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Abstract. Many studies have shown that additional information can be 
gained on time series by investigating their associated complex networks. In 
this work, we investigate the multifractal property and Laplace spectrum of 
the horizontal visibility graphs (HVGs) constructed from fractional Brownian 
motions. We aim to identify via simulation and curve fitting the form of these 
properties in terms of the Hurst index H. First, we use the sandbox algorithm to 
study the multifractality of these HVGs. It is found that multifractality exists 

in these HVGs. We find that the average fractal dimension ⟨ ( )⟩D 0  of HVGs 
approximately satisfies the prominent linear formula ⟨ ( )⟩ = −D H0 2 ; while 

the average information dimension ⟨ ( )⟩D 1  and average correlation dimension 

⟨ ( )⟩D 2  are all approximately bi-linear functions of H when ⩾H 0.15. Then, 
we calculate the spectrum and energy for the general Laplacian operator and 
normalized Laplacian operator of these HVGs. We find that, for the general 

Laplacian operator, the average logarithm of second-smallest eigenvalue ⟨ ( )⟩uln 2 , 
the average logarithm of third-smallest eigenvalue ⟨ ( )⟩uln 3 , and the average 

logarithm of maximum eigenvalue ⟨ ( )⟩uln n  of these HVGs are approximately 

linear functions of H; while the average Laplacian energy ⟨ ⟩EnL  is approximately 
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a quadratic polynomial function of H. For the normalized Laplacian operator, 

⟨ ( )⟩uln 2  and ⟨ ( )⟩uln 3  of these HVGs approximately satisfy linear functions of H;  

while ⟨ ( )⟩uln n  and ⟨ ⟩EnL  are approximately a 4th and cubic polynomial function 

of H respectively.

Keywords: nonlinear dynamics, network dynamics, network reconstruction

1. Introduction

Complex network theory has become one of the most important developments in sta-
tistical physics [1]. Many studies have shown that complex networks play an important 
role in characterizing complicated dynamic systems in nature and society [2]. Studies 
have shown that complex network theory may be an eective method to extract the 
information embedded in time series [3–8]. The advancement of network theory pro-
vides us with a new perspective to perform time series analysis [7, 8]. Especially we 
can further understand the structural features and dynamics of complex systems by 
studying the basic topological properties of their networks. Researchers have proposed 
some algorithms to construct dierent complex networks from time series [9], such as 
complex networks from pseudoperiodic time series [3], visibility graphs (VG) [5] and 
horizontal visibility graphs (HVG) [6], state space networks [10], recurrence networks 
[7, 8, 11], nearest-neighbor networks [4, 12] and complex networks based on phase 
space reconstruction [13].

Among the aforementioned methods, the visibility algorithm proposed by Lacasa  
et al [5] has attracted many applications from diverse fields [14], including stock mar-
ket indices [15, 16], human stride intervals [17], occurrence of hurricanes in the United 
States [18], foreign exchange rates [19], energy dissipation rates in three-dimensional 
fully developed turbulence [20], human heartbeat dynamics [21, 22], diagnostic EEG 
markers of Alzheimer’s disease [23], and daily streamflow series [24]. A VG is obtained 
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from the mapping of a time series into a network according to the visibility criterion 
[5, 17]: two arbitrary data points (ta, ya) and (tb, yb) in the time series have visibility, 
and consequently become two connected vertices (or nodes) in the associated graph, if 
any other data point (tc, yc) such that < <t t ta c b fulfills

y y y y
t t

t t
.c a b a

c a

b a

( )< + −
−
−

Time series is defined in the time domain and the discrete Fourier transform (DFT) 
is defined on the frequency domain, the VG is defined on the ‘visibility domain’. The 
DFT decomposes a signal in a sum of vibration modes, the visibility algorithm decom-
poses a signal in a concatenation of graph’s motifs, and the degree distribution simply 
makes a histogram of such ‘geometric modes’. The visibility algorithm is a geometric 
(rather than integral) transform.

A preliminary analysis [5] has shown that the constructed VG inherits several prop-
erties of the series in its structure. Thereby, periodic time series convert into regular 
graphs, and random series into random graphs. Moreover, fractal time series convert 
into scale-free networks, enhancing the fact that a power-law degree distribution of its 
graph is related to the fractality of the time series. Then Luque et al [6] proposed the 
HVG which is geometrically simpler and forms an analytically solvable version of VG. 
The HVG has been used to study the daily solar x-ray brightness data [25] and protein 
molecular dynamics [26] by our group.

Self-similar processes have been used to model fractal phenomena in dierent fields, 
ranging from physics, biology, economics to engineering [17]. Fractional Brownian 

motion (fBm) is a stochastic processes defined by X t X t t X Bd , d , dt t t t
H( ) ( )µ σ= + , where 

μ is the drift coecient, σ is the diusion coecient. Bt
H is a Gaussian process, the 

index H is called Hurst exponent with 0  <  H  <  1 after the British hydrologist Hurst. 
Note that for H  =  1/2 we get the standard Brownian motion (standard Wiener motion), 
which we shall further denote by Wt [27]. Variance of fBm is σ t H2 2 . Variance also cor-

responds to mean squared displacement [28, 29], EXt
2. If H  =  1/2, the diusion process 

is called normal diusion and the variance of fBm is σ t2 . This is the same as cases of 
Brownian motion and Brownian motion with constant drift, which means the mean 
squared displacement (MSD) of a particle is a linear function of time. If 1/2  <  H  <  1, 
the diusion process is called super-diusion (Levy flight and geometric Brownian 
motion both belong to super-diusion). If 0  <  H  <  1/2, the diusion process is called 
sub-diusion. We can choose dierent diusion process to model the data with various 
mean squared displacement [27–29]. Lacasa et al [17] showed that the VGs derived from 
generic fBm series are scale-free, and proved that there exists a linear relation between 
the Hurst exponent H of the fBm and the exponent γ of the power law degree distri-
bution in the associated VG. The visibility algorithm thus provides another method 
to compute the Hurst exponent and characterize fBm. Xie and Zhou [14] studied the 
relationship between the Hurst exponent of fBm and the topological properties (cluster-
ing coecient and fractal dimension) of its converted HVG. Our group [30] studied the 
topological and fractal properties of the recurrence networks constructed from fBms.

Based on the self-similarity of fractal geometry [27, 31, 32], Song et al [2] gener-
alized the box-counting method and used it in the field of complex networks. As a 
generalization of fractal analysis, the tool of multifractal analysis (MFA) has a better 

http://dx.doi.org/10.1088/1742-5468/2016/03/033206
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performance on characterizing the complexity of complex networks in real applications. 
MFA has been widely applied in a variety of fields such as financial modeling [33, 34], 
biological systems [35–38], and geophysical data analysis [39–42]. In recent years, MFA 
also has been successfully used in complex networks and seems more powerful than 
fractal analysis. As a consequence of this trend, some algorithms have been proposed to 
calculate the mass exponent ( )τ q  and then study the multifractal properties of complex 
networks. Furuya and Yakubo [43] proposed an improved compact-box-burning algo-
rithm for MFA of complex networks based on the algorithm introduced by Song et al 
[44], and applied it to show that some networks have a multifractal structure. Almost at 
the same time, Wang et al [45] proposed a modified fixed-size box-counting method to 
detect the multifractal behavior of some theoretical and real networks, including scale-
free networks, small-world networks, random networks, and protein-protein interaction 
networks. Li et al [46] improved the algorithm of [45] further and used it to investigate 
the multifractal properties of a family of fractal networks introduced by Gallos et al 
[47]. Then Liu et al [30] studied the fractal and multifractal properties of the recur-
rence networks constructed from fBms. Recently, Liu et al [48] employed the sandbox 
(SB) algorithm which was proposed by Tél et al [49] for MFA of complex networks. 
By comparing the numerical results and the theoretical ones of some networks, it was 
shown that the SB algorithm is the most eective, feasible and accurate algorithm to 
study the multifractal behavior and calculate the mass exponent of complex networks.

In another direction, spectral graph theory has a long history. One of the main goals 
in graph theory is to deduce the principal properties and structure of a graph from its 
graph spectrum. The eigenvalues of Laplacian operator are closely related to almost 
all major invariants of a graph, linking one extremal property to another [50]. There is 
no question that eigenvalues play a central role in our fundamental understanding of 
graphs [50]. The study of graph eigenvalues realizes increasingly rich connections with 
many other areas of mathematics. A particularly important development is the interac-
tion between spectral graph theory and dierential geometry [50, 51].

In this work, we investigate the multifractal property and Laplace spectrum of 
the HVGs constructed from fBms. First, we use the SB algorithm employed by Liu 
et al [48] to study the multifractality of these HVGs. We then calculate the spectrum  
[50, 51] and energy [52] for the general Laplacian operator and normalized Laplacian 
operator of these HVGs. We aim to identify the functional forms of possible relation-
ships between the Hurst index of the fBm and the multifractal indices, Laplacian spec-
trum and energy of the associated HVG.

2. Horizontal visibility graph of time series

A graph (or network) is a collection of vertices or nodes, which denote the elements of 
a system, and links or edges, which identify the relations or interactions among these 
elements. A large number of real networks are referred to as scale-free because the 
probability distribution P(k) of the number of links per node (also known as the degree 
distribution) satisfies a power law ( )∼ γ−P k k  with the degree exponent γ varying in the 
range γ< <2 3 [53].

http://dx.doi.org/10.1088/1742-5468/2016/03/033206
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Luque et al [6] proposed the horizontal visibility graph (HVG) which are geo-
metrically simpler and analytically a solvable version of VG [5]. Given a time series 
{ }x x x, , ..., n1 2 , two arbitrary data points xi and xj in the time series have horizontal vis-
ibility, and consequently become two connected vertices (or nodes) in the associated 
graph, if any other data point xk such that i  <  k  <  j fulfils

>x x x, .i j k

Thus a connected, unweighted network could be constructed based on a time series 
and is called its horizontal visibility graph (HVG). Two nodes i and j in the HVG 
are connected if one can draw a horizontal line in the time series joining xi and xj 
that does not intersect any intermediate data height. Given a time series, its HVG 
is always a subgraph of its associated VG. Luque et al [6] showed that the degree 
distribution of an HVG constructed from any random series has an exponential form 

( ) ( / ) ( ( / ))= −P k k3 4 exp ln 3 2 . Then Lacasa et al [54] used the horizontal visibility algo-
rithm to characterize and distinguish between correlated, uncorrelated and chaotic 
processes. They showed that horizontal visibility algorithm is able to distinguish cha-
otic series from independent and identically distributed (i.i.d.) series without needs for 
additional techniques such as surrogate data or noise reduction methods [54]. Xie and 
Zhou [14] studied the relationship between the Hurst index of fBm and the topological 
properties (clustering coecient and fractal dimension) of its converted HVG. In this 
work, we investigate the multifractal property, Laplace spectrum and energy of HVGs 
constructed from fBms.

3. Sandbox algorithm for multifractal analysis of complex networks

The fixed-size box-covering algorithm [55] is well known as one of the most common 
and important algorithms for MFA. For a given measures μ with support set E0 in a 
metric space, we consider the following partition sum

( ) [ ( )]
( )
∑ µ=
µ ≠

εZ q B ,
B

q

0
 (1)

∈q R, where the sum runs over all dierent nonempty boxes B of a given size ε in a 
box covering of the support set E0. The mass exponents ( )τ q  of the measure μ can be 
defined as

( ) ( )
→

τ =
εε

εq
Z q

lim
ln

ln
.

0
 (2)

Then the generalized fractal dimensions D(q) of the measure μ are defined as

( ) ( )      τ
=
−

≠D q
q

q
q

1
, for 1, (3)

and

( )     
→

= =
εε

ε
D q

Z
qlim

ln
, for 1,

0

1,
 (4)
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where ( ) ( )( ) µ µ= ∑µ ≠εZ B BlnB1, 0 . Linear regression of [ ( )]/( )−εZ q qln 1  against εln  for 
≠q 1 gives estimates of the generalized fractal dimensions D(q), and similarly a linear 

regression of εZ1,  against εln  for q  =  1. In particular, D(0) is the box-counting dimen-
sion (or fractal dimension), D(1) is the information dimension, and D(2) is the cor-
relation dimension. Usually the strength of the multifractality can be measured by 

( ) ( ) ( )∆ = −D q D q D qmax min .
In a complex network, the measure μ of each box can be defined as the ratio of 

the number of nodes covered by the box and the total number of nodes in the entire 
network. In addition, we can determine the multifractality of complex network by the 
shape of the ( )τ q  or D(q) curve. If D(q) is a constant or ( )τ q  is a straight line, the object 
is monofractal; otherwise the object is multifractal.

The sandbox (SB) algorithm proposed by Tél et al [49] is an extension of the box-
counting algorithm [55]. The main idea of this sandbox algorithm is that we can ran-
domly select a point on the fractal object as the center of a sandbox and then count the 
number of points in the sandbox. The generalized fractal dimensions D(q) are defined as

⟨[ ( )/ ( )] ⟩
( / )

  
→

=
−

∈
−

D
M r M

r d q
q Rlim

ln 0

ln

1

1
, ,q

r

q

0

1

 (5)

where M(r) is the number of points in a sandbox with a radius of r, M(0) is the total num-
ber of points in the fractal object. The brackets ⟨ ⟩⋅  mean to take statistical average over 
randomly chosen centers of the sandboxes. In fact, the above equation can be rewritten as

(⟨[ ( )] ⟩)     ( )( ) ( / ) ( ) ( )∝ − + −−M r D q q r d q Mln 1 ln 1 ln .q 1
0 (6)

So, in practice, we often estimate numerically the generalized fractal dimensions D(q) 
by performing a linear regression of (⟨[ ( )] ⟩)−M rln q 1  against ( ) ( / )−q r d1 ln ; and estimate 
numerically the mass exponents ( )τ q  by performing a linear regression of M rln q 1(〈[ ( )] 〉)−  

against ( / )r dln .
Recently, Liu et al [48] proposed to employ the sandbox algorithm for MFA of com-

plex networks. Before we use the following SB algorithm to perform MFA of a network, 
we need to apply Floyd’s algorithm [56] of Matlab-BGL toolbox [57] to calculate the 
shortest-path distance matrix of this network according to its adjacency matrix A. The 
SB algorithm for MFA of complex networks [48] can be described as follows.

 (i) Initially, make sure all nodes in the entire network are not selected as a center of 
a sandbox.

 (ii) Set the radius r of the sandbox which will be used to cover the nodes in the range 
[ ]∈r d1, , where d is the diameter of the network.

 (iii) Rearrange the nodes of the entire network into random order. More specifically, 
in a random order, nodes which will be selected as the center of a sandbox are 
randomly arrayed.

 (iv) According to the size n of networks, choose the first 1000 nodes in a random order 
as the center of 1000 sandboxes, then search all the neighbor nodes by radius r 
from the center of each sandbox.

http://dx.doi.org/10.1088/1742-5468/2016/03/033206
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 (v) Count the number of nodes in each sandbox of radius r, denote the number of 
nodes in each sandbox as M(r).

 (vi) Calculate the statistical average ⟨[ ( )] ⟩−M r q 1  of [M(r)]q−1 over all 1000 sandboxes 
of radius r.

 (vii) For dierent values of r, repeat steps (ii)–(vi) to calculate the statistical average 

⟨[ ( )] ⟩−M r q 1  and then use ⟨[ ( )] ⟩−M r q 1  for linear regression.

We need to choose an appropriate range of [ ]∈r r r,min max , then calculate the gen-
eralized fractal dimensions D(q) and the mass exponents ( )τ q  in this scaling range. In 

our calculation, we perform a linear regression of (⟨[ ( )] ⟩)−M rln q 1  against ( )rln  and then 
choose the slope as an approximation of the mass exponent ( )τ q  (the process for esti-
mating the generalized fractal dimensions D(q) is similar).

By comparing the numerical results and the theoretical ones of some networks, Liu 
et al [48] showed that the SB algorithm is the most eective, feasible and accurate 
algorithm to study the multifractal behavior and calculate the mass exponents of com-
plex networks. Hence we use the SB algorithm employed by Liu et al [48] to study the 
multifractality of the HVGs constructed from fBms in this work.

4. Laplacian spectrum and energy of complex networks

Suppose G is a undirected graph with vertex set V and edge set E. The distance 
between two vertices is the minimum number of edges to connect them; the diameter 
of G is the maximum of all the distances of the graph [51].

Denote the adjacent matrix of the graph G as ( )= ×A aij n n, the degree of vertex i as di.  
T is diagonal matrix of degrees, i.e.

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

=

�
�

� � � �
�

T

d

d

d

0 0

0 0

0 0 n

1

2
 (7)

Define the operator ( )= ×L bij n n, where

 
 

⎧
⎨
⎪

⎩⎪
=

=
− =b

d i j

a

, if

1, if 1

0, others
ij

i

ij (8)

It is obvious that L  =  T  −  A. This operator L is the general Laplace operator. The nor-
malized Laplace operator L is defined as ( )= ×L cij n n [50], where

 

 =

=

− =

⎧

⎨
⎪⎪

⎩
⎪
⎪

c

i j

d d
a

1, if

1
, if 1

0, others

ij
i j

ij (9)
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Denote

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

=−

−

−

−

�

�
� � � �

�

T

d

d

d

0 0

0 0

0 0 n

1
2

1

1
2

2

1
2

1
2

 (10)

where we set =−d 0i
1  when di  =  0. It is seen that = − −L T LT

1
2

1
2. The spectrum con-

sists of the eigenvalues of the general Laplacian operator L and normalized Laplacian 
operator L of the graph. It can be proved that the smallest eigenvalue u1 of the general 
Laplacian operator L and normalized Laplacian operator L of a connected graph is 
equal to 0 [50, 51]. Usually, the second smallest eigenvalue u2 and the maximum eigen-
value un have particular meaning. The second smallest eigenvalue = −u u u2 2 1 (because 
u1  =  0) is called the Laplacian spectral gap [51]. The second smallest eigenvalue u2 and 
maximum eigenvalue un are related to the synchronizability of complex networks [58]. 
Hence we pay more attention to the second-smallest eigenvalue u2, the third-smallest 
eigenvalue u3, the average maximum eigenvalue un of these two Laplacian operators of 
a graph in this work.

The Laplacian energy [52] , EnL, is defined as

= Σ | − |=E u
m

n

2
.i

n
inL 1 (11)

where ui is the ith eigenvalue of the general Laplacian operator L (or normalized 
Laplacian operator L) of the graph, n and m are the numbers of vertices and edges in 
the graph respectively.

5. Results and discussion

In this work, we use the Matlab command ‘wfbm’ to generate fBm time series of 
parameter H (0  <  H  <  1) and length n following the wavelet-based algorithm proposed 
by Abry and Sellan [59]. We consider fBm time series with length n  =  104 and dierent 
Hurst indices H ranging from 0.05 to 0.95 (the step dierence is 0.05). For each value 
of Hurst index H, we generate 100 fBm time series with the same H, then we convert 
them into 100 HVGs.

For each HVG, we calculate the D(q) and ( )τ q  curves using the SB algorithm. We 
calculate the D(q) and ( )τ q  curves with q ranging from  −10 to 10 (the step dierence 
is set to 1/3). After checking carefully many times with visual inspection, we find the 
best linear regression range of r is ( )∈r 20, 72  in our setting. Hence we set the range 

( )∈r 20, 72  in our computations. We provide the linear regression to estimate D(q) for 
a HVG converted from a fBm time series with Hurst index H  =  0.4 in figure 1 as an 
example.

In the following, the averages are taken over HVGs constructed from 100 time series 
of fBm with the same Hurst index H. We show the average ⟨ ( )⟩τ q  curves and average 

http://dx.doi.org/10.1088/1742-5468/2016/03/033206
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⟨ ( )⟩D q  curves in figure 2. From figure 2, we find that the ⟨ ( )⟩τ q  and ⟨ ( )⟩D q  curves of 
HVGs are not straight lines, hence asserting that multifractality exists in these HVGs 
constructed from fBm series. We also find that the average multifractality of these 
HVGs becomes weaker, which is indicated by the value of ⟨ ( )⟩ ⟨ ( ) ( )⟩∆ = − −D q D D10 10 , 
when the Hurst index of the given time series increases, and the average multifractality 
is approximately a quadratic polynomial function of H when ⩾H 0.1 (as shown in the 
left panel of figure 3).

The estimated average values of D(0), D(1) and D(2) of HVGs constructed from fBm 
time series with dierent Hurst indices H are given in table 1.

We show the relationship between the Hurst index H and the average fractal dimen-
sion ⟨ ( )⟩D 0  in the right panel of figure 3. We can see that the average fractal dimension 

Figure 1. Linear regressions for calculating the generalized dimensions D(q) of a 
HVG converted from a fBm time series with Hurst index H  =  0.4.
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Figure 2. The average ⟨ ( )⟩τ q  (Left) and ⟨ ( )⟩D q  (Right) curves of the HVGs. Here 
the average is calculated from 100 realizations, and error bars are calculated by 
the standard errors.
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⟨ ( )⟩D 0  decreases with increasing H. Furthermore, it is pleasing that the curve shows a 
nice linear relationship:

⟨ ( )⟩ = − ∗D H0 2.007 1.0184 ,

when ⩾H 0.15, which approximates the theoretical relationship between the Hurst index 
H and the fractal dimension d of the graph of fBm d  =  2  −  H. Our numerical results 
show that the fractal dimension of the constructed HVGs approximates closely that of 
the graph of the original fBm. In other words, the fractality of the fBm is inherited in 
their HVGs. This result was also reported by Xie and Zhou [14], where they calculated 

Figure 3. The relationship between H of fBm and average multifractality ⟨ ( )⟩∆D q  
(Left), and average fractal dimension ⟨ ( )⟩D 0  (Right) of the associated HVGs. Here 
the average is calculated from 100 realizations, and error bars are calculated by 
the standard errors.
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Table 1. The average value of D(0), D(1), D(2) and ( )∆D q  of HVGs constructed 
from fBm time series with dierent Hurst index H.

H ⟨ ( )⟩D 0 ⟨ ( )⟩D 1 ⟨ ( )⟩D 2 ⟨ ( )⟩∆D q

0.20 1.799 7959 1.576 2884 1.398 7674 1.991 1429
0.25 1.756 6540 1.583 8531 1.434 1853 1.683 3939
0.30 1.698 7564 1.561 5922 1.434 0036 1.410 4275
0.35 1.651 0399 1.538 5958 1.431 9206 1.070 8452
0.40 1.600 0885 1.519 9201 1.435 8003 0.974 0916
0.45 1.550 2299 1.493 3475 1.429 9984 0.734 0563
0.50 1.499 7731 1.463 5467 1.424 0391 0.447 4166
0.55 1.449 6548 1.428 2816 1.401 0555 0.330 2060
0.60 1.400 0067 1.387 2357 1.367 9190 0.262 0100
0.65 1.337 6393 1.330 6918 1.317 9500 0.207 8157
0.70 1.290 7005 1.283 9972 1.272 1686 0.189 9058
0.75 1.229 1436 1.224 7421 1.217 3406 0.133 9882
0.80 1.185 7852 1.179 3346 1.169 6728 0.127 3265
0.85 1.139 4171 1.129 5888 1.117 4955 0.123 8226
0.90 1.100 0428 1.083 4080 1.063 8481 0.191 4100
0.95 1.049 9715 1.017 8998 0.986 0908 0.253 5463

Note: Here the average is calculated from 100 realizations.
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the fractal dimension of HVGs by the simulated annealing algorithm. The functional 
relationships of the average information dimension ⟨ ( )⟩D 1  and the average correlation 
dimension ⟨ ( )⟩D 2  with the Hurst index H are given in figure 4. As shown in figure 4, 
we find that these relationships can be well fitted by the following bi-linear functions:

Figure 4. The relationship between H of fBm and average information dimension 
⟨ ( )⟩D 1  (Left), and average correlation dimension ⟨ ( )⟨D 2  (Right) of the associated 
HVGs. Here the average is calculated from 100 realizations, and error bars are 
calculated by the standard errors.
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Figure 5. The relationship between H of fBm and average logarithm of second-
smallest eigenvalue ⟨ ( )⟩uln 2 , average logarithm of third-smallest eigenvalue ⟨ ( )⟩uln 3 , 
average logarithm of maximum eigenvalue ⟨ ( )⟩uln n , and average Laplacian energy 
⟨ ⟩EnL  of these HVGs for general Laplacian operator. Here the average is calculated 
from 100 realizations, and error bars are calculated by the standard errors.
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⟨ ( )⟩   ⩽ ⩽
  ⩽ ⩽

⎧
⎨
⎩

=
− ∗ +
− ∗ +

D
H H

H H
1

0.4267 1.6845, when 0.15 0.5,

0.9971 1.9758, when 0.5 0.95

and

⟨ ( )⟩   ⩽ ⩽
  ⩽ ⩽

⎧
⎨
⎩

=
− ∗ +
− ∗ +

D
H H

H H
2

0.0049 1.4275, when 0.15 0.5,

0.9761 1.9515, when 0.5 0.95.

Then we calculate the spectrum [50, 51] and energy [52] for the general Laplacian 
operator and normalized Laplacian operator of these HVGs. One can see that all the 
HVGs constructed are connected. The smallest eigenvalue u1 of the general Laplacian 
operator L and normalized Laplacian operator L of a connected graph is equal to 0. 
Because the second smallest eigenvalue u2 and the maximum eigenvalue un have part-
icular meaning, we pay more attention to the second-smallest eigenvalue u2, the third-
smallest eigenvalue u3, the average maximum eigenvalue un of these two Laplacian 
operators of a graph in this work. We find that for the general Laplacian operator, 
the average logarithm of second-smallest eigenvalue ⟨ ( )⟩uln 2 , the average logarithm of 
third-smallest eigenvalue ⟨ ( )⟩uln 3 , and the average logarithm of maximum eigenvalue 

Figure 6. The relationship between H of fBm and average logarithm of second-
smallest eigenvalue ⟨ ( )⟩uln 2 , average logarithm of third-smallest eigenvalue ⟨ ( )⟩uln 3 , 
average logarithm of maximum eigenvalue ⟨ ( )⟩uln n , and average Laplacian energy 
⟨ ⟩EnL  of these HVGs for normalized Laplacian operator. Here the average is 
calculated from 100 realizations, and error bars are calculated by the standard 
errors.
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⟨ ( )⟩uln n  of these HVGs are approximately linear functions of H; while the average 
Laplacian energy ⟨ ⟩EnL  is approximately a quadratic polynomial function of H. We 
show these relationships in figure 5. For the normalized Laplacian operator, ⟨ ( )⟩uln 2  and 
⟨ ( )⟩uln 3  of these HVGs approximately satisfy linear functions of H; while ⟨ ( )⟩uln n  and 
⟨ ⟩EnL  are approximately a 4th and cubic polynomial function of H respectively. These 
relationships are shown in figure 6.

From the above results, we conclude that the inherent nature of the time series 
aects the structure characteristics of the associated networks and the dependence 
relationships between them appear retained. Our work supports that complex networks 
provide a suitable and eective tool to perform time series analysis.

Acknowledgments

This project was supported by the Natural Science Foundation of China (Grant no. 
11371016), the Chinese Program for Changjiang Scholars and Innovative Research 
Team in University (PCSIRT) (Grant No. IRT1179).

References

 [1] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
 [2] Song C, Havlin S and Makse H A 2005 Nature 433 392
 [3] Zhang J and Small M 2006 Phys. Rev. Lett. 96 238701
 [4] Xu X-K, Zhang J and Small M 2008 Proc. Natl Acad. Sci. USA 105 19601
 [5] Lacasa L, Luque B, Ballesteros F, Luque J and Nuno J C 2008 Proc. Natl Acad. Sci. USA 105 4972
 [6] Luque B, Lacasa L, Ballesteros F and Luque J 2009 Phys. Rev. E 80 046103
 [7] Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 New J. Phys. 12 033025
 [8] Donner R V, Zou Y, Donges J F, Marwan N and Kurths J 2010 Phys. Rev. E 81 015101
 [9] Small M, Zhang J and Xu X 2009 Lect. Notes Inst. Comput. Sci. Soc. Inf. Telecommun. Eng. 5 2078
 [10] Li C B, Yang H and Komatsuzaki T 2008 Proc. Natl Acad. Sci. USA 105 536
 [11] Marwan N, Donges J F, Zou Y, Donner R V and Kurths J 2009 Phys. Lett. A 373 4246
 [12] Liu C and Zhou W X 2010 J. Phys. A: Math. Theor. 43 495005
 [13] Gao Z-K and Jin N-D 2009 Chaos 19 033137
 [14] Xie W J and Zhou W X 2011 Physica A 390 3592
 [15] Ni X-H, Jiang Z-Q and Zhou W-X 2009 Phys. Lett. A 373 3822
 [16] Qian M-C, Jiang Z-Q and Zhou W-X 2010 J. Phys. A: Math. Theor. 43 335002
 [17] Lacasa L, Luque B, Luque J and Nuño J C 2009 Europhys. Lett. 86 30001
 [18] Elsner J B, Jagger T H and Fogarty E A 2009 Geophys. Res. Lett. 36 L16702
 [19] Yang Y, Wang J-B, Yang H-J and Mang J-S 2009 Physica A 388 4431
 [20] Liu C, Zhou W-X and Yuan W-K 2010 Physica A 389 2675
 [21] Shao Z-G 2010 Appl. Phys. Lett. 96 073703
 [22] Dong Z and Li X 2010 Appl. Phys. Lett. 96 266101
 [23] Ahmadlou M, Adeli H and Adeli A 2010 J. Neural Transm. 117 1099
 [24] Tang Q, Liu J and Liu H-L 2010 Mod. Phys. Lett. B 24 1541
 [25] Yu Z G, Anh V, Eastes R and Wang D L 2012 Nonlinear Process. Geophys. 19 657
 [26] Zhou Y W, Liu J L, Yu Z G, Zhao Z Q and Anh V 2014 Physica A 416 21
 [27] Mandelbrot B B 1983 The Fractal Geometry of Nature (New York: Academic)
 [28] Makse H A, Davies G W, Havlin S, Ivanov P C, King P R and Stanley H E 1996 Phys. Rev. E 54 3129
 [29] Rybski D, Buldyrev S V, Havlin S, Liljeros F and Makse H A 2012 Sci. Rep. 2 560
 [30] Liu J L, Yu Z G and Anh V 2014 Phys. Rev. E 89 032814
 [31] Feder J 1988 Fractals (New York: Plenum)
 [32] Falconer K 1997 Techniques in Fractal Geometry (New York: Wiley)
 [33] Canessa E 2000 J. Phys. A: Math. Gen. 33 3637
 [34] Anh V V, Tieng Q M and Tse Y K 2000 Int. Trans. Oper. Res. 7 349

http://dx.doi.org/10.1088/1742-5468/2016/03/033206
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1103/RevModPhys.74.47
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1038/nature03248
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1103/PhysRevE.80.046103
http://dx.doi.org/10.1103/PhysRevE.80.046103
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1103/PhysRevE.81.015101
http://dx.doi.org/10.1103/PhysRevE.81.015101
http://dx.doi.org/10.1007/978-3-642-02469-6_84
http://dx.doi.org/10.1007/978-3-642-02469-6_84
http://dx.doi.org/10.1073/pnas.0707378105
http://dx.doi.org/10.1073/pnas.0707378105
http://dx.doi.org/10.1016/j.physleta.2009.09.042
http://dx.doi.org/10.1016/j.physleta.2009.09.042
http://dx.doi.org/10.1088/1751-8113/43/49/495005
http://dx.doi.org/10.1088/1751-8113/43/49/495005
http://dx.doi.org/10.1063/1.3227736
http://dx.doi.org/10.1063/1.3227736
http://dx.doi.org/10.1016/j.physa.2011.04.020
http://dx.doi.org/10.1016/j.physa.2011.04.020
http://dx.doi.org/10.1016/j.physleta.2009.08.041
http://dx.doi.org/10.1016/j.physleta.2009.08.041
http://dx.doi.org/10.1088/1751-8113/43/33/335002
http://dx.doi.org/10.1088/1751-8113/43/33/335002
http://dx.doi.org/10.1209/0295-5075/86/30001
http://dx.doi.org/10.1209/0295-5075/86/30001
http://dx.doi.org/10.1029/2009GL039129
http://dx.doi.org/10.1029/2009GL039129
http://dx.doi.org/10.1016/j.physa.2009.07.016
http://dx.doi.org/10.1016/j.physa.2009.07.016
http://dx.doi.org/10.1016/j.physa.2010.02.043
http://dx.doi.org/10.1016/j.physa.2010.02.043
http://dx.doi.org/10.1063/1.3308505
http://dx.doi.org/10.1063/1.3308505
http://dx.doi.org/10.1063/1.3458811
http://dx.doi.org/10.1063/1.3458811
http://dx.doi.org/10.1007/s00702-010-0450-3
http://dx.doi.org/10.1007/s00702-010-0450-3
http://dx.doi.org/10.1142/S0217984910023335
http://dx.doi.org/10.1142/S0217984910023335
http://dx.doi.org/10.5194/npg-19-657-2012
http://dx.doi.org/10.5194/npg-19-657-2012
http://dx.doi.org/10.1016/j.physa.2014.08.047
http://dx.doi.org/10.1016/j.physa.2014.08.047
http://dx.doi.org/10.1103/PhysRevE.54.3129
http://dx.doi.org/10.1103/PhysRevE.54.3129
http://dx.doi.org/10.1038/srep00560
http://dx.doi.org/10.1038/srep00560
http://dx.doi.org/10.1103/PhysRevE.89.032814
http://dx.doi.org/10.1103/PhysRevE.89.032814
http://dx.doi.org/10.1088/0305-4470/33/19/302
http://dx.doi.org/10.1088/0305-4470/33/19/302
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00204.x
http://dx.doi.org/10.1111/j.1475-3995.2000.tb00204.x


Multifractality and Laplace spectrum of HVGs constructed from fBms

14doi:10.1088/1742-5468/2016/03/033206

J. S
tat. M

ech. (2016) 033206

 [35] Yu Z G, Anh V and Lau K S 2001 Phys. Rev. E 64 031903
 [36] Yu Z G, Anh V and Lau K S 2003 Phys. Rev. E 68 021913
 [37] Yu Z G, Anh V and Lau K S 2004 J. Theor. Biol. 226 341
 [38] Yu Z G, Anh V, Lau K S and Zhou L Q 2006 Phys. Rev. E 73 031920
 [39] Yu Z G, Anh V V, Wanliss J A and Watson S M 2007 Chaos Solitons Fractals 31 736
 [40] Yu Z G, Anh V and Eastes R 2009 J. Geophys. Res. 114 A05214
 [41] Yu Z G, Anh V, Wang Y, Mao D and Wanliss J 2010 J. Geophys. Res. 115 A10219
 [42] Yu Z G, Anh V and Eastes R 2014 J. Geophys. Res.: Space Phys. 119 7577
 [43] Furuya S and Yakubo K 2011 Phys. Rev. E 84 036118
 [44] Song C, Gallos L K, Havlin S and Makse H A 2007 J. Stat. Mech. P03006
 [45] Wang D L, Yu Z G and Anh V 2012 Chin. Phys. B 21 080504
 [46] Li B G, Yu Z G and Zhou Y 2014 J. Stat. Mech. P02020
 [47] Gallos L K, Song C, Havlin S and Makse H A 2007 Proc. Natl Acad. Sci. USA 104 7746
 [48] Liu J L, Yu Z G and Anh V 2015 Chaos 25 023103
 [49] Tél T, Fülöp Á and Vicsek T 1989 Physica A 159 155
 [50] Chung F R K 1997 Spectral Graph Theory (CBMS Regional Conf. Series in Mathematics vol 92)  

(Providence, RI: American Mathematical Society)
 [51] Lin Y and Yau S T 2010 Math. Res. Lett. 17 345
 [52] Gutman I and Zhou B 2006 Linear Algebra Appl. 414 29
 [53] Albert R, Jeong H and Barabasi A L 1999 Nature 401 130
 [54] Lacasa L and Toral R 2010 Phys. Rev. E 82 036120
 [55] Halsey T C, Jensen M H, Kadano L P, Procaccia I and Shraiman B I 1986 Phys. Rev. A 33 1141
 [56] Floyd R W 1962 Commun. ACM 5 345
 [57] Gleich D F A 2008 graph library for Matlab based on the boost graph library http://dgleich.github.com/

matlab-bgl
 [58] Atay F M, Biyikoglu T and Jost J 2006 Physica D 224 35

 [59] Abry P and Sellan F 1996 Appl. Comput. Harmon. Anal. 3 377

http://dx.doi.org/10.1088/1742-5468/2016/03/033206
http://dx.doi.org/10.1103/PhysRevE.64.031903
http://dx.doi.org/10.1103/PhysRevE.64.031903
http://dx.doi.org/10.1103/PhysRevE.68.021913
http://dx.doi.org/10.1103/PhysRevE.68.021913
http://dx.doi.org/10.1016/j.jtbi.2003.09.009
http://dx.doi.org/10.1016/j.jtbi.2003.09.009
http://dx.doi.org/10.1103/PhysRevE.73.031920
http://dx.doi.org/10.1103/PhysRevE.73.031920
http://dx.doi.org/10.1016/j.chaos.2005.12.046
http://dx.doi.org/10.1016/j.chaos.2005.12.046
http://dx.doi.org/10.1029/2008JA013854
http://dx.doi.org/10.1029/2008JA013854
http://dx.doi.org/10.1029/2009JA015206
http://dx.doi.org/10.1029/2009JA015206
http://dx.doi.org/10.1002/2014JA019893
http://dx.doi.org/10.1002/2014JA019893
http://dx.doi.org/10.1103/PhysRevE.84.036118
http://dx.doi.org/10.1103/PhysRevE.84.036118
http://dx.doi.org/10.1088/1742-5468/2007/03/P03006
http://dx.doi.org/10.1088/1674-1056/21/8/080504
http://dx.doi.org/10.1088/1674-1056/21/8/080504
http://dx.doi.org/10.1088/1742-5468/2014/02/P02020
http://dx.doi.org/10.1073/pnas.0700250104
http://dx.doi.org/10.1073/pnas.0700250104
http://dx.doi.org/10.1063/1.4907557
http://dx.doi.org/10.1063/1.4907557
http://dx.doi.org/10.1016/0378-4371(89)90563-3
http://dx.doi.org/10.1016/0378-4371(89)90563-3
http://dx.doi.org/10.4310/MRL.2010.v17.n2.a13
http://dx.doi.org/10.4310/MRL.2010.v17.n2.a13
http://dx.doi.org/10.1016/j.laa.2005.09.008
http://dx.doi.org/10.1016/j.laa.2005.09.008
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1038/43601
http://dx.doi.org/10.1103/PhysRevE.82.036120
http://dx.doi.org/10.1103/PhysRevE.82.036120
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1103/PhysRevA.33.1141
http://dx.doi.org/10.1145/367766.368168
http://dx.doi.org/10.1145/367766.368168
http://dgleich.github.com/matlab-bgl
http://dgleich.github.com/matlab-bgl
http://dx.doi.org/10.1016/j.physd.2006.09.018
http://dx.doi.org/10.1016/j.physd.2006.09.018
http://dx.doi.org/10.1006/acha.1996.0030
http://dx.doi.org/10.1006/acha.1996.0030

