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Abstract We derive a gradient estimate for positive functions, in particular for pos-
itive solutions to the heat equation, on finite or locally finite graphs. Unlike the well
known Li-Yau estimate, which is based on the maximum principle, our estimate fol-
lows from the graph structure of the gradient form and the Laplacian operator. Though
our assumption on graphs is slightly stronger than that of Bauer et al. (J Differ Geom
99:359–405, 2015), our estimate can be easily applied to nonlinear differential equa-
tions, as well as differential inequalities. As applications, we estimate the greatest
lower bound of Cheng’s eigenvalue and an upper bound of the minimal heat kernel,
which is recently studied by Bauer et al. (Preprint, 2015) by the Li-Yau estimate.
Moreover, generalizing an earlier result of Lin and Yau (Math Res Lett 17:343–356,
2010), we derive a lower bound of nonzero eigenvalues by our gradient estimate.
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1 Introduction

Let G = (V, E) be a finite or locally finite graph, where V denotes the vertex set and
E denotes the edge set. For any edge xy ∈ E , we assume its weight wxy > 0. The
degree of x ∈ V is defined as deg(x) = ∑

y∼x wxy , here and throughout this paper
we write y ∼ x if xy ∈ E . Let μ : V → [0,∞) be a measure. Then the μ-Laplacian
(or Laplacian for short) on G is defined as

� f (x) = 1

μ(x)

∑

y∼x

wxy
(
f (y) − f (x)

)
.

The associated gradient form reads

2�( f, g)(x) = 1

μ(x)

∑

y∼x

wxy
(
f (y) − f (x)

)(
g(y) − g(x)

)
.

Write �( f ) = �( f, f ). Denote

Dμ = sup
x∈V

deg(x)

μ(x)
, d = sup

x∈V, xy∈E
μ(x)

wxy
. (1)

The main result in this paper is the following gradient estimate.

Theorem 1 Let G = (V, E) be a finite or locally finite graph. Suppose that

Dμ < +∞, d < +∞, (2)

where Dμ and d are defined as in (1). Then for any positive function u : V → R,
there holds

√
2�(u)

u
≤ √

d
�u

u
+ √

dDμ + √
Dμ. (3)

Several special cases are listed below:
(i) If u is a positive solution to the differential inequality�u−qu ≤ 0 on V , where

q : V → R is a function, then there holds

√
2�(u)

u
− √

dq ≤ √
dDμ + √

Dμ.

(i i) If u is a positive solution to the differential inequality �u − huα ≤ 0, where
α ∈ R, and h : V → R is a function, then there holds

√
2�(u)

u
− √

dhuα−1 ≤ √
dDμ + √

Dμ.
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(i i i) If u is a positive solution to the differential inequality �u − ∂t u ≤ qu, where
q : V × R → R is a function, then there holds

√
2�(u)

u
− √

d
∂t u

u
− √

dq ≤ √
dDμ + √

Dμ.

(iv) If u is a positive solution to the differential inequality �u − ∂t u + au log u ≤ 0,
where a ∈ R is a constant, then there holds

√
2�(u)

u
− √

d
∂t u

u
− √

da log u ≤ √
dDμ + √

Dμ.

Remark 2 For the corresponding partial differential equations on complete Rie-
mannianmanifolds, (i)–(iv) were extensively studied, see for examples [10–12,14–17]
and the references there in.

At least two points can be seen from Theorem 1: One is that (3) is a global estimate;
The other is that (3) can be easily applied to nonlinear elliptic or parabolic equations, as
well as differential inequalities.Wenowanalyze the assumption (2),whch is equivalent
to

sup
x∈V

� {y|y ∼ x} < +∞, 0 < inf
x∈V, y∼x

μ(x)

wxy
≤ sup

x∈V, y∼x

μ(x)

wxy
< +∞, (4)

where � {y|y ∼ x} stands for the number of y ∈ V which is adjacent to x . In fact,
suppose (2) holds. Then � {y|y ∼ x} ≤ Dμd and 1

Dμ
≤ μ(x)

wxy
≤ d for any y ∼ x .

Hence (4) holds. Conversely, if (4) holds, we have

deg(x)

μ(x)
=

∑
y∼x wxy

μ(x)
≤ �{y|y ∼ x}

inf x∈V, y∼x
μ(x)
wxy

.

Then (2) follows immediately. If we replace (2) by (4) in Theorem 1, then the gradient
estimate (3) would be

√
2�(u)

u
≤ √

b
�u

u
+ √

b

(
N

a
+

√
N

ab

)

, (5)

where N = supx∈V � {y|y ∼ x}, a = infx∈V, y∼x
μ(x)
wxy

and b = supx∈V, y∼x
μ(x)
wxy

.
Note that the essential assumption of [3] is

Dμ < +∞, Dw = sup
x∈V, y∼x

deg(x)

wxy
< +∞. (6)

It is easy to see that (6) is slightly weaker than (2). All gradient estimates in [3] are
about

√
u, where u is a positive solution to a parabolic equation on V . Note that for

any positive function u
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1670 Y. Lin et al.

2�(
√
u)(x) = 1

μ(x)

∑

y∼x

wxy
(√

u(y) − √
u(x)

)2

≤
(

∑

y∼x

wxy

μ(x)

)1/2 (
1

μ(x)

∑

y∼x

wxy
(√

u(y) − √
u(x)

)4
)1/2

≤
(
deg(x)

μ(x)

)1/2
(

1

μ(x)

∑

y∼x

wxy (u(y) − u(x))2
)1/2

≤ √
Dμ

√
2�(u)(x). (7)

If u : V × [0,+∞) → R is a positive solution to the parabolic equation �u − ∂t u −
qu = 0 on V ×[0,+∞), we conclude an analog of ([3], Theorem 4.10) by combining
(7) with Theorem 1,

�(
√
u)

u
− √

Dμd
∂t

√
u√
u

− √
Dμd

q

2
≤ Dμ(

√
Dμd + 1)

2
.

As an application of Case (i i i) of Theorem 1, we state the following Harnack
inequality.

Theorem 3 Let G = (V, E) be a finite or locally finite graph satisfying (2). Moreover
μmax = supx∈V μ(x) < +∞ and wmin = infx∈V, y∼x wxy > 0. Assume u : V ×
(−∞,+∞) → R is a positive solution to the heat inequality �u − ∂t u ≤ qu, where
q : V × (−∞,+∞) → R is a function. Then for any (x, T1) and (y, T2), T1 < T2,
we have

u(x, T1) ≤ u(y, T2) exp

{(

Dμ +
√

Dμ

d

)

(T2 − T1) + (dist(x, y))2

T2 − T1

√
dμmax

wmin

+min
�−1∑

k=0

(∫ tk+1

tk
q(xk , t)dt+ �2

(T2 − T1)2

∫ tk+1

tk
(t − tk)

2(q(xk+1, t) − q(xk , t))dt

)⎫
⎬

⎭
,

where the minimum takes over all shortest paths x = x0, x1, · · · , x� = y connecting
x and y, and tk = T1 + k(T2 − T1)/�, k = 0, 1, · · · , �. In particular, if there exists
some constant C0 such that |q(x, t)| ≤ C0 for all (x, t), then for any x, y ∈ V and
T1 < T2, there holds

u(x, T1) ≤ u(y, T2) exp

{(

Dμ +
√

Dμ

d
+ 5

3
C0

)

(T2 − T1) + (dist(x, y))2

T2 − T1

√
dμmax

wmin

}

.

(8)

In a recent work of Bauer et al. [2], the Li-Yau inequality on graphs, which is due
to Bauer et al. [3], is applied to Liouville-type theorems and eigenvalue estimates.
Moreover a DGG lemma [6–8] concerning the minimal heat kernel is established on
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A Gradient Estimate for Positive Functions on Graphs 1671

graphs, and it is used together with the Li-Yau inequality to estimate the upper bound
of the minimal heat kernel. Our gradient estimate can be used instead of the Li-Yau
estimate in [2]. Using Theorem 1, we can estimate the greatest lower bound of the
�2-spectrum known as Cheng’s eigenvalue [4].

Theorem 4 Let G = (V, E) be a locally finite graph satisfying (2) and λ∗ be the
greatest lower bound of the �2-spectrum of the graph Laplacian �. Moreover we
assumewx,y = wyx for all y ∼ x and all x ∈ V . Then we have λ∗ ≤ Dμ+√

Dμ/
√
d.

While Theorem 3 can be used to get an analog of ([2], Theorem 1.2).

Theorem 5 Let G = (V, E) be a finite or locally finite graph satisfying (2). Moreover
μmax < +∞ and wmin > 0. Let λ∗ be the greatest lower bound of the �2-spectrum of
the graph Laplacian�. Moreover we assumewx,y = wyx for all y ∼ x and all x ∈ V .
Given any ε > 0, 0 < γ ≤ 1, β > 0. Let Pt (x, y) be the minimum heat kernel of G.
Then there exist positive constants C1(β, γ, Dμ) and C2(ε, β, γ, Dμ, d, μmax, wmin)

such that for any x, y ∈ V , and t ≥ max{βd(x, y), 1},

Pt (x, y) ≤ exp (−(1 − γ )λ∗t)
√
Vol(Bx (

√
t))Vol(By(

√
t))

exp

{

C2
√
t − C1

(dist(x, y))2

4(1 + 2ε)t

}

.

Finally we remark that Theorem 1 can also be used to estimate a lower bound of
nonzero eigenvalues of the Laplacian on finite connected graphs. Precisely we have
an analog of ([13], Theorem 1.8), namely

Theorem 6 Let G = (V, E) be a finite connected graph, Dμ and d be defined as in
(1), and D be its diameter. Moreover we assume wx,y = wyx for all y ∼ x and all
x ∈ V . Suppose that λ is a nonzero eigenvalue of −�. Then there holds

λ ≥ 1

Dd

(

exp

{

1 + Dd

(

Dμ +
√

Dμ

d

)}

− 1

) . (9)

Remark 7 If μ(x) = deg(x) = ∑
y∼x wxy , we have Dμ = 1, and hence (9) becomes

λ ≥ 1

Dd

(

exp

{

1 + Dd

(

1 +
√

1
d

)}

− 1

) .

We refer the reader to [1,5] for earlier estimates in terms of the volume of the graph
G.

Let us describe the method. The proof of Theorem 1 is based on the positivity of the
average of u, i.e., 1

μ(x)

∑
y∼x wxyu(y), and its relation with �u. To prove Theorem 3,

we follow [3] and thereby closely follow [12]. While the proof of Theorems 4, 5, and
6 is adapted from [2] and [13], respectively.

The remaining part of this paper is organized as follows. In Sect. 2, we prove
the gradient estimate, Theorem 1. In Sect. 3, we prove the corresponding Harnack
inequality, Theorem 3. Finally Theorems 4, 5, and 6 are proved in Sect. 4.

123



1672 Y. Lin et al.

2 Gradient Estimate

In this section, we prove Theorem 1 using a very simple method.

Proof of Theorem 1 Special cases (i)−(iv) are immediate consequences of (3).Hence
it suffices to prove (3). Since u > 0, we have by definition of �(u),

2�(u)(x) = 1

μ(x)

∑

y∼x

wxy(u(y) − u(x))2

≤ 1

μ(x)

∑

y∼x

wxyu
2(y) + 1

μ(x)

∑

y∼x

wxyu
2(x)

=
∑

y∼x

μ(x)

wxy

(
wxy

μ(x)
u(y)

)2

+ u2(x)
deg(x)

μ(x)

≤ d

(
∑

y∼x

wxy

μ(x)
u(y)

)2

+ Dμu
2(x).

Noting that

∑

y∼x

wxy

μ(x)
u(y) = �u(x) + u(x)

deg(x)

μ(x)

and using an elementary inequality
√
a2 + b2 ≤ a + b, ∀a, b ≥ 0, we get

√
2�(u)(x) ≤ √

d
∑

y∼x

wxy

μ(x)
u(y) + √

Dμu(x)

= √
d

(

�u(x) + u(x)
deg(x)

μ(x)

)

+ √
Dμu(x)

≤ √
d�u(x) + (

√
Dμ + √

dDμ)u(x).

This leads to (3) and thus ends the proof of the theorem. ��

3 Harnack Inequality

In this section, following the lines of [3,12], we prove aHarnack inequality for positive
solution to the parabolic inequality �u − ∂t u ≤ qu using (i i i) of Theorem 1.

Proof of Theorem 3 Let u be a positive solution to the inequality �u − ∂t u ≤ qu. By
(i i i) of Theorem 1, we have

− ∂t log u ≤ Dμ +
√
Dμ√
d

+ q − 1√
d

√
2�(u)

u
. (10)

We distinguish two cases to proceed.

123



A Gradient Estimate for Positive Functions on Graphs 1673

Case 1 x ∼ y.
For any s ∈ [T1, T2], we have by (10) that

log u(x, T1) − log u(y, T2) = log
u(x, T1)

u(x, s)
+ log

u(x, s)

u(y, s)
+ log

u(y, s)

u(y, T2)

= −
∫ s

T1
∂t log u(x, t)dt + log

u(x, s)

u(y, s)
−

∫ T2

s
∂t log u(y, t)dt

≤
(

Dμ +
√
Dμ√
d

)

(T2 − T1) +
∫ s

T1
q(x, t)dt +

∫ T2

s
q(y, t)dt

− 1√
d

(∫ s

T1

√
2�(u)(x, t)

u(x, t)
dt +

∫ T2

s

√
2�(u)(y, t)

u(y, t)
dt

)

+ log
u(x, s)

u(y, s)
. (11)

We estimate the above terms respectively. Obviously

∫ s

T1

√
2�(u)(x, t)

u(x, t)
dt ≥ 0. (12)

Since

2�(u)(y, t) = 1

μ(y)

∑

z∼y

wyz
(
u(z, t) − u(y, t)

)2

≥ wmin

μmax

(
u(x, t) − u(y, t)

)2
,

we get

− 1√
d

∫ T2

s

√
2�(u)(y, t)

u(y, t)
dt ≤ −

√
wmin

dμmax

∫ T2

s

∣
∣
∣
∣
u(x, t)

u(y, t)
− 1

∣
∣
∣
∣ dt. (13)

Using an elementary inequality log r ≤ √|r − 1|,∀r > 0, we have

log
u(x, s)

u(y, s)
≤ ψ(x, y, s), (14)

where

ψ(x, y, s) =
√∣

∣
∣
∣
u(x, s)

u(y, s)
− 1

∣
∣
∣
∣.

Inserting (12), (13), (14) into (11), and using ([3], Lemma 5.3), we obtain

log u(x, T1) − log u(y, T2)
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1674 Y. Lin et al.

≤
(

Dμ +
√

Dμ

d

)

(T2 − T1) + ψ(x, y, s)

−
√

wmin

dμmax

∫ T2

s
ψ2(x, y, t)dt +

∫ s

T1
q(x, t)dt +

∫ T2

s
q(y, t)dt

≤
(

Dμ +
√

Dμ

d

)

(T2 − T1) + 1

T2 − T1

√
dμmax

wmin

+
∫ T2

T1
q(x, t)dt + 1

(T2 − T1)2

∫ T2

T1
(t − T1)

2(q(y, t) − q(x, t))dt.

Case 2 x is not adjacent to y.
Assume dist(x, y) = �. Take a shortest path x = x0, x1, · · · , x� = y. Let T1 =

t0 < t1 < · · · < t� = T2, tk = tk−1 + (T2 − T1)/�, k = 1, · · · , �. By the result of
Case 1, we have

log u(x, T1) − log u(y, T2) =
�−1∑

k=0

(log u(xk, tk) − log u(xk+1, tk+1))

≤
�−1∑

k=0

((

Dμ +
√

Dμ

d

)

(tk+1 − tk) + 1

tk+1 − tk

√
dμmax

wmin

)

+
�−1∑

k=0

(∫ tk+1

tk
q(xk, t)dt + 1

(tk+1 − tk)2

∫ tk+1

tk
(t − tk)

2(q(xk+1, t) − q(xk , t))dt

)

≤
(

Dμ +
√

Dμ

d

)

(T2 − T1) + �2

T2 − T1

√
dμmax

wmin

+
�−1∑

k=0

(∫ tk+1

tk
q(xk, t)dt + �2

(T2 − T1)2

∫ tk+1

tk
(t − tk)

2(q(xk+1, t) − q(xk, t))dt

)

.

Therefore we conclude

log u(x, T1) − log u(y, T2) ≤
(

Dμ +
√

Dμ

d

)

(T2 − T1) + (dist(x, y))2

(T2 − T1)

√
dμmax

wmin

+minF (q)(x, y, T1, T2),

where

F (q)(x, y, T1, T2)

=
�−1∑

k=0

(∫ tk+1

tk
q(xk, t)dt + �2

(T2 − T1)2

∫ tk+1

tk
(t − tk)

2(q(xk+1, t) − q(xk, t))dt

)

and the minimum takes over all shortest paths connecting x and y. Hence the first
assertion of the theorem follows immediately.
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Moreover, if |q(x, t)| ≤ C0 for all (x, t), then we have

�−1∑

k=0

∫ tk+1

tk
q(xk, t)dt ≤ C0(T2 − T1)

and

�−1∑

k=0

�2

(T2 − T1)2

∫ tk+1

tk
(t − tk)

2(q(xk+1, t) − q(xk, t))dt ≤ 2C0

3
(T2 − T1).

This gives the desired result and the proof of the theorem is completed. ��

4 Further Applications of the Gradient Estimate

In this section, as applications of Theorem 1, we prove Theorems 4, 5, and 6. For the
proof of Theorems 4 and 5, we follow the lines of [2], the essential difference is that
we use Theorem 1 instead of the Li-Yau estimate [3]. While the proof of Theorem 6
is an adaptation of [13]. For reader’s convenience, we give the details here.

Proof of Theorem 4 Let λ∗ be the greatest lower bound of Cheng’s eigenvalues. By a
result of S. Haeseler and M. Keller ([9], Theorem 3.1), if λ ≤ λ∗, then there would be
a positive solution u to �u = −λu. We conclude from Case (i) of Theorem 1 that

√
2�(u)

u
+ √

dλ ≤ √
dDμ + √

Dμ.

Hence λ ≤ Dμ + √
Dμ/d . Since λ is arbitrary, we obtain λ∗ ≤ Dμ + √

Dμ/d . ��
To prove Theorem 5, we need the following DGG lemma on graphs ([2], Theorem

1.1).

Lemma 1 Let Pt (x, y) be the minimal heat kernel of the graph G = (V, E). Then
for any β > 0 and 0 < γ ≤ 1, there exists a constant C1 depending only on β, γ , and
Dμ such that for any subsets B1, B2 ⊂ G, t ≥ max{βdist(B1, B2), 1},
∑

x∈B1

∑

y∈B2
Pt (x, y)μ(x)μ(y) ≤ e−(1−γ )λ∗t√Vol(B1)Vol(B2) exp

(

−C1
(dist(B1, B2))

2

4t

)

.

Proof of Theorem 5 Fix x, y ∈ V , δ > 0, T1 = t and T2 = (1 + δ)t . Applying the
Harnack inequality, Theorem 3, to the minimal heat kernel Pt (x, y),

Pt (x, y) ≤ P(1+δ)t (x
′, y) exp

{(

Dμ +
√

Dμ

d

)

δt + (dist(x, x ′))2

δt

√
dμmax

wmin

}
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1676 Y. Lin et al.

≤ P(1+δ)t (x
′, y) exp

{(

Dμ +
√

Dμ

d

)

δt + 1

δ

√
dμmax

wmin

}

, ∀x ′ ∈ Bx (
√
t).

Integrating the above inequality on Bx (
√
t) with respect to x ′, we have

Vol(Bx (
√
t))Pt (x, y)

≤ exp

{(

Dμ +
√

Dμ

d

)

δt + 1

δ

√
dμmax

wmin

}
∑

x ′∈Bx (
√
t)

μ(x ′)P(1+δ)t (x
′, y). (15)

Note that h(y, s) = ∑
x ′∈Bx (

√
t) μ(x ′)Ps(x ′, y) is also a positive solution to the heat

equation. Applying again the Harnack inequality, Theorem 3, to h(y, s) with T1 =
(1 + δ)t and T2 = (1 + 2δ)t , we have

Vol(By(
√
t))h(y, (1 + δ)t)

≤ exp

{(

Dμ +
√

Dμ

d

)

δt + 1

δ

√
dμmax

wmin

}
∑

y′∈By(
√
t)

μ(y′)h(y′, (1 + 2δ)t).

This together with (15) implies that

Pt (x, y) ≤ exp

{

2

(

Dμ +
√

Dμ

d

)

δt + 2

δ

√
dμmax

wmin

}

1

Vol(Bx (
√
t))Vol(By(

√
t))

∑

x ′∈Bx (
√
t)

∑

y′∈By(
√
t)

μ(x ′)μ(y′)P(1+2δ)t (x
′, y′).

Let t ≥ max{βdist(x, y), 1}.Obviously t≥ 1
1+2δ max{βdist(Bx

(√
t
)
, By

(√
t
))

, 1}.
Let γ , 0 < γ ≤ 1, be fixed. It follows from Lemma 1 that there exists a constant C1
depending only on γ , β, and Dμ such that

Pt (x, y) ≤ exp

{

2

(

Dμ +
√

Dμ

d

)

δt + 2

δ

√
dμmax

wmin

}
1

√
Vol

(
Bx

(√
t
))
Vol

(
By

(√
t
))

exp

{

−(1 − γ )λ∗(1 + 2δ)t − C1

(
dist

(
Bx

(√
t
)
, By

(√
t
)))2

4(1 + 2δ)t

}

. (16)

If dist(x, y) > 2
√
t , then dist

(
Bx

(√
t
)
, By

(√
t
)) ≥ dist(x, y) − 2

√
t and thus

(
dist

(
Bx

(√
t
)
, By

(√
t
))2

4(1 + 2δ)t
≥

(
dist(x, y)

)2

4(1 + 4δ)t
− 1

2δ
. (17)
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A Gradient Estimate for Positive Functions on Graphs 1677

It is easy to see that (17) still holds if dist(x, y) ≤ 2
√
t . Inserting (17) into (16), we

have

Pt (x, y) ≤ 1
√
Vol

(
Bx

(√
t
))
Vol

(
By

(√
t
)) exp

{

2

(

Dμ +
√

Dμ

d

)

δt + 2

δ

√
dμmax

wmin
+ C1

2δ

}

exp

{

−(1 − γ )λ∗(1 + 2δ)t − C1
(dist(x, y))2

4(1 + 4δ)t

}

. (18)

Note that t ≥ 1. Choosing 2δ = ε/
√
t in (18), we obtain for t ≥ max{βdist(x, y), 1},

Pt (x, y) ≤ 1
√
Vol(Bx (

√
t))Vol

(
By

(√
t
)) exp

{√
t

(

Dμε +
√

Dμ

d
ε + 4

ε

√
dμmax

wmin
+ C1

ε

)}

exp

{

−(1 − γ )λ∗t − C1
(dist(x, y))2

4(1 + 2ε)t

}

.

Denoting C2 = Dμε +
√

Dμ

d ε + 4
ε

√
dμmax
wmin

+ C1
ε
, we finish the proof of the theorem.

�
Proof of Theorem 6 Note that

∫
V �udμ = 0 and that if −�u = λu, then −�(cu) =

λcu for any constant c ∈ R. We can assume−�u = λu with sup u = 1 and inf u < 0.
Take x1, x� ∈ G such that u(x1) = sup u = 1, u(xn) = inf u < 0, x1x2 · · · x� be
the shortest path connecting x1 and x�, where (xi , xi+1) ∈ E . Then � ≤ D. For any
β > 1, note that

|u(xi ) − u(xi+1)|
β − u(xi )

≤

√
1

μ(xi )

∑
xi y∈E

μ(xi )
wxi y

wxi y
(
u(xi ) − u(y)

)2

β − u(xi )

≤ √
d

√
2�(u)(xi )

β − u(xi )
. (19)

Since β − u > 0 and u ≤ 1, we have using Theorem 1,

√
2�(u)

β − u
=

√
2�(β − u)

β − u

≤ √
d

(
�(β − u)

β − u
+ Dμ +

√
Dμ

d

)

= √
d

(
λu

β − u
+ Dμ +

√
Dμ

d

)

≤ √
d

(
1

β − 1
λ + Dμ +

√
Dμ

d

)

.
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This together with (19) implies

�∑

i=1

|u(xi ) − u(xi+1)|
β − u(xi )

≤ Dd

(
1

β − 1
λ + Dμ +

√
Dμ

d

)

. (20)

On the other hand,

�∑

i=1

|u(xi ) − u(xi+1)|
β − u(xi )

≥
�∑

i=1

log

(

1 + |u(xi ) − u(xi+1)|
β − u(xi )

)

≥
�∑

i=1

log
β − u(xi+1)

β − u(xi )

= log
β − u(x�)

β − u(x1)

≥ log
β

β − 1
. (21)

Combining (20) and (21), we have

λ ≥ (β − 1)

(
1

Dd
log

β

β − 1
− Dμ −

√
Dμ

d

)

.

Choose β such that 1
Dd log β

β−1 − Dμ −
√

Dμ

d = 1
Dd . We obtain

λ ≥ 1

Dd

(

exp

{

1 + Dd

(

Dμ +
√

Dμ

d

)}

− 1

) .

This completes the proof of the theorem. ��
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