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Abstract We prove a Harnack inequality for positive harmonic functions on graphs which

is similar to a classical result of Yau on Riemannian manifolds. Also, we prove a mean value

inequality of nonnegative subharmonic functions on graphs.

Key words harmonic function; subharmonic function; Harnack inequality; mean value
inequality; graph

2010 MR Subject Classification 58J35

1 Introduction and Main Results

One of the fundamental topics in geometric analysis and partial differential equations is the
study of harmonic (subharmonic) functions. In 1975, Yau [1] proved a gradient estimate for
positive harmonic functions, which leads to a Harnack type inequality and a Liouville theorem
on manifolds with Ricci curvature bounded from below. There is an extensive literature on
gradient estimates for various partial differential equations on manifolds, see for examples [2—
8]. For the graph case, we refer the reader to [9-11]. Harmonic (subharmonic) functions can also
be studied by mean value inequalities. In [12], Li-Schoen obtained an LP mean value inequality
for subharmonic functions on manifold with nonnegative Ricci curvature, which leads to a
Liouville theorem for subharmonic L? functions with p > 1.

In [13, 14], Holopainen-Soardi derived several Liouville theorems for p-harmonic functions
on graphs. While in [15], Rigoli-Salvatori-Vignati proved that there is no nonnegative subhar-
monic function belonging to ¢P for any p > 1. Lipschitz properties of harmonic function on
graphs were discovered by Lin-Xi [16]. Hua-Jost [17] proved a graph version of Caccioppoli-type
inequality for nonnegative subharmonic functions, and used it to get a Liouville theorem for

harmonic or nonnegative subharmonic functions of class ¢7 for p > 1.

* Received August 10, 2017; revised January 26, 2018. The authors were supported by the National Science
Foundation of China (11671401).
fCorresponding author: Hongye SONG.


http://crossmark.crossref.org/dialog/?doi=10.1016/S0252-9602(18)30843-9&domain=pdf

1752 ACTA MATHEMATICA SCIENTIA Vol.38 Ser.B

We now fix some notations. Let G = (X, F) be a connected infinite graph, where X denotes
the vertex set and E denotes the edge set. We call vertices x and y neighbors, or x ~ y, if they
are endpoints of the same edge. The degree of =, which is denoted by d,, is the number of all

its neighbors. Throughout this paper we assume that G has bounded degree, namely,
dy <d<oo forall zelX. (1.1)

The Laplace operator A on graph reads
Aue) = = 3 [uly) - uz)] (12)
x Yy~

for all functions v : X — R. A function u is called harmonic (subharmonic) if
Au=0(Au>0) on G. (1.3)

For z,y € X, the distance p(z,y) denotes the minimum number of edges connecting = and
y. Let B(z,r) = {y € X : p(z,y) < r} be the ball centered at x with radius r. Given any
subset U C X, the boundary U of U is the set of all vertices z € X\U having at least one
neighbor in U. The volume of U is defined by

vol(U) = N(U),

where N(U) denotes the number of vertices on U.

Our first result is the following Harnack inequality.

Theorem 1.1 Let G = (X, F) be a connected infinite graph. Suppose that u is a positive
harmonic function on G, z( is a point in X. Then there holds for any R > 0,
sup  u(z) < 2BVIAEA—D inf y(x),
B(zo,R) B(zo,R
where d is a constant given as in (1.1).

Different from [14], our method of proving Theorem 1.1 is to derive a gradient estimate,
then use it to obtain a Harnack inequality. Moreover the constant C' in [14] did not give any
information on how it depends on the radius R, but here we explicitly use R to represent C.

Our second result concerns the mean value inequality, namely,

Theorem 1.2 Let G = (X, E) be a connected infinite graph, z¢ be a point in X and
R > 0. Suppose that v is a nonnegative subharmonic function defined on B(xg, R). Then for
any 7 € (0,1/2), there is a constant ¢ depending only on R and 7 such that

1
2 2
sup vV <e—m— ve.
B(zo,(1-T)R) VO](B(an R/2)) B(IZOR)
T2R(d—1)
The ¢P version of Theorem 1.2 is of its own interest. We stated it as the following.
Theorem 1.3 Let G = (X, E) be a connected infinite graph, o be a point in X, R > 0

and 0 < p < 2. Suppose that v is a nonnegative subharmonic function defined on B(zg, R).
Then for any 7 € (0,1/2), there holds

sup P < 7242PCRVAE D e/ L S,
B(zo,(1—7)R) vol(B(wo, R/2)) Blao )

Precisely ¢ = e2F(1=7)vd(d—1) [M + 2}, where d is a constant given as in (1.1).

R+1_
precisely C' = % + %, where d is a constant given as in (1.1).
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The proof of Theorem 1.1 is based on a gradient estimate. While Theorems 1.2 and 1.3
will be proved by following the lines of [12]. The remaining part of this paper is organized as
follows: in Section 2, we give several preliminary lemmas; in Section 3, we prove Theorems
1.1-1.3.

2 Preliminary Lemmas

Let G = (X, E) be a connected infinite graph as in the introduction. Given any function
f: X — R, we say that f € (/(X) if
> @) [P< +oo.
zeX
We define the square of the gradient of f by
| Vi@) P=D ] 1) - fa) I
y~T
and its Dirichlet integral on S C X by

IL(f,S) = Z | V() [*

resS
Lemma 2.1 Let S C X be a finite set. Then w is harmonic on S if and only if it is a

minimizer of Io(f,S) among all functions with the same value on 95.
Proof Tt is the case p = 2 of Theorem 3.5 in [14]. O
Lemma 2.2 Let u be harmonic and v be subharmonic in a finite set S C X such that
u>vin dS. Then u >vin S.
Proof It is a special case of Theorem 3.14 in [14]. O

One way to get the following locally Poincaré inequality is using gradient estimate as in

[12]. Here we will give a direct proof.

Lemma 2.3 Let 2o € X and R > 0. For every function f on B(xg, R) which vanishes on
0B(x, R), we have the locally poincaré inequality

Yoo lf@Psa Y Vi@ P
B(:Eo,R) B(:Eo,R)
where ¢; = 2R(dF* —1)/(d — 1).

Proof Let 21 denote a vertex with
r1) |= ma; f(xz)|.
| f(z1) | B(zoﬁ%)| (z) |

Choosing 2 € 0B(xg, R), then f(z2) = 0. Let P denote a shortest path in B(xo, R) joining 1
and x2. Then by Cauchy-Schwartz inequality we have

>, 1Y@ ZZ

B(IQ,R) Cbo R CU""U
> > [f@) - )P
(z,y)eP

1
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1
= ﬁfz(fl)
1
> 2
= 2R -vol(B(zo, R)) >, @)
B(I(),R)
where
Rt1
vol(B(zg,R)) < Y _d' < (d"T —1)/(d—1).
i=0
The lemma is proved. O

We will also need the following discrete Cacciopoli inequality from [16].

Lemma 2.4 Let zgp € X and R > 0, v is a nonnegative subharmonic function on G. Then
for any 7 € (0,1/2), we have

S IV P o 3 )

B(zo,(1—7)R)

3 Proof of Theorems 1.1-1.3

In this section, we will prove a Harnack inequality for nonnegative harmonic functions (The-
orem 1.1) and two mean value inequalities for nonnegative subharmonic functions (Theorems
1.2 and 1.3).

3.1 The Proof of Theorem 1.1
Proof Suppose that Au(z) = —Au(x) for all € X. It is easy to show that A is a real

number, then

= Y lu(y) - u(a)) = ~Au(a).

Yy~

It follows that

d,  u?(x) u?(x
u?(z) = 2u(z) - - > uly) + = > u?(y)
- ()
2
(X U(y))
<22 -1+ T (Z )

=2\ —1+d,(1 - \)?
<2XA —1+d—2d\+d)\?
=d\? —2(d— 1A +d—1.
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Hence
% <d*N? —2d(d — DA +d(d—1)
=(dA—(d-1))*+d—1.
Let u(zy,) = B(SE)I,)R)U(J/.)’ u(zy) = B(igﬁr:)fR)u(x), where 21 ~ 29 ~ -+ ~ x,,. Then we have
"y { £ ) -2}
U(xz) - u(:z:l)
5 ()~ uw)?
- u? (i) }
<V0@N—=(d—1))2+d-1.
Therefore

nil |u($z+;) — U(Cvz)l < 2R\/(d)\ _ (d _ 1))2 +d—1.

i=1 zi)

Then we have

u(an) e~y (i)
log Zlog
i=1

u(z1) u(z;)

S (1 o) vt

u(;)

’leog (1 | i) - u<xi>|>

u(z;)

IN

n—1 1) — (g
o 3 i)t

<2R\/(d\— (d—1))24+d — 1.

This leads to that
uzn) _ 2R\/(@A—(d-1))7+d—1

and that

sup  u(z) < 2BVA—A=DPHd=1 pp gy (g,
B(zo,R) B(zo,R)

If u(z) is harmonic, then Au(xz) =0, A =0, and we conclude

sup u(z) < 2BV inf oy ().
This ends the proof of the theorem. O

3.2 The Proof of Theorem 1.2

Proof Let h be the harmonic function on B(zg, (1 — 7)R) which agrees with v on the
boundary. Then h is positive in B(xg, (1 — 7)R) (unless v is identically zero, in which case the
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theorem is trivial). Since v is subharmonic, we have v < h in B(zg, (1 — 7)R) by Lemma 2.2.
It follows from Theorem 1.1 that

sup v? < sup h?

B(xo,(1-7)R) B(zo,(1-7)R)
<e 2(1—7)R-4/d(d—1) inf h2
- B(zo,(1—-7T)R)
2= R U@ ! Yoo (31

vol(B(zo, (1 — T)R)) Boo (or)B)

In the following, we will estimate the average value of h? by that of v2. First we note that
dooorr<2 Y (h-v)P42 Y R (3.2)
B(zo,(1—7T)R) B(zo,(1—7)R) B(zo,R)
Since h — v vanishes on dB(z, (1 — 7)R), we obtain by using Lemma 2.3,
S o-wi<a Y V-
B(zo0,(1-7T)R) B(zo,(1-7)R)

<2 Y. (VAP +][Vv]),
B(zo,(1—7T)R)

where ¢; = 2R(d*! —1)/(d — 1) By Lemma 2.1 and the definition of the Dirichlet integral of

h, one can easily see that

D % - N A A o

B(zo,(1—-7T)R) B(zo,(1—7T)R)
So we get
Yo (h=v)P<da > |V (3.3)
B(zo0,(1-7T)R) B(zo,(1-7)R)

Now we use Lemma 2.4 to estimate the Dirichlet integral of v in terms of the £2 norm of v. By

a straightforward calculation,
> [ VuP<dd(rR)2 >0 P (3.4)
B(zo,(1—7T)R) B(zo,R)
Combining estimates (3.1)—(3.4), we get

2 o 2(1—7)R\/d(d—1) < o 4d > 1 )
sup v°<e 8cy +9 v
B(zo,(1—7)R) (7‘R)2 vol( (1170, (1 — T)R)) B(JCZOR)

R+1
< 20-7)R\/d(d-1) [64d(d -1 n 2] Z 2
R(d - 1) vol(B(xo, R/2

here we have used the fact that 7 < 1/2. The proof of Theorem 1.2 is completed. 0

3.3 The Proof of Theorem 1.3

Proof The proof is based on the Moser iteration. For any ¢ € (0,1/2], 0 € [1/2,1— 4], it
follows from Theorem 1.2 that

o o(1_s g [64d(dTTTL —1) 1

2 2 c(1-8§)R 2 2
sup v° < ‘e —— 20 | 5 v
B(z0,0R) R(d—1) vol(B(zo, B/2)) B(mo,(ze;ra)m
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64d(d®tt —1) 1 1
“Ra-1 5] vol(B(zo, R/2)) 2 v

(z0,(0+5)R)

< 6—2ec(1—6)R

where ¢ = 21/d(d — 1). Since 8 4+ 6 < 1, we have

s P M

B(zo,(0+6)R) B(zo,(0+0)R) B(xo,(04+6)R)
1-p/2
S( sup v2) Z vP.
B(zo,(0+6)R) B(z0.R)
We set
M(0)= sup ’U2,K=— P,
©) B(z0,0R) vol(B(xg, R/2)) ;

Then we have
M() < 5 2CKe =R (M (6 + 6))*

R+1_
where A=1—p/2 and C = %4_%1
Choosing g =1—7and ; = 0,1 + 27 '7 fori =1,2,3-- -, then we obtain

M(6; 1) < CK4ir—2c20=27 DR (31 (6,))
For any j > 1, by iteration we have

J J
At ittt o235 it 1—7/2)A L j
M(8) < CZZI Klzl 4; - Z e[E( /2%) leR (M(ej))M.

Passing to the limit j — oo, we get

M(6o) < C2/P | 2/p44/p° (7—2)2/pecR(2/p—2T/(p+2))

2/p
1
< 4V (7722 2 PeeR2 2 /) | — Up} '
vol(B(zo, B/2)) B@;R)

This implies

sup WP < 42/Pr—2CecR(1-p/ (p+2)) WP,

B(zo,(1—7)R) vol(B (Io, R/2)) ;
This finishes the proof of Theorem 1.3. O
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