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Abstract We prove a Harnack inequality for positive harmonic functions on graphs which

is similar to a classical result of Yau on Riemannian manifolds. Also, we prove a mean value

inequality of nonnegative subharmonic functions on graphs.
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1 Introduction and Main Results

One of the fundamental topics in geometric analysis and partial differential equations is the

study of harmonic (subharmonic) functions. In 1975, Yau [1] proved a gradient estimate for

positive harmonic functions, which leads to a Harnack type inequality and a Liouville theorem

on manifolds with Ricci curvature bounded from below. There is an extensive literature on

gradient estimates for various partial differential equations on manifolds, see for examples [2–

8]. For the graph case, we refer the reader to [9–11]. Harmonic (subharmonic) functions can also

be studied by mean value inequalities. In [12], Li-Schoen obtained an Lp mean value inequality

for subharmonic functions on manifold with nonnegative Ricci curvature, which leads to a

Liouville theorem for subharmonic Lp functions with p > 1.

In [13, 14], Holopainen-Soardi derived several Liouville theorems for p-harmonic functions

on graphs. While in [15], Rigoli-Salvatori-Vignati proved that there is no nonnegative subhar-

monic function belonging to ℓp for any p > 1. Lipschitz properties of harmonic function on

graphs were discovered by Lin-Xi [16]. Hua-Jost [17] proved a graph version of Caccioppoli-type

inequality for nonnegative subharmonic functions, and used it to get a Liouville theorem for

harmonic or nonnegative subharmonic functions of class ℓp for p > 1.
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We now fix some notations. Let G = (X, E) be a connected infinite graph, where X denotes

the vertex set and E denotes the edge set. We call vertices x and y neighbors, or x ∼ y, if they

are endpoints of the same edge. The degree of x, which is denoted by dx, is the number of all

its neighbors. Throughout this paper we assume that G has bounded degree, namely,

dx ≤ d < ∞ for all x ∈ X. (1.1)

The Laplace operator ∆ on graph reads

∆u(x) =
1

dx

∑

y∼x

[u(y) − u(x)] (1.2)

for all functions u : X → R. A function u is called harmonic (subharmonic) if

∆u = 0 (∆u ≥ 0) on G. (1.3)

For x, y ∈ X , the distance ρ(x, y) denotes the minimum number of edges connecting x and

y. Let B(x, r) = {y ∈ X : ρ(x, y) ≤ r} be the ball centered at x with radius r. Given any

subset U ⊂ X , the boundary ∂U of U is the set of all vertices x ∈ X\U having at least one

neighbor in U . The volume of U is defined by

vol(U) = N(U),

where N(U) denotes the number of vertices on U .

Our first result is the following Harnack inequality.

Theorem 1.1 Let G = (X, E) be a connected infinite graph. Suppose that u is a positive

harmonic function on G, x0 is a point in X . Then there holds for any R > 0,

sup
B(x0,R)

u(x) ≤ e2R
√

d(d−1) inf
B(x0,R)

u(x),

where d is a constant given as in (1.1).

Different from [14], our method of proving Theorem 1.1 is to derive a gradient estimate,

then use it to obtain a Harnack inequality. Moreover the constant C in [14] did not give any

information on how it depends on the radius R, but here we explicitly use R to represent C.

Our second result concerns the mean value inequality, namely,

Theorem 1.2 Let G = (X, E) be a connected infinite graph, x0 be a point in X and

R > 0. Suppose that v is a nonnegative subharmonic function defined on B(x0, R). Then for

any τ ∈ (0, 1/2), there is a constant c depending only on R and τ such that

sup
B(x0,(1−τ)R)

v2 ≤ c
1

vol(B(x0, R/2))

∑

B(x0,R)

v2.

Precisely c = e2R(1−τ)
√

d(d−1)
[

64d(dR+1−1)
τ2R(d−1) + 2

]
, where d is a constant given as in (1.1).

The ℓp version of Theorem 1.2 is of its own interest. We stated it as the following.

Theorem 1.3 Let G = (X, E) be a connected infinite graph, x0 be a point in X , R > 0

and 0 < p ≤ 2. Suppose that v is a nonnegative subharmonic function defined on B(x0, R).

Then for any τ ∈ (0, 1/2), there holds

sup
B(x0,(1−τ)R)

vp ≤ τ−242/pCe2R
√

d(d−1)(1−τp/(p+2)) 1

vol(B(x0, R/2))

∑

B(x0,R)

vp,

precisely C = 64d(dR+1−1)
R(d−1) + 1

2 , where d is a constant given as in (1.1).



No.6 Y. Lin & H.Y. Song: HARNACK AND MEAN VALUE INEQUALITIES ON GRAPHS 1753

The proof of Theorem 1.1 is based on a gradient estimate. While Theorems 1.2 and 1.3

will be proved by following the lines of [12]. The remaining part of this paper is organized as

follows: in Section 2, we give several preliminary lemmas; in Section 3, we prove Theorems

1.1–1.3.

2 Preliminary Lemmas

Let G = (X, E) be a connected infinite graph as in the introduction. Given any function

f : X → R, we say that f ∈ ℓp(X) if
∑

x∈X

| f(x) |p< +∞.

We define the square of the gradient of f by

| ∇f(x) |2=
∑

y∼x

| f(y) − f(x) |2

and its Dirichlet integral on S ⊂ X by

I2(f, S) =
∑

x∈S

| ∇f(x) |2 .

Lemma 2.1 Let S ⊂ X be a finite set. Then u is harmonic on S if and only if it is a

minimizer of I2(f, S) among all functions with the same value on ∂S.

Proof It is the case p = 2 of Theorem 3.5 in [14]. �

Lemma 2.2 Let u be harmonic and v be subharmonic in a finite set S ⊂ X such that

u ≥ v in ∂S. Then u ≥ v in S.

Proof It is a special case of Theorem 3.14 in [14]. �

One way to get the following locally Poincaré inequality is using gradient estimate as in

[12]. Here we will give a direct proof.

Lemma 2.3 Let x0 ∈ X and R > 0. For every function f on B(x0, R) which vanishes on

∂B(x0, R), we have the locally poincaré inequality
∑

B(x0,R)

| f(x) |2≤ c1

∑

B(x0,R)

| ∇f(x) |2,

where c1 = 2R(dR+1 − 1)/(d − 1).

Proof Let x1 denote a vertex with

| f(x1) |= max
B(x0,R)

| f(x) | .

Choosing x2 ∈ ∂B(x0, R), then f(x2) = 0. Let P denote a shortest path in B(x0, R) joining x1

and x2. Then by Cauchy-Schwartz inequality we have
∑

B(x0,R)

| ∇f(x) |2 =
∑

B(x0,R)

∑

x∼y

[f(x) − f(y)]2

≥
∑

(x,y)∈P

[f(x) − f(y)]2

≥
1

2R

[ ∑

(x,y)∈P

(f(x) − f(y))

]2
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=
1

2R
f2(x1)

≥
1

2R · vol(B(x0, R))

∑

B(x0,R)

| f(x) |2,

where

vol(B(x0, R)) ≤
R+1∑

i=0

di ≤ (dR+1 − 1)/(d − 1).

The lemma is proved. �

We will also need the following discrete Cacciopoli inequality from [16].

Lemma 2.4 Let x0 ∈ X and R > 0, v is a nonnegative subharmonic function on G. Then

for any τ ∈ (0, 1/2), we have

∑

B(x0,(1−τ)R)

| ∇v(x) |2≤
4d

(τR)2

∑

B(x0,R)

v2(x).

3 Proof of Theorems 1.1–1.3

In this section, we will prove a Harnack inequality for nonnegative harmonic functions (The-

orem 1.1) and two mean value inequalities for nonnegative subharmonic functions (Theorems

1.2 and 1.3).

3.1 The Proof of Theorem 1.1

Proof Suppose that ∆u(x) = −λu(x) for all x ∈ X . It is easy to show that λ is a real

number, then

1

dx

∑

y∼x

[u(y) − u(x)] = −λu(x).

It follows that
1

dx

∑

y∼x

u(y) = (1 − λ)u(x).

Since u(x) > 0 , we calculate

1

dx
·
|∇u(x)|2

u2(x)
=

1
dx

∑
y∼x

(
u(y) − u(x)

)2

u2(x)

=

u2(x) − 2u(x) · 1
dx

∑
y∼x

u(y) + 1
dx

∑
y∼x

u2(y)

u2(x)

≤ 2λ − 1 +

1
dx

·
( ∑

y∼x
u(y)

)2

u2(x)

= 2λ − 1 + dx(1 − λ)2

≤ 2λ − 1 + d − 2dλ + dλ2

= dλ2 − 2(d − 1)λ + d − 1.
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Hence

|∇u(x)|2

u2(x)
≤ d2λ2 − 2d(d − 1)λ + d(d − 1)

= (dλ − (d − 1))2 + d − 1.

Let u(xn) = sup
B(x0,R)

u(x), u(x1) = inf
B(x0,R)

u(x), where x1 ∼ x2 ∼ · · · ∼ xn. Then we have

|u(xi+1) − u(xi)|

u(xi)
≤

{ ∑
y∼x

(u(y) − u(xi))
2

} 1
2

u(xi)

=

{
∑
y∼x

(u(y) − u(xi))
2

u2(xi)

} 1
2

≤
√

(dλ − (d − 1))2 + d − 1.

Therefore
n−1∑

i=1

|u(xi+1) − u(xi)|

u(xi)
≤ 2R

√
(dλ − (d − 1))2 + d − 1.

Then we have

log
u(xn)

u(x1)
=

n−1∑

i=1

log
u(xi+1)

u(xi)

=
n−1∑

i=1

log

(
1 +

u(xi+1) − u(xi)

u(xi)

)

≤
n−1∑

i=1

log

(
1 +

|u(xi+1) − u(xi)|

u(xi)

)

≤
n−1∑

i=1

|u(xi+1) − u(xi)|

u(xi)

≤ 2R
√

(dλ − (d − 1))2 + d − 1.

This leads to that
u(xn)

u(x1)
≤ e2R

√
(dλ−(d−1))2+d−1,

and that

sup
B(x0,R)

u(x) ≤ e2R
√

(dλ−(d−1))2+d−1 inf
B(x0,R)

u(x).

If u(x) is harmonic, then ∆u(x) = 0, λ = 0, and we conclude

sup
B(x0,R)

u(x) ≤ e2R
√

d(d−1) inf
B(x0,R)

u(x).

This ends the proof of the theorem. �

3.2 The Proof of Theorem 1.2

Proof Let h be the harmonic function on B(x0, (1 − τ)R) which agrees with v on the

boundary. Then h is positive in B(x0, (1 − τ)R) (unless v is identically zero, in which case the
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theorem is trivial). Since v is subharmonic, we have v ≤ h in B(x0, (1 − τ)R) by Lemma 2.2.

It follows from Theorem 1.1 that

sup
B(x0,(1−τ)R)

v2 ≤ sup
B(x0,(1−τ)R)

h2

≤ e2(1−τ)R·
√

d(d−1) inf
B(x0,(1−τ)R)

h2

≤ e2(1−τ)R·
√

d(d−1) 1

vol(B(x0, (1 − τ)R))

∑

B(x0,(1−τ)R)

h2. (3.1)

In the following, we will estimate the average value of h2 by that of v2. First we note that
∑

B(x0,(1−τ)R)

h2 ≤ 2
∑

B(x0,(1−τ)R)

(h − v)2 + 2
∑

B(x0,R)

v2. (3.2)

Since h − v vanishes on ∂B(x0, (1 − τ)R), we obtain by using Lemma 2.3,
∑

B(x0,(1−τ)R)

(h − v)2 ≤ c1

∑

B(x0,(1−τ)R)

| ∇(h − v) |2

≤ 2c1

∑

B(x0,(1−τ)R)

(| ∇h |2 + | ∇v |2),

where c1 = 2R(dR+1 − 1)/(d − 1) By Lemma 2.1 and the definition of the Dirichlet integral of

h, one can easily see that
∑

B(x0,(1−τ)R)

| ∇h |2≤
∑

B(x0,(1−τ)R)

| ∇v |2 .

So we get ∑

B(x0,(1−τ)R)

(h − v)2 ≤ 4c1

∑

B(x0,(1−τ)R)

| ∇v |2 . (3.3)

Now we use Lemma 2.4 to estimate the Dirichlet integral of v in terms of the ℓ2 norm of v. By

a straightforward calculation,
∑

B(x0,(1−τ)R)

| ∇v |2≤ 4d(τR)−2
∑

B(x0,R)

v2. (3.4)

Combining estimates (3.1)–(3.4), we get

sup
B(x0,(1−τ)R)

v2 ≤ e2(1−τ)R
√

d(d−1)

(
8c1 ·

4d

(τR)2
+ 2

)
1

vol
(
B(x0, (1 − τ)R)

)
∑

B(x0,R)

v2

≤ e2(1−τ)R
√

d(d−1)

[
64d(dR+1 − 1)

τ2R(d − 1)
+ 2

]
1

vol(B(x0, R/2))

∑

B(x0,R)

v2,

here we have used the fact that τ ≤ 1/2. The proof of Theorem 1.2 is completed. �

3.3 The Proof of Theorem 1.3

Proof The proof is based on the Moser iteration. For any δ ∈ (0, 1/2], θ ∈ [1/2, 1− δ], it

follows from Theorem 1.2 that

sup
B(x0,θR)

v2 ≤ δ−2ec(1−δ)R

[
64d(dR+1 − 1)

R(d − 1)
+ 2δ2

]
1

vol(B(x0, R/2))

∑

B(x0,(θ+δ)R)

v2
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≤ δ−2ec(1−δ)R

[
64d(dR+1 − 1)

R(d − 1)
+

1

2

]
1

vol(B(x0, R/2))

∑

B(x0,(θ+δ)R)

v2,

where c = 2
√

d(d − 1). Since θ + δ ≤ 1, we have

∑

B(x0,(θ+δ)R)

v2 ≤
(

sup
B(x0,(θ+δ)R)

v2
)1−p/2 ∑

B(x0,(θ+δ)R)

vp

≤
(

sup
B(x0,(θ+δ)R)

v2
)1−p/2 ∑

B(x0,R)

vp.

We set

M(θ) = sup
B(x0,θR)

v2, K =
1

vol(B(x0, R/2))

∑

B(x0,R)

vp.

Then we have

M(θ) ≤ δ−2CKec(1−δ)R
(
M(θ + δ)

)λ
,

where λ = 1 − p/2 and C = 64d(dR+1−1)
R(d−1) + 1

2 .

Choosing θ0 = 1 − τ and θi = θi−1 + 2−iτ for i = 1, 2, 3 · · · , then we obtain

M(θi−1) ≤ CK4iτ−2ec(1−2−iτ)R
(
M(θi)

)λ
.

For any j ≥ 1, by iteration we have

M(θ0) ≤ C

j∑
i=1

λi−1

K

j∑
i=1

λi−1

4

j∑
i=1

iλi−1

τ
−2

j∑
i=1

λi−1

e
[

j∑
i=1

(1−τ/2i)λi−1]cR(
M(θj)

)λj

.

Passing to the limit j → ∞, we get

M(θ0) ≤ C2/pK2/p44/p2

(τ−2)2/pecR(2/p−2τ/(p+2))

≤ 44/p2

(τ−2)2/pC2/pecR(2/p−2τ/(p+2))

[
1

vol(B(x0, R/2))

∑

B(x0,R)

vp

]2/p

.

This implies

sup
B(x0,(1−τ)R)

vp ≤ 42/pτ−2CecR(1−τp/(p+2)) 1

vol(B(x0, R/2))

∑

B(x0,R)

vp.

This finishes the proof of Theorem 1.3. �
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