpin(BZQ x B2Zy) are x3, Arf, af).
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23
T2

a
L L
1 1

a3x2
axrs
axr9
Z2

a
o
1

Figure 33: The Az (1)-module structure of H*(BZy x B2Zs, Z3)

i

0 z

1 Z3

2 zZ3

3 ZQ X Zg
4 ZxZ3
5 Z,

The bordism invariants of Qgpin(B22 x B2Z3) are axs, aABK.
The bordism invariants of QP (BZ, x B2Z,) are &, arg(= a’z2) and %
The bordism invariant of Qgpin(BZZ x B%Zy) is a®zs.
Theorem 59.
The 2d topological terms are xs, Arf, a7j.
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Figure 34: Q;""(BZ, x B2Z,)

TPi(Spin X Zg X BZQ)
0
23
Z3
Z x ZQ X Zg
Z3
Zy

T W N = O .

The 3d topological terms are 4—18CS§,TM), axs, aABK.

The 4d topological terms are axs3(= a’xs) and %

The 5d topological term is a3zs.

4.6.4 QLT (BZy x B2Zy)

Since the computation involves no odd torsion, we can use the Adams spectral sequence
Ey' = Ext’y (H*(MPin~ A (BZ, x B*Z,)4,Z5),Z5)
= _s(MPin~ A (BZy x B2Z,), )5 = Q" (BZ, x B2Z,). (4.87)
MPin~ = MTPint ~ MSpin A ST A MTO(1).

Fort — s <8,

Ext®?

S HTHMTO(1),Z2) © H(BZ2 x B*Z3,Z5),Z5) = QPN (BZ, x B%Z,). (4.88)

The Az (1)-module structure of H*~1(MTO(1),Zy) ® H*(BZy x B2Z3,Z5) and the E, page are
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shown in Figure 35, 36.

wialU a® wizzr2x3U wiazU \] wiazslg3 U
q;% wiaxsU axsU

wyreU axsU
wlaU zoU
alU
U

Figure 35: The Ay(1)-module structure of H*~1(MTO(1),Zs) ® H*(BZy x B%Zy, Zs)
QPin"(BZ, x B2Zy)
Zy

Z%XZ4X28X216
ZQ

CUB WO R O
N
N W

Theorem 60.

The bordism invariants of Qgin+ (BZy x B2Zy) are wia = a?, x2, wif).
The bordism invariants of Qg’irﬁ— (BZ5 x BQZQ) are a3, wixy = T3, axs, wiaf, wy Arf.
The bordism invariants of Q4Pin+ (BZyxB?Zy) are axs, wiaze(= a’wy + axs), ¢s(v2), w1a(ABK), n
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Figure 36: QPn" (BZ, x B2Z,)

The bordism invariants of Qgin+ (BZy x B2Z,) are
w‘lla, a5(: w%a?’)7 w%xg(: x5), T3, w%amg(: am% + a2$3), wrazs(= aza;g), a’zs.
TPZ(PH’IJr X ZQ X BZQ)
Zy

Z3

Z3
Z%XZ4X28X216

Z;

T W N~ O

Theorem 61.

The 2d topological terms are wia = a2, z9, w1 7.

The 3d topological terms are a3, wxy = x3, axs, wyaf, wi Arf.

The 4d topological terms are axs, wiazrs(= a?xs + axs), ¢s(x2), wia(ABK), 7.
The 5d topological terms are

wia,a®(= wia®), wirs(= x5), vor3, wiars(= ari + a®x3), wiars(= a*x3), a>xs.

4.6.5 QFn (BZ, x B%Z,)

Since the computation involves no odd torsion, we can use the Adams spectral sequence
Ey' = Ext’ (H*(MPin" A (BZy x B*Zy)4,25),Z5)
= m_s(MPint A (BZy x B%Z3), )5 = QP (BZ, x B%Z,). (4.89)
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MPin™ = MTPin~ ~ MSpin A S~1 A MO(1).
Fort — s <8,

Exti’é(l)(H*“(MO(l), Z,) @ H*(BZy x B%Z3,Z5),2Z5) = QP (BZy x B2Z,).  (4.90)

The Ajy(1)-module structure of H**1(MO(1),Zs) ® H*(BZy x B2Zy,Z5) and the E, page are
shown in Figure 37, 38.

® o3 a3$2
ars
axy
Z2
a
.
U 1
wiadU zoxsU wiazU \] w1az3ld3x,U
w%xQU wrarsU axsU
a*U wiaU z3U azoU
a?U 22U
aU

U

Figure 37: The Az(1)-module structure of H*‘H(MO(l), Zy) @ H*(BZy x B2Z5,Z5)
7 inn* (BZy x B2Z,)
Zy
Z3
22 X Z4 X Zg
Z,
Z3
z3

QL W N~ O

Theorem 62.
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Figure 38: Q"™ (BZ, x B2Z,)

The bordism invariants of QY™ (BZy x B2Zy) are z2, fs(a), ABK. (fs(a) is explained in the
footnotes of Table 1.)

The bordism invariants of Qgin* (BZy x B2Zy) are a3, w%a, T3 = W1T2, ATI.
The bordism invariants of QY™ (BZy x B2Zy) are w?xq, wiaxa(= a’xs + axs), axs.

The bordism invariants of Qgif (BZy x B?Zy) are w?a?, xox3, wiaxs, wiars(= a*z3), a’zs.

TPl(Plni X Zg X BZQ)
Zy
7
22 X Z4 X Zg
Z,
Z3
Z3

T W N~ O .

Theorem 63.

The 2d topological terms are o, fs(a), ABK.

3

The 3d topological terms are a ,w%a, T3 = wix2, AT3.

2

The 4d topological terms are wiwy, wiars(= a®zs + axr3), azrs.

The 5d topological terms are w%aS, Tox3, w%axg, wraxs(= a2x3), a’dzs.
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4.6.6 09(BZ3 x B2Z3)

Ext%. (H*(MO A (BZ3 x B*Z3)4,Z2),Z2) = QF (BZ3 x B*Z3)5. (4.91)
Ext’; (H*(MO A (BZ3 x B*Z3),Z3),Z3) = Qf (BZ3 x B*Zs)5. (4.92)

Since H*(MO, Z3) = 0, we have Q9 (BZ3 x B%Z;3)5 = 0.
Since H*(BZ3 x B2Z3,Z5) = Zy, we have QF (BZ3 x B2Z3)) = Q9.

Hence Q9 (BZ3 x B2Z3) = QF.

0P (Bz; x B*Z;)
Zs
0
Zs
0
zZ3
Zs

T W N = O .

Theorem 64.

The bordism invariant of Q9 (BZ3 x B2Z3) is w?.
The bordism invariants of Q9 (BZ3 x B2Z3) are wf, w3.

The bordism invariant of Q5O(B23 x B2Z3) is wows.

TPZ‘(O X Zg X BZg)
Z
0
Zy
0
zZ3
Zs

QL W N~ O .

Theorem 65.

The 2d topological term is w?.

The 4d topological terms are wi, w3.

The 5d topological term is wows.
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4.6.7 Q59(BZ3 x B%Z;)

Ext’. (H*(MSO A (BZs x B*Z3) 4, Z5), Z) = Q79,(BZ3 x B?Z3)3.

S

Since H*(BZ3 x B2Z3,Z3) = Z3, we have Q5°(BZ3 x B2Z3)) = Q5°.

Ext’; (H*(MSO A (BZs x B*Z3)4,Z3), Zs) = 97°,(BZ3 x B?Z3)5.

H*(BZ3 x B2Z3,Z3) = Z3[V, 2h, 2%, ...] @ Az, (d’, x5, a5, . ..)

5(3,3)a' =V, 5(3,3)95/2 = 7%, 5(3,3)95/22 = 22573.
The F»> page is shown in Figure 39.

S

Figure 39: Q39 (BZ; x B2Z3)%

Hence we have the following

059(Bz; x B?Z3)
y4
Z3
Z3
z
Z x Z%
22 X Zg X Zg

T W N~ O

Theorem 66.
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The bordism invariant of Q5°(BZ3 x B2Z3) is x%.

The bordism invariants of Q5°(BZ3 x B2Z3) are a't/, a'z).

The bordism invariants of Q5°(BZ3 x B2Z3) are o, a'zy(= b'x)) and z7.
The bordism invariants of Q5°(BZ3 x B2Z3) are wows, a'b'zh, a’z2, P (v').

Here B3 is the Postnikov square.

/) TPZ'(SO X Zg X BZ?,)
0 0
1 Z3
2 Z3
3 Zx1Z3
4 V&
5 Zy x Z% x Zg
Theorem 67.
The 2d topological term is 5.
The 3d topological terms are %CS:(,)TM), a't!,ad' .

The 4d topological terms are a’x4(= b'z}) and z3.

The 5d topological terms are wows, a'b'wh, a'z, P (b').

4.6.8 Q5P (BZ; x B?Z3)

Ext’}’ (H*(MSpin A (BZ3 x B*Z3) 4, Z2), Z2) = QPV(BZ3 x B2Z3)5. (4.96)
Since H*(BZ3 x B2Z3,23) = Z,, we have Q"™ (BZ3 x B2Z3)) = Q"™
Ext®{. (H*(MSpin A (BZ3 x B*Z3)+,Z3), Z3) = Q"0 (BZ3 x B?Z3)5. (4.97)

Since
H*(MSpin, Z3) = H*(MSO, Z3),

we have the following

Theorem 68.

The bordism invariants of Qgpin(BZ;g x B2Z3) are Arf and ).

The bordism invariants of Q5P™(BZ3 x B2Z3) are a/l/, a'x).
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Q°P(BZ3 x B2Z3)
Z
ZQ X Zg
22 X 23
z3
Z x Z2
Z% X Zg

TR W~ O

TPi(Spin X 23 X BZg)
0
ZQ X Z3
22 X 23
Zx2Z3
22223
Z3 X Zg

T W N~ O

The bordism invariants of Q3P (BZ3 x B2Z;3) are &, d'zh(=b'zy) and 2.

The bordism invariants of Q2P (BZ3 x B2Z3) are a/b/a), a'z/2,

Theorem 69.

The 2d topological terms are Arf and .

The 3d topological terms are 48CS(TM) "W, a' .
The 4d topological terms are a’x4(= b'x}) and 2.

The 5d topological terms are a'b'zh, a’'x%, Ps(V').

4.6.9 QL™ (BZ3 x B2Z3)

Ext’, (H*(MPin~ A (BZ3 x B*Z3)4,22),Z2) = QPn" (BZ; x B2Z3)).

Ext’ (H*(MPin™ A (BZ3 x B*Z3)4,Z3),Z3) = Q" (BZ3 x B*Z3)3.

Since H*(MPin~,Z3) = 0, we have Q5" (BZ3 x B2Z3)} =

Since H*(BZ3 x B2Z3,Z5) = Z, we have Q™" (BZ3 x B2Z3))

Hence Q5" (BZ3 x B2Z3) = Qbin"

Theorem 70.
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QPin"(BZ3 x B2Z3)
Zs

Zy

Zs

Zis
0

Tl W N~ O

The bordism invariant of Q5" (BZ3 x B2Z3) is w1 1.
The bordism invariant of Q5™ (BZ3 x B2Z3) is w Arf.

The bordism invariant of Q}fi‘ﬁ (BZ3 x B?Z3) is n.

1 TPZ(PID+ X 23 X BZg)
0 Zy
1 0
2 Zy
3 Zy
4 Zig
5 0
Theorem 71.
The 2d topological term is wq1).
The 3d topological term is wy Arf.
The 4d topological term is .
4.6.10 QFm (BZ; x B%Z;)
Ext% (H*(MPin™ A (BZ3 x B*Z3)+,Z32),Z2) = Q" (BZ3 x B2Z3)5. (4.100)
Ext’ (H*(MPin* A (BZ3 x B*Z3)4,Z3),Z3) = Q" (BZ3 x B*Z3)3. (4.101)

Since H*(MPin™, Z3) = 0, we have Q)™ (BZ3 x B2Z3)} = 0.
Since H*(BZ3 x B2Z3,Z3) = Za, we have Q™™™ (BZ3 x B2Z3)5 = QFin".
Hence QF™ (BZ3 x B?Z3) = Q0.

Theorem 72.

The bordism invariant of QY™™ (BZ3 x B2Z3) is ABK.
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Theorem 73.

QFin” (BZ3 x B2Z3)

TR W N~ Ol
SooNNN

TPi(Pin_ X Z3 X BZg)

DU W N = O
cooNNN

The 2d topological term is ABK.

4.7 (BG,,B2G,) : (BPSU(2), B%Z,), (BPSU(3), B2Z5)

4.7.1 Q9 (BPSU(2) x B%Z,)

Ext% (H*(MO,Z;) @ H(BPSU(2) x B?Z3,25),Z5) = QP (BPSU(2) x B?Z,).

Theorem 74.

H*(BPSU(2), Zs) = Za[wh, wh],
H*(BQZ% 22) = ZQ[~T27$37$5>$97 . ']7
H*(MO,ZQ) = AQ b2 22[y2ay47y57y65 s, - - ]*

H*(MO,Zy) ® H*(BPSU(2), Z2) ® H*(B*Zs, Zs)
= A @324 0253 A 0 TY A § 8T A @ - .

OO(BPSU(2) x B2Z3)

CUR W O,
N
W
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The bordism invariants of QS (BPSU(2) x B2Z3) are w}, x2, w?.
The bordism invariants of QO (BPSU(2) x B2Zy) are x3 = w1r2, wh = wiwh.

; ; ; O 2 4 2 .2 .02 2 a2 ol
The bordism invariants of 7 (BPSU(2) x B“Zy) are w{, w3, x5, w5, zows, whws, whrs.

The bordism invariants of 0 (BPSU(2) x B2Zy) are whw}, wowh, wiwh, whrs, voxs, wirs, x5, wows.

TP, (O x PSU(2) x BZ,)

T W~ O,
N
[\IV)

Theorem 75.

The 2d topological terms are w}, za, w%.
The 3d topological terms are x3 = wyx2, wh = wiwh.
The 4d topological terms are w}, w?, x3, w, vow?, whw?, whas.

The 5d topological terms are whw}, xow}, wiwy, whrs, voxs, wizs, Ts, Wows.
4.7.2 Q5°(BPSU(2) x B%Z,)

Ext’; (H*(MSO, Z5) @ H*(BPSU(2) x B*Z,,Z5),Z5) = QJ9,(BPSU(2) x B?Z,).  (4.107)

do(waws + x5) = x3h3.

The FE» page is shown in Figure 40.

Q59(BPSU(2) x B%Z,)
Z
0

Z3
0

22 X 22 X Z4
Z3

QU W N~ O,

Theorem 76.

The bordism invariants of Q5°(BPSU(2) x B2Z5) are wh, zo.
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Figure 40: Q39 (BPSU(2) x B%Z,)

The bordism invariants of Q5°(BPSU(2) x B2Z5) are o, p}, whrs and Py (x2).

The bordism invariants of Q€ (BPSU(2) x B2Zy) are whw}, x5, whra(= whrs), wows.

TP;(SO x PSU(2) x BZ,)
0
0
Z3
Z2
22 X Z4
Z3

T W NP O

Theorem 77.

The 2d topological terms are w}, z.
The 3d topological terms are %CS&TM), CSéSO(g)).

The 4d topological terms are whxs and Pa(z2).

The 5d topological terms are whws, x5, wixrs (= whHrs), wows.

4.7.3  QP™(BPSU(2) x B2Zy)

Fort — s < 8§,

Ext’ || (H"(BPSU(2) x BZy,25),Z5) = 0P (BPSU(2) x B*Z,). (4.108)

(1)

78



dg(l’Ql’g + 1‘5) = x%h%

The As(1)-module structure of H*(BPSU(2) x B2Z3,Z5) and the Fs page is shown in Figure
41, 42.

X .
/ x
Wy 2
[ ] [ ]
1 1
T2T3 whxo
whxy

T
Wy 2

[ ]

1

Figure 41: The A3(1)-module structure of H*(BPSU(2) x B2Z3, Z5)
Q°PM(BPSU(2) x B2Zy)

z

Zy

Z3

0

2% x 73
Zy

T W N~ O =

Theorem T78.
The bordism invariants of Qgpin(BPSU(Z) x B2Z,) are wh, x, Arf.
The bordism invariants of Q"™ (BPSU(2) x B2Z5) are =, %, whry and %

79



Figure 42: Q;"™(BPSU(2) x B2Z,)

The bordism invariant of Qgpin(BPSU@) x B?Zy) is whze(= whrs).
TP, (Spin x PSU(2) x BZy)

TUR W~ O,
N
[\eJob)

Theorem 79.

The 2d topological terms are wh, xa, Arf.

. 1 q(TM) 1 ~g(SO(3))
The 3d topological terms are ;zCS3" ™7, 5CS3 .
The 4d topological terms are whxs and %

The 5d topological term is whxs(= whxs).

4.7.4 QF"(BPSU(2) x B2Z,)

Fort — s <8,
Ext’{. ) (H" " (MTO(1), Z5) @ H* (BPSU(2) x B?Z5,25),Z5)
= QP""(BPSU(2) x B2Z,). (4.109)
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The Ajs(1)-module structure of H*~1(MTO(1), Z3) ® H*(BPSU(2) x B2Z3, Z3) and the E» page
are shown in Figure 43, 44.

X )
o3 whxe
/
/ X
Wy 2

U 1
wiwyU wizzUrersU \| wiwhzallyzoU
/2 2 /
w5 x5 wyxoU
wiwhU wyzoU
wéU JZQU
U

Figure 43: The As(1)-module structure of H* 1 (MTO(1),Z;) @ H*(BPSU(2) x B2Z3, Z3)

QPin" (BPSU(2) x B2Z,)
Zy

TR W~ O,
N
[\JeV)

Theorem 80.

The bodism invariants of Q5" (BPSU(2) x B2Zy) are wh, xa, wyi).

The bodism invariants of Q3Pin+(BPSU(2) x B2Zy) are wiwh = wh, wiws = x3, w1 Arf.
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Figure 44: QPn" (BPSU(2) x B2Z,)

The bodism invariants of QFn" (BPSU(2) x B2Zy) are qs(wh), gs(x2), 0, whas.

The bodism invariants of Qghﬁ(BPSU(Q) x B%Zy) are

w%wg(: whws), w%xg(: T5), ToT3, WaTa, WiwWhTo(= whzs + whrs).

TP;(Pin" x PSU(2) x BZ,)
Zs

U W R O
N
[\JeV)

Theorem 81.

The 2d topological terms are wj, za, w11.
The 3d topological terms are wywh = wh, wixe = x3, wi Arf.
The 4d topological terms are gs(wb), ¢s(x2),n, whas.

The 5d topological terms are

wiwy(= whw}), wirzs(= x5), Toxs, Whra, W WLy (= whrs + whas).
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4.7.5 QY (BPSU(2) x B2Z,)

For t — s <8,

Extji(l)(H*“(MO(l), Z,) @ H*(BPSU(2) x B2Z3,Z5),Z,) = QP (BPSU(2) x B2Z,). (4.110)

The Az(1)-module structure of H**1(MO(1).Z3) @ H*(BPSU(2) x B2Z3,Z5) and the E; page
are shown in Figure 45, 46.

L2T3 whTo
whry
T
Wy 2
[ ]
U 1
- /
zox3U wiwhzllyxoU
wiwhlU wizU wyxoU
ng IgU
whU U
U

Figure 45: The A (1)-module structure of H*** (M O(1),Z3) ® H*(BPSU(2) x B2Z,, Zs)
Theorem 82.

The bordism invariants of Q5" (BPSU(2) x B2Zs) are w}, v2, ABK.
The bordism invariants of Q'™ (BPSU(2) x B2Zy) are wiwh = wh, wize = 3.
The bordism invariants of Q™" (BPSU(2) x B2Zy) are wwh, w?xa, whas.
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Figure 46: Q" (BPSU(2) x B2Z,)

QFin” (BPSU(2) x B2Zy)
Zy
Zs

TUR W O,
N
[\ \)
X
N
oo

The bordism invariants of QY™ (BPSU(2) x B2Zy) are zox3, whra, wiwhrs(= whrs + whzs).
TPZ-(Pin_ X PSU(Q) X BZQ)

Zs
Zs

U W - O
N
DN
X
N
oo

Theorem 83.

The 2d topological terms are wh, 9, ABK.
The 3d topological terms are wywh = wh, w1T2 = T3.
The 4d topological terms are wiwh, w?xo, whrs.

The 5d topological terms are xoxs, whza, wiwhre(= whrs + wixs).
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4.7.6 Q9 (BPSU(3) x B2Z;)

Ext’} (H*(MO A (BPSU(3) x BZ3) 4, Z3), Z3) = Qf ((BPSU(3) x B?Zs)5. (4.111)

Since H*(MO, Z3) = 0, QQ(BPSU(3) x B2Z3)} = 0.
Ext’ (H*(MO A (BPSU(3) x BZ3)+,Z),Z2) = Qf ,(BPSU(3) x B?Z3)}. (4.112)

Since H*(BPSU(3) x B2Z3,Z3) = H*(BPSU(3), Z,), Q9 (BPSU(3) x B2Z3)5 = Q9(BPSU(3))5.

Q9(BPSU(3) x B2Z3)
Zs
0
Zs
0
Z3
Zs

G W N~ O,

Theorem 84.

The bordism invariant of Q9 (BPSU(3) x B2Z3) is w?.
The bordism invariants of Qf (BPSU(3) x B2Z3) are w}, w3, ca( mod 2).

The bordism invariant of Q (BPSU(3) x B%Z3) is waws.

TP;(O x PSU(3) x BZ3)
Zs
0
Zs
0
z3
Zy

T W N~ Of .

Theorem 85.
The 2d topological term is w?.

The 4d topological terms are wil, w%, c2( mod 2).

The 5d topological term is wows.
4.7.7 Q5°(BPSU(3) x B%Z;)

Ext%! (H*(MSO A (BPSU(3) x B%Z3)4,Z5),Z,) = Q7% (BPSU(3) x B*Z3)5. (4.113)
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Since H*(BPSU(3) x B2Z3,Z3) = H*(BPSU(3), Z2), Q5°(BPSU(3) xB2Z3)) = Q5°(BPSU(3))5.
Ext% (H*(MSO A (BPSU(3) x B%Z3)4,Z5),Z3) = Q7% (BPSU(3) x B*Z3)5. (4.114)

Ba,3)Th = %, Baz)ze = 23, Bty = 2whah, Bz s (rhze) = whzs + xh22, B3 3)(vh23) = whz3 =
—B3,3)(7322).

The FE» page is shown in Figure 47.

S

Figure 47: Q39 (BPSU(3) x B%Z3)%
Q59(BPSU(3) x B%Z;)

QU W N~ O .
N
W

Theorem 86.

The bordism invariants of Q5°(BPSU(3) x B2Z3) are ), zo.
The bordism invariants of Q5°(BPSU(3) x B2Z3) are o, c2, 2 and x)zo.
The bordism invariants of Q°(BPSU(3) x B2Z3) are wows, 2004 (= —2375).

Theorem 87.

The 2d topological terms are x5, z9.

The 3d topological terms are %CS&TM), CSéPSU(S)).
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) TPi(SO X PSU(B) X BZg)
0 0
1 0
2 z2
3 Z?
4 z2
9 Z x ZQ X Zg
The 4d topological terms are z% and xzo.
The 5d topological terms are CSéPSU(3)), wows, 2oxh (= —z31h).

4.7.8 QP™(BPSU(3) x B?Z3)

Ext®{. (H*(MSpin A (BPSU(3) x B*Z3),Z5), Z2) = PV (BPSU(3) x B?Z3)).  (4.115)

Since H*(BPSU(3) x B2Z3,Zy) = H*(BPSU(3),Zy), QP™(BPSU(3) x B?Z3)p =
Q5P (BPSU(3))5.

Ext®{. (H*(MSpin A (BPSU(3) x B%Z3),Z3), Z3) = PV (BPSU(3) x B?Z3)).  (4.116)

Since H*(MSO, Z3) = H*(MSpin, Z3), Q"™ (BPSU(3) x B2Z3)4 = QSO (BPSU(3) x B2Z3)5.

Q°PM(BPSU(3) x B2Z3)

i

0 Z

1 Z,

2 Zy x Z2
3 0

4 Z% x 72
5 Z;

Theorem 88.
The bordism invariants of Q5P (BPSU(3) x B2Z3) are Arf,z}, zo.
The bordism invariants of Qipin(BPSU(fS) x B?Z3) are %, ¢z, 25 and xhz.

The bordism invariant of Q5P™(BPSU(3) x B2Z3) is zoah(= —232).
Theorem 89.

The 2d topological terms are Arf, 4, z5.
The 3d topological terms are 4—1808§TM), CSéPSU(S)).
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i TP;(Spin x PSU(3) x BZ3)
0 0
1 Z
2 ZQ X Z%
3 z?
4 z2
5 Z % Z4
The 4d topological terms are x% and xzo.
The 5d topological terms are %CS&PSU@)), 29w (= —231%).

4.7.9 QL' (BPSU(3) x B%Z3)

Ext’; (H*(MPin~ A (BPSU(3) x B*Z3),Z3),Z3) = QPm"(BPSU(3) x B2Z3)3.  (4.117)

Since H*(MPin~,Z3) = 0, Q™" (BPSU(3) x B2Z3)5 = 0.
Ext’ (H*(MPin~ A (BPSU(3) x B%Z3),75),Z2) = Q'™ (BPSU(3) x B%Z3)5.  (4.118)

Since H*(BPSU(3) x B2Z3,Z;) = H*BPSU(3),Zy), QY™ (BPSU(3) x B2Z3), =
Qb (BPSU(3))5.

QPin" (BPSU(3) x B2Z3)
Zy
0
Zs
Zs
22 X ZlG
0

T W N~ O .

Theorem 90.

The bordism invariant of Q5" (BPSU(3) x B2Z3) is w: 7.
The bordism invariant of Q™" (BPSU(3) x B2Z3) is w; Arf.

The bordism invariants of Q}firﬁ (BPSU(3) x B2Z3) are cz( mod 2) and 1.
Theorem 91.

The 2d topological term is wi1).
The 3d topological term is wy Arf.

The 4d topological terms are ca( mod 2) and 7.
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TP,(Pin* x PSU(3) x BZ;)
Zy
0
Zy
Zs
ZQ X ZlG
0

GUA WK~ O

4.7.10 QFn (BPSU(3) x B?Z3)

Ext’y (H*(MPin* A (BPSU(3) x B*Z3)+,Z3), Zs) = Q™ (BPSU(3) x BZ3)5.  (4.119)

Since H*(MPin™,Z3) = 0, Q)™ (BPSU(3) x B2Z3)5 = 0.

Ext’ (H*(MPin™ A (BPSU(3) x B?Z3)1,Z5),Z2) = Q" (BPSU(3) x B?Z3)5.  (4.120)

Since H*(BPSU(3) x B?Z3,Z,) = H*(BPSU(3),Z2), QL™ (BPSU(3) x B?Z3)) =
QLin” (BPSU(3))5.

QFin” (BPSU(3) x B2Z;)
Zs
Zs
Zg
0
Zy
0

TR W N~ O .

Theorem 92.

The bordism invariant of QY™ (BPSU(3) x B2Z3) is ABK.

The bordism invariant of Q™ (BPSU(3) x B2Z3) is ca( mod 2).
TP,(Pin- x PSU(3) x BZ;)

CUR W~ O
N
o

Theorem 93.

The 2d topological term is ABK.

The 4d topological term is co( mod 2).
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5 More computation of O/SO bordism groups

5.1 Summary

QF(-) [ BO@B) | BO4) | BO(5) | B(Zy x PSU(3)) | B(Z2 x PSU(4))
Zs Zs: Zs: Z3 : Zy:
250 wh wh wh 2!t w912
Z Z |z 2 2R
20 w%? w%? w%v w22 .a213 w%va’27
w/127 wé w/127 wé w/127 wé U 5214

Table 9: 2d bordism groups-1.

QI(—) | B%Z, | BZyxB?Zy | BZg x B?Z3 | BZg x B?Z, | BZ;5 x B?Z;3
Z4 . 22 . Z3 . 22 . Z3 .
250 x215 33216 x1217 x218 33/219
Z3 - Z3 -
Z2: 2 Z2: 2 Z2:
20 2 _ ’LU2, b,21 2 ’LU2, b,24 2
w% x220 x2122 w%’ a223 x2125 w%, a226

Table 10: 2d bordism groups-2.

le(—) 2BO(3) 2BO(4) 2BO(E)) B(Zy x PSU(3)) | B(Zy x PSU(4))
wiP, wiP, wP, Zy: Z::
3 SO
wiwh = wwh =] wwh, = a’ a’, ais
wh wsz wé
Z%:2 , 22:2 , 22:2 \ Z%' Z%:
/ / / / / / . 3 2
30 wijwy, wy, | wiwi,wy, | wjwi, wp, & aw% a ,az1112,7
! / ! / ! / / / / 9 ~
Wy Wy, W3 W)Wy, Wy W) Wy, Wy Z3,aT2

Table 11: 3d bordism groups-1.

"Here 2z = w2 (PSU(3)) € H*(BPSU(3), Z3) is the generalized Stiefel-Whitney class.
2Here 22 = wo(PSU(4)) € H*(BPSU(4), Z4) is the generalized Stiefel-Whitney class.
BHere a € H? (BZ2,Z5).
1%, = 22 mod 2 = w2 (PSU(4)) mod 2.
YHere o € H*(B2Z4,2Z4).
Y Here xo € H*(B2Z2, Z,).
"Here 25 € H?(B?Z3,Z3).
( )
(

8Here z2 € H*(B?Z2, Zs).

YHere 25 € H*(B?Z3, Z3).

2%Here &2 = z2 mod 2, x2 € H2(B2Z4,Z4).

'Here b=b mod 2, b € H*(BZ4,Zy).

22Here z2 € H*(B?Z,, Z5).

HHere a € H(BZ2, Z>).

%Here b=b mod 2, b € H*(BZg, Zs).

*Here z2 € H?(B?Z,, Z5).

2Here a € H'(BZ2, Z2).

*"Here 3 = P(2,0T2, 2 = w2 mod 2, z2 = w2(PSU(4)) € H*(BPSU(4), Z4) is the generalized Stiefel-Whitney
class.
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Qg(—) B2Z4 BZ4 X B222 BZG X B223 BZS X B222 leg X B223
725 Zy: 2o X
ZaxZoy: 3 ZgxZy: Z3xZy:
350 |0 ~ o8 a't!,d' xb, ~ 30 IYEPT,
ab, azxy 390 ab, axsy a't!,a'xb,
a 331
1, 4.
22 . Z_2' Z2 . ZZ' Z2 .
30 49 ab, 3, 2, ab, z3, 2
L3 233 a”, awy 234 a”, awy
ars, AWy aws, QWi
Table 12: 3d bordism groups-2.
Qi (-) BO(3) BO(4) BO(5)
Z? X Zs : Z2 x 7% Z2 x 7%
2 2
/ / /
4SO apla 07p17 U7p17
12,1 12,1 / 12,/ /
Zg : Zi : 2 Zi : 2
wl.u3 N PRV
9 9 / / / /
40 2,12 2 Wiwy, WiWsy, wiwy, WiWy,
WIWy, WiWs, !0 12,/ /. 12,/
W ww! w1 W3, Wy Wa, w1 W3, Wy Wa,
1Ws3, Wi Wy, W w? W w?
wl4 ,w/2 1%2, 1%
1 %2 ! /
Wy Wy

Table 13: 4d bordism groups-1.

Qé_](—) B2Z4 BZ4 X B222 BZ(; X B223 BZg X B2ZQ B218 X B223
Z X 9 Z X
Zx”Zs: 9
Z4 X I Z4 X Zx Z3 :
ZxZg: J,axgz O,
4 SO 35 Zy: , Zy: o,b'xy,
g, PQ(.’EQ) 21237 g, P2($2) Lo
bx82 ) bx8238
Z5: Zy:
Z% : C:L:L’3, bxg, Z% : @’133, bxg, Z% .
4 ,.,2 2 .2 4 ,,2 2 .2 4 ,.,2
40 | wi,ws, b, x5, wy, ws, b, x5, wi, wy,
25 224 4 2 4 2,242 4 2 4 2,.,244
Wiy, 7310 wi, w3, a*, a*wj wi, w3, a*, a*wj
bw?, xow?] bw?, zowd*

Table 14: 4d bordism groups-2.

a € H'(BZ4,Z4), b € H*(BZ4,Z4), @ = a mod 2, x2 € H?(B?Z,, Z>).
%a € H'(BZ2,25), o’ € H'(BZ3,Z3), V' = B3 3)d’, 24 € H*(B*Z3,Z3).
3% € H'(BZs,Zs), b € H*(BZs, Zs), @ = a mod 2, z» € H?(B*Z,,Z>).

32Here z3 = B(2,4)T2, T2 € HQ(B2Z4,Z4).
34 € HY(BZ4,2Z4), b € H*(BZ4,Z4), @ =a mod 2, b=b mod 2, 2o € H*(B%Z,,Z5), z3 = Sq'za.
34 € H'(BZs, Zs), b € H*(BZs,Zs), @ =a mod 2, b=b mod 2, zo € H*(B%Z,,Z>), x3 = Sq'z».
35D, (x2) is the Pontryagin square of z2 € HQ(BQZ47 Zy).
36p, (1‘2) is the Pontryagin square of xo € H?(B?Z2, Z>), b="b mod 2, b e H? (BZ4,24).

Th =

)

(
(
(
3lg € HY(BZ2,Z2), o’ € H'(BZy,Zy), @ = a' mod 3,V € H?(BZy,Zy), zh € H*(B?Z3,Z3).
3
(
(

8a' € H'(BZ3,Z3), b = B3 3d, v € H2(B*Z3,Z3), B(3,3)zh.

38772 (z2) is the Pontryagin square of z2 € H? (B2227 Z5), b=>b mod 2, be H? (BZs, Zs).
¥4’ € HY(BZo,Zo), b’ € H*(BZy,Zy), b = mod 3 = fz,0)d, x4 € HZ(B223,Z3)
401: =22 mod 2, z2 € H*(B2Z4,2Z,4).

MG =a mod 2, a € H'(BZ4,Z4), b=b mod 2 = Ba.4ya, b € H*(BZ4,Z4), x2 € H*(B*Zs,Z5), x5 = Sq'z2.

2q € H'(BZ2, Z>).

34 =a mod 2, a € H'(BZs,Zs), b=>b mod 2 = B(a8)a, b € H*(BZs,Zs), v2 € H*(B*Z2,Z5), x5 = Sq'w2.

“q € HY(BZ2, Z>).

91




/ / / 12 / / / 12
550 | wjws, wijwsy, WHWs, W Wy, oY _
12,1 12,/ _ | wiws -
wy ws wy w3 = 13,0 2015
13,1 .15 13,0 15 Wy Wy, Wy,
wP Wy, wy wPwsy, Wy Ty ,
wiw, = w
124 5
Zz11 Zz12 Zy”:
2 2
w2w3,w2w1,
wWawg, WyWy, W2wW3, Wywy, ro.2, 13
4, 1 .2 13 r,2 73 w;wy, wywy,
WiWy, WiWy s wiwy, Wywy 2 1.0 2
50 2. 0.1 2 2. 0.7 9 wiw Wy, WiWs3,
WiW Wy, WiW3, | WyW Wq, Wy W3,

Wywsg, Wi Wy, Wyws, W W3, 72,13
12,/ 13,/ 12,,,/ 13,,,/ Wy Wy, Wy W,
wi W3, Wy Wsy, Wy Ws, Wi Wo, 15
15 BT Wy, WyWy,
wy Wy, Wi Wy w!
5
Table 15: 5d bordism groups-1.

Q7 (-) B2Z, BZ, x B%Z, BZs x B%Z; BZg x B?Z, BZ;s x B%Z4
Z3 < Z3: Zyx ZExZ3: Z3 X Z3 x Zoz
aPa(x2), ab?, Z3xZ3ixZy: | (a a®, aws,

2. 5 2 2 ~/
590 |42 a(o a’, aws, mod 4)Pa(z2), ab?, | waws,d’ (o
WaW3, T mod 4),r5 = | wows,a'b' ) a(oc mod 8), x5 = | mod 3),
102 y 45 ~/l;/ !o=1 02
$gl‘3, a Ty 7%3( ) l‘ngg, a0 Ty,a Ty,
abxa, wows abxa, wows ‘33(5’/)%
17 717
dx%v bx§7 al’%, bZD%,
74 . $2£L’3LC~Lb2, Zg : 1‘2:E3,~C~Lb2, Zg :
2 9 x5, abxs, a5,a3w2, x5, abrs, a5,a3w2,
50 1 1
Wa2w3, WiT3, ~ 2 4 2 ~ 2 4 2
- A7 waw3, AWy, awy, awsy, W2W3, AW3y, awq, AWy,
L2T3, L5 aw?d. abw? 49 aw?. abw? 51
1 1 wWowWs awy, abwy, Worws
56311)% = azgw% =
wimy, argw?’® wizy, argw?®?

Table 16: 5d bordism groups-2.

B’ € HY(BZ3,Z3), b = Bs,sya’ € H*(BZ3,Z3), oh € H*(B?Z3,Z3), Pa(V') is the Postnikov square of b'.
(3,3)
46&’ = a/ mod 37 a/ S HI(BZQ7ZQ)7 b/ = b/ mod 3 = ,6(3,9)0,/, b/ € H2(B29729), QL‘/Q S HQ(BQZg,Zg), ‘Bg(b/) is the

Postnikov square of b’.
47~

To =x2 mod 2, xa € H2(BZZ47Z4), xr3 = ﬂ(2’4)1'2, T5 = Sq2m3.

4 = a mod 2, a € H(BZ4,Z4), b = b mod 2 = Buaa, b € H*(BZ4,Z4), 22 € H*(B?Z»,Z5), 25 = Sq'z2,

x5 = Sq?xs.
Yq € H'(BZ2,Z5).

4 = a mod 2, a € H'(BZs,Zs), b = b mod 2 = Baga, b € H*(BZs,Zs), z2 € H*(B?Z,,2Z,), 3 = Sq'z2,

Tr5 = Sq2x3.
5lq € HY(BZ2, Z2).
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5.2 B2z,

5.2.1 Q9(B%z,)

Ext’; (H*(MO,Z,) @ H*(B*Z4, Z5), Z2) = Qf (B*Zy)

H*(MO, Zs) = A2 ® Za[y2, Y4, Y5, Y6, Y8, - - -]

2 Nk 2 _ .4 _
where y5 = wy, (y3)* = w3, y; = wi, yf = wows, etc.

H*(B2Z4, ZQ) = ZQ[I%Q, T3,T5,T9, . . ]

where Ts = x5 mod 2, x5 € H2(B224, Zy), x3 = B2,4)T2, T5 = Sq?x3, xg = Sqtxs, etc.

H*(MO,Zy) @ H*(B%Z4,Z2) = Ax ® Zalya, Ya, Us, Y6, Uss - - - |* @ Za[F2, 73, 5, To, . -

= Ay & 222 A, B Y3 A B A Ay B AT A S - -

Hence we have the following theorem

09 (B%z,)
Zs
0
z3

2
ZQ

G W N~ O,

Theorem 94.
The 2d bordism invariants are w?, o.
The 3d bordism invariant is x3.

The 4d bordism invariants are wf, w3, w?Zq, T3.

The 5d bordism invariants are wows, w%:cg, Tox3, T5.
5.2.2 Q59(B%Zy)

Ext’; (H*(MSO, Z3) @ H*(B?Z4, Z,), Zo) = 9, (B*Z4)
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H*(MSO, Zg) = ./42/./428(11 D 24./42/./428(11 D 25./42 D (5.6)

Sq'Ey = 2B ym2 = 0, Bea(x2) = §0x2 = x3, Bo4)(a3) = 2wow3 = 2Fawsz = 0, Sq'(#3) =
25(274)(56%) =0, 6(278)732(1‘2) = %5P2($2) = %5(1‘2 U xg + 22 LiJ 5%’2) = %(251’2 U xo + dxo LiJ 5.1‘2) =

x3 Uxg + 223 LlJ r3 = x3 U o + 2Sq%x3 = Fox3 + 275 = Toxs, Sqlas = 0, Sql(Zox3) = 0, Sqlas =
Sa'Sq?Ba,ayz2 = Sq'Sq?Sq’ (5i2) = Sa*((52)?) = (Sa' (372))? = (B2,ayx2)? = 3.

do(x3) = F2h3, ds(F2x3) = F3R3.

The F» page is shown in Figure 48.

S

Figure 48: Q3°(B2Z,)

Hence we have the following theorem

i QP9(B2Zy)
0 z

1 0

2 Z,

3 0

4 ZxZ

5 z3

Theorem 95.

The 2d bordism invariant is xs.
The 4d bordism invariants are o, Pa(22).

The 5d bordism invariants are wows, 5.
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5.3 BO(3)

5.3.1 Q2(BO(3))

Ext’; (H*(MO,Z,) @ H*(BO(3), Z2), Z2) = Qf (BO(3)) (5.7)

H*(MO,Z3) = A2 @ Za[y2, Y4, Y5, Y6, Ys - - - | (5.8)

* 02 2\ __ .2 * 4 *
where y5 = wy, (y3)* = w3, y; = wi, y& = waws, etc.

H*(BO(3), Z2) = Za[w), wh, wh] (5.9)

H*(MO,ZQ)®H*(BO(3)7ZQ) - AQ®22[y25y47y5)y67y83"’]*®22[w/1)w/27wé] (510)
Ay ® A2 © 3524, 4% A, 985 A  11T° A @ - -

Hence we have the following theorem

U W= O
N
[\JoV)

Theorem 96.

The 2d bordism invariants are w?, w}?, w.

The 3d bordism invariant are wjw?, w, w}wh, w}.

The 4d bordism invariants are wi, w3, w?wi, wiw), wjw}, wiwh, wit, w.

2 12 12

13,,,/

The 5d bordism invariants are wows, wiw}, wiw], wiwP, wiw|wh, wiwh, whwh, wiwh, wEwh, wWwh, wy.

5.3.2 Q59(BO(3))

Ext’y, (H*(MSO,Z,) @ H*(BO(3),Z5), Zo) = 07%,(BO(3)) (5.11)
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H*(MSO, Zg) = .AQ/.AQSql b 24./42/./428(11 b 25./42 P (5.12)

H*(BO(3),Z2) = Zs[w], wh, wh)] (5.13)

where Sqlw) = wiwh + wh, Sq'wh = wiwy.

The F»> page is shown in Figure 49.

S

Figure 49: Q39(BO(3))

Hence we have the following theorem

0F9(BO(3))
Z
Zy
Zy
z3
22 X 22
Z3

T W N = O

Theorem 97.

The 2d bordism invariant is w.

The 3d bordism invariants are w3, wjw} = w}.

The 4d bordism invariants are o, p/, wwb.

The 5d bordism invariants are wows, wiw], whwh, wiws, wiwh = wwh, w.
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54 BO(4)

5.4.1 Q2(BO(4))

Ext’, (H*(MO,Z,) ® H*(BO(4), Z3), Z2) = Qf ,(BO(4))

H*(M07 ZZ) = A2 & ZQ[y27y47 Ys, Y6, Y8, - - ]*

* 02 2\ __ .2 * 4 *
where y3 = wi, (y3)* = w3, yi = wi, y5 = waws, etc.

H*(BO(4), Z3) = Za[wy, wy, wy, w)]

H*(M07 ZQ) & H*(BO(4)>Z2) = AZ ® ZQ[yQa Ya,Ys5,Y6, Y8y - - - ]* ® ZQ[w/bwéa wé,wﬁd

(5.14)

(5.15)

(5.16)

(5.17)

As & XA B 3%%2 A5 B 4Y3 A & 9X4 A, B 125° A0 & - -

Hence we have the following theorem

T WD~ O
N
[\eJob)

Theorem 98.

The 2d bordism invariants are w?, w}?, w}.

The 3d bordism invariant are wjw?, w3, wjwb, wh.

The 4d bordism invariants are wi, w3, wiw?, wiwh, wiwh, wiwh, wit, wi, w).

The 5d bordism invariants are

2 4 3,2 2 2 12,/ 3,/ /5
w2w3, wzwl, wlwl, wlwl 5 w1w1w2, w1w3, w2w3, w1w2 , wl w3, wl w2, wl B w1w4
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5.4.2 Q3°(BO(4))

Exti’é(H*(MSO, Z,) @ H*(BO(4),Z5), Zs) = Q5° (BO(4))

H*(MSO, Zz) = ./42/./428(]1 D 24./42/./428(11 D 25./42 b

H*(BO(4),Z2) = Z, [wllv ’wé, wilia wﬁl]
where Sq'w} = wjw} + wh, Sq'wh = wiwh, Sqlw) = wiw).

The F» page is shown in Figure 50.

S

Figure 50: Q3°(BO(4))

Hence we have the following theorem

QF9(BO(4))
Z
Zs
Zs
z3
Z2 x 72
z3

U W NP O,

Theorem 99.
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The 2d bordism invariant is wj.

The 3d bordism invariants are w3, wjw) = w}.

The 4d bordism invariants are o, p/, wPwh, w).

12 12 /3 15

The 5d bordism invariants are waws, wiw], whwh, wiws, wikwh = wwh, w.

5.5 BO(5)

5.5.1 Q2(BO(5))

Extjg (H* (MO, Z5) @ H (BO(5),Z5), Z3) = QP (BO(5))

H*(MO, ZZ) = AZ & 22[y2ay47 Ys, Y6, Ys, - - ]*

2

02 * 0,2 * 4 *
where y5 = wi, (y3)* = w3, y; = wi, y5 = waws, etc.

H*(BO(5), Z2) = Za[w}, wh, wh, w), wg]

(5.21)

(5.22)

(5.23)

H*(MOaZQ) ®H*(BO(5)722) - AZ®22[y25y47y5?y67y87"°]* ®22[w/17wéawéywﬁbwé](524)
A @B Ay @352 Ar @433 A @ 904 A, 9 135° A0 @ - -

Hence we have the following theorem

TR W N O
N
[\oJob)

Theorem 100.

The 2d bordism invariants are w?, w}?, w}.

The 3d bordism invariant are wjw?, w, w}wh, w}.
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The 4d bordism invariants are wi, w2, w2w}?, wiwh, wiwh, wiwh, wit, wi, w).

The 5d bordism invariants are

2.0 4.0 2 /3 2 /4 0 2 S S S S 42 g2 S 43 0 A5 NS ]
wgwg,’w2w1,’w1w1,w1w1 ,w1w1w27w1w37w2w3,w1w2 ,wl w3,w1 w2,w1 ,w1w47w5.

5.5.2 Q39(BO(5))

Ext; (H*(MSO,Zs) @ H*(BO(5), Z2), Z2) = Q7% (BO(5)) (5.25)
H*(MSO, Z,) = AQ/.AQSql D 24./42/./428(11 &) 25.,42 D--- (5.26)
H*(BO(5), Z2) = Zo[w, wh, ws, wy, w) (5.27)

where Sqlwh = wjw) + wh, Sqlwh = wiwh, Sq'w) = wiw) + wi.

The FE» page is shown in Figure 51.

S

Figure 51: Q3°(BO(5))
Hence we have the following theorem
Theorem 101.

The 2d bordism invariant is wj.
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QP9 (BO(5))
Z
Z
Zy
V4,
Z%x 73
Z]

T W N = O .

The 3d bordism invariants are w3, wjw} = w}.

The 4d bordism invariants are o, p/, wwh, w).

12 /2 /3 15

The 5d bordism invariants are wows, wiw], whwh, wiw, wiwh = wwh, W, wiw) = wk.

5.6 BZQn X BZZn

5.6.1 Q9(Bz, x B2Zy)

H*(BZ4,Z4) = Z4la, b]/(a* = 2b)

where a € HY(BZ4,Z4), b € H3(BZ4, Z4).

H*(BZ4,Z5) = Az,(a) ® Z2[b]

where @ = a mod 2 € H'(BZ4,Z5), b=0b mod 2 € H*(BZy, Zy).

H*(B2ZQ, ZQ) = ZQ[IEQ, T3,T5,T9, .. ]

Ext% (H*(MO,Z,) @ H*(BZy x B*Z3,2),Z3) = Qf (BZy x B*Zy)

H*(MO, 22) — AQ ® 22[y27y45 Ys5,Y6, Y8, - - ]*

R R N B S
where y5 = wy, (y3)* = w3, y; = wi, yf = wows, etc.

H*(MO,Zy) ® H*(BZ4 x B*Z3,Z5)

A2 @ Za[y2, Y4, Y5, Y6, Ys, - - - |* @ Az, (@) ® Za[b] @ Zo[Zo, 3, x5, X9, . . .

= A DY A D 322/12 ® 423.A2 ® 824./42 ® 1225./42 D---
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Hence we have the following theorem

Theorem 102. The bordism groups are

QP (Bz, x B*Z,)
Zs
Zy
Z3
Z,
Z;5
VA%

T W N = O .

The 2d bordism invariants are b, z2, w?.
The 3d bordism invariants are ab, x3, s, Gw?.
4

The 4d bordism invariants are axs, bxz, b?, ¥3, wi, w3, bw?, Tow?.

The 5d bordism invariants are dm%, bxs, xoxs, ab?, x5, abrs, wows, dw%, dw‘f, dbw%, xgw%: wi”xg, dasgw%.

Note
T3 = wWi1xy (534)
except xoxs = %wlac%.
5.6.2 Q39(BZy x B?Zy)
Ext’ (H*(MSO,Zs) ® H*(BZy x B?Z3,Z5), Z) = Qj9,(BZ4 x B?Z,) (5.35)
H*(MSO, Z,) = AQ/AQSql @ E4A2/A28q1 EYAP--- (5.36)

/8(2,4)CL = E, Sqlxg = I3, Sql(dxg) = d;];z” Sql(gxg) = i)xg, ,8(2’4)((113) — ?2’ ,6(274)(7)2(.732)) _
Toxs + x5, Sqt(w2x3) = Sqlws = 22, Sql(abxy) = abrs, Bia.a)(aPa(x2)) = ba3 + a(zoxs + xs5),
,8(274)(ab2) = b3, Bi2,ay(a(c mod 4)) = bw3.

dy(b) = ahd, da(b?) = abh3, da(wows + x5) = a3h3, da(ba3 + a(waws + x5)) = aadhd, da(b®) =
ab’hd, da(bw?) = awih3.

The FE» page is shown in Figure 52.

Hence we have the following theorem
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°
.
°
)

Figure 52: Q59(BZ, x B2Z,)

QZSO(BZ4 X B2ZQ)
z
Zy
Zs
Z4 X 22
Z x Z4 X 22
Z3x 273

T W N~ O .

Theorem 103. The bordism groups are

The 2d bordism invariant is xs.
The 3d bordism invariants are ab and azs.
The 4d bordism invariants are o, Pa(z2) and bs.

The 5d bordism invariants are aP(z2), ab?, a(c mod 4), x5 = zox3, abry and wows.
5.6.3 Q9(BZs x B2Z3)

H*(BZs x B%Z3,2Z5) = H*(BZy,Z,) = Zs[d] (5.37)

where a € H(BZz, Zs).

Ext’; (H*(MO,Zs) @ H*(BZs x B?Zs,Z5),Z3) = Qf (BZs x B*Z3)3 (5.38)
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Since H*(MO, Z3) = 0, we have Q9 (BZg x B2Z3)5 = 0.

Ext’. (H*(MO,Z,) ® H*(BZ x B*Z3,2,),Z5) = Qf (BZs x B*Z3)) (5.39)

H*(MOaZQ) :-/42®22[y23y4ay5ay6’y87"']* (540)

2 Nk 2 _ 4 _
where y5 = wy, (y3)* = w3, y; = wi, y& = waws, etc.

H*(MC)?ZQ) ®H*(BZ6 X BQZ3722) = -AQ ®Z2[@/27y47y573/673/8»---]* ®22[a] (541)
= Ay DAy D252 A5 ® 253 A5 @ A Ay B XA B - - -

Hence we have the following theorem

Theorem 104. The bordism groups are

QP (BZs x B*Z3)
Zy

TR W N = O
N
NIV

The 2d bordism invariants are w?, a?.

The 3d bordism invariants are a3, aw?.

The 4d bordism invariants are a?, a2w%, w‘f, w%.

The 5d bordism invariants are a’, a3w?, aw‘f, aws, waws.

5.6.4 Q39(BZg x B?Z3)

Ext’ (H*(MSO A (BZg x B*Z3)+,Z5),Zs) = 97°,(BZs x B?Z3)5. (5.42)
Since H*(BZG X B223, Zg) = H*(BZQ, Zg), we have QEO(BZG X B223)§\ = QSO(BZQ)

The F»> page is shown in Figure 53.
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Figure 53: Q39 (BZ,)
Ext’; (H*(MSO A (BZs x B*Z3)+,Z3), Zs) = 97°,(BZs x B*Z3)5. (5.43)

Since H*(BZg x B2Z3,Z3) = H*(BZ3 x B%Z3,Z3), we have Q3°(BZs x B2Z3)} = Q5°(BZ;3 x
B2Z3)5.

Hence we have the following theorem

Theorem 105. The bordism groups are

099(BZs x B%Z3)
Z
Zg X 22
Z3
Z% X 22
Zx1Z3
Z3 x Z§ X Zg

U W N~ O =,

The 2d bordism invariant is 5.

The 3d bordism invariants are a'b/, a’z}, a®.

The 4d bordism invariants are o, o’z (= V'x}) and 2%.

The 5d bordism invariants are a°, aw3, wows, a’b'xh, a’vZ, P (V).

Here 33 is the Postnikov square.
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5.7 BZy: x B*Z,

5.7.1 Q((j)(BZS X B2ZQ)

H*(BZg, Zg) = Zs[a, b]/(a* = 4b)

where a € Hl(B28,Zg), be HQ(BZ& Zg).

H*(BZg,Z3) = Az,(a) ® Zs[b]

where @ = a mod 2 € H'(BZs,Z,), b=0b mod 2 € H*(BZg, Zy).

H*(B2ZQ, Zy) = Zs[x9, x3, x5, X9, . . . |

Ext’ (H*(MO,Z,) ® H*(BZs x B*Z3,Z,),Z5) = Qf (BZs x B*Z,)

H*(M07 ZZ) = A2 & 22[y27y47 Ys, Y6, Y8, - - ]*

* 02 2\% __ .2 * _ 4 *
where y5 = wi, (y3)* = w3, yi = wy, y5 = waws, etc.

H*(MO,Z,) @ H*(BZy x B?Zy,Zy)

= Ay ® Za[y2, Y4, Y5, Y6, Y8, - - - |* ® Az, (@) ® Za[b] ® Zo[To, 3,5, T, . . .

As YA @352 A5 P 4AY3 A0 B 8T Ay B 125° A0 @ - - -

Hence we have the following theorem

Theorem 106. The bordism groups are

0P (Bzs x B*Z,)
Zy
Zy
Z3
Z3
Z;5
z)?

TR W N = O
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The 2d bordism invariants are b, z2, w?.

The 3d bordism invariants are ab, x3, axs, aw?.

The 4d bordism invariants are axs, bxa, b%, ¥3, wi, w3, bw?, Tow?.

The 5d bordism invariants are ax3, bxs, T2x3, ab?, T35, abra, wows, w3, awf, abw?, raw?= wiry, avow?.

Note
T3 = wWi1xy (5.50)
except xoxs = %wlaz%.
5.7.2  Q39(BZg x B?Zy)
Ext’; (H*(MS0,Z,) @ H*(BZs x B?Z5,Z,),Z5) = Q}%,(BZs x B*Z,) (5.51)
H*(MSO, Zg) = .AQ/.AQSql D E4A2/A28q1 D 25./42 D (5.52)

Baga = b, Sq'zs = z3, Sq'(azs) = ars, Sql(?)@) = brs, Bas)(ab) = b, Braa)(Pa(w2)) =
T213 + T3, Sql(ﬁﬂgx?)) = Sq'zs = 23, Sq' (abxy) = abxs, B(2,.4)((a mod 4)Pa(x2)) = 262 (?)x% +
a(zows + x5) = 2bx3 + a(w2x3 + x5) = a(x2w3 + T35), B(as)(ab?) = b, Bag)(a(c mod 8)) = bws.

i gz)a) = af;O,ng(zﬂ) = abh3, do(zows + x5) = 23h3, da(a(zaxs + 5)) = axih?, dz3(b®) = ab*hi,
bw3) = awih.
The F» page is shown in Figure 54.

Hence we have the following theorem

Theorem 107. The bordism groups are

059(BZg x B?Zy)
Z
Zg
Z
Zg X 22
Z X Z4 X 22
Zy X Zg X Z%

TU s W N~ O,

The 2d bordism invariant is xs.
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Figure 54: Q59 (BZg x B2Z,)

The 3d bordism invariants are ab and azs.
The 4d bordism invariants are o, Po(x2) and bxs.

The 5d bordism invariants are (¢ mod 4)Pa(z2), ab?, a(c mod 8), x5 = xox3, Gbxy and wows.

5.7.3 Q((i)(leg X B223)

H*(BZ1s x B%Z3,Z,) = H*(BZy, Zs) = Zs[a) (5.53)
where a € H(BZz, Zs).
Ext’} (H*(MO,Z3) @ H*(BZys x B*Z3,Z3),Z3) = Qf (BZ1s x B*Z3)} (5.54)

Since H*(MO, Z3) = 0, we have Q9 (BZ5 x B2Z3)% = 0.

Ext% (H*(MO,Zy) ® H*(BZ1s x B*Z3,Z2),Z2) = QO (BZ1s x B*Z3)) (5.55)

H*(MOaZQ) :A2®Z2[y27y47y5ay67y87"']* (556)

a2 (2 — ap2 o — apd g —
where y5 = wy, (y3)* = w3, y; = wi, yf = wows, etc.
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H*(MO,Zy) ® H*(BZ1s x B*Z3,Z2) = A ® Za[y2, ya, Us, U6, Us - -

" ® Zy[d]

(5.57)

Ao & XAy B 252 A0 B 253 A @AY A & 55 A0 B - -

Hence we have the following theorem

Theorem 108. The bordism groups are

2

The 2d bordism invariants are w%, a“.

3

The 3d bordism invariants are a3, aw?.

4 2

4 ,,2

The 4d bordism invariants are a*, a“wy, w7, wj.

5 .3

The 5d bordism invariants are a°, a°w

5.7.4 Q59(BZ;5 x B2Z;3)

4 2
1 awl 5 an, w2w3

Ext’ (H*(MSO A (BZis x B*Z3)+,Z3),Z) = Q°,(BZ1s x B*Z3)5. (5.58)

Since H*(BZ15 x B%Z3,Z5) = H*(BZ2,Z3), we have Q39 (BZ;5 x B2Z3)) = Q5°(BZ,).

Ext’ (H*(MSO A (BZ1s x B*Z3)4,Z3),Z3) = 79, (BZ1s x B?Z3)5. (5.59)

Since H*(BZ1s x B2Z3,Z3) = H*(BZg x B%Z3,Z3), we have Q5°(BZ;5 x B2Z3)5 = Q5°(BZy x

B2Z3)5.

H*(BZy, Zg) = Az, (d') ® Zo[V]. (5.60)

where o/ € HY(BZy,Zy), b € H?(BZy, Zy).

H*(BZy,Z3) = Az, (d') @ Z3[V]. (5.61)
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where @ = a’ mod 3,V =¥ mod 3, ¥ = Bs,o(a).

H*(BQZg, Zg) = Zg[mé, l‘/g, .. ] & A23 (:Ug, .T/7, - ) (562)

Bs,3)(@) = 3B (a) = 30 = 0, 5(3,3)@’2) = ~$l37 5(3,3)(%/22)~ = 233'29531 Bz (a't') = b2,
Bao(@'b?) = V3, Bag)(@'ah) = a'zh, Bz (bah) = b, Bis)(@bey) = abay, Bss)(@ey) =
20’ xhak.

There is a differential da corresponding to the (3,9)-Bockstein [26].

dg(i)/) — ~/h62’ dQ(B/Q) — d’i)’h&z, d2(6/3) — dli)/zh()z‘

The FE» page is shown in Figure 55.

S

) ¥
4 N
3 ¥
2 \
1

0 . . . .

Figure 55: Q9 (BZg x B2Z3)%

Hence we have the following theorem

Theorem 109. The bordism groups are

Q59(BZ,5 x B2Z3)
Z
Zg X 22
Z3
Zg X Zg X 22
ZxZ3
Z3 X Z3 x Zoz

T W NP Of .

The 2d bordism invariant is 5.
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The 3d bordism invariants are a'b’, @'z}, a®.

The 4d bordism invariants are o, bz}, r'5.

The 5d bordism invariants are a®, aw3, wows, @ (¢ mod 3),a'd'xh, @'z, Rs(b').

Here B3 is the Postnikov square.

5.8 B(Z, x PSU(N))

For N > 2, the outer automorphism group of PSU(N) is Zy where Z3 acts on PSU(N) via complex
conjugation.

5.8.1 Q9 (B(Zy x PSU(3)))

Ext’; (H*(MO,Z,) @ H*(B(Zy x PSU(3)),Z2), Z5) = Qf (B(Z x PSU(3))) (5.63)

H*(MO,ZQ) :AQ®22[y27y47y57y67y87"']* (564)

* 2 2Vk 02 ok o4 ok
where y5 = wy, (y3)* = w3, y; = wi, y& = waws, etc.

We have a fibration

BPSU(3) — B(Zy x PSU(3)) — BZ,. (5.65)
H*(BZ3, Z5) = Zs[a] (5.66)
H*(BPSU(3), Z5) = Zs[ca, c3) (5.67)

By Serre spectral sequence, we have

HP(BZ,, HY(BPSU(3), Z3)) = HPT4(B(Zy x PSU(3)), Z2). (5.68)

The relevant piece is shown in Figure 56.

Hence H*(B(Z2 x PSU(3)),Z2) = H*(BZy, Zs) for x < 3.

H*(MO7ZQ) ®H*(BZQ,ZQ) (569)
AQ ® 22[927194; Ys5,Y6, Y8, - - ]* & ZQ[G’]
= AdYXA 222462534, @ - -
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2 0 0 0 0

1 0 0 0 0

0 2 Zy Zy Zy
0 1 2 3

Figure 56: Serre spectral sequence for (BZy, BPSU(3)) with coefficients Z

Hence we have the following theorem

Theorem 110. The bordism groups are

i Q9(B(Zy x PSU(3)))
0 Z,
1 Z,
2 Z3
3 z3

The 1d bordism invariant is a.

The 2d bordism invariants are a2, w?.

The 3d bordism invariants are a3, aw?.

5.8.2 Q39(B(Z x PSU(3)))

Ext; (H*(MSO,Z5) @ H*(B(Z2 x PSU(3)), Z2), Z2) = Q,(B(Z2 x PSU(3)))5

Ext’ (H*(MSO, Z3) @ H*(B(Zy x PSU(3)), Z3), Z3) = 97°,(B(Z> = PSU(3)))3

H*(BPSU(3), Z3) = (Z3[22, 28, 212] ® Az, (23, 27))/ (2223, 2227, 2228 + 2327)

By Serre spectral sequence, we have

HP(BZ,, HY(BPSU(3), Z3)) = HPH(B(Z, x PSU(3)), Z3).
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The relevant piece is shown in Figure 57.

3 Z3 0 0 0
2 Z3 0 0 0
1 0 0 0 0
0 Z3 0 0 0

0 1 2 3

Figure 57: Serre spectral sequence for (BZy, BPSU(3)) with coefficients Z3
Hence H*(B(Z2 x PSU(3)),Z3) = H*(BPSU(3), Z3) for * < 3.

Combining this with previous results, we have the following theorem

Theorem 111. The bordism groups are

i QP9(B(Zy x PSU(3)))
0 z
1 Z,
2 Z3
3 Z,

The 1d bordism invariant is a.

The 2d bordism invariant is zs.

The 3d bordism invariant is a>.

5.8.3 Q9 (B(Zy x PSU(4)))

Ext’{. (H*(MO, Zs) ® H'(B(Z> x PSU(4)), Z5),Z2) = Q2 ,(B(Z2  PSU(4)))

H*(MO, ZQ) = -/42 ® ZQ[yZaylla Ys, Y6, Y8, - - ]*

2 Nk 2 4 _
where y5 = wy, (y3)* = w3, y; = wi, y& = waws, etc.
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We have a fibration

BPSU(4) — B(Zy x PSU(4)) — BZs.

H*(BZQ7 Zg) = 22 [a]

We have a fibration

BSU(4) — BPSU(4) — B2,

H*(BSU(4),Z3) = Z3[ca, c3, 4]

H*(B?Z4,2Z,) = Zs[iy, 23, x5, T, . .

By Serre spectral sequence, we have

HP(B?Z,, HY(BSU(4), Z3)) = HPT4(BPSU(4), Z,).

The relevant piece is shown in Figure 58.

3 0 0
2 0 0
1 0 0
0 2 0

0 1

Figure 58: Serre spectral sequence for (B2Z4, BSU(4))

Hence H*(BPSU(4),Z) = H*(B%Z4, Z3) for x < 3.

Again by Serre spectral sequence, we have

HP(BZ,, HY(BPSU(4), Z)) = HPH(B(Z, x PSU(4)), Z5).

114

Zs

2

]

Zs

3

(5.76)

(5.77)

(5.78)

(5.79)

(5.80)
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2 ZQ 22 22 22 ZZ

1 0 0 0 0 0

0 Z» Zy Zs Zo Zs
0 1 2 3 4

Figure 59: Serre spectral sequence for (BZ2, BPSU(4))

The relevant piece is shown in Figure 59.

There are no differentials,

22 n=2~0
n o ZQ n=1
H"(B(Zy x PSU(4)), Z,) = 2 n—o (5.83)
Z3 n=3
H*(MO, Z5) @ H*(B(Z2 x PSU(4)), Z») (5.84)

= Ay & XAy ®3X2As B AY3 A B - - -

Hence we have the following theorem

Theorem 112. The bordism groups are

The 1d bordism invariant is a.
The 2d bordism invariants are a2, T2, w?.
The 3d bordism invariants are a®, 3, aZs, aw%.

Here &3 = 2o mod 2, x5 € H*(BPSU(4),Zy4), 23 = B2,4)T2-
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5.8.4 Q5°(B(Zy x PSU(4)))

Ext% (H*(MS0,Zs) @ H*(B(Zy x PSU(4)), Z3), Z) = Q79,(B(Z2 x PSU(4)))

dg(l’g) = ii‘Qh(Q).

The F»> page is shown in Figure 60.

S

Figure 60: Q539 (B(Z, x PSU(4)))

Hence we have the following theorem

Theorem 113. The bordism groups are

i QP9(B(Zy x PSU(4)))
0 z
1 Z,
2 Z,
3 z3

The 1d bordism invariant is a.

The 2d bordism invariant is xs.

3

The 3d bordism invariants are a°, aZs.

6 Background

For more information, see [14,27-29].
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6.1 Cohomology theory
6.1.1 Cup product

Let X be a topological space, an n-simplex of X is a map o : A™ — X where
A" = {(to,t1,. .., tp) € R"Htg + 11 + -+ + £, = 1,¢; > 0}, (6.1)

it is denoted by [vp, ..., v,] where v; are vertices of A™.

n-simplexes of X generates an abelian group C),(X), the elements of C),(X) are called n-chains.
A" embeds in A" in the canonical way, define 0 : C,,(X) — Cp,—1(X) by

n

0(0) =D (=1)'0ljg, .00 (6.2)

i=0
It is easy to verify that 9% = 0, so (Ce(X),d) is a chain complex.
Let G be an abelian group, let C™(X,G) := Hom(C,(X),G), the elements of C"(X,G) are

called n-cochains with coefficients G. Define § : C"(X,G) — C""(X,G) by 6(a)(c) = a(d(a)),
then 62 = 0, so (C*(X,G),9) is a cochain complex.

H"(X,G) is defined to be Iﬁi?g:,(f((ggg?nl&( ’g)). It is an abelian group, called the n-th co-
homology group of X with coefficients G, the elements of the abelian group Z"(X,G) := Kerd :
C"(X,G) — C""Y(X,q) are called n-cocycles, the elements of B*(X,G) := Imd : C" }(X,G) —

C™(X, Q) are called n-coboundaries.
By abusing the notation, we also use [vp, ..., vy] to denote an n-chain.

If G is additionally a ring R, then we can define a cup product such that H*(X, R) is a graded
ring. First we define the cup product of two cochains:

C™(X,R) x C™(X,R) — C"™™(X,R)

(,8) = aUp (6.3)
aUpB([vo, .- Untm]) == a([vo, .., vn]) - B([vn, - - s Untm]) (6.4)
where - is the multiplication in R.
The cup product satisfies
d(aUp)=0a)UB+ (—1)"aU(65) (6.5)

a U B is a cocycle if both a and g are cocycles. If both « and § are cocycles, then o U 8 is
a coboundary if one of a and ( is a coboundary. So the cup product is also an operation on
cohomology groups U : H*(X, R) x H™(X, R) — H""(X, R). The cup product of two cocycles

satisfies

aUpf=(-1)""FUa+ coboundary (6.6)
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For the convenience of defining higher cup product, we use the notation ¢ — j for the consecutive
sequence from % to j

t—=j=41+1,---,75—-1,7. (6.7)

We also denote an n-chain by (0 — n). We use («, o) to denote the value of «(o) for n-cochain «
and n-chain o.

Let f,, be an m-cochain, h,, be an n-cochain, we define higher cup product f,, % h,, which yields
an (m + n — k)-cochain:
<meI—th'rL7(0>1> 7m+n_k>>

= > (0P (fons (0= gyt = gy +)) X (B, (g — i1, 32 — i3, +)), (6.8)

0<ip<--<ir<n+m—~k

andfmghn:Ofork>m0rn0rl<:<(). Here i — j is the sequence 7,7+ 1,--- ,7 — 1,7, and p is

the number of transpositions (it is not unique but its parity is unique) in the decomposition of the
permutation to bring the sequence

0—)1'0,2’1*)2.2,-" ;i0+1—)i1*1,i2+1—)i3*1,'-' (69)
to the sequence
0—m+n-—Ek. (6.10)

For example

—

m—

(fm U b, (0,1, ,m4n —1)) = D (—1)lmm il

=

0
(fm, (0 =4, i+n—>m+n—1))(hy, (i = i+n)). (6.11)

We can see that U = U. Unlike cup product at k = 0, the higher cup product of two cocycles may
0

not be a cocycle.

Steenrod studied the higher cup product of cochains and found a formula [?, Theorem 5.1]:
S(uUv) = (=1)PT0% U v+ (—1)PT P U u+ SuUwv + (—1)Pu U dv (6.12)
i i—1 1—1 [ [
where u is a p-cochain, v is a g-cochain.

Also Steenrod defined Steenrod square using higher cup product:

Sq"*(2n) = 2 e (6.13)

6.1.2 TUniversal coefficient theorem and Kiunneth formula

If X is a topological space, R is a principal ideal domain (Z or a field), G is an R-module, then the
homology version of universal coefficient theorem is

H,(X,G) = H,(X,R) ®r G @ Torl'(H,_1(X, R), G). (6.14)
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The cohomology version of universal coefficient theorem is

H"(X,G) = Homg(H, (X, R), G) ® Extp(H,_1(X, R),G). (6.15)

We will abbreviate Tor% by Tor, Ext% by Ext.

If X and X’ are topological spaces, R is a principle ideal domain and G,G’ are R-modules
such that Torf(G,G’) = 0. We also require either
(1) H,(X;2Z) and H,,(X'; Z) are finitely generated, or
(2) G and H,(X';Z) are finitely generated.

The homology version of Kiinneth formula is

Hy(X x X', GorG")
~ [@gzo Hy(X,G) @ Hd,k(x’,c;')] @ [@g;g Torf(HF (X, G),Hd,k,l(x/,c;'))] (6.16)

The cohomology version of Kiinneth formula is

HYX x X' .Gor G
~ [@gzo HE (X, G) ®r Hd—k‘(X',G’)] ® [@gzg TorF(HF(X, G),Hd—Hl(X',G'))] (6.17)

Note that Z and R are principal ideal domains, while R/Z is not. Also, R and R/Z are not
finitely generate R-modules if R = Z.
Special cases: 1. R =G’ = Z.

In this case, the condition Torl*(G,G") = Torf(G,Z) = 0 is always satisfied. G can be R/Z, Z,
Z, etc . So we have

HY(X x X', G)
~ [ad_, H*(X, G) @z HEF(X; Z)} ® [@gig Tor(HF(X, G), HéF+1 (X7, Z))]. (6.18)

Take X to be the space of one point in (6.18), and use

G, ifn=0
H"(X,G)) =< "’ ’ 6.19
( ) {O, if n >0, ( )
to reduce (6.18) to
HY(X,G) ~ HY(X;Z) 7 G ® Tor(H(X;2), Q). (6.20)

where X’ is renamed as X. This is also called the universal coefficient theorem which can be used
to calculate H*(X,G) from H*(X;Z) and the module G. Here Tor = Tor?.
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Homology version of (6.20) is just the universal coefficient theorem for homology with R = Z.

2. R=G = G' =F is a field, Torf(G,G") = 0.

H*(XXX',F):H*(X,F)(X)H*(X',F), (6.21)
This is called the Kiinneth formula.

There is also a relative version of Kiinneth formula [27, Theorem 3.18]:
H(X AX',F)=H'(X,F) @ H (X', F). (6.22)

Here X A X' is the smash product, H is the reduced cohomology.

6.2 Bordism theory

As the pioneer of bordism theory, Thom [7] studied when the disjoint union of two closed n-
manifolds is the boundary of a compact (n+1)-manifold, he found that this relation is an equivalence
relation on the set of closed n-manifolds, moreover, the disjoint union operation defines an abelian
group structure on the set of equivalence classes. This group is called the unoriented bordism
group, it is denoted by Q9. Furthermore, Thom found that the Cartesian product defines a
graded ring structure on Q9 := @, -, 29, which is called the unoriented bordism ring. Thom also
found that the bordism invariants of Q9 are the Stiefel-Whitney numbers, namely, two manifolds
are unorientedly bordant if and only if they have identical sets of Stiefel-Whitney characteristic
numbers. This yields many interesting consequences. For example, RP? is not a boundary while
RP? is, also CP? and RP? x RP? are unorientedly bordant.

Many generalizations are made to bordism theory so far.

For example, if we consider the manifolds which are equipped with an H-structure and a map
to a fixed topological space X, then we can define an abelian group

Definition 114.

QI (X) := {(M, f)|M is a closed
n-manifold with H-structure, f : M — X is a map}/bordism. (6.23)

where bordism is an equivalence relation, namely, (M, f) and (M’, f') are bordant if there exists a
compact n + 1-manifold N with H-structure and a map h : N — X such that the boundary of N is
the disjoint union of M and M’, the H-structures on M and M’ are induced from the H-structure
on N and h|y = f, by = .

We follow the definition of H-structure given in [?].

Definition 115. If H is a group with a group homomorphism p : H — O, V is a vector bundle
over M with a metric, then an H-structure on V is a principal H-bundle P over M, together with
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an isomorphism of bundles P x g O = Bo(V) where P x z O is the quotient (P x O)/H where H
acts freely on right of P x O by

(p,g)-h=(p-h,p(h)'g), peP, g0, heH

and Bo(V) is the orthonormal frame bundle of V.

In particular, if V' = T'M, then an H-structure on T'M is also called a tangential H-structure
(or an H-structure) on M. Here we assume the H-structures are defined on the tangent bundles
instead of normal bundles.

Below we consider manifolds with a metric.

Any manifold admits an O-structure, a manifold M admits an SO-structure if and only if
w1(TM) = 0, a manifold admits a Spin structure if and only if wi(TM) = wo(TM) = 0, a
manifold admits a Pin™ structure if and only if wo(T'M) = 0, a manifold admits a Pin™ structure
if and only if we(TM) + wy (T M)? = 0.

In particular, when X = B?Z,, f : M — B?Z, is a cohomology class in HQ(M, Z,). When
X = BG, with G is a Lie group or a finite group (viewed as a Lie group with discrete topology),
then f: M — BG is a principal G-bundle over M.

To explain our notation, here BG is a classifying space of G, and B?Z,, is a higher classifying
space (Eilenberg-MacLane space K(Z,,2)) of Z,,.

In the particular case that H = O and X is a point, this definition 114 coincides with Thom’s
original definition.

In this paper, we study the cases in which H = O/SO/Spin/Pin®, and X is a higher classifying
space, or more complicated cases.

We first introduce several concepts which are important for bordism theory:

Thom space: Let V' — Y be a real vector bundle, and fix a Euclidean metric. The Thom space
Thom(Y; V) is the quotient D(V)/S(V) where D(V) is the unit disk bundle and S(V') is the unit
sphere bundle. Thom spaces satisfy

Thom(X xY;V x W) = Thom(X;V)A Thom(Y;W),
Thom(X,V&R") = X"Thom(X;V),
Thom(X,R") = X"X, (6.24)

where V' — X and W — Y are real vector bundles, R" is the trivial real vector bundle of dimension
n, % is the suspension, X is the disjoint union of X and a point.

We follow the definition of Thom spectrum and Madsen-Tillmann spectrum given in [?].

Thom spectrum [7]: M H is the Thom spectrum of the group H, its 0-th space is the colimit of
Q"M H (n), where M H(n) = Thom(BH (n); V,,), and V,, is the induced vector bundle (of dimension
n) by the map BH(n) — BO(n).
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In other words, M H = Thom(BH; V'), where V is the induced virtual bundle (of dimension 0)
by the map BH — BO.

Madsen-Tillmann spectrum [8]: MTH is the Madsen-Tillmann spectrum of the group H, it is
the colimit of X" MTH (n), where MTH(n) = Thom(BH (n); —V,,), and V,, is the induced vector
bundle (of dimension n) by the map BH(n) — BO(n). The 0-th space of the virtual Thom spectrum
MTH (n) is the colimit of Q""?Thom(BH (n,n + q), Q,) where BH(n,n + q) is the pullback

BH(n,n+q)---+BH(n) (6.25)
L |
Gr,(R"t7) —— BO(n)

and there is a direct sum R"*? =V, ® Q, of vector bundles over Gr,(R"*?) and, by pullback, over
BH(n,n + q) where R"* is the trivial real vector bundle of dimension n + q.

In other words, MTH = Thom(BH; —V'), where V is the induced virtual bundle (of dimension
0) by the map BH — BO.

Here € is the loop space, ¥ is the suspension.

Note: “T” in MTH denotes that the H-structures are on tangent bundles instead of normal
bundles.

(Co)bordism theory is a generalized (co)homology theory which is represented by a spectrum
by the Brown representability theorem.

In fact, it is represented by Thom spectrum due to the Pontryagin-Thom isomorphism:

m(MTH) = QF the cobordism group of n-manifolds with tangential H-structure,
T(MH) = QYH the cobordism group of n-manifolds with normal H-structure — (6.26)

In the case when tangential H-structure is the same as normal H’-structure, the relevant Thom
spectra are weakly equivalent. In particular, MTO ~ MO, MTSO ~ MSO, MTSpin ~ MSpin,
MTPin*t ~ MPin~, MTPin~ ~ MPin™.

Pin® cobordism groups are not rings, though they are modules over the Spin cobordism ring.

By the generalized Pontryagin-Thom construction, for X a topological space, then the group
of H-bordism classes of H-manifolds in X is isomorphic to the generalized homology of X with
coefficients in MTH:

QX)) =mg(MTH A X,) = MTHy(X) (6.27)

where mg(MTH A X4) is the d-th stable homotopy group of the spectrum MTH A Xy. The d-th
stable homotopy group of a spectrum M is

Wd(M) = COlimk_>oo7Td+kMk. (628)
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So the computation of the bordism group Q(X) is the same as the computation of the stable
homotopy group of the spectrum MTH A X, which can be computed by Adams spectral sequence
method.

Next, we introduce the Thom isomorphism [7]: Let p : E — B be a real vector bundle of rank
n. Then there is an isomorphism, called Thom isomorphism

& :HH(B,Z,) — 0" (T(E), Z,) (6.29)
where H is the reduced cohomology, T(E) = Thom(FE; B) is the Thom space and
o(b) = p*(b)UU (6.30)

where U is the Thom class. We can define the i-th Stiefel-Whitney class of the vector bundle
p: E— B by

wi(p) = 7 (Sq'U) (6.31)

where Sq is the Steenrod square.

6.3 Spectral sequences

In this paper, we use three kinds of spectral sequence: Adams spectral sequence, Atiyah-Hirzebruch
spectral sequence, Serre spectral sequence.

6.3.1 Adams spectral sequence

The Adams spectral sequence is a spectral sequence introduced by Adams in [?], it is of the form

By = Bxt?] (H'(Y,Z,),2,) = ms(V)). (6:32)

We need consider Y = MTH A X, and focus on p = 2.

We introduce the notions used in Adams spectral sequence:

p-completion: For any finitely generated abelian group G, Gﬁ = lim,, G/p"G is the p-completion
of G. If G is finite, then Gz/)\ is the Sylow p-subgroup of G. If G = Z, G;\ is the ring of p-adic

integers.

Steenrod algebra: The mod p Steenrod algebra is A, := [HZ,, HZ,|_, where HZ, is the mod
p Eilenberg-MacLane spectrum. Every cohomology ring H* (X, Z,) = [X, HZ,]_ is an A,-module.

For p = 2, the generators of A are Steenrod squares Sq”. The subalgebra As(1) of Ay generated
by Sq' and Sq? looks like Figure 61.

Each dot stands for a Z,, all relations are from Adem relations (6.77).

For odd primes p, the generators of A, are the Bockstein homomorphism £, ) and Steenrod
powers P
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4°Sq'Sq*Sq' = Sq'Sq*Sq'S¢?
Sq%Sq'Sq?
Sq'Sq?Sq’
Sq'Sq? Sq?Sq!
Sq?

Sq® =1

Figure 61: Ay(1)

Ext functor: Let R = A, or Ay(1). Ext;}t is the internal degree t part of the s-th derived
functor of Hom,.

In general, we can find a projective R-resolution P, of L to compute Ext’»(L, Z,), Ext(L,Z,) =
H'(Hompg(P,,Zp)) (the i-th cohomology of the chain complex Homp(P., Zp)).

In Adams chart, the horizontal axis is degree ¢t — s and the vertical axis is degree s. The
differential ¢ : ES' — ESTTT1 i an arrow starting at the bidegree (t — s,s) with direction

s,t
(—=1,7). Eﬁil = Im?fr% for r > 2. There exists N such that Ex,; = En for k > 0, denote
E. = Ey. ’

We explain how to read the result from the Adams chart: In the F, page, one dot indicates a
Z,, an vertical line connecting n dots indicates a Z,», when n = oo, the line indicates a Z.

In the H = O cases, MO is the wedge sum of suspensions of the Eilenberg-MacLane spectrum
HZ,, H* (MO, Zs) is the direct sum of suspensions of the Steenrod algebra As.

H* (MO AN X4,2Z5) = H(MO,Z3) ® H*(X,Z3) is also the direct sum of suspensions of the
Steenrod algebra A;. We have used the Kiinneth formula (6.22). Let L = H*(MO A X, Z3), then
Py=1L, P, =0 for s > 0 gives a projective As-resolution of L.

Since

Hom!y (X7 Ay, Z,) =2, ift=rs=0

0 else ’ (6.33)

Ext’y (57 Ay, Z,) = {

all dots are concentrated in s = 0 in the Adams chart of Exti’é (H*(MO A X,2Z5),2Z3), there are
no differentials, Fy = E, QS (X) is a Zy-vector space.

Example: Q9 (B2Zy).

Since

H*(MOaZQ) :-AZ®22[y27y47y5ay67y87"']* (634)

and

H*(B2ZQ, ZQ) = ZQ[xQ, T3,T5,TQ,y - - - ] (635)
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We need only count the dimension of Zs[y2, Y4, s, Y6, Us, - - - | ® Za[x2, 3, T5, X9, . . .| at each degree
as a Zo-vector space. Then we get the bordism groups and the bordism invariants.

In the H = SO cases, the localization of M SO at the prime 2 is
MSO9y = HZ(9) VS *HZ(5) VS HZy V - - (6.36)

where HZ is the Eilenberg-MacLane spectrum and H*(HZ,Zs) = A3/.A2Sq.

e — ESAQ — 22./42 — EAQ — .AQ — AQ/.AQSql (6.37)

is an Ag-resolution (denoted by P,) where the differentials d; are induced by Sq'.

When X is a point, the Adams chart of Extiii (H*(MSO,Z3),Z5) is shown in Figure 62. For
general X, P, ® H*(X,Z5) is a projective As-resolution of H*(HZ,Zy) ® H*(X,Z3) (since P, is
actually a free As-resolution), the differentials d; are induced by Sq'.

S

Figure 62: Adams chart of Extiit2 (H*(MSO,Z3),Z5)

The localization of M'SO at the prime 3 is the wedge sum of suspensions of the Brown-Peterson
spectrum BP (MSO3) = BPVX®BPV ---) and H*(BP,Z3) = As/(B(3,3)) where (8(33)) is the
two-sided ideal generated by 53 3).

o P A3 B YA @ SA S A3 @ — A3 — A3/ (B3 3) (6.38)

is an As-resolution of A3/(f(33)) (denoted by P,) where the differentials d; are induced by B3 3).

When X is a point, the Adams chart of Extif5 (H*(MSO,Z3),Z3) is shown in Figure 63. For
general X, P, ® H"(X,Z3) is a projective As-resolution of H*(BP,Z3) ® H*(X,Z3) (since P, is
actually a free Ajs-resolution), the differentials d; are induced by 3 3).

125



Figure 63: Adams chart of Ext’; (H*(MSO, Z3), Zs)

There may be differentials d,, corresponding to the Bockstein homomorphism S, ,ny [26] for both
p=2andp = 3. See 6.5 for the definition of Bockstein homomorphisms. Since MSO 3y = MSpin s,

QO(X)5 = QM (X5
Example: Q5°(B2Z,).
Since
H*(B2Zy,Z5) = Zs[xo, 23, 5, T, . . .| (6.39)
where z3 = Sq'wa, Sq' (z223) = Sqlzs = 22.

We shift Figure 62 the same times as the dimension of H*(BZZQ,ZQ) at each degree as a Zo-
vector space. We obtain the E; page for Q3°(B2?Z,), the differentials d; are induced by Sq', as
shown in Figure 64.

Then take the differentials dy into account, we obtain the Ey page for Q59 (B2Z,), as shown in
Figure 9.

In the H = Spin/ Pin™ cases, since the mod 2 cohomology of the Thom spectrum M Spin is
H*(MSpin, Zs) = Az ® 4,(1) {Z2 © M} (6.40)

where M is a graded As(1)-module with the degree ¢ homogeneous part M; = 0 for i < 8, when
we compute QF (X)), we are reduced to compute Extié(l)(L,Zg) for t — s < 8, where L is some

Ajs(1)-module (our cases are some mod 2 cohomology H*(—, Z5)).

Example 1: L = Ay(1), Extié(l)(L,Zg) = Hom 4,(1)(A2(1),Z2) = Homgz,(Z2,Z5) = Z, if
t =5 =0 and 0 else.
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Figure 64: E; page for Q5°(B2Z,)

Example 2: L = Z,, the Ay(1)-resolution of L is

e B3 A1) @ XT A (1) = X2 A5(1) @ 21 A (1) = S Ax(1) @ X2 A5(1) — As(1) — Zy. (6.41)

The Adams chart looks like Figure 65.

S

—
=)

O P N Wk 0t o) N 00 ©

01234567289 10—s

Figure 65: Adams chart of EXtiitQ(l)(ZQ, Z3). The dashed arrows indicate the possible differentials.

The only possible differentials are d,(h;) = hg“ where hg € Ext}ii(l)(ZQZg), h, €

EXt}ii(l)(ZQZQ). If there were such a differential d, for r» > 2, then since hoh; = 0, 0 = d,.(hoh1) =

h6+2 which is not true. Hence Ey = E..

This is in fact real Bott periodicity (m.ko).
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Our computation is based on the following fact:
Lemma 116. Given a short exact sequence of Az(1)-modules
0— Ly — Ly — L3 —0,
then for any t, there is a long exact sequence

o= Bxt (L3, Z) = Bxty, ) (L2, Z2) — Ext’y!

Az(1) (Lb Z2)

B Bt (L3, Z5) — Ext?

»(1) o) (L2, Z2) = -

After using this fact repeatedly, we obtain the Es page.

Example 3:

e — o

Sq? <

*e— e

is a short exact sequence where the left dot is L1, the middle part is Lo, the right dot is Lg.

The Adams chart looks like Figure 66.

S

—_
S

A

O P N Wk 0t O N 00 ©

AD

0123456728 910-s

(6.42)

(6.43)

(6.44)

Figure 66: Adams chart of Exti’é (1)(L2,Zg). The arrows indicate the differential d;, the dashed

line indicates the extension.
Example 4:

e— o
Sqt

o — 0

is a short exact sequence where the left dot is L, the middle part is L5, the right dot is Lf.

The Adams chart looks like Figure 67.
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Figure 67: Adams chart of Exti’é (1)(L’2,Zg). The arrows indicate the differential d;, the dashed
line indicates the extension.

Example: QCSlpm(B2ZQ).
The As(1)-module structure of H*(B?Zy,Z3) is shown in Figure 10. The dot at the bottom is

a Zo which has been discussed before. Now we consider the part above the bottom dot. We will
use Lemma 116 several times. Two steps are shown in Figure 68, 69.

23 C/DCQOCS
T2

L —— M — N

T2

Figure 68: First step to get the Es page of Q3P™(B2Z,).
We will proceed in the reversed order.
First, we apply Lemma 116 to the short exact sequence of Ay(1)-modules: 0 - P — N —
@ — 0 in the second step (as shown in Figure 69), the Adams chart of EXtié(l)(N ,Z3) is shown in
Figure 70.

Next, we apply Lemma 116 to the short exact sequence of As(1)-modules: 0 — L — M —
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Z2T3 Z2T3

Z2 T2

P — N — Q

Figure 69: Second step to get the Ey page of Q5P™(B2Z,).

S

i P
0 X

Figure 70: Adams chart of Exti"i (N,Z3). The arrows indicate the differential dj.

(1)

N — 0 in the first step (as shown in Figure 68), the Adams chart of Extj"';(l)(M, Z3) is shown in
Figure 71.

Then take the differentials do into account, we obtain the E5 page for prin(BQZg), as shown

in Figure 11.

6.3.2 Serre spectral sequence

Given a fibration F' — F — B, the Serre spectral sequence is the following:
EN =HP(B,HI(F,Z)) = HT(E,Z) (6.46)

This can be used in computing the integral cohomology group of the total space of a nontrivial
fibration.
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0 °
0 1 2 3 4 5 6 t—s

Figure 71: Adams chart of Exti{; (1)(M ,Z3). The arrows indicate the differential d;.

There is also a homology version:

Ez,q = Hp(Bv Hq(F’ Z)) = Hp-l—q(Ea Z) (6.47)

6.3.3 Atiyah-Hirzebruch spectral sequence

The Atiyah-Hirzebruch spectral sequence can be viewed as a generalization of the Serre spectral
sequence. Given a fibration F — E — B, the Atiyah-Hirzebruch spectral sequence is the following:

Ep = Hy(B,hy(F,2)) = hyiq(E, Z) (6.48)

where h, is an extraordinary homology theory. For example, h, can be the bordism theory Q. In
particular, if the fiber F' is a point, then the Atiyah-Hirzebruch spectral sequence is of the form:

H,(X, Q") = qff

2 (X) (6.49)

6.4 Characteristic classes
6.4.1 Introduction to characteristic classes

Characteristic classes are cohomology classes of the base space of a vector bundle. Stiefel-Whitney
classes are defined for real vector bundles, Chern classes are defined for complex vector bundles,
Pontryagin classes are defined for real vector bundles. All characteristic classes are natural with
respect to bundle maps. Characteristic classes of a principal bundle are defined to be the charac-
teristic classes of the associated vector bundle of the principal bundle.
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Given a real vector bundle V' — M and a complex vector bundle £ — M, the i-th Stiefel-
Whitney class of V' is w;(V)) € H'(M, Z3), the i-th Chern class of E is ¢;(E) € H?(M,Z), the i-th
Pontryagin class of V' is p;(V) € H¥(M, Z).

Pontryagin classes are closely related to Chern classes via complexification:

pi(V) = (=1)'co;(V ®r C) € H¥(M, Z) (6.50)
where V ®gr C — M is the complexification of the real vector bundle V' — M.

The relation between Pontryagin classes and Stiefel-Whitney classes is

pi(V) = we(V)? mod 2. (6.51)

For a manifold M, the integrals over M of characteristic classes of a vector bundle over M
(the pairing of the characteristic classes with the fundamental class of M) are called characteristic
numbers.

Let E, be the universal n-bundle over BO(n), the colimit of E, — n is a virtual bundle E (of
dimension 0) over BO, the pullback of E along the map g : M — BO given by the O-structure on
M is just TM — d where M is a d-manifold and T'M is the tangent bundle of M. By the naturality
of characteristic classes, the pullback of the characteristic classes of E is the characteristic classes
of TM.

Chern-Simons form: By Chern-Weil theory, Chern classes (and Pontryagin classes) can also be
defined as a closed differential form (in de Rham cohomology). By Poincaré Lemma, they are exact
locally:

Cp = dCSQn_l (6.52)
where d is the exterior differential operator, CSy,_1 is called the Chern-Simons 2n — 1-form.

Whitney sum formula: Let w(V) =14 wi (V) +w2(V) + - -+ € H*(M, Z2) be the total Stiefel-
Whitney class, ¢(E) = 1+ ¢1(E) + c2(E) + --- € H*(M,Z) be the total Chern class, p(V) =
1+ p1(V)+p2(V)+--- € H(M,Z) be the total Pontryagin class, then

wV e V') =wV)wV'), (6.53)
c(E®E) =c(E)c(E), (6.54)
2p(V o V') =2p(V)p(V'). (6.55)

That is, the total Stiefel-Whitney class and the total Chern class are multiplicative with respect to
Whitney sum of vector bundles, the total Pontryagin class is multiplicative modulo 2-torsion with
respect to Whitney sum of vector bundles.
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6.4.2 Wu formulas

The total Stiefel-Whitney class w = 1 + wy; + wo + -+ is related to the total Wu class u =

1+ uy + ug + - -- through the total Steenrod square:
w = Sq(u), Sq=14+Sq' +S¢*>+---.
Therefore, w, = > "1, Sq"(un—;). The Steenrod squares satisfy:
Sq'(x;) =0, i >34, Sd(x;) =zjx;, Sq" =1,

for any x; € H/(M¢%; Z5). Thus

This allows us to compute u,, iteratively, using Wu formula
Sq'(w;) =0, i>j,  Sq'(w;) = wiw;,

<j—i—1+k

i
qu(wj) = w;w; + Z 1 )wi_kwj+k, 1 < 7,

k=1

and the Steenrod relation

We find

2
ug =1, U] = wi, Uz = Wi + wa,
4 2
U3 = Wiwa, Ug = Wy + W5 + Wiw3 + Wy,

3 2 2
U5 = WiW2 + Wiw; + wjws + wiwy.

(6.56)

(6.57)

(6.58)

(6.59)

(6.60)

(6.61)

On the tangent bundle of MY, the corresponding Wu class and the Steenrod square satisfy

Sq¥ I (xj) = ug_jxj, for any z; € HI(M% Zy).

This is also called Wu formula.

6.5 Bockstein homomorphisms

In general, given a chain complex C and a short exact sequence of abelian groups:
0—-A - A A" >0,
we have a short exact sequence of cochain complexes:

0 — Hom(C,, A’) — Hom(C4, A) — Hom(C,, A”) — 0.

133

(6.62)

(6.63)

(6.64)



Hence we obtain a long exact sequence of cohomology groups:
- HY(C,, A) — HY(Cy, A) — HY(Cy, A”) & HPY (Y, A — -+ | (6.65)
the connecting homomorphism 9 is called Bockstein homomorphism.

For example, B(,, ) : H(—,Zs) — H**1(—,Z,) is the Bockstein homomorphism associated to
the extension Z,, == Zpm — Zm.

Let pnm,m) * H* (=, Znm) — H*(—,Zm) be the mod m reduction map, then B, m) 0 nm,m) = 0
by the long exact sequence. In particular, (2 2)p(4,2) = 0.

Relations between the Bocksteins: If we have a chain complex Cy and a commutative diagram
of abelian groups with exact rows:

0 C’ C c” 0, (6.66)

Lol

0 A A A" 0

then we have a commutative diagram of cochain complexes with exact rows:

0 —— Hom(C4, C') —— Hom(C4, C) — Hom(C4, C") —— 0, (6.67)

J | J

0 —— Hom(C,, A’) —— Hom(C,, A) —— Hom(C,, A”) —— 0

By the naturality of the connecting homomorphism [30, Theorem 6.13], we have a commutative
diagram of abelian groups with exact rows:

o — 5 HY(C,, C") —— H™(C,, C) —— H"(CW, C") —L HPY(C,, C) —— -+ (6.68)

| | | |

W HM(CW, AT —— H(Cy, A) —— H(Cy, A" — 2 HH (O, A —— - -

There are commutative diagrams:

Zy — Z 247 (6.69)

-km mod k
Zn anm T,ka

Zk’n e ? anm mod m) Zm (670)

mod nJ{ mod nm
“m mod
Zn an mzkm
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By (6.68), we have the following commutative diagrams:

B(n,m
H* (=, Zpn) — 0 (—, Z,) (6.71)

5(n,km)

H*(—, Zgm) —— H* (=, Z,)

B n,m
H* (=, Zpn) — S0 (=, Z4) (6.72)

J( mod n
* ﬁ(”vm) *+1
H (_7Zm) H (_7Zn)

Hence we have

B(n,m) = ﬂ(n,km) -k, (673)
By definition,
ﬁ(272n) = 2%(5 mod 2 (675)

where ¢ is the coboundary map.
Moreover, Sq* = B(2,2)-
By (6.74), B(2,4) = p(a,2)B(a,4), thus Ba2)B2.4) = B2,2)P(4,2)B4,4) = 0.
Similarly, B8y = p(a,2)B(4,8), thus B2.2)B(2,8) = B2,2)P(4,2)Ba,8) = 0, ete.

Combining this with the Adem relation Sq'Sq' = 0, we obtain the important formula:

Sqlﬁ(mn) =0 (6.76)
6.6 Useful fomulas
Adem relations:
[a/2] b—1-—j
aqub _ —-1- a+b—j g
Sq*Sq jz(:) ( 0“2 >Sq Sq (6.77)
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for 0 < a < 2b. In particular, we have Sq'Sq' = 0, Sq'Sq?Sq' = Sq?Sq>.

Recall that

2

H*(BZQ7 22) = ZQ [a]

H*(BQZQa 22) = Z2[:E2a r3,Ts, L9, . . ]

H* (BPSU(2), Z5) = Zo[w), w)]

Combining (6.62) and (6.60), we have

a® =Sqla
z3 = Sq'zy
wh = Sqlw
Sql(azy)
Sq?(azy)

T5 = Sq2563
wywy = Sq*(w3)
Sql(ngg)
Sq' (wiws)
Sq3$2

Sq' (wawh)
Sq' (wiws)
Sq3w'2

Sq' (23)

Sq' (ws)
Sq' (wh)

wia in 2d

wixy in 3d

wiwy in 3d

a’zy + axs = wiaxs in 4d

axs + a*r3 = (we 4+ wi)axy in 5d

(wy + w?)z3 in 5d

(wg + w?)wh in 5d

(wlwg + wg).rg + wox3z = WiwWoxo = W3ko = Wox3 in Hd
wirs = wiry in 5d

wiwaxe = 0 in 5d

(wrwg + w3 )wh + waws = wiwawh = wawh = wowh in 5d
wiwy = wiwh in 5d

wlwzw’g =01in 5d

wlxg = 22923 =0 in 5d

wiw = 2whwl = 0 in 5d

wéxz + whrz = wiwhry in 5d

(6.78)

(6.79)

(6.80)

where w; is the i-th Stiefel-Whitney class of the tangent bundle of M, all cohomology classes are

pulled back to M.
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