HARNACK AND MEAN VALUE INEQUALITIES ON GRAPHS＊

Yong LIN（林勇）
Department of Mathematics，Renmin University of China，Beijing 100872，China
E－mail：linyong01＠ruc．edu．cn
Hongye SONG（宋宏业）${ }^{\dagger}$
School of General Education，Beijing International Studies University，Beijing 100024，China；
Department of Mathematics，Renmin University of China，Beijing 100872，China；
E－mail：songhongye＠bisu．edu．cn

Abstract

We prove a Harnack inequality for positive harmonic functions on graphs which is similar to a classical result of Yau on Riemannian manifolds．Also，we prove a mean value inequality of nonnegative subharmonic functions on graphs．

Key words harmonic function；subharmonic function；Harnack inequality；mean value inequality；graph
2010 MR Subject Classification 58J35

1 Introduction and Main Results

One of the fundamental topics in geometric analysis and partial differential equations is the study of harmonic（subharmonic）functions．In 1975，Yau［1］proved a gradient estimate for positive harmonic functions，which leads to a Harnack type inequality and a Liouville theorem on manifolds with Ricci curvature bounded from below．There is an extensive literature on gradient estimates for various partial differential equations on manifolds，see for examples［2－ 8］．For the graph case，we refer the reader to［9－11］．Harmonic（subharmonic）functions can also be studied by mean value inequalities．In［12］，Li－Schoen obtained an L^{p} mean value inequality for subharmonic functions on manifold with nonnegative Ricci curvature，which leads to a Liouville theorem for subharmonic L^{p} functions with $p>1$ ．

In［13，14］，Holopainen－Soardi derived several Liouville theorems for p－harmonic functions on graphs．While in［15］，Rigoli－Salvatori－Vignati proved that there is no nonnegative subhar－ monic function belonging to ℓ^{p} for any $p>1$ ．Lipschitz properties of harmonic function on graphs were discovered by Lin－Xi［16］．Hua－Jost［17］proved a graph version of Caccioppoli－type inequality for nonnegative subharmonic functions，and used it to get a Liouville theorem for harmonic or nonnegative subharmonic functions of class ℓ^{p} for $p>1$ ．

[^0]We now fix some notations. Let $G=(X, E)$ be a connected infinite graph, where X denotes the vertex set and E denotes the edge set. We call vertices x and y neighbors, or $x \sim y$, if they are endpoints of the same edge. The degree of x, which is denoted by d_{x}, is the number of all its neighbors. Throughout this paper we assume that G has bounded degree, namely,

$$
\begin{equation*}
d_{x} \leq d<\infty \quad \text { for all } \quad x \in X \tag{1.1}
\end{equation*}
$$

The Laplace operator Δ on graph reads

$$
\begin{equation*}
\Delta u(x)=\frac{1}{d_{x}} \sum_{y \sim x}[u(y)-u(x)] \tag{1.2}
\end{equation*}
$$

for all functions $u: X \rightarrow \mathbb{R}$. A function u is called harmonic (subharmonic) if

$$
\begin{equation*}
\Delta u=0(\Delta u \geq 0) \quad \text { on } \quad G \tag{1.3}
\end{equation*}
$$

For $x, y \in X$, the distance $\rho(x, y)$ denotes the minimum number of edges connecting x and y. Let $B(x, r)=\{y \in X: \rho(x, y) \leq r\}$ be the ball centered at x with radius r. Given any subset $U \subset X$, the boundary ∂U of U is the set of all vertices $x \in X \backslash U$ having at least one neighbor in U. The volume of U is defined by

$$
\operatorname{vol}(U)=N(U)
$$

where $N(U)$ denotes the number of vertices on U.
Our first result is the following Harnack inequality.
Theorem 1.1 Let $G=(X, E)$ be a connected infinite graph. Suppose that u is a positive harmonic function on G, x_{0} is a point in X. Then there holds for any $R>0$,

$$
\sup _{B\left(x_{0}, R\right)} u(x) \leq \mathrm{e}^{2 R \sqrt{d(d-1)}} \inf _{B\left(x_{0}, R\right)} u(x)
$$

where d is a constant given as in (1.1).
Different from [14], our method of proving Theorem 1.1 is to derive a gradient estimate, then use it to obtain a Harnack inequality. Moreover the constant C in [14] did not give any information on how it depends on the radius R, but here we explicitly use R to represent C.

Our second result concerns the mean value inequality, namely,
Theorem 1.2 Let $G=(X, E)$ be a connected infinite graph, x_{0} be a point in X and $R>0$. Suppose that v is a nonnegative subharmonic function defined on $B\left(x_{0}, R\right)$. Then for any $\tau \in(0,1 / 2)$, there is a constant c depending only on R and τ such that

$$
\sup _{B\left(x_{0},(1-\tau) R\right)} v^{2} \leq c \frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0}, R\right)} v^{2}
$$

Precisely $c=\mathrm{e}^{2 R(1-\tau) \sqrt{d(d-1)}}\left[\frac{64 d\left(d^{R+1}-1\right)}{\tau^{2} R(d-1)}+2\right]$, where d is a constant given as in (1.1).
The ℓ^{p} version of Theorem 1.2 is of its own interest. We stated it as the following.
Theorem 1.3 Let $G=(X, E)$ be a connected infinite graph, x_{0} be a point in $X, R>0$ and $0<p \leq 2$. Suppose that v is a nonnegative subharmonic function defined on $B\left(x_{0}, R\right)$. Then for any $\tau \in(0,1 / 2)$, there holds

$$
\sup _{B\left(x_{0},(1-\tau) R\right)} v^{p} \leq \tau^{-2} 4^{2 / p} C \mathrm{e}^{2 R \sqrt{d(d-1)}(1-\tau p /(p+2))} \frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0}, R\right)} v^{p}
$$

precisely $C=\frac{64 d\left(d^{R+1}-1\right)}{R(d-1)}+\frac{1}{2}$, where d is a constant given as in (1.1).

The proof of Theorem 1.1 is based on a gradient estimate. While Theorems 1.2 and 1.3 will be proved by following the lines of [12]. The remaining part of this paper is organized as follows: in Section 2, we give several preliminary lemmas; in Section 3, we prove Theorems 1.1-1.3.

2 Preliminary Lemmas

Let $G=(X, E)$ be a connected infinite graph as in the introduction. Given any function $f: X \rightarrow \mathbb{R}$, we say that $f \in \ell^{p}(X)$ if

$$
\sum_{x \in X}|f(x)|^{p}<+\infty
$$

We define the square of the gradient of f by

$$
|\nabla f(x)|^{2}=\sum_{y \sim x}|f(y)-f(x)|^{2}
$$

and its Dirichlet integral on $S \subset X$ by

$$
I_{2}(f, S)=\sum_{x \in S}|\nabla f(x)|^{2}
$$

Lemma 2.1 Let $S \subset X$ be a finite set. Then u is harmonic on S if and only if it is a minimizer of $I_{2}(f, S)$ among all functions with the same value on ∂S.

Proof It is the case $p=2$ of Theorem 3.5 in [14].
Lemma 2.2 Let u be harmonic and v be subharmonic in a finite set $S \subset X$ such that $u \geq v$ in ∂S. Then $u \geq v$ in S.

Proof It is a special case of Theorem 3.14 in [14].
One way to get the following locally Poincaré inequality is using gradient estimate as in [12]. Here we will give a direct proof.

Lemma 2.3 Let $x_{0} \in X$ and $R>0$. For every function f on $B\left(x_{0}, R\right)$ which vanishes on $\partial B\left(x_{0}, R\right)$, we have the locally poincaré inequality

$$
\sum_{B\left(x_{0}, R\right)}|f(x)|^{2} \leq c_{1} \sum_{B\left(x_{0}, R\right)}|\nabla f(x)|^{2}
$$

where $c_{1}=2 R\left(d^{R+1}-1\right) /(d-1)$.
Proof Let x_{1} denote a vertex with

$$
\left|f\left(x_{1}\right)\right|=\max _{B\left(x_{0}, R\right)}|f(x)|
$$

Choosing $x_{2} \in \partial B\left(x_{0}, R\right)$, then $f\left(x_{2}\right)=0$. Let P denote a shortest path in $B\left(x_{0}, R\right)$ joining x_{1} and x_{2}. Then by Cauchy-Schwartz inequality we have

$$
\begin{aligned}
\sum_{B\left(x_{0}, R\right)}|\nabla f(x)|^{2} & =\sum_{B\left(x_{0}, R\right)} \sum_{x \sim y}[f(x)-f(y)]^{2} \\
& \geq \sum_{(x, y) \in P}[f(x)-f(y)]^{2} \\
& \geq \frac{1}{2 R}\left[\sum_{(x, y) \in P}(f(x)-f(y))\right]^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2 R} f^{2}\left(x_{1}\right) \\
& \geq \frac{1}{2 R \cdot \operatorname{vol}\left(B\left(x_{0}, R\right)\right)} \sum_{B\left(x_{0}, R\right)}|f(x)|^{2}
\end{aligned}
$$

where

$$
\operatorname{vol}\left(B\left(x_{0}, R\right)\right) \leq \sum_{i=0}^{R+1} d^{i} \leq\left(d^{R+1}-1\right) /(d-1)
$$

The lemma is proved.
We will also need the following discrete Cacciopoli inequality from [16].
Lemma 2.4 Let $x_{0} \in X$ and $R>0, v$ is a nonnegative subharmonic function on G. Then for any $\tau \in(0,1 / 2)$, we have

$$
\sum_{B\left(x_{0},(1-\tau) R\right)}|\nabla v(x)|^{2} \leq \frac{4 d}{(\tau R)^{2}} \sum_{B\left(x_{0}, R\right)} v^{2}(x)
$$

3 Proof of Theorems 1.1-1.3

In this section, we will prove a Harnack inequality for nonnegative harmonic functions (Theorem 1.1) and two mean value inequalities for nonnegative subharmonic functions (Theorems 1.2 and 1.3).

3.1 The Proof of Theorem 1.1

Proof Suppose that $\Delta u(x)=-\lambda u(x)$ for all $x \in X$. It is easy to show that λ is a real number, then

$$
\frac{1}{d_{x}} \sum_{y \sim x}[u(y)-u(x)]=-\lambda u(x)
$$

It follows that

$$
\frac{1}{d_{x}} \sum_{y \sim x} u(y)=(1-\lambda) u(x)
$$

Since $u(x)>0$, we calculate

$$
\begin{aligned}
\frac{1}{d_{x}} \cdot \frac{|\nabla u(x)|^{2}}{u^{2}(x)} & =\frac{\frac{1}{d_{x}} \sum_{y \sim x}(u(y)-u(x))^{2}}{u^{2}(x)} \\
& =\frac{u^{2}(x)-2 u(x) \cdot \frac{1}{d_{x}} \sum_{y \sim x} u(y)+\frac{1}{d_{x}} \sum_{y \sim x} u^{2}(y)}{u^{2}(x)} \\
& \leq 2 \lambda-1+\frac{\frac{1}{d_{x}} \cdot\left(\sum_{y \sim x} u(y)\right)^{2}}{u^{2}(x)} \\
& =2 \lambda-1+d_{x}(1-\lambda)^{2} \\
& \leq 2 \lambda-1+d-2 d \lambda+d \lambda^{2} \\
& =d \lambda^{2}-2(d-1) \lambda+d-1
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{|\nabla u(x)|^{2}}{u^{2}(x)} & \leq d^{2} \lambda^{2}-2 d(d-1) \lambda+d(d-1) \\
& =(d \lambda-(d-1))^{2}+d-1
\end{aligned}
$$

Let $u\left(x_{n}\right)=\sup _{B\left(x_{0}, R\right)} u(x), u\left(x_{1}\right)=\inf _{B\left(x_{0}, R\right)} u(x)$, where $x_{1} \sim x_{2} \sim \cdots \sim x_{n}$. Then we have

$$
\begin{aligned}
\frac{\left|u\left(x_{i+1}\right)-u\left(x_{i}\right)\right|}{u\left(x_{i}\right)} & \leq \frac{\left\{\sum_{y \sim x}\left(u(y)-u\left(x_{i}\right)\right)^{2}\right\}^{\frac{1}{2}}}{u\left(x_{i}\right)} \\
& =\left\{\frac{\sum_{y \sim x}\left(u(y)-u\left(x_{i}\right)\right)^{2}}{u^{2}\left(x_{i}\right)}\right\}^{\frac{1}{2}} \\
& \leq \sqrt{(d \lambda-(d-1))^{2}+d-1}
\end{aligned}
$$

Therefore

$$
\sum_{i=1}^{n-1} \frac{\left|u\left(x_{i+1}\right)-u\left(x_{i}\right)\right|}{u\left(x_{i}\right)} \leq 2 R \sqrt{(d \lambda-(d-1))^{2}+d-1}
$$

Then we have

$$
\begin{aligned}
\log \frac{u\left(x_{n}\right)}{u\left(x_{1}\right)} & =\sum_{i=1}^{n-1} \log \frac{u\left(x_{i+1}\right)}{u\left(x_{i}\right)} \\
& =\sum_{i=1}^{n-1} \log \left(1+\frac{u\left(x_{i+1}\right)-u\left(x_{i}\right)}{u\left(x_{i}\right)}\right) \\
& \leq \sum_{i=1}^{n-1} \log \left(1+\frac{\left|u\left(x_{i+1}\right)-u\left(x_{i}\right)\right|}{u\left(x_{i}\right)}\right) \\
& \leq \sum_{i=1}^{n-1} \frac{\left|u\left(x_{i+1}\right)-u\left(x_{i}\right)\right|}{u\left(x_{i}\right)} \\
& \leq 2 R \sqrt{(d \lambda-(d-1))^{2}+d-1}
\end{aligned}
$$

This leads to that

$$
\frac{u\left(x_{n}\right)}{u\left(x_{1}\right)} \leq \mathrm{e}^{2 R \sqrt{(d \lambda-(d-1))^{2}+d-1}}
$$

and that

$$
\sup _{B\left(x_{0}, R\right)} u(x) \leq \mathrm{e}^{2 R \sqrt{(d \lambda-(d-1))^{2}+d-1}} \inf _{B\left(x_{0}, R\right)} u(x) .
$$

If $u(x)$ is harmonic, then $\Delta u(x)=0, \lambda=0$, and we conclude

$$
\sup _{B\left(x_{0}, R\right)} u(x) \leq \mathrm{e}^{2 R \sqrt{d(d-1)}} \inf _{B\left(x_{0}, R\right)} u(x)
$$

This ends the proof of the theorem.

3.2 The Proof of Theorem 1.2

Proof Let h be the harmonic function on $B\left(x_{0},(1-\tau) R\right)$ which agrees with v on the boundary. Then h is positive in $B\left(x_{0},(1-\tau) R\right)$ (unless v is identically zero, in which case the
theorem is trivial). Since v is subharmonic, we have $v \leq h$ in $B\left(x_{0},(1-\tau) R\right)$ by Lemma 2.2. It follows from Theorem 1.1 that

$$
\begin{align*}
\sup _{B\left(x_{0},(1-\tau) R\right)} v^{2} & \leq \sup _{B\left(x_{0},(1-\tau) R\right)} h^{2} \\
& \leq \mathrm{e}^{2(1-\tau) R \cdot \sqrt{d(d-1)}} \inf _{B\left(x_{0},(1-\tau) R\right)} h^{2} \\
& \leq \mathrm{e}^{2(1-\tau) R \cdot \sqrt{d(d-1)}} \frac{1}{\operatorname{vol}\left(B\left(x_{0},(1-\tau) R\right)\right)} \sum_{B\left(x_{0},(1-\tau) R\right)} h^{2} . \tag{3.1}
\end{align*}
$$

In the following, we will estimate the average value of h^{2} by that of v^{2}. First we note that

$$
\begin{equation*}
\sum_{B\left(x_{0},(1-\tau) R\right)} h^{2} \leq 2 \sum_{B\left(x_{0},(1-\tau) R\right)}(h-v)^{2}+2 \sum_{B\left(x_{0}, R\right)} v^{2} \tag{3.2}
\end{equation*}
$$

Since $h-v$ vanishes on $\partial B\left(x_{0},(1-\tau) R\right)$, we obtain by using Lemma 2.3,

$$
\begin{aligned}
\sum_{B\left(x_{0},(1-\tau) R\right)}(h-v)^{2} & \leq c_{1} \sum_{B\left(x_{0},(1-\tau) R\right)}|\nabla(h-v)|^{2} \\
& \leq 2 c_{1} \sum_{B\left(x_{0},(1-\tau) R\right)}\left(|\nabla h|^{2}+|\nabla v|^{2}\right)
\end{aligned}
$$

where $c_{1}=2 R\left(d^{R+1}-1\right) /(d-1)$ By Lemma 2.1 and the definition of the Dirichlet integral of h, one can easily see that

$$
\sum_{B\left(x_{0},(1-\tau) R\right)}|\nabla h|^{2} \leq \sum_{B\left(x_{0},(1-\tau) R\right)}|\nabla v|^{2}
$$

So we get

$$
\begin{equation*}
\sum_{B\left(x_{0},(1-\tau) R\right)}(h-v)^{2} \leq 4 c_{1} \sum_{B\left(x_{0},(1-\tau) R\right)}|\nabla v|^{2} \tag{3.3}
\end{equation*}
$$

Now we use Lemma 2.4 to estimate the Dirichlet integral of v in terms of the ℓ^{2} norm of v. By a straightforward calculation,

$$
\begin{equation*}
\sum_{B\left(x_{0},(1-\tau) R\right)}|\nabla v|^{2} \leq 4 d(\tau R)^{-2} \sum_{B\left(x_{0}, R\right)} v^{2} \tag{3.4}
\end{equation*}
$$

Combining estimates (3.1)-(3.4), we get

$$
\begin{aligned}
\sup _{B\left(x_{0},(1-\tau) R\right)} v^{2} & \leq \mathrm{e}^{2(1-\tau) R \sqrt{d(d-1)}}\left(8 c_{1} \cdot \frac{4 d}{(\tau R)^{2}}+2\right) \frac{1}{\operatorname{vol}\left(B\left(x_{0},(1-\tau) R\right)\right)} \sum_{B\left(x_{0}, R\right)} v^{2} \\
& \leq \mathrm{e}^{2(1-\tau) R \sqrt{d(d-1)}}\left[\frac{64 d\left(d^{R+1}-1\right)}{\tau^{2} R(d-1)}+2\right] \frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0}, R\right)} v^{2}
\end{aligned}
$$

here we have used the fact that $\tau \leq 1 / 2$. The proof of Theorem 1.2 is completed.

3.3 The Proof of Theorem 1.3

Proof The proof is based on the Moser iteration. For any $\delta \in(0,1 / 2], \theta \in[1 / 2,1-\delta]$, it follows from Theorem 1.2 that

$$
\sup _{B\left(x_{0}, \theta R\right)} v^{2} \leq \delta^{-2} \mathrm{e}^{c(1-\delta) R}\left[\frac{64 d\left(d^{R+1}-1\right)}{R(d-1)}+2 \delta^{2}\right] \frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0},(\theta+\delta) R\right)} v^{2}
$$

$$
\leq \delta^{-2} \mathrm{e}^{c(1-\delta) R}\left[\frac{64 d\left(d^{R+1}-1\right)}{R(d-1)}+\frac{1}{2}\right] \frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0},(\theta+\delta) R\right)} v^{2}
$$

where $c=2 \sqrt{d(d-1)}$. Since $\theta+\delta \leq 1$, we have

$$
\begin{aligned}
\sum_{B\left(x_{0},(\theta+\delta) R\right)} v^{2} & \leq\left(\sup _{B\left(x_{0},(\theta+\delta) R\right)} v^{2}\right)^{1-p / 2} \sum_{B\left(x_{0},(\theta+\delta) R\right)} v^{p} \\
& \leq\left(\sup _{B\left(x_{0},(\theta+\delta) R\right)} v^{2}\right)^{1-p / 2} \sum_{B\left(x_{0}, R\right)} v^{p}
\end{aligned}
$$

We set

$$
M(\theta)=\sup _{B\left(x_{0}, \theta R\right)} v^{2}, K=\frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0}, R\right)} v^{p}
$$

Then we have

$$
M(\theta) \leq \delta^{-2} C K \mathrm{e}^{c(1-\delta) R}(M(\theta+\delta))^{\lambda}
$$

where $\lambda=1-p / 2$ and $C=\frac{64 d\left(d^{R+1}-1\right)}{R(d-1)}+\frac{1}{2}$.
Choosing $\theta_{0}=1-\tau$ and $\theta_{i}=\theta_{i-1}+2^{-i} \tau$ for $i=1,2,3 \cdots$, then we obtain

$$
M\left(\theta_{i-1}\right) \leq C K 4^{i} \tau^{-2} \mathrm{e}^{c\left(1-2^{-i} \tau\right) R}\left(M\left(\theta_{i}\right)\right)^{\lambda}
$$

For any $j \geq 1$, by iteration we have

$$
M\left(\theta_{0}\right) \leq C^{\sum_{i=1}^{j} \lambda^{i-1}} K^{\sum_{i=1}^{j} \lambda^{i-1}} 4^{\sum_{i=1}^{j} i \lambda^{i-1}} \tau^{-2 \sum_{i=1}^{j} \lambda^{i-1} \mathrm{e}^{\left[\sum_{i=1}^{j}\left(1-\tau / 2^{i}\right) \lambda^{i-1}\right] c R}\left(M\left(\theta_{j}\right)\right)^{\lambda^{j}} . . . ~}
$$

Passing to the limit $j \rightarrow \infty$, we get

$$
\begin{aligned}
M\left(\theta_{0}\right) & \leq C^{2 / p} K^{2 / p} 4^{4 / p^{2}}\left(\tau^{-2}\right)^{2 / p} \mathrm{e}^{c R(2 / p-2 \tau /(p+2))} \\
& \leq 4^{4 / p^{2}}\left(\tau^{-2}\right)^{2 / p} C^{2 / p} \mathrm{e}^{c R(2 / p-2 \tau /(p+2))}\left[\frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0}, R\right)} v^{p}\right]^{2 / p}
\end{aligned}
$$

This implies

$$
\sup _{B\left(x_{0},(1-\tau) R\right)} v^{p} \leq 4^{2 / p} \tau^{-2} C \mathrm{e}^{c R(1-\tau p /(p+2))} \frac{1}{\operatorname{vol}\left(B\left(x_{0}, R / 2\right)\right)} \sum_{B\left(x_{0}, R\right)} v^{p}
$$

This finishes the proof of Theorem 1.3.

References

[1] Yau S T. Harmonic functions on complete Riemannian manifolds. Comm Pure Appl Math, 1975, 28: 201-228
[2] Cheng S Y, Yau S T. Differential equations on Riemannian manifolds and their geometric applications. Comm Pure Appl Math, 1975, 27: 333-354
[3] Li P, Yau S T. On the parabolic kernel of the Schrödinger operator. Acta Math, 1986, 156: 153-201
[4] Li J. Gradient estimates and Harnack inequalities for nonlinear parabolic and nonlinear elliptic equations on Riemannian manifolds. J Funct Anal, 1991, 100: 233-256
[5] Negrin E. Gradient estimates and a Liouville type theorem for the Schrödinger operator. J Funct Anal, 1995, 127: 198-203
[6] Ma L. Gradient estimates for a simple elliptic equation on non-compact Riemannian manifolds. J Funct Anal, 2006, 241: 374-382
[7] Yang Y. Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds. Proc Amer Math Soc, 2008, 136: 4095-4102
[8] Yang Y. Gradient estimates for the equation $\Delta u+c u^{-\alpha}=0$ on Riemannian manifolds. Acta Math Sinica, English Series, 2010, 26: 1177-1182
[9] Bauer F, Horn P, Lin Y, Lippner G, Mangoubi D, Yau S T. Li-Yau inequality on graphs. J Differential Geom, 2015, 99: 359-405
[10] Lin Y, Liu S, Yang Y. Global gradient estimate on graph and its applications. Acta Math Sin, Engl Ser, 2016, 32: 1350-1356
[11] Lin Y, Liu S, Yang Y. A gradient estimate for positive functions on graphs. J Geom Anal, 2017, 27: 1667-1679
[12] Li P, Schoen R. L^{p} and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math, 1984, 153: 279-301
[13] Holopainen I, Soardi P M. A strong Liouville theorem for p-harmonic functions on graphs. Ann Acad Sci Fenn Math, 1997, 22: 205-226
[14] Holopainen I, Soardi P M. p-harmonic functions on graphs and manifolds. Manuscripta Math, 1997, 94: 95-110
[15] Rigoli M, Salvatori M, Vignati M. Subharmonic functions on graphs. Israel J Math, 1997, 99: 1-27
[16] Lin Y, Xi L. Lipschitz property of harmonic function on graphs. J Math Anal Appl, 2010, 366: 673-678
[17] Hua B, Jost J. L^{q} harmonic functions on graphs. Israel J Math, 2014, 202: 475-490
[18] Karp L. Subharmonic functions on real and complex manifolds. Math Z, 1982, 179: 535-554
[19] Lin Y, Yau S T. Ricci curvature and eigenvalue estimate on locally finite graphs. Math Res Lett, 2010, 17: 343-356
[20] Grigor'yan A. Analysis on Graphs, Lecture Notes. University Bielefeld, 2009

[^0]: ＊Received August 10，2017；revised January 26，2018．The authors were supported by the National Science Foundation of China（11671401）．
 ${ }^{\dagger}$ Corresponding author：Hongye SONG．

