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Abstract New spaces of Lipschitz type on metric-measure spaces are introduced and they are shown
to be just the well-known Besov spaces or Triebel–Lizorkin spaces when the smooth index is less
than 1. These theorems also hold in the setting of spaces of homogeneous type, which include Euclidean
spaces, Riemannian manifolds and some self-similar fractals. Moreover, the relationships amongst these
Lipschitz-type spaces, Haj�lasz–Sobolev spaces, Korevaar–Schoen–Sobolev spaces, Newtonian Sobolev
space and Cheeger–Sobolev spaces on metric-measure spaces are clarified, showing that they are the
same space with equivalence of norms. Furthermore, a Sobolev embedding theorem, namely that the
Lipschitz-type spaces with large orders of smoothness can be embedded in Lipschitz spaces, is proved.
For metric-measure spaces with heat kernels, a Hardy–Littlewood–Sobolev theorem is establish, and
hence it is proved that Lipschitz-type spaces with small orders of smoothness can be embedded in
Lebesgue spaces.
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1. Introduction

In [25] and [24] (see also [23]), Han, Lu and Yang introduced Besov spaces on spaces
of homogeneous type. It was observed by Triebel in [48, pp. 159, 160] that d-sets in
R

n are spaces of homogeneous type and, furthermore, he asked there if Besov spaces
on d-sets introduced by him in [47, 48], equivalently using either traces or quarkonial
decompositions, are the same as those defined by Han, Lu and Yang in [24, 25]. This
was answered in the affirmative by Yang in [52]. In [47], Triebel also proved that d-
sets in R

n include some self-similar fractals and, in particular, the post critically finite
self-similar fractals that were introduced in [33,43]. Recently, Strichartz [43] introduced
Hölder–Zygmund, Besov and Sobolev spaces on a class of post critically finite self-similar
fractals and proved that for small orders of smoothness, these function spaces coincide
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with the function spaces defined by Jonsson and Wallin in [31]. Moreover, Strichartz
further developed the theory including a proof of a version of the Sobolev embedding
theorems.

In this paper, motivated by [18,30–32], we introduce some new spaces of Lipschitz
type on metric-measure spaces and show that these new Lipschitz-type spaces are just
the well-known Besov spaces or Triebel–Lizorkin spaces introduced in [23–26] when the
smooth index is less than 1. Our results also indicate that some of the Hölder–Zygmund
spaces of Strichartz [43] are the same as some of our function spaces for small orders of
smoothness (see also [31,48,52]). We further develop the theory of these function spaces
in the setting of spaces of homogeneous type. This class includes R

n, some Riemannian
manifolds, some self-similar fractals and, in particular, the post critically finite self-similar
fractals of [33,43]. Thus, as well as indicating how to define Lipschitz-type spaces of order
no less than 1 related to Besov and Triebel–Lizorkin spaces on spaces of homogeneous
type (particularly on metric-measure spaces and fractals), our results also give some new
characterizations of Besov and Triebel–Lizorkin spaces of order less than 1 using discrete
square fractional derivatives (see [13,14,23]). Moreover, Theorem 3.12 below contains
both a discrete and an inhomogeneous version of Theorem 2 of [13]. We further clarify
the relationships amongst our Lipschitz-type spaces, Haj�lasz–Sobolev spaces [19,20,28],
Korevaar–Schoen–Sobolev spaces [29,34], Newtonian Sobolev spaces [40] and Cheeger–
Sobolev spaces [4] on metric-measure spaces, based on the related results of [29,35]. In
fact, we show that they coincide with equivalence of norms (see Corollary 4.5 below).
Furthermore, we establish versions of the Sobolev embedding theorems. To be precise, we
prove that our Lipschitz-type spaces with large orders of smoothness can be embedded
in Lipschitz spaces (see Proposition 2.5 and Corollary 2.6 below); some of our results
for p = 2 were obtained in [16, 18]. Finally, motivated by [18] (see also [16, 43]), we
consider metric-measure spaces with a heat kernel satisfying certain estimates (see (5.7)
and (5.18) below), which are known to be satisfied by heat kernels on many fractals,
manifolds, graphs and groups (see [3,5,11,15,17,43,50,51]). By establishing Hardy–
Littlewood–Sobolev theorems on such metric-measure spaces (see Theorem 5.4 below),
we can prove Sobolev embedding theorems for our Lipschitz-type spaces with small orders
of smoothness, that is, that they can be embedded in Lebesgue spaces (see Theorem 5.6
below).

As mentioned above, Strichartz [43] introduced Sobolev and Besov spaces on a class of
post critically finite self-similar fractals. Observing that post critically finite self-similar
fractals are spaces of homogeneous type (see (1.2) and (1.3) in [43]), it would be of
interest to clarify if there exists any connection between the Sobolev and Besov spaces
of Strichartz and our Lipschitz-type spaces, which is still as yet unknown.

Let us now recall some definitions and notation on spaces of homogeneous type. A
quasi-metric ρ on a set X is a function ρ : X × X → [0,∞) satisfying

(i) ρ(x, y) = 0 if and only if x = y;

(ii) ρ(x, y) = ρ(y, x) for all x, y ∈ X;
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(iii) there exists a constant A ∈ [1,∞) such that for all x, y and z ∈ X,

ρ(x, y) � A[ρ(x, z) + ρ(z, y)].

Any quasi-metric defines a topology for which the balls

B(x, r) = {y ∈ X : ρ(y, x) < r}

for all x ∈ X and all r > 0 form a basis.
Throughout, we set diamX = sup{ρ(x, y) : x, y ∈ X}. We also adopt the following

conventions. By f ∼ g, we mean that there is a constant C > 0, independent of the main
parameters, such that C−1g < f < Cg. We denote by C a positive constant which is
independent of the main parameters and which may vary from line to line. Constants
with subscripts, such as C1, do not change from one occurrence to another. We denote
N ∪ {0} by Z+ and, for any q ∈ [1,∞], we denote by q′ the conjugate index satisfying
1/q + 1/q′ = 1. For any set A, we denote by χA the characteristic function of A. If X1

and X2 are two quasi-Banach spaces, B1 ⊂ B2 means that there is a constant C > 0
such that, for all f ∈ B1,

‖f‖B2 � C‖f‖B1 .

Definition 1.1 (see [23]). Let d > 0 and 0 < θ � 1. A space of homogeneous type,
(X, ρ, µ)d,θ, is a set X together with a quasi-metric ρ and a non-negative Borel regular
measure µ on X such that there exists a constant C0 > 0 satisfying the condition that
for all 0 < r < diam X and for all x, x′, y ∈ X,

µ(B(x, r)) ∼ rd (1.1)

and
|ρ(x, y) − ρ(x′, y)| � C0ρ(x, x′)θ[ρ(x, y) + ρ(x′, y)]1−θ. (1.2)

Obviously, d can be regarded as the Hausdorff dimension of X (see [37]). Moreover, if
ρ is a metric, then θ in (1.2) can be taken to be 1. If X = R

n, ρ is the usual Euclidean
metric and µ is the n-dimensional Lebesgue measure, then d = n and θ = 1.

The notion of space of homogeneous type defined above is a variant of the spaces of
homogeneous type introduced by Coifman and Weiss in [7]. Maćıas and Segovia [36]
proved that one can replace the quasi-metric ρ of a homogeneous-type space in the sense
of Coifman and Weiss by another quasi-metric ρ̄, which yields the same topology on X

as ρ, and such that (X, ρ̄, µ) is a space satisfying Definition 1.1 with d = 1.
Spaces of homogeneous type include Euclidean space, the n-torus in R

n, C∞-compact
Riemannian manifolds, boundaries of Lipschitz domains and, in particular, the Lipschitz
manifolds of Triebel [49] and isotropic and anisotropic d-sets in R

n. It was proved by
Triebel in [47] that the isotropic and anisotropic d-sets in R

n include various kinds of
self-affine fractals, for example, the Cantor set (see also [37]), the generalized Sierpinski
carpet, the fern-like fractals, Picasso–Xmas tree fractals and Oval–Ferny fractals (see [48],
[2], [3] and [18]).
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The organization of the paper is as follows. In the next section, § 2, motivated by
Jonsson [30] (see also [18]), we introduce some new Lipschitz-type spaces on spaces of
homogeneous type and establish some basic properties of these spaces, including the
Sobolev embedding theorems. In particular, we show that there is a self-similar fractal
in R

2 with Hausdorff dimension d > 1 and a Lipschitz function defined on it with expo-
nent d. Thus, unlike the Euclidean case, Lipschitz spaces of order greater than 1 may be
non-trivial on fractals or metric-measure spaces. This fact is well known (see [30,32,39])
and one simple example in the one-dimensional case is provided in [30] by considering X

consisting of two disjoint intervals in R
n. In § 3, we discuss the relationships between our

Lipschitz-type spaces and Besov and Triebel–Lizorkin spaces on spaces of homogeneous
type. Section 4 is devoted to the study of the relationships amongst Lipschitz-type spaces,
Haj�lasz–Sobolev spaces and Korevaar–Schoen–Sobolev spaces on Ahlfors d-regular mea-
sure spaces. Finally, in § 5, we study metric spaces with a heat kernel and we establish
Sobolev embedding theorems into Lebesgue spaces of these Lipschitz-type spaces with
small orders of smoothness.

2. Spaces of Lipschitz type

Let us first recall the well-known definition of the usual Lipschitz space (see also [30]).
Let X be a space of homogeneous type, s > 0 and C1 > 0. A function f ∈ L∞(X)
belongs to L(s, X) if

‖f‖L̇(s,X) = µ-esssup
x,y∈X

0<ρ(x,y)<C1

|f(x) − f(y)|
ρ(x, y)s

< ∞

and we define
‖f‖L(s,X) = max(‖f‖L∞(X), ‖f‖L̇(s,X)).

Obviously, the Lipschitz space L(s, X) is independent of the choice of C1.
The Lipschitz-type spaces, L(s, p, q, X) defined below, are versions, on spaces of homo-

geneous type, of the Lipschitz spaces on d-sets of R
n in [30] and [32] (see also [16,18]

for the case of p = 2 and q = ∞). The Lipschitz-type spaces, Lb(s, p, q, X), are new.

Definition 2.1. Let 0 < p, q � ∞, let s > 0 and let C2 > 0 be a positive constant.

(i) A real-valued function f defined µ-almost everywhere on X belongs to the Lip-
schitz-type space L(s, p, q, X) if f ∈ Lp(X) and

‖f‖L̇(s,p,q,X) =
{ ∞∑

ν=0

2νsq

(
2νd

∫
X

∫
B(x,C22−ν)

|f(x) − f(y)|p dµ(y) dµ(x)
)q/p }1/q

< ∞.

Moreover, we define

‖f‖L(s,p,q,X) = ‖f‖Lp(X) + ‖f‖L̇(s,p,q,X).
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(ii) A real-valued function f defined µ-almost everywhere on X belongs to the Lip-
schitz-type space Lb(s, p, q, X) if f ∈ Lp(X) and

‖f‖L̇b(s,p,q,X) =
{ ∞∑

ν=0

2νsq

( ∫
X

[
2νd

∫
B(x,C22−ν)

|f(x)−f(y)| dµ(y)
]p

dµ(x)
)q/p}1/q

< ∞.

Moreover, we define

‖f‖Lb(s,p,q,X) = ‖f‖Lp(X) + ‖f‖L̇b(s,p,q,X).

It is easy to see that the spaces L(s, p, q, X) and Lb(s, p, q, X) are independent of the
choice of C2 > 0 (see also [30]). We remark that the space L(s, p, q, X) is just a variant,
on the homogeneous-type space, of the space Lip(s, p, q, F ) [30], where F is a d-set in
R

n. Moreover, as pointed out in [30], for s > 0, we have

L(s,∞,∞, X) = L(s, X).

If X = R
n, then the continuous versions of ‖ · ‖L(s,p,q,X) and ‖ · ‖Lb(s,p,q,X) are known

to be equivalent to quasi-norms of Besov spaces Bs
pq(R

n) if 0 < s < 1, 1 � p � ∞ and
0 < q � ∞ (see Theorem 3.5.1 in [45, p. 187]). One of the main aims of this paper is to
prove, in Theorem 3.8 below, that this is also true on spaces of homogeneous type.

Let us first establish some basic properties of L(s, p, q, X) and Lb(s, p, q, X).

Proposition 2.2.

(i) If s > 0 and 0 < p, q � ∞, then the spaces L(s, p, q, X) and Lb(s, p, q, X) are
quasi-Banach spaces.

(ii) If s > 0, 1 � p � ∞ and 0 < q � ∞, then

L(s, p, q, X) ⊂ Lb(s, p, q, X).

(iii) If 0 < q0 � q1 � ∞, 0 < p � ∞ and s > 0, then

L(s, p, q0, X) ⊂ L(s, p, q1, X) and Lb(s, p, q0, X) ⊂ Lb(s, p, q1, X).

(iv) If 0 < q0, q1 � ∞, 0 < p � ∞, s > 0 and ε > 0, then

L(s + ε, p, q0, X) ⊂ L(s, p, q1, X) and Lb(s + ε, p, q0, X) ⊂ Lb(s, p, q1, X).

Proof. We first verify (i). Obviously, we need only verify the completeness of the
spaces L(s, p, q, X) and Lb(s, p, q, X). We prove this only for the space L(s, p, q, X). The
details of the proof for the space Lb(s, p, q, X) are left to the reader. Let {fj}∞

j=1 be
a Cauchy sequence in L(s, p, q, X). Then it is also a Cauchy sequence in Lp(X) since
L(s, p, q, X) ⊂ Lp(X). By the completeness of Lp(X), it is easy to see that there exists f
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in Lp(X) such that limj→∞ ‖fj − f‖Lp(X) = 0 and limj→∞ fj(x) = f(x) a.e. on X. For
any ε > 0, there exists an N ∈ N such that if k, l > N ,

‖fk − fl‖L(s,p,q,X) < ε.

By Fatou’s lemma, it follows that

ε > lim
k→∞

‖fk − fl‖L(s,p,q,X)

= lim
k→∞

‖fk − fl‖Lp(X)

+ lim
k→∞

{ ∞∑
ν=0

2νsq

[
2νd

∫
X

∫
B(x,C22−ν)

|fk(x) − fl(x)

− fk(y) + fl(y)|p dµ(y) dµ(x)
]q/p }1/q

� ‖fl − f‖Lp(X)

+
{ ∞∑

ν=0

2νsq

[
2νd

∫
X

∫
B(x,C22−ν)

|fl(x) − f(x) − fl(y) + f(y)|p dµ(y) dµ(x)
]q/p }1/q

= ‖fl − f‖L(s,p,q,X).

From this and the fact that fl ∈ L(s, p, q, X), it is easy to deduce that f ∈ L(s, p, q, X)
and hence fl → f in L(s, p, q, X) as l → ∞. Thus, the space L(s, p, q, X) is a quasi-Banach
space.

(ii) can be easily deduced from the Hölder inequality.
The proofs of (iii) and (iv) are similar to those of Proposition 2 in [44, p. 47]. We omit

the details here.
This completes the proof of Proposition 2.2. �

We now introduce new function spaces, Lt(s, p, q, X), on spaces of homogeneous type,
which are variations of Lipschitz-type spaces, Lb(s, p, q, X), of Definition 2.1. We continue
to call them Lipschitz-type spaces.

Definition 2.3. Let 0 < p, q � ∞, s > 0 and C3 > 0 be a positive constant. A
real-valued function f defined µ-almost everywhere on X belongs to the Lipschitz-type
space Lt(s, p, q, X) if f ∈ Lp(X) and

‖f‖L̇t(s,p,q,X) =
∥∥∥∥
{ ∞∑

k=0

2ksq

[
2kd

∫
B(·,C32−k)

|f(y) − f(·)| dµ(y)
]q}1/q∥∥∥∥

Lp(X)
< ∞.

Moreover, we define

‖f‖Lt(s,p,q,X) = ‖f‖Lp(X) + ‖f‖L̇t(s,p,q,X).

Following Definition 2.1 (see also [30]), it is easy to see that Definition 2.3 is indepen-
dent of C3 > 0. Moreover, if p = q ∈ (0,∞] and s > 0, then

Lt(s, p, q, X) = Lb(s, p, q, X).
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As is the case with the Lipschitz norms L(s, p, q, X) and Lb(s, p, q, X), the continuous
version of ‖ · ‖Lt(s,p,q,X) on R

n is equivalent to quasi-norms of Triebel–Lizorkin spaces
F s

pq(R
n) provided 1 � p < ∞, 0 < q � ∞ and

1 > s > max
{

0, n

(
1
q

− 1
p

)}

(see Theorem 3.5.1 in [45, p. 187]). Again, another main aim of this paper is to prove,
in Theorem 3.12 below, that this is also true on spaces of homogeneous type.

We have the following analogue of Proposition 2.2 although it should be noted that
(iv) is different.

Proposition 2.4.

(i) If s > 0 and 0 < p, q � ∞, then Lt(s, p, q, X) is a quasi-Banach space.

(ii) If 0 < q0 � q1 � ∞, 0 < p � ∞ and s > 0, then

Lt(s, p, q0, X) ⊂ Lt(s, p, q1, X).

(iii) If 0 < q0, q1 � ∞, 0 < p � ∞, s > 0 and ε > 0, then

Lt(s + ε, p, q0, X) ⊂ Lt(s, p, q1, X).

(iv) If s > 0 and 0 < p, q � ∞, then

Lb(s, p,min(p, q), X) ⊂ Lt(s, p, q, X) ⊂ Lb(s, p,max(p, q), X).

Proof. The proofs of (i), (ii) and (iii) are similar to those of Proposition 2.2; while
(iv) is a simple corollary of Proposition 13.6 in [47, p. 75] (see also Proposition 2.3
in [48, p. 11]).

This finishes the proof of Proposition 2.4. �

The case p = 2 of the following embedding theorem was obtained in Theorem 4.3 (iii)
in [18] and Theorem 8.1 in [16] (see also Theorem 9.2 in [16]), and our proof is a slight
variant of the proofs in [16,18]. See also Theorem 3.13 of [43] for some related results.

Proposition 2.5. Let 1 � p � ∞, s > d/p and λ = s − d/p. Then there exists a
constant C > 0 such that for all f ∈ L1

loc(X),

‖f‖L̇(λ,X) � C‖f‖L̇b(s,p,∞,X).

Proof. Without loss of generality, we may assume that C1 = 1 in the definition of
the norm ‖ · ‖L̇(λ,X). For ν ∈ Z+ and x ∈ X, we set Bν = B(x, 2−ν) and

fν(x) =
1

µ(B(x, 2−ν))

∫
B(x,2−ν)

f(ξ) dµ(ξ).
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By Hölder’s inequality, for any x ∈ X and ν ∈ Z+, we have

|fν−1(x) − fν(x)|p =
{

1
µ(Bν)

1
µ(Bν−1)

∣∣∣∣
∫

Bν

∫
Bν−1

(f(ξ) − f(η)) dµ(ξ) dµ(η)
∣∣∣∣
}p

� 1
µ(Bν)

∫
Bν

[
1

µ(Bν−1)

∫
Bν−1

|f(ξ) − f(η)| dµ(ξ)
]p

dµ(η)

� C

µ(Bν)

∫
X

[
2νd

∫
B(η,C2ν)

|f(ξ) − f(η)| dµ(ξ)
]p

dµ(η)

� C2ν(d−ps)‖f‖p

L̇b(s,p,∞,X)
. (2.1)

Similarly, we can prove that for any x, y ∈ X,

|fν−1(x) − fν(y)| � C2−νλ‖f‖L̇b(s,p,∞,X). (2.2)

Thus, limν→∞ fν(x) exists everywhere and it equals f(x) µ-almost everywhere. By the
definition of the norm ‖ · ‖L̇b(s,p,∞,X), we can modify the definition of f on a set of
measure zero, without changing its norm, so that limν→∞ fν(x) = f(x) everywhere.
Therefore, from (2.1) and (2.2), it follows that for any x, y ∈ X and r = ρ(x, y) ∼ 2−ν0

with some ν0 ∈ Z+,
|fν0(x) − fν0(y)| � Crλ‖f‖L̇b(s,p,∞,X). (2.3)

Thus, for any x, y ∈ X and r = ρ(x, y) ∼ 2−ν0 with some ν0 ∈ Z+, by the fact that
λ > 0, we have

|f(x) − fν0(x)| = lim
ν→∞

|fν+ν0(x) − fν0(x)|

�
∞∑

k=ν0

|fk(x) − fk+1(x)|

� C

∞∑
k=ν0

2−kλ‖f‖L̇b(s,p,∞,X)

= C2−ν0λ‖f‖L̇b(s,p,∞,X)

� Crλ‖f‖L̇b(s,p,∞,X). (2.4)

Similarly, we can verify that

|f(y) − fν0(y)| � Crλ‖f‖L̇b(s,p,∞,X). (2.5)

Estimates (2.3)–(2.5) tell us that

|f(x) − f(y)| � Cρ(x, y)λ‖f‖L̇b(s,p,∞,X).

This completes the proof of Proposition 2.5. �
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A B

CD

Figure 1. A self-similar set in R
2.

Let s > 0. Below we define the space L̇(s, X) by

L̇(s, X) = {f ∈ L1
loc(X) : ‖f‖L̇(s,X) < ∞}.

From this proposition, Proposition 2.2 and Proposition 2.4, it is easy to deduce the
following corollary.

Corollary 2.6. If 1 � p � ∞, 0 < q � ∞, s > d/p and λ = s−d/p, then L(s, p, q, X) ⊂
Lb(s, p, q, X) ⊂ L̇(λ, X) and Lt(s, p, q, X) ⊂ L̇(λ, X).

To finish this section, let us recall that if X = R
n and s > 1, it is easy to see that

the spaces L(s, X), Lb(s, p, q, X) and Lt(s, p, q, X) contain only constants, when 0 <

p, q � ∞. However, it is a well-known fact that this is not true if X is just a space of
homogeneous type, or a fractal, as is mentioned in the introduction. A simple example
for the one-dimensional case was given in [30]. We give another example for dimensions
greater than 1 here.

Proposition 2.7. There is a self-similar set X in R
2 with Hausdorff dimension d > 1

and a Lipschitz function of exponent d defined on X.

Proof. We first construct the self-similar set X. Suppose that the set E is the usual
Cantor middle thirds set in [0, 1] (see [37]). As is well known, E is a self-similar set by
taking away the middle part of a cell interval in every step. Let X = E × E. Then X

is also a self-similar set with Hausdorff dimension d = log 4/ log 3. Moreover, if we let
µ = Hd, the d-dimensional Hausdorff measure, and ρ be the usual Euclidean metric,
then (X, ρ, Hd)d,1 is a space of homogeneous type as in Definition 1.1. This set is also an
Ahlfors regular metric space. The space X can also be constructed as in figure 1,

X =
∞⋂

n=0

4n⋃
k=1

Xn
k ,
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where X0
1 is the unit square ABCD, X1

k , k = 1, 2, 3, 4, are four squares in the corners of
X0

1 with side length 1
3 and so on. We obtain Xn

k after n steps.
Now we can define a Lipschitz function with exponent d on X. Let f : X → R be

defined by
f(x) = Hd(X ∩ B(A, |x − A|)),

where |x − A| is the Euclidean distance between two points x and A. For x, y ∈ X with
x 	= y, suppose Xn1

k1
is the minimal square containing them both; then |x − y| � C( 1

3 )n1 ,
where the constant C is independent of x, y and n1. From the Ahlfors regular property
of the set X, (1.1) holds with µ = Hd. Using this, together with the decreasing property
of the function xd on x, we can conclude that

|f(x) − f(y)| = |Hd(X ∩ B(A, |x − A|)) − Hd(X ∩ B(A, |y − A|))|
� CHd(X ∩ Xn1

k1
)

� C( 1
3 )dn1

� C|x − y|d.

Thus, f ∈ L(d, X) and d > 1. This completes the proof of Proposition 2.7. �

Remark 2.8. From the definitions of L(s, p, q, X), Lb(s, p, q, X) and Lt(s, p, q, X), it
is easy to deduce that when µ(X) < ∞,

L(d, X) ⊂ L(s, p, q, X) ∩ Lb(s, p, q, X) ∩ Lt(s, p, q, X)

if s < d and 0 < p, q � ∞. Thus, from Proposition 2.7, it follows that the spaces
L(s, p, q, X), Lb(s, p, q, X) and Lt(s, p, q, X) may not be trivial even when s > 1.

3. Relations with Besov and Triebel–Lizorkin spaces

We first recall the definition of Besov and Triebel–Lizorkin spaces on spaces of homoge-
neous type. To this end, we now recall the definition of the spaces of test functions on X

in [22] (see also [21]).

Definition 3.1. Fix γ > 0 and θ � β > 0. A function f defined on X is said to be
a test function of type (x0, r, β, γ) with x0 ∈ X and r > 0, if f satisfies the following
conditions:

(i) |f(x)| � C
rγ

(r + ρ(x, x0))d+γ
;

(ii) |f(x) − f(y)| � C

(
ρ(x, y)

r + ρ(x, x0)

)β
rγ

(r + ρ(x, x0))d+γ
for ρ(x, y) � 1

2A
[r + ρ(x, x0)].

If f is a test function of type (x0, r, β, γ), we write f ∈ G(x0, r, β, γ), and the norm of f

in G(x0, r, β, γ) is defined by

‖f‖G(x0,r,β,γ) = inf{C : (i) and (ii) hold}.

Here and in what follows, θ is as in (1.2).
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Now fix x0 ∈ X and let G(β, γ) = G(x0, 1, β, γ). It is easy to see that

G(x1, r, β, γ) = G(β, γ)

with equivalent norms for all x1 ∈ X and r > 0. Furthermore, the space G(β, γ) is a
Banach space with respect to the norm in G(β, γ). Let the dual space (G(β, γ))′ be the
set of all linear functionals L from G(β, γ) to C with the property that there exists a
finite constant C � 0 such that for all f ∈ G(β, γ),

|L(f)| � C‖f‖G(β,γ).

We denote by 〈h, f〉 the natural pairing of elements h ∈ (G(β, γ))′ and f ∈ G(β, γ). It is
easy to see that f ∈ G(x0, r, β, γ) with x0 ∈ X and r > 0 if and only if f ∈ G(β, γ). Thus,
for all h ∈ (G(β, γ))′, 〈h, f〉 is well defined for all f ∈ G(x0, r, β, γ) with x0 ∈ X and
r > 0. Below we denote by G̊(β, γ), for 0 < β, γ < θ, the completion of G(θ, θ) in G(β, γ).

To state the definition of the inhomogeneous Besov spaces Bs
pq(X) and the inhomoge-

neous Triebel–Lizorkin spaces F s
pq(X) studied in [23–26], we need the following approx-

imations to the identity, first introduced in [21].

Definition 3.2. A sequence {Sk}∞
k=0 of linear operators is said to be an approximation

to the identity of order ε ∈ (0, θ] if there exist constants C4, C5 > 0 such that for all
k ∈ Z+ and all x, x′, y and y′ ∈ X, Sk(x, y), the kernel of Sk, is a function from X × X

into C satisfying

(i) Sk(x, y) = 0 if ρ(x, y) � C42−k and ‖Sk‖L∞(X×X) � C52dk;

(ii) |Sk(x, y) − Sk(x′, y)| � C52k(d+ε)ρ(x, x′)ε;

(iii) |Sk(x, y) − Sk(x, y′)| � C52k(d+ε)ρ(y, y′)ε;

(iv) |[Sk(x, y) − Sk(x, y′)] − [Sk(x′, y) − Sk(x′, y′)]| � C52k(d+2ε)ρ(x, x′)ερ(y, y′)ε;

(v)
∫

X
Sk(x, y) dµ(y) = 1;

(vi)
∫

X
Sk(x, y) dµ(x) = 1.

Here, to say that Sk(x, y) is the kernel of Sk means that for suitable functions f ,

Skf(x) =
∫

X

Sk(x, y)f(y) dµ(y).

We point out that by a construction similar to Coifman’s one in [8], one can construct
an approximation to the identity with compact support as in Definition 3.2, for spaces
of homogeneous type.

We also need the following construction due to Christ [6], which provides an analogue
of the grid of Euclidean dyadic cubes on a space of homogeneous type.

Lemma 3.3. Let (X, ρ, µ)d,θ be a space of homogeneous type. Then there exists a
collection {Qk

α ⊂ X : k ∈ Z+, α ∈ Ik} of open subsets, where Ik is some (possibly finite)
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index set, and constants δ ∈ (0, 1), C6 > 0 and C7 > 0 such that

(i) µ(X \ ∪αQk
α) = 0 for each fixed k and Qk

β ∩ Qk
α = ∅ if α 	= β;

(ii) for any α, β, k, l with l � k, either Ql
β ⊂ Qk

α or Ql
β ∩ Qk

α = ∅;

(iii) for each (k, α) and each l < k there is a unique β such that Qk
α ⊂ Ql

β ;

(iv) diam(Qk
α) � C6δ

k;

(v) each Qk
α contains some ball B(zk

α, C7δ
k), where zk

α ∈ X.

In fact, we can think of Qk
α as being essentially a cube of diameter approximately δk

with centre zk
α. We will always suppose that δ = 1

2 , although, in fact, this restriction
can be removed (see [22]). We denote by Qk,ν

τ , ν = 1, 2, . . . , N(k, τ), the set of all cubes
Qk+j

τ ′ ⊂ Qk
τ , where j is a fixed large positive integer. Denote by yk,ν

τ a point in Qk,ν
τ . For

any dyadic cube Q and any f ∈ L1
loc(X), we set

mQ(f) =
1

µ(Q)

∫
Q

f(x) dµ(x).

We also let a+ = max(a, 0) for any a ∈ R.
Now we can state the definition of Besov spaces Bs

pq(X) and Triebel–Lizorkin spaces
F s

pq(X) from [24].

Definition 3.4. Let −θ < s < θ, {Sk}∞
k=0 be as in Definition 3.2 with order θ, D0 = S0

and Dk = Sk − Sk−1 for k ∈ N. Suppose that β and γ satisfy

max(0,−s + d(1/p − 1)+) < β < θ and 0 < γ < θ. (3.1)

Let j ∈ N be fixed and sufficiently large, and {Q0,ν
τ : τ ∈ I0, ν = 1, . . . , N(0, τ)} be as

above.

(i) The inhomogeneous Besov space Bs
pq(X), defined for

max
(

d

d + θ
,

d

d + θ + s

)
< p � ∞

and 0 < q � ∞, is the collection of all f ∈ (G̊(β, γ))′ with given β and γ satisfy-
ing (3.1), such that

‖f‖Bs
pq(X) =

{ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

+
{ ∞∑

k=1

[2ks‖Dk(f)‖Lp(X)]q
}1/q

< ∞.
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(ii) The inhomogeneous Triebel–Lizorkin space F s
pq(X), defined for

max
(

d

d + θ
,

d

d + θ + s

)
< p < ∞

and max(d/(d + θ), d/(d + θ + s)) < q � ∞, is the collection of all f ∈ (G̊(β, γ))′

with given β and γ satisfying (3.1), such that

‖f‖F s
pq(X) =

{ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

+
∥∥∥∥
{ ∞∑

k=1

[2ks|Dk(f)|]q
}1/q∥∥∥∥

Lp(X)
< ∞.

It was proved in [24] that Definition 3.4 is independent of the choices of large positive
integers j, approximations to the identity and the pairs (β, γ) in (3.1).

One of the main aims of this section is to establish the connection between the
Lipschitz-type spaces defined in § 2 and the Besov spaces defined in [25] and [24].

Proposition 3.5. If 0 < s < θ, 1 � p � ∞ and 0 < q � ∞, then

L(s, p, q, X) ⊂ Lb(s, p, q, X) ⊂ Bs
pq(X).

Moreover, there is a constant C > 0 such that

‖f‖Bs
pq(X) � C‖f‖Lb(s,p,q,X) � C‖f‖L(s,p,q,X)

for all f ∈ L(s, p, q, X) and all f ∈ Lb(s, p, q, X).

Proof. By Proposition 2.2 (ii), we need only show that Lb(s, p, q, X) ⊂ Bs
pq(X), and

‖f‖Bs
pq(X) � C‖f‖Lb(s,p,q,X)

for all f ∈ Lb(s, p, q, X). Let f ∈ Lb(s, p, q, X) and {Dk}k∈Z+ be as in Definition 3.4.
Since µ(Q0,ν

τ ) ∼ C, the Hölder inequality and the support property of D0 imply that

{ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

� C

{ ∑
τ∈I0

N(0,τ)∑
ν=1

∫
Q0,ν

τ

|D0(f)(x)|p dµ(x)
}1/p

� C

{ ∫
X

|D0(f)(x)|p dµ(x)
}1/p

� C

{ ∫
X

∫
X

|D0(x, y)| |f(y)|p dµ(y) dµ(x)
}1/p

� C‖f‖Lp(X)

� C‖f‖Lb(s,p,q,X). (3.2)
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By the size condition, the vanishing moment property and the support condition of Dk

when k ∈ N, it follows that

{ ∞∑
k=1

[2ks‖Dk(f)‖Lp(X)]q
}1/q

=
{ ∞∑

k=1

2ksq

[ ∫
X

( ∫
X

Dk(x, y)[f(y) − f(x)] dµ(y)
)p

dµ(x)
]q/p }1/q

�
{ ∞∑

k=1

2ksq

( ∫
X

[
2kd

∫
B(x,C2−k)

|f(y) − f(x)| dµ(y)
]p

dµ(x)
)q/p}1/q

� C‖f‖Lb(s,p,q,X). (3.3)

Combining (3.2), (3.3) with Definitions 3.4 and 2.1 yields that

‖f‖Bs
pq(X) � C‖f‖Lb(s,p,q,X),

where C is independent of f . This implies that Lb(s, p, q, X) ⊂ Bs
pq(X) and completes

the proof of Proposition 3.5. �

To establish the converse of Proposition 3.5, we need the following discrete Calderón
reproducing formula from [27].

Lemma 3.6. Suppose that {Dk}∞
k=0 is as in Definition 3.4. Then there exist functions

D̃Q0,ν
τ

with τ ∈ I0 and ν = 1, . . . , N(0, τ) and D̃k(x, y) with k ∈ N such that for any
fixed yk,ν

τ ∈ Qk,ν
τ with k ∈ N, τ ∈ Ik and ν ∈ {1, . . . , N(k, τ)} and all f ∈ (G̊(β1, γ1))′

with 0 < β1 < θ and 0 < γ1 < θ,

f(x) =
∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(D0(f))D̃Q0,ν

τ
(x)

+
∞∑

k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(f)(yk,ν

τ )D̃k(x, yk,ν
τ ). (3.4)

Here the series converge in (G̊(β′
1, γ

′
1))

′ for β1 < β′
1 < θ and γ1 < γ′

1 < θ; D̃k(x, y) with
k ∈ N satisfies that for any given ε ∈ (0, θ),

(i) |D̃k(x, y)| � C
2−kε

(2−k + ρ(x, y))d+ε
,

(ii) |D̃k(x, y) − D̃k(x′, y)| � C

(
ρ(x, x′)

2−k + ρ(x, y)

)ε 2−kε

(2−k + ρ(x, y))d+ε

for ρ(x, x′) � 1
2A

(1+ρ(x, y)),

(iii)
∫

X

D̃k(x, y) dµ(x) =
∫

X

D̃k(x, y) dµ(y) = 0;
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diam(Q0,ν
τ ) ∼ 2−j for τ ∈ I0 and ν = 1, . . . , N(0, τ) with some j ∈ N; D̃Q0,ν

τ
(x) for τ ∈ I0

and ν = 1, . . . , N(0, τ) satisfies that

(iv)
∫

X
D̃Q0,ν

τ
(x) dµ(x) = 1,

(v) for any given ε ∈ (0, θ), there is a constant C > 0 such that

|D̃Q0,ν
τ

(x)| � C
1

(1 + ρ(x, y))d+ε

for all x ∈ X and y ∈ Q0,ν
τ , and

(vi) ∣∣∣∣D̃Q0,ν
τ

(x) − D̃Q0,ν
τ

(z)
∣∣∣∣ � C

(
ρ(x, z)

1 + ρ(x, y)

)ε 1
(1 + ρ(x, y))d+ε

for all x, z ∈ X and all y ∈ Q0,ν
τ satisfying ρ(x, z) � (1/2A)(1 + ρ(x, y)).

Moreover, j can be any fixed large positive integer and the constant C in (v) and (vi) is
independent of j.

Proposition 3.7. Let 0 < s < θ and 0 < q � ∞. Then

(i) if d/(d+θ) < p � ∞, then Bs
pq(X) ⊂ L(s, p, q, X) and, moreover, there is a constant

C > 0 such that for all f ∈ Bs
pq(X),

‖f‖L(s,p,q,X) � C‖f‖Bs
pq(X);

(ii) if 1 � p � ∞, then Bs
pq(X) ⊂ Lb(s, p, q, X) and, moreover, there is a constant

C > 0 such that for all f ∈ Bs
pq(X),

‖f‖Lb(s,p,q,X) � C‖f‖Bs
pq(X).

Proof. (ii) is a simple corollary of (i) and Proposition 2.2 (ii). Thus, we need only
prove (i). We first point out that by the definition of the space Bs

pq(X) and the Hölder
inequality, it is easy to see that

Bs
pq(X) ⊂ B

s/2
p,min(p,q)(X) ⊂ F s/2

pq (X) ⊂ F 0
p2(X) (3.5)

(see also Proposition 1.2 and (5.1) in [23], Proposition 2 in [44, p. 47] and Proposition 13.6
in [48]). If 1 < p < ∞, then by Theorem 3 in [27], we obtain

F 0
p2(X) = Lp(X). (3.6)
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From (3.5) and (3.6) it follows that if p ∈ (1,∞), then

‖f‖Lp(X) � C‖f‖Bs
pq(X). (3.7)

We now show that (3.7) also holds when p = ∞. To do so, decompose f as in (3.4)
and fix ε ∈ (0, θ). By the size condition (v) on D̃Q0,ν

τ
, the size condition (i) on D̃k given

by Lemma 3.6 and the fact that yk,ν
τ is arbitrary, we have

|f(x)| �
∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|)|D̃Q0,ν

τ
(x)|

+
∞∑

k=1

∑
τ∈I0

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )| |D̃k(x, yk,ν
τ )|

� C sup
τ∈I0, ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|)
∑
τ∈I0

N(0,τ)∑
ν=1

∫
Q0,ν

τ

1
(1 + ρ(x, y))d+ε

dµ(y)

+ C

∞∑
k=1

sup
x∈X

|Dk(f)(x)|
∑
τ∈Ik

N(k,τ)∑
ν=1

∫
Qk,ν

τ

2−kε

(2−k + ρ(x, y))d+ε
dµ(y)

� C sup
τ∈I0, ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|)
∫

X

1
(1 + ρ(x, y))d+ε

dµ(y)

+ C

∞∑
k=1

sup
x∈X

|Dk(f)(x)|
∫

X

2−kε

(2−k + ρ(x, y))d+ε
dµ(y)

� C sup
τ∈I0, ν=1,...,N(0,τ)

mQ0,ν
τ

(|D0(f)|) + C

∞∑
k=1

sup
x∈X

|Dk(f)(x)|

�

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

C‖f‖Bs
∞q(X) + C

{ ∞∑
k=1

[
2ks sup

x∈X
|Dk(f)(x)|

]q
}1/q

, 0 < q � 1,

C‖f‖Bs
∞q(X) + C

{ ∞∑
k=1

[
2ks sup

x∈X
|Dk(f)(x)|

]q
}1/q{ ∞∑

k=1

2−ksq′
}1/q′

,

1 < q � ∞,

� C‖f‖Bs
∞q(X). (3.8)

We have used the fact that s > 0 and the Minkowski inequality: for ν ∈ (0, 1],

( ∑
j

|aj |
)ν

�
∑

j

|aj |ν (3.9)

with aj ∈ C for all j. Thus, if 0 < s < θ and 0 < q � ∞, then

‖f‖L∞(X) � C‖f‖Bs
∞q(X). (3.10)
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Let us now consider the case p � 1. We follow similar steps to the argument for (3.8).
When 0 < q/p � 1, we write f as in (3.4). By (3.9), the fact that yk,ν

τ is arbitrary,
µ(Q0,ν

τ ) ∼ C, the size condition (v) on D̃Q0,ν
τ

and the size condition (i) on D̃k from
Lemma 3.6 and taking ε ∈ (0, θ) such that d < (d + ε)p, we have

‖f‖p
Lp(X)

� C
∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )p[mQ0,ν

τ
(|D0(f)|)]p

∫
X

1
(1 + ρ(x, y0,ν

τ ))(d+ε)p
dµ(x)

+ C

∞∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )p|Dk(f)(yk,ν

τ )|p
∫

X

2−kεp

(2−k + ρ(x, yk,ν
τ ))(d+ε)p

dµ(x)

� C
∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p + C

∞∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p

� C‖f‖p
Bs

pq(X) + C

∞∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

∫
Qk,ν

τ

|Dk(f)(y)|p dµ(y)

= C‖f‖p
Bs

pq(X) + C

∞∑
k=1

‖Dk(f)‖p
Lp(X)

� C‖f‖p
Bs

pq(X) + C

{ ∞∑
k=1

[2ks‖Dk(f)‖Lp(X)]q2−ksq

}p/q

� C‖f‖p
Bs

pq(X) + C

{ ∞∑
k=1

[2ks‖Dk(f)‖Lp(X)]q
}p/q

� C‖f‖p
Bs

pq(X).

When 1 < q/p � ∞, we use the Hölder inequality to obtain

‖f‖p
Lp(X) � C‖f‖p

Bs
pq(X) + C

∞∑
k=1

‖Dk(f)‖p
Lp(X)

� C‖f‖p
Bs

pq(X) + C

{ ∞∑
k=1

[2ks‖Dk(f)‖Lp(X)]q
}p/q{ ∞∑

k=1

2−ksp(q/p)′
}1−p/q

� C‖f‖p
Bs

pq(X).

Thus, if d/(d + θ) < p � 1, we have

‖f‖Lp(X) � C‖f‖Bs
pq(X). (3.11)
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We now estimate the second term appearing in the definition of the norm of f in
L(s, p, q, X). Without loss of generality, we may assume C2 = 1. By (3.4), we may write

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

|f(x) − f(y)|p dµ(y) dµ(x)
)q/p}1/q

� C

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

∣∣∣∣
∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(D0(f))

× [D̃Q0,ν
τ

(x) − D̃Q0,ν
τ

(y)]
∣∣∣∣
p

dµ(y) dµ(x)
)q/p}1/q

+ C

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

∣∣∣∣
l+1∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(f)(yk,ν

τ )

× [D̃k(x, yk,ν
τ ) − D̃k(y, yk,ν

τ )]
∣∣∣∣
p

dµ(y) dµ(x)
)q/p}1/q

+ C

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

∣∣∣∣
∞∑

k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

· · ·
∣∣∣∣
p

dµ(y) dµ(x)
)q/p}1/q

= E1 + E2 + E3.

For E1 and p � 1, we use (3.9), the fact that µ(Q0,ν
τ ) ∼ C, the regularity of D̃Q0,ν

τ

from Lemma 3.6 (iv). Choosing ε ∈ (s, θ) such that d < (d + ε)p, we use Lemma 3.3 and
the fact that

1 + ρ(x, y0,ν
τ ) ∼ 1 + ρ(x, y)

for any y ∈ Q0,ν
τ , to estimate E1 as follows:

E1 � C

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

[ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|)

×
(

ρ(x, y)
1 + ρ(x, y0,ν

τ )

)ε 1
(1 + ρ(x, y0,ν

τ ))d+ε

]p

dµ(y) dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
( ∫

X

[ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|)

× 1
(1 + ρ(x, y0,ν

τ ))d+ε

]p

dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )p[mQ0,ν

τ
(|D0(f)|)]p

×
∫

X

1
(1 + ρ(x, y0,ν

τ ))(d+ε)p
dµ(x)

)q/p }1/q

https://doi.org/10.1017/S0013091503000907 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000907


Spaces of Lipschitz type 727

� C

{ ∞∑
l=0

2l(s−ε)q
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

)q/p }1/q

� C

{ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

� C‖f‖Bs
pq(X).

On the other hand, if 1 < p � ∞, the Hölder inequality implies that

E1 � C

{ ∞∑
l=0

2l(s−ε)q
( ∫

X

[ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|)

× 1
(1 + ρ(x, y0,ν

τ ))d+ε

]p

dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
[ ∫

X

( ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p 1

(1 + ρ(x, y0,ν
τ ))d+ε

)

×
[ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )

1
(1 + ρ(x, y0,ν

τ ))d+ε

]p/p′

dµ(x)
]q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
[ ∫

X

( ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p 1

(1 + ρ(x, y0,ν
τ ))d+ε

)

×
[ ∫

X

1
(1 + ρ(x, z))d+ε

dµ(z)
]p/p′

dµ(x)
]q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

×
∫

X

1
(1 + ρ(x, y0,ν

τ ))d+ε
dµ(x)

)q/p }1/q

� C

{ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

� C‖f‖Bs
pq(X).

Thus, in all cases, we obtain
E1 � C‖f‖Bs

pq(X), (3.12)

which is the desired estimate for E1.
The estimate for E2 is similar. When p � 1, we use (3.9), the Hölder inequality, the

regularity (ii) of D̃k and choose ε ∈ (s, θ) such that d < (d + ε)p and 2−k + ρ(x, yk,ν
τ ) ∼
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2−k + ρ(x, y) for any y ∈ Qk,ν
τ . It follows that

E2 � C

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

[ l+1∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kερ(x, y)ε

(2−k + ρ(x, yk,ν
τ ))d+2ε

]p

dµ(y) dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
( ∫

X

[ l+1∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(x, yk,ν
τ ))d+2ε

]p

dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
[ l+1∑

k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )p|Dk(f)(yk,ν

τ )|p

×
∫

X

1

(2−k + ρ(x, yk,ν
τ ))(d+ε)p

dµ(x)
]q/p }1/q

� C

{ ∞∑
l=0

2l(s−ε)q
[ l+1∑

k=1

2kεp
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p
]q/p }1/q

� C

{ ∞∑
l=0

[ l+1∑
k=1

2(k−l)(ε−s)p2ksp‖Dk(f)‖p
Lp(X)

]q/p }1/q

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C

{ ∞∑
l=0

l+1∑
k=1

2(k−l)(ε−s)q2ksq‖Dk(f)‖q
Lp(X)

}1/q

, 0 < q/p � 1,

C

{ ∞∑
l=0

[ l+1∑
k=1

2(k−l)(ε−s)q/22ksq‖Dk(f)‖q
Lp(X)

][ l+1∑
k=1

2(k−l)(ε−s)p(q/p)′
]1−p/q}1/q

,

1 < q/p � ∞,

� C

{ ∞∑
k=1

2ksq‖Dk(f)‖q
Lp(X)

}1/q

� C‖f‖Bs
pq(X).

If p > 1, we may use similar computations, which we omit, to see that

E2 � C

{ ∞∑
l=0

2l(s−ε)q
( ∫

X

[ l+1∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(x, yk,ν
τ ))d+2ε

]p

dµ(x)
)q/p }1/q
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� C

{ ∞∑
l=0

2lsq

( ∫
X

[ l+1∑
k=1

2(k−l)ε1p
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p

× 2−kε

(2−k +ρ(x, yk,ν
τ ))d+ε

]

×
[ l+1∑

k=1

2(k−l)ε2p′
∫

X

2−kε

(2−k + ρ(x, z))d+ε
dµ(z)

]p/p′

dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

[ l+1∑
k=1

2(k−l)(ε1−s)p2ksp
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p
]q/p }1/q

� C

{ ∞∑
l=0

[ l+1∑
k=1

2(k−l)(ε1−s)p2ksp‖Dk(f)‖p
Lp(X)

]q/p }1/q

� C‖f‖Bs
pq(X).

Here, we have chosen ε1 > 0 and ε2 > 0 such that ε = ε1 + ε2 and ε1 > s. Again, we
obtain in both cases

E2 � C‖f‖Bs
pq(X), (3.13)

which is the desired estimate for E2.
Finally, let us estimate E3. Decompose the estimate for E3 as follows:

E3 � C

{ ∞∑
l=0

2lsq

[
2ld

∫
X

∫
B(x,2−l)

∣∣∣∣
∞∑

k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(f)(yk,ν

τ )

× D̃k(x, yk,ν
τ )

∣∣∣∣
p

dµ(y) dµ(x)
]q/p }1/q

+ C

{ ∞∑
l=0

2lsq

[
2ld

∫
X

∫
B(x,2−l)

∣∣∣∣
∞∑

k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(f)(yk,ν

τ )

× D̃k(y, yk,ν
τ )

∣∣∣∣
p

dµ(y) dµ(x)
]q/p }1/q

= E1
3 + E2

3 .

When p � 1, we use the size condition (i) of D̃k in Lemma 3.6 with a choice of ε ∈ (0, θ)
such that d < (d + ε)p, (3.9), together with Hölder’s inequality and the fact that

2−l + ρ(x, yk,ν
τ ) ∼ 2−l + ρ(x, z)

for all z ∈ Qk,ν
τ and all x ∈ X, s > 0 and the arbitrariness of yk,ν

τ . We can hence estimate
E1

3 by

E1
3 � C

{ ∞∑
l=0

2lsq

[ ∫
X

∣∣∣∣
∞∑

k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )Dk(f)(yk,ν

τ )D̃k(x, yk,ν
τ )

∣∣∣∣
p

dµ(x)
]q/p }1/q
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� C

{ ∞∑
l=0

( ∫
X

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

2(l−k)s2ksµ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(x, yk,ν
τ ))d+ε

]p

dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

2(l−k)sp2kspµ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p

× 2kd(1−p)
∫

X

2−kεp

(2−k + ρ(x, yk,ν
τ ))(d+ε)p

dµ(x)
]q/p }1/q

� C

{ ∞∑
l=0

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

2(l−k)sp2kspµ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p
]q/p }1/q

� C

{ ∞∑
l=0

[ ∞∑
k=l+2

2(l−k)s2ksp‖Dk(f)‖p
Lp(X)

]q/p }1/q

�

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C

{ ∞∑
l=0

∞∑
k=l+2

2(l−k)sq/p2ksq‖Dk(f)‖q
Lp(X)

}1/q

, 0 < q/p � 1

C

{ ∞∑
l=0

∞∑
k=l+2

2(l−k)sq/(2p)2ksq‖Dk(f)‖q
Lp(X)

( ∞∑
k=l+2

2(l−k)s(q/p)′/2
)1−p/q}1/q

,

1 < q/p � ∞

� C

{ ∞∑
k=2

2ksq‖Dk(f)‖q
Lp(X)

}1/q

� C‖f‖Bs
pq(X).

If p > 1, we have

E1
3 � C

{ ∞∑
l=0

( ∫
X

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

2(l−k)s2ksµ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(x, yk,ν
τ ))d+ε

]p

dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

( ∫
X

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

2(l−k)s2kspµ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p

× 2−kε

(2−k + ρ(x, yk,ν
τ ))d+ε

]

×
[ ∞∑

k=l+2

2(l−k)s
∫

X

2−kε

(2−k + ρ(x, z))d+ε
dµ(z)

]p/p′

dµ(x)
)q/p }1/q
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� C

{ ∞∑
l=0

[ ∞∑
k=l+2

2(l−k)s2ksp
∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|p

×
∫

X

2−kε

(2−k + ρ(x, yk,ν
τ ))d+ε

dµ(x)
]q/p }1/q

� C

{ ∞∑
l=0

[ ∞∑
k=l+2

2(l−k)s2ksp‖Dk(f)‖p
Lp(X)

]q/p }1/q

� C‖f‖Bs
pq(X).

We have omitted some similar computations as for the case p � 1. Thus, we always have

E1
3 � C‖f‖Bs

pq(X), (3.14)

which is the desired estimate.
Similar to the estimate for (3.14), using analogous estimates for E2

3 , we have

E2
3 � C

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(y, yk,ν
τ ))d+ε

]p

dµ(y) dµ(x)
)q/p }1/q

� C

{ ∞∑
l=0

( ∫
X

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

2(l−k)s2ksµ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(y, yk,ν
τ ))d+ε

]p

dµ(y)
)q/p }1/q

� C‖f‖Bs
pq(X). (3.15)

From (3.14) and (3.15), it follows that

E3 � C‖f‖Bs
pq(X). (3.16)

Estimates (3.12), (3.13) and (3.16) tell us that

{ ∞∑
l=0

2lsq

(
2ld

∫
X

∫
B(x,2−l)

|f(x) − f(y)|p dµ(y) dµ(x)
)q/p }1/q

� C‖f‖Bs
pq(X). (3.17)

Combining estimates (3.7), (3.10), (3.11) and (3.17) with Definition 2.1, we see that

‖f‖L(s,p,q,X) � C‖f‖Bs
pq(X).

This proves (i), which completes the proof of Proposition 3.7. �
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Combining Proposition 3.5 with Proposition 3.7, we obtain the following theorem.

Theorem 3.8. If 0 < s < θ, 1 � p � ∞ and 0 < q � ∞, then

L(s, p, q, X) = Lb(s, p, q, X) = Bs
pq(X)

with equivalence of norms.

We remark that if X = R
n, the restriction on the indices of the spaces L(s, p, q, X),

Lb(s, p, q, X) and Bs
pq(X) in Theorem 3.8 is exactly the same as that of Theorem 3.5.1

in [45]. Even when X = R
n, it is still not clear if Theorem 3.8 is true when p < 1.

Also, as mentioned above, our new Lipschitz-type spaces, Lt(s, p, q, X), are related to
Triebel–Lizorkin spaces on spaces of homogeneous type, as we will show in Theorem 3.12
below. To see this, let us first establish the following proposition.

Proposition 3.9. If 0 < s < θ, 1 � p < ∞ and 0 < q � ∞, then

Lt(s, p, q, X) ⊂ F s
pq(X).

Moreover, there is a constant C > 0 such that for all f ∈ Lt(s, p, q, X),

‖f‖F s
pq(X) � C‖f‖Lt(s,p,q,X).

Proof. Let f ∈ Lt(s, p, q, X). Then inequality (3.2) in the proof of Proposition 3.5
still holds in this case. By Hölder’s inequality, the support condition, the size condition
and the vanishing moment property of Dk, we have

∥∥∥∥
{ ∞∑

k=1

[2ks|Dk(f)|]q
}1/q∥∥∥∥

Lp(X)

=
[ ∫

X

{ ∞∑
k=1

2ksq

∣∣∣∣
∫

X

Dk(x, y)[f(y) − f(x)] dµ(y)
∣∣∣∣
q}p/q

dµ(x)
]1/p

� C

{ ∫
X

[ ∞∑
k=1

2ksq

(
2kd

∫
B(·,C2−k)

|f(y) − f(x)| dµ(y)
)q ]p/q

dµ(x)
}1/p

� C‖f‖Lt(s,p,q,X). (3.18)

Estimates (3.3) and (3.18) and Definition 3.4 imply that

‖f‖F s
pq(X) � C‖f‖Lt(s,p,q,X),

where C is independent of f . That is, we have Lt(s, p, q, X) ⊂ F s
pq(X).

This finishes the proof of Proposition 3.9. �

To establish the converse of Proposition 3.9, we first recall the following well-known
lemma which can be found in [12, pp. 147, 148] for R

n and [22, p. 93] for spaces of
homogeneous type.
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Lemma 3.10. Let 0 < r � 1, k, η ∈ Z with η � k. Suppose that for any dyadic cube
Qk,ν

τ ,
|fQk,ν

τ
(x)| � (1 + 2ηρ(x, yk,ν

τ ))−d−γ ,

where yk,ν
τ is any point in Qk,ν

τ and γ > d(1/r − 1). Then for all x ∈ X,

∑
τ∈Ik

N(k,τ)∑
ν=1

|λQk,ν
τ

| |fQk,ν
τ

(x)| � C2(k−η)d/r

[
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

|λQk,ν
τ

|rχQk,ν
τ

)
(x)

]1/r

,

where C is independent of x, k and η, and M is the Hardy–Littlewood maximal operator
on X.

Proposition 3.11. If 0 < s < θ, 1 < p < ∞ and 1 < q � ∞, then

F s
pq(X) ⊂ Lt(s, p, q, X).

Moreover, there exists a constant C > 0 such that for all f ∈ F s
pq(X),

‖f‖Lt(s,p,q,X) � C‖f‖Bs
pq(X).

Proof. Let 1 < p < ∞. Similarly to (3.5) and (3.6), we have

F s
pq(X) ⊂ F 0

p2(X) = Lp(X).

Thus, we obtain
‖f‖Lp(X) � C‖f‖F s

pq(X). (3.19)

We now estimate the second term appearing in the definition of the norm of the space
Lt(s, p, q, X). To do so, without loss of generality, we may assume that C3 = 1. Expressing
f as in (3.4), we have

∥∥∥∥
{ ∞∑

l=0

2lsq

[
2ld

∫
B(·,2−l)

|f(y) − f(·)| dµ(y)
]q}1/q∥∥∥∥

Lp(X)

�
∥∥∥∥
{ ∞∑

l=0

2lsq

(
2ld

∫
B(·,2−l)

[ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|)

× |D̃Q0,ν
τ

(y) − D̃Q0,ν
τ

(·)|
]

dµ(y)
)q}1/q∥∥∥∥

Lp(X)

+
∥∥∥∥
{ ∞∑

l=0

2lsq

(
2ld

∫
B(·,2−l)

[ l+1∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× |D̃k(y, yk,ν
τ ) − D̃k(·, yk,ν

τ )|
]

dµ(y)
)q}1/q∥∥∥∥

Lp(X)
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+
∥∥∥∥
{ ∞∑

l=0

2lsq

(
2ld

∫
B(·,2−l)

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× |D̃k(y, yk,ν
τ )− D̃k(·, yk,ν

τ )|
]
dµ(y)

)q}1/q∥∥∥∥
Lp(X)

= G1 + G2 + G3.

When p/q � 1, we may use Lemma 3.3, the regularity of D̃Q0,ν
τ

from Lemma 3.6 (iv),
together with the fact that ε ∈ (s, θ), Hölder’s inequality, (3.9), the fact that yk,ν

τ is
arbitrary in Qk,ν

τ and that 1 + ρ(x, y0,ν
τ ) ∼ 1 + ρ(x, z) for any z ∈ Q0,ν

τ , µ(Q0,ν
τ ) ∼ C. It

follows that

G1 � C

[ ∫
X

{ ∞∑
l=0

2lsq

(
2ld

∫
B(x,2−l)

[ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|)

× ρ(x, y)ε

(1 + ρ(x, y0,ν
τ ))d+2ε

]
dµ(y)

)q}p/q

dµ(x)
]1/p

� C

[ ∫
X

{ ∞∑
l=0

2l(s−ε)q
[ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )mQ0,ν

τ
(|D0(f)|)

× 1
(1 + ρ(x, y0,ν

τ ))d+ε

]q}p/q

dµ(x)
]1/p

� C

[ ∫
X

{ ∞∑
l=0

2l(s−ε)q
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p 1

(1 + ρ(x, y0,ν
τ ))d+ε

)q/p

×
[ ∫

X

1
(1 + ρ(x, z))d+ε

dµ(z)
]q/p′}p/q

dµ(x)
]1/p

� C

[ ∫
X

{ ∞∑
l=0

2l(s−ε)q
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

× 1
(1 + ρ(x, y0,ν

τ ))d+ε

)q/p}p/q

dµ(x)
]1/p

� C

{ ∫
X

∞∑
l=0

2l(s−ε)p
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

× 1
(1 + ρ(x, y0,ν

τ ))d+ε

)
dµ(x)

}1/p

� C

{ ∞∑
l=0

2l(s−ε)p
∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

×
∫

X

1
(1 + ρ(x, y0,ν

τ ))d+ε
dµ(x)

}1/p
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� C

{ ∞∑
l=0

2l(s−ε)p
}1/p{ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

� C

{ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

� C‖f‖F s
pq(X).

When p/q > 1, similar arguments yield that

G1 � C

[ ∫
X

{ ∞∑
l=0

2l(s−ε)q
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

× 1
(1 + ρ(x, y0,ν

τ ))d+ε

)q/p}p/q

dµ(x)
]1/p

�
[ ∫

X

{ ∞∑
l=0

2l(s−ε)q
( ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p 1

(1 + ρ(x, y0,ν
τ ))d+ε

)}

×
{ ∞∑

l=0

2l(s−ε)q
}p/q−1

dµ(x)
]1/p

� C

{ ∞∑
l=0

2l(s−ε)q
∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

×
∫

X

1
(1 + ρ(x, y0,ν

τ ))d+ε
dµ(x)

}1/p

� C

{ ∞∑
l=0

2l(s−ε)q
}1/p{ ∑

τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

� C

{ ∑
τ∈I0

N(0,τ)∑
ν=1

µ(Q0,ν
τ )[mQ0,ν

τ
(|D0(f)|)]p

}1/p

� C‖f‖F s
pq(X).

Thus, in both cases, we have
G1 � C‖f‖F s

pq(X), (3.20)

which is the required estimate for G1.
The regularity of D̃k, Lemma 3.10 and the Fefferman–Stein vector-valued inequality

[10] tell us that

G2 � C

[ ∫
X

{ ∞∑
l=0

2lsq

(
2ld

∫
B(x,2−l)

[ l+1∑
k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kερ(x, y)ε

(2−k + ρ(x, yk,ν
τ ))d+2ε

]
dµ(y)

)q}p/q

dµ(x)
]1/p
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� C

[ ∫
X

{ ∞∑
l=0

[ l+1∑
k=1

2(k−l)(ε−s)
∑
τ∈Ik

N(k,τ)∑
ν=1

2ksµ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(x, yk,ν
τ ))d+ε

]q}p/q

dµ(x)
]1/p

� C

[ ∫
X

{ ∞∑
l=0

( l+1∑
k=1

2(k−l)(ε−s)

×
[
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ksr|Dk(f)(yk,ν
τ )|rχQk,ν

τ

)
(x)

]1/r)q}p/q

dµ(x)
]1/p

� C

[ ∫
X

{ ∞∑
l=0

( l+1∑
k=1

2(k−l)(ε−s)
[
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ksr|Dk(f)(yk,ν
τ )|rχQk,ν

τ

)
(x)

]q/r)

×
[ l+1∑

k=1

2(k−l)(ε−s)
]q/q′}p/q

dµ(x)
]1/p

� C

[ ∫
X

{ ∞∑
k=1

( ∞∑
l=k−1

2(k−l)(ε−s)
)

×
[
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ksr|Dk(f)(yk,ν
τ )|rχQk,ν

τ

)
(x)

]q/r}p/q

dµ(x)
]1/p

� C

∥∥∥∥
{ ∞∑

k=1

[
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ksr|Dk(f)(yk,ν
τ )|rχQk,ν

τ

)]q/r}r/q∥∥∥∥
Lp/r(X)

� C

∥∥∥∥
{ ∞∑

k=1

∑
τ∈Ik

N(k,τ)∑
ν=1

2ksq|Dk(f)(yk,ν
τ )|qχQk,ν

τ

}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

k=1

2ksq|Dk(f)|q
}1/q∥∥∥∥

Lp(X)

� C‖f‖F s
pq(X). (3.21)

In the second last inequality, we have used the arbitrariness of yk,ν
τ , and we have chosen

ε ∈ (s, θ) and r ∈ (0, 1].
We further estimate G3 by writing

G3 � C

∥∥∥∥
{ ∞∑

l=0

2lsq

(
2ld

∫
B(·,2−l)

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× |D̃k(y, yk,ν
τ )|

]
dµ(y)

)q}1/q∥∥∥∥
Lp(X)
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+ C

∥∥∥∥
{ ∞∑

l=0

2lsq

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )| |D̃k(·, yk,ν
τ )|

]q}1/q∥∥∥∥
Lp(X)

= G1
3 + G2

3.

We now estimate G1
3. From the size condition of D̃k with ε ∈ (0, θ) and Lemma 3.10,

it follows that

G1
3 � C

∥∥∥∥
{ ∞∑

l=0

2lsq

(
2ld

∫
B(·,2−l)

[ ∞∑
k=l+2

∑
τ∈Ik

N(k,τ)∑
ν=1

µ(Qk,ν
τ )|Dk(f)(yk,ν

τ )|

× 2−kε

(2−k + ρ(y, yk,ν
τ ))d+ε

]
dµ(y)

)q}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

l=0

(
2ld

∫
B(·,2−l)

[ ∞∑
k=l+2

2(l−k)s
∑
τ∈Ik

N(k,τ)∑
ν=1

2ks|Dk(f)(yk,ν
τ )|

× 1

(1 + 2kρ(y, yk,ν
τ ))d+ε

]
dµ(y)

)q}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

l=0

(
2ld

∫
B(·,2−l)

[ ∞∑
k=l+2

2(l−k)sM

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ks|Dk(f)(yk,ν
τ )|

× χQk,ν
τ

)
(y)

]
dµ(y)

)q}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

l=0

[ ∞∑
k=l+2

2(l−k)sM2
( ∑

τ∈Ik

N(k,τ)∑
ν=1

2ks|Dk(f)(yk,ν
τ )|χQk,ν

τ

)]q}1/q∥∥∥∥
Lp(X)

.

Then the Hölder inequality, the Fefferman–Stein vector-valued inequality and the fact
that yk,ν

τ is arbitrary in Qk,ν
τ further yield that

G1
3 � C

∥∥∥∥
{ ∞∑

l=0

( ∞∑
k=l+2

2(l−k)s
[
M2

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ks|Dk(f)(yk,ν
τ )|χQk,ν

τ

)]q

×
[ ∞∑

k=l+2

2(l−k)s
]q/q′)}1/q∥∥∥∥

Lp(X)

� C

∥∥∥∥
{ ∞∑

k=2

[
M2

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ks|Dk(f)(yk,ν
τ )|χQk,ν

τ

)]q}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

k=2

[ ∑
τ∈Ik

N(k,τ)∑
ν=1

2ks|Dk(f)(yk,ν
τ )|χQk,ν

τ

]q}1/q∥∥∥∥
Lp(X)
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� C

∥∥∥∥
{ ∞∑

k=2

[2ksq|Dk(f)|]q
}1/q∥∥∥∥

Lp(X)

� C‖f‖F s
pq(X), (3.22)

where M2(f) = M [M(f)].
Finally, we estimate G2

3. By the size condition of D̃k, Hölder’s inequality, Lemma 3.10
and the arbitrariness of yk,ν

τ , we obtain

G2
3

� C

∥∥∥∥
{ ∞∑

l=0

[ ∞∑
k=l+2

2(l−k)s
∑
τ∈Ik

N(k,τ)∑
ν=1

2ks|Dk(f)(yk,ν
τ )| 1

(1 + 2kρ(·, yk,ν
τ ))d+ε

]q}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

l=0

∞∑
k=l+2

2(l−k)s
[
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ksr|Dk(f)(yk,ν
τ )|rχQk,ν

τ

)]q/r}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

k=2

[
M

( ∑
τ∈Ik

N(k,τ)∑
ν=1

2ksr|Dk(f)(yk,ν
τ )|rχQk,ν

τ

)]q/r}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

k=2

∑
τ∈Ik

N(k,τ)∑
ν=1

2ksq|Dk(f)(yk,ν
τ )|qχQk,ν

τ

}1/q∥∥∥∥
Lp(X)

� C

∥∥∥∥
{ ∞∑

k=2

2ksq|Dk(f)|q
}1/q∥∥∥∥

Lp(X)

� C‖f‖F s
pq(X), (3.23)

where we chose ε ∈ (0, θ) and r ∈ (0, 1] and we have omitted computations that are
similar to (3.22).

Estimates (3.19)–(3.23) now tell us that

‖f‖Lt(s,p,q,X) � C‖f‖F s
pq(X).

That is, F s
pq(X) ⊂ Lt(s, p, q, X), which completes the proof of Proposition 3.11. �

The theorem that follows comes from Propositions 3.9 and 3.11.

Theorem 3.12. If 0 < s < θ, 1 � p < ∞ and 1 � q � ∞, then

Lt(s, p, q, X) = F s
pq(X)

with equivalence of norms.

The following proposition is a simple corollary of Theorems 3.8 and 3.12 and Theorem 2
of [53] (see also Theorem 5.2 of [23]).
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Proposition 3.13. Let 0 < s2 < s1 < θ. Then

(i) L(s1, p1, q, X) ⊂ L(s2, p2, q, X) for 0 < q � ∞, 1 � pi � ∞, i = 1, 2, and s1 −
d/p1 = s2 − d/p2;

(ii) Lt(s1, p1, q1, X) ⊂ Lt(s2, p2, q2, X) for 1 � pi < ∞, 1 � qi � ∞, i = 1, 2, and
s1 − d/p1 = s2 − d/p2.

4. Relations with other Sobolev spaces on metric spaces

In this section, we consider the case where X is a metric space with metric ρ. In this
case, we may take θ to be 1 in Definition 1.1. The space (X, ρ, µ)d,1 is then an Ahlfors
d-regular metric space provided we further assume the Borel measure µ to be a Borel
regular measure (see [28, p. 25]). However, for the rest of this section it is enough to
assume that µ is just a finite positive Borel measure. Let us first recall the definition of
the Sobolev space of Haj�lasz in [19] (see also [20]).

Definition 4.1. Let (X, ρ, µ) be a metric space and let 1 � p � ∞. The Sobolev space
W 1,p(X, ρ, µ) is defined by

W 1,p(X, ρ, µ) = {u ∈ Lp(X) : there is a set E ⊂ X, µ(E) = 0,

and a function g � 0, g ∈ Lp(X) such that

|u(x) − u(y)| � ρ(x, y)(g(x) + g(y)) for all x, y ∈ X \ E},

where g is called a generalized gradient of u. Moreover, we define

‖u‖W 1,p(X,ρ,µ) = ‖u‖Lp(X) + inf
g

‖g‖Lp(X),

where the infimum is taken over all generalized gradients of the function u in the definition
of W 1,p(X, ρ, µ).

In what follows, we denote W 1,p(X, ρ, µ) simply by W 1,p(X).
By Propositions 3.7 and 3.11 and a slight modification of Theorem 6.1 of [23], we

easily obtain the following result.

Proposition 4.2. Let 0 < s < 1 and let X be an Ahlfors d-regular metric space. Then

(i) W 1,p(X) ⊂ Bs
pq(X) ⊂ L(s, p, q, X) if 0 < q � ∞ and 1 < p � ∞;

(ii) W 1,p(X) ⊂ F s
pq(X) ⊂ Lt(s, p, q, X) if 1 < q � ∞ and 1 < p < ∞.

The following proposition extends Proposition 4.2 to the case where s = 1.
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Proposition 4.3.

(i) If 1 � p � ∞, then

W 1,p(X) ⊂ L(1, p,∞, X) ⊂ Lb(1, p,∞, X).

Moreover, there is a constant C > 0 such that for all f ∈ W 1,p(X),

‖f‖Lb(1,p,∞,X) � C‖f‖L(1,p,∞,X) � C‖f‖W 1,p(X).

(ii) If 1 < p � ∞, then W 1,p(X) ⊂ Lt(1, p,∞, X). Moreover, there is a constant C > 0
such that for all f ∈ W 1,p(X),

‖f‖Lt(1,p,∞,X) � C‖f‖W 1,p(X).

Proof. First we demonstrate that (i) holds. By Proposition 2.2 (ii), we need only verify
the conclusions concerning the space L(1, p,∞, X). Let f ∈ W 1,p(X). By Definition 3.1,
there is a set E ⊂ X, µ(E) = 0 and a function g � 0, g ∈ Lp(X) such that

|f(x) − f(y)| � ρ(x, y)(g(x) + g(y)) (4.1)

for all x, y ∈ X \ E. By (4.1) and Definition 2.1, we have

‖f‖L(1,p,∞,X) = ‖f‖Lp(X) + sup
ν∈Z+

2ν

(
2νd

∫
X

∫
B(x,C22−ν)

|f(x) − f(y)|p dµ(y) dµ(x)
)1/p

� ‖f‖Lp(X) + C sup
ν∈Z+

2ν

{
2νd

∫
X

∫
B(x,C22−ν)

ρ(x, y)p

× [(g(x))p + (g(y))p] dµ(y) dµ(x)
}1/p

� C[‖f‖Lp(X) + ‖g‖Lp(X)].

Taking the infimum on g as in (4.1), we thus obtain

‖f‖L(1,p,∞,X) � C‖f‖W 1,p(X).

This proves (i).
Let us now prove (ii). Let f ∈ W 1,p(X). By (4.1) and Definition 2.3, we obtain

‖f‖Lt(1,p,∞,X) = ‖f‖Lp(X) +
∥∥∥∥ sup

k∈Z+

2k2kd

∫
B(·,C22−k)

|f(·) − f(y)| dµ(y)
∥∥∥∥

Lp(X)

� ‖f‖Lp(X) + C

∥∥∥∥ sup
k∈Z+

2k2kd

∫
B(·,C22−k)

ρ(·, y)[g(·) + g(y)] dµ(y)
∥∥∥∥

Lp(X)

� ‖f‖Lp(X) + C‖g‖Lp(X) + C

∥∥∥∥ sup
k∈Z+

2kd

∫
B(·,C22−k)

g(y) dµ(y)
∥∥∥∥

Lp(X)

� ‖f‖Lp(X) + C‖g‖Lp(X) + C‖M(g)‖Lp(X)

� C[‖f‖Lp(X) + ‖g‖Lp(X)],
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where we have used the boundedness of the Hardy–Littlewood maximal operator M on
Lp(X) for p ∈ (1,∞] (see [7] and [28]). Taking the infimum on g as in (4.1), we have

‖f‖Lt(1,p,∞,X) � C‖f‖W 1,p(X),

which proves (i) and finishes the proof of Proposition 4.3. �

In [34], Korevaar and Schoen define a class of Sobolev maps f : X → Y , where X is a
Riemannian domain and Y is a complete metric space. Later, Koskela and Macmanus [35]
considered the Korevaar–Schoen definition in the case when the source domain is replaced
by an abstract metric measure space (see also [29]). Let us recall this definition here. Let
(X, ρ, µ)d,1 be as in Definition 1.1 and let f : X → R. For any ε > 0 and 1 � p < ∞, we
define eε(x, y; f) and eε(x; f), respectively, by

eε(x, y; f) =
|f(x) − f(y)|

ε

and

ep
ε (x; f) =

1
εd

∫
B(x,ε)

eε(x, y; f)p dµ(y).

Define

Ep(f) = sup
B

(
lim sup

ε→0

∫
B

ep
ε (x; f) dµ(x)

)
,

where the supremum is taken over all metric balls in X. Then f is said to be in the
Korevaar–Schoen Sobolev space KS1,p(X) if Ep(f) < ∞. Moreover, we define

‖f‖KS1,p(X) = ‖f‖Lp(X) + [Ep(f)]1/p.

Clearly, this definition agrees with that of Korevaar and Schoen in the case when X is
proper, i.e. closed balls in X are compact (see [35] and Remark 5.9 in [29]).

We have the following proposition on the relationships between the Korevaar–Schoen
Sobolev space and the Lipschitz-type spaces of § 2.

Proposition 4.4. Let 1 � p < ∞. Then

Lt(1, p,∞, X) ⊂ L(1, p,∞, X) ⊂ KS1,p(X). (4.2)

Furthermore, there is a constant C > 0 such that for all f ∈ Lt(1, p,∞, X),

‖f‖KS1,p(X) � C‖f‖L(1,p,∞,X) � C‖f‖Lt(1,p,∞,X).

Proof. The first inclusion in (4.2) can be deduced from Proposition 2.4 (iv). Hence
we need only verify the second inclusion.
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Let f ∈ L(1, p,∞, X). Then

‖f‖KS1,p(X) = ‖f‖Lp(X) + [Ep(f)]1/p

� ‖f‖Lp(X) +
[

lim sup
ε→0

∫
X

1
εd

∫
B(x,ε)

|f(x) − f(y)|p
εp

dµ(y) dµ(x)
]1/p

� ‖f‖Lp(X) +
[

sup
ε>0

∫
X

1
εd

∫
B(x,ε)

|f(x) − f(y)|p
εp

dµ(y) dµ(x)
]1/p

� ‖f‖Lp(X) + C

[
sup

ν∈Z+

∫
X

2νp2νd

∫
B(x,2−ν)

|f(x) − f(y)|p dµ(y) dµ(x)
]1/p

� C‖f‖L(1,p,∞,X).

This means that L(1, p,∞, X) ⊂ KS1,p(X), which completes the proof of Proposition 4.4.
�

Note that the relationships amongst the Sobolev space KS1,p(X), the Newtonian
Sobolev space N1,p(X) [40] and the Sobolev space H1,p(X) of Cheeger [4], the Poincaré–
Sobolev spaces P 1,p(X) and W 1,p(X) have been established (see [29, 35] and the ref-
erences therein). The following result is a simple corollary of Theorem 4.5 in [35] and
Remark 5.9 in [29], and Propositions 4.3 and 4.4. See [29,35] for the definition of the
q-Poincaré inequality.

Corollary 4.5. Let (X, ρ, µ)d,1 be a metric space as in Definition 1.1 supporting the q-
Poncaré inequality, 1 � q < ∞. Then for each p ∈ (q, ∞), the spaces W 1,p(X), KS1,p(X),
H1,p(X), P 1,p(X), L(1, p,∞, X) and Lt(1, p,∞, X) are the same space with equivalence
of norms.

5. Metric spaces with a heat kernel

In this section, we take ρ to be a metric and µ to be a non-negative Borel measure on X.
Following [18], we say that a family {pt}t>0 of non-negative measurable functions pt(x, y)
on X × X is called a heat kernel or a transition density if, for all x, y ∈ X and s, t > 0,
the following conditions are satisfied:

pt(x, y) = pt(y, x); (5.1)∫
X

pt(x, y) dµ(y) = 1; (5.2)

ps+t(x, y) =
∫

X

ps(x, z)pt(z, y) dµ(z); (5.3)

if f ∈ L2(X), ∫
X

pt(x, y)f(y) dµ(y) → f(x) (5.4)

in the norm of L2(X) as t → 0+.
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For example, the classical Gauss–Weierstrass function

pt(x, y) =
1

(4πt)n/2 exp
(

− |x − y|2
4t

)
(5.5)

is a heat kernel on R
n.

Any heat kernel leads to a heat semigroup {Tt}t>0 on L2(X) defined by

Ttf(x) =
∫

X

pt(x, y)f(y) dµ(y). (5.6)

The above properties of pt tell us that Tt is a bounded self-adjoint operator, and {Tt}t>0

is a strongly continuous, positivity-preserving, contraction semigroup in L2(X).
In addition, we assume that for all x, y ∈ X and t ∈ (0,∞),

1
td/β

Φ1

(
ρ(x, y)β

t

)
� pt(x, y) � 1

td/β
Φ2

(
ρ(x, y)β

t

)
, (5.7)

where d and β are positive constants, and Φ1 and Φ2 are monotone-decreasing positive
functions on [0,∞).

Obviously, the Gauss–Weierstrass heat kernel (5.5) satisfies (5.7) with d = n, β = 2
and

Φ1(s) = Φ2(s) =
1

(4π)n/2 exp(− 1
4s).

See [2], [11] and [18] for some other examples on fractals. In particular, for any general-
ized Sierpinski carpet, there exists a heat kernel satisfying the following estimate:

pt(x, y) ∼ 1
td/β

exp
{

− C

[
ρ(x, y)β

t

]1/(β−1)}

with 2 � β � d + 1, which is a particular case of (5.7) (see [3] and [11]).
The following result is established by Grigoryan, Hu and Lau in [18].

Lemma 5.1. Let (X, ρ, µ) be a metric-measure space, and let pt be a heat kernel on
X satisfying (5.7) with function Φ2 such that

∫ ∞

C8

sd/βΦ2(s)
ds

s
< ∞, (5.8)

where C8 > 0 is some fixed constant. Then for any ball B(x, r) in X,

µ(B(x, r)) ∼ rd.

Thus, (X, ρ, µ) is a special space of homogeneous type as in Definition 1.1, i.e. (X, ρ, µ)d,1.

Thus, d is the Hausdorff dimension of X. Moreover, as pointed out in [18], if the heat
kernel pt is the transition density of a diffusion process Xt on X, then β is called the
walk dimension of Xt (see also [2]).
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We also remark that the condition (5.8) is equivalent to
∫ ∞

0
sd/βΦ2(s)

ds

s
< ∞,

since Φ2 is monotone decreasing.

Lemma 5.2. Let pt be a heat kernel on (X, ρ, µ) satisfying the upper bound in (5.7).
Assume in addition that s2+d/βΦ2(s) is bounded on [C9,∞) for some C9 > 0. Then, for
any σ > β/2, the space L(σ, 2,∞, X) contains only constants.

Lemma 5.2 is just Theorem 4.2 in [18]. Using Lemma 5.2 and Proposition 2.2 (iv), it
is easy to deduce the following strengthening of this result.

Corollary 5.3. Let pt be a heat kernel on (X, ρ, µ) satisfying the upper bound (5.7).
Assume in addition that s2+d/βΦ2(s) is bounded on [C9,∞) for some C9 > 0. Then, for
any σ > β/2, the space L(σ, 2, q, X) contains only constants for any 0 < q � ∞.

We now establish some Sobolev inequalities on X. Define by (5.6) the semigroup
{Tt}t>0 on L2(X), and consider the infinitesimal generator ∆ defined by

∆f = lim
t→0

Ttf − f

t
, (5.9)

where the limit is taken in the L2(X)-norm. It is natural to refer to ∆ as the Laplace
operator of the heat kernel pt. Moreover, by assumptions (5.1) and (5.2) and the Hölder
inequality, it is easy to deduce that the semigroup {Tt}t>0 is a symmetric, self-adjoint
contraction which is an equicontinuous semigroup of class (C0) in L2(X) (see [54]). By
the positivity of pt, we know that {Tt}t>0 is sub-Markovian (see [51, p. 20]). Thus, it
acts on Lp(X) for p ∈ [1,∞] and satisfies ‖Tt‖Lp(X)→Lp(X) � 1. Moreover, it is well
known that for such a semigroup, Tt is also bounded analytic on Lp(X) for p ∈ (1,∞)
(see [51, p. 13]). Let ρ(∆) be the resolvent set of ∆. We assume that

0 ∈ ρ(∆), (5.10)

which is equivalent to 0 ∈ ρ(−∆). This can be always be achieved by multiplying the
uniformly bounded semigroup Tt by e−εt for ε > 0. Let R(λ, ∆) = (λI − ∆)−1 be the
resolvent of ∆ and let p ∈ (1,∞). By Theorem 5.2 of [38, p. 61], we know that if (5.10)
holds, the analyticity of {Tt}t>0 is, respectively, equivalent to the following two claims:

(i) Tt is differentiable for t > 0 and there is a constant C10 > 0 such that for t > 0,

‖∆Tt‖Lp(X)→Lp(X) � C10

t
; (5.11)

or

(ii) there exist 0 < δ < π/2 and C11 > 0 such that

ρ(∆) ⊃ Ω1 = {λ : |arg λ| < π/2 + δ} ∪ {0}
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and
‖R(λ, ∆)‖Lp(X)→Lp(X) � C11

|λ|
for λ ∈ Ω1 and λ 	= 0.

Obviously, claim (ii) is equivalent to

(iii) there exist ω ∈ (0, π/2) and C12 > 0 such that

ρ(−∆) ⊃ Ω2 = {λ : ω < |arg λ| � π} ∪ {0}

and
‖R(λ, −∆)‖Lp(X)→Lp(X) � C12

|λ|
for λ ∈ Ω2 and λ 	= 0.

Moreover, by using the fact that ρ(−∆) is open and the analyticity of R(λ, −∆) on λ in
each component (the maximal connected sets) of ρ(−∆) (see Theorem 1 in [54, p. 211]),
it is easy to show that (iii) is equivalent to

(iv) there exist ω ∈ (0, π/2), a neighbourhood V of 0 and C13 > 0 such that

ρ(−∆) ⊃ Ω3 = {λ : ω < |arg λ| � π} ∪ V (5.12)

and
‖R(λ, −∆)‖Lp(X)→Lp(X) � C13

1 + |λ| (5.13)

for λ ∈ Ω3 and λ 	= 0.

Thus, −∆ is a positive operator on Lp(X) for p ∈ (1,∞) in the sense of Definition 1.14.1
in [46, p. 91]. Moreover, −∆ also satisfies Assumption 6.1 in [38, p. 69]. Thus, we can
define the fractional powers of −∆ as in [38, pp. 69–75] (see also Section 1.15 in [46]).
For ν ∈ (0, 1), we define

(−∆)−νf =
∫ ∞

0
tν−1Ttf dt, (−∆)νf = {(−∆)−ν}−1f

and (−∆)0 = I (see [38, pp. 70, 72]).
Let Ff be the Fourier transform of a function f on R

n. In the case that pt(x, y) is
the classical Gauss–Weierstrass function in R

n defined by (5.5), then F{pt}(ξ) = e−t|ξ|2

(see [42]). In this case, the Laplace operator defined by (5.9) satisfies

F{∆f}(ξ) = lim
t→0

e−t|ξ|2 − 1
t

Ff(ξ) = −|ξ|2Ff(ξ),

which is just the classical Laplace operator. Moreover, since

F{(−∆)−νf}(ξ) = C|ξ|−2νFf(ξ),
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then

(−∆)−νf(x) = C

∫ n

R

f(y)
|x − y|n−2ν

dy

(see [41]), which is just the Riesz potential. Also, since F{(−∆)νf}(ξ) = C|ξ|2νFf(ξ),
(−∆)νf can be regarded as the derivative of fractional order of f . Thus, part (i) of the
following theorem is the Hardy–Littlewood–Sobolev inequality (see [41]) and part (ii) is
the Sobolev inequality (see [1]). The proof of the following theorem is a slight modification
of the proof of Theorem 2.4.2 in [9, p. 75].

Theorem 5.4. Let {pt}t>0 be a heat kernel satisfying the upper bound estimate
in (5.7) and ∆ is the associated Laplace operator as in (5.9) satisfying (5.10). Let ν ∈
(0, 1) and d > νβ. Then

(i) there exists a constant C > 0 such that for all f ∈ Lq(X),

‖(−∆)−νf‖Lr(X) � C‖f‖Lq(X),

where 1 < q < d/νβ and (1/r) = (1/q) − (νβ/d);

(ii) there exists a constant C > 0 such that for all f ∈ Lq(X),

‖f‖Lr(X) � C‖(−∆)νf‖Lq(X),

where r and q are as in (i).

Proof. Obviously, (ii) can be deduced from (i) (see also [9, pp. 75, 76]). Thus, we
need only prove (i). By (5.7) and the monotonicity of Φ2, we have

|Ttf(x)| =
∣∣∣∣
∫

X

pt(x, y)f(y) dµ(y)
∣∣∣∣ � Ct−d/β‖f‖L1(X).

Thus,
‖Ttf‖L∞(X) � Ct−d/β‖f‖L1(X). (5.14)

The assumption (5.2), Hölder’s inequality and (5.7) tell us that

|Ttf(x)| �
{ ∫

X

pt(x, y)|f(y)|p dµ(y)
}1/p{ ∫

X

pt(x, y) dµ(y)
}1/p′

� Ct−d/pβ‖f‖Lp(X),

where p ∈ [1,∞] will be determined later. That is, for all p ∈ [1,∞],

‖Ttf‖L∞(X) � Ct−d/pβ‖f‖Lp(X). (5.15)

The estimates (5.14) and (5.15) and the Riesz–Thorin interpolation theorem (see [42])
yield that for all t > 0 and all f ∈ Lq(X),

‖Ttf‖L∞(X) � Ct−d/qβ‖f‖Lq(X), (5.16)
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where 1 � q � p. We now write

(−∆)−νf =
∫ C14

0
tν−1Ttf(x) dt +

∫ ∞

C14

tν−1Ttf(x) dt = g + h,

where C14 > 0 will be determined below. By (5.16), we have

‖h‖L∞(X) �
∫ ∞

C14

tν−1‖Ttf‖L∞(X) dt

� C

( ∫ ∞

C14

tν−1−(d/qβ) dt

)
‖f‖Lq(X)

= C15C
ν−(d/qβ)
14 ‖f‖Lq(X).

For any given λ > 0, we define C14 by
1
2λ = C15C

ν−(d/qβ)
14 ‖f‖Lq(X). (5.17)

Note that for any q ∈ [1,∞], by Hölder’s inequality and (5.2),

‖Tg‖Lq(X) =
{ ∫

X

∣∣∣∣
∫

X

pt(x, y)g(y) dµ(y)
∣∣∣∣
q

dµ(x)
}1/q

=
{ ∫

X

[ ∫
X

pt(x, y)|g(y)|q dµ(y)
]

dµ(x)
}1/q

� ‖g‖Lq(X);

from this and (5.17), we deduce

µ({x ∈ X : |(−∆)−µf(x)| > λ}) � µ({x ∈ X : |g(x)| > 1
2λ})

� Cλ−q‖g‖q
Lq(X)

� Cλ−q‖f‖q
Lq(X)

( ∫ C14

0
tν−1 dt

)q

= Cλ−qCνq
14 ‖f‖q

Lq(X)

= Cλ−(d/β)((d/qβ)−ν)−1‖f‖(d/β)((d/qβ)−ν)−1

Lq(X) .

Let

r =
d

β

(
d

qβ
− ν

)−1

,

that is,
1
r

=
1
q

− νβ

d
.

Then, (−∆)−ν is of weak type (q, r), where 1 � q � p. By choosing p = d/νβ and
then applying the Marcinkiewicz interpolation theorem (see [42] or [41]), we obtain that
(−∆)−ν is bounded from Lq(X) into Lr(X), where

1
r

=
1
q

− νβ

d
and 1 < q <

d

νβ
.

This finishes the proof of Theorem 5.4. �
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Remark 5.5. The hypotheses of Theorem 5.4 are quite natural. Note that we only
require that the heat kernel has an upper estimate as in (5.7). Upper estimates of this
kind are satisfied by many heat kernels on fractals, manifolds, graphs and groups (see [3,
5,11,15,17,43,50,51]).

In what follows, we further assume that for 0 < t < t0,

sup
s<t

∣∣∣∣1s [ps+t(x, y) − pt(x, y)]
∣∣∣∣ � 1

t(d/β)+1 Φ3

(
ρ(x, y)β

t

)
, (5.18)

where t0 is some positive number and Φ3 is a monotone-decreasing positive function
on [0,∞).

It is easy to check that the classical Gauss–Weierstrass function in (5.5) satisfies (5.18),
which is also satisfied by some heat kernels on complete Riemannian manifolds (see [5]
and [50]).

Applying Theorem 5.4, we can obtain the following Sobolev embedding theorem (see
also Theorem 4.3 of [18], Theorem 3.11 of [43] and Theorem 9.2 of [16] for some related
results).

Theorem 5.6. Let 0 < ν < 1 and let (X, ρ, µ) be a metric-measure space with heat
kernel satisfying (5.10) and (5.18) with

∫ ∞

C16

t(d/β)+ν−1Φ3(t) dt � C (5.19)

for some constant C16 > 0. If d > νβ, 1 < p < d/νβ and

1
r

=
1
p

− νβ

d
,

then
Lb(νβ, p, 1, X) ⊂ Lr(X).

Proof. By Theorem 5.4 (ii), we need only verify that

‖(−∆)νf‖Lp(X) � C‖f‖Lb(νβ,p,1,X). (5.20)

Theorem 6.8 of [38, p. 72] further tells us that we can write

(−∆)νf = (−∆)ν−1 ◦ (−∆)f =
∫ ∞

0
t−νTt(−∆)f dt.

Moreover, Theorem 2 of [54, p. 239] tells us that Tt∆ = ∆Tt. Thus, we can write

(−∆)νf(x) = −
∫ ∞

0
t−ν∆Ttf(x) dt

= −
∫ t0

0
t−ν∆Ttf(x) dt −

∫ ∞

t0

t−ν∆Ttf(x) dt

= H1 + H2.
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For 0 < ν < 1, the monotonicity of Φ3 and (5.19) now imply that
∫ ∞

0
t(d/β)+ν−1Φ3(t) dt < ∞. (5.21)

By (5.18), we may estimate H1 by

|H1| =
∣∣∣∣
∫ t0

0
t−ν lim

s→0

TsTtf(x) − Ttf(x)
s

dt

∣∣∣∣
=

∣∣∣∣
∫ t0

0
t−ν lim

s→0
s<t

∫
X

1
s
[ps+t(x, y) − pt(x, y)][f(y) − f(x)] dµ(y) dt

∣∣∣∣
�

∫ t0

0
t−ν

[ ∫
X

1
t(d/β)+1 Φ3

(
ρ(x, y)β

t

)
|f(y) − f(x)| dµ(y)

]
dt

�
∫ t0

0
t−ν

[ ∫
X\B(x,1)

· · · dµ(y)
]

dt +
∫ t0

0
t−ν

[ ∫
B(x,1)

· · · dµ(y)
]

dt

= H1
1 + H2

1 .

We have, by (5.21),

H1
1 �

∫
X\B(x,1)

[ ∫ t0

0

1
t(d/β)+1+ν

Φ3

(
ρ(x, y)β

t

)
dt

]
|f(y) − f(x)| dµ(y)

� C

[ ∫ ∞

0
t(d/β)+µ−1Φ3(t) dt

] ∫
X\B(x,1)

1
ρ(x, y)d+νβ

|f(y) − f(x)| dµ(y)

� C

∫
X\B(x,1)

1
ρ(x, y)d+νβ

|f(y) − f(x)| dµ(y)

� C|f(x)| + C

∫
X\B(x,1)

1
ρ(x, y)d+νβ

|f(y)| dµ(y).

Since d + νβ > d, we may use this, together with Hölder’s inequality, to deduce

‖H1
1‖Lp(X) � C‖f‖Lp(X) + C

{ ∫
X

[ ∫
X\B(x,1)

1
ρ(x, y)d+νβ

|f(y)|p dµ(y)
]

×
[ ∫

X\B(x,1)

1
ρ(x, y)d+νβ

dµ(y)
]

dµ(x)
}1/p

� C‖f‖Lp(X)

� C‖f‖Lb(νβ,p,1,X). (5.22)

Again using (5.21), we estimate H2
1 by decomposing it as

H2
1 �

∞∑
k=1

∫ t0

0

∫
B(x,2−(k−1))\B(x,2−k)

1
t(d/β)+1+ν

Φ3

(
ρ(x, y)β

t

)
|f(y) − f(x)| dµ(y) dt

�
∞∑

k=1

∫ t0

0

1
t(d/β)+1+ν

Φ3

(
2−kβ

t

)
dt

∫
B(x,2−(k−1))

|f(y) − f(x)| dµ(y)
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� C

[ ∫ ∞

0
t(d/β)+ν−1Φ3(t) dt

] ∞∑
k=1

2kβν2kd

∫
B(x,2−(k−1))

|f(y) − f(x)| dµ(y)

� C

∞∑
k=1

2kβν2kd

∫
B(x,2−(k−1))

|f(y) − f(x)| dµ(y).

From this it follows that

‖H2
1‖Lp(X) � C

∞∑
k=1

2kβν

{ ∫
X

[
2kd

∫
B(x,2−(k−1))

|f(y) − f(x)| dµ(y)
]p

dµ(x)
}1/p

� C‖f‖Lb(νβ,p,1,X). (5.23)

Estimates (5.22) and (5.23) tell us that

‖H1‖Lp(X) � C‖f‖Lb(νβ,p,1,X). (5.24)

We now estimate H2. From (5.11) and the Minkowski inequality for integrals, it follows
that

‖H2‖Lp(X) �
∫ ∞

t0

t−ν‖∆Ttf‖Lp(X) dt � C

∫ ∞

t0

t−ν−1 dt‖f‖Lp(X) � C‖f‖Lp(X).

This inequality, combined with (5.24), tells us that (5.20) is valid.
This completes the proof of Theorem 5.6. �

Remark 5.7. Let s = νβ. Then the condition 1 < p < d/s implies that s < d/p.
Thus, Theorem 5.6 extends Corollary 2.6 in the current setting.
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