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1 Introduction

One can consider the heat equation associated with the Laplace operator �,

∂t u = �u, (1.1)

which leads in general to a smoothing effect under the form of ultracontractivity. This
means that, if u(t, x) satisfies (1.1), then there exists γ (t) → 0 as t → ∞ such that,
for any x ∈ V and t > 0,

‖u(t, x)‖ ≤ γ (t)‖u(0, x)‖.

One may reformulate this by saying that the semigroup Pt = et� satisfies the estimate

‖Pt‖1→∞ ≤ γ (t). (1.2)

It turns out that there is a strong relationship between the geometry of the Laplacian
� and the smoothing effect of the associated heat equation. The connection is made
through functional inequalities, such as the families of Sobolev equalities, Faber–
Krahn inequalities, Nash equalities, and log-Sobolev inequalities, in such a way that
these inequalities are all equivalent. This has recently been studied extensively, e.g.,
in [13] on manifolds and [7] on metric spaces. The remarkable smoothing properties
under the form of ultracontractivity, due to Varopoulos [20], may be established by
different methods: Carlen, Kusuoka, and Stroock used Nash inequalities [4], while
Davies and Simon [9] used log-Sobolev inequalities.

In the works of many authors such as Varopoulos, Grigor’yan, Bakry–Coulhon–
Ledoux–Saloff–Coste, it is shown that the discrete forms of Sobolev inequalities,
Nash equalities, Faber–Krahn inequalities, and discrete-time uniform bounds of the
heat kernel are all equivalent on graphs (see [6]). However, on graphs, there are no
related results involving log-Sobolev inequalities and continuous-time uniform upper
bounds of the heat kernel. In this paper, in the setting of graphs, we give log-Sobolev
inequalities in discrete forms, and show the equivalence with the above functional
inequalities. This is proved by showing that log-Sobolev inequalities and Nash equal-
ities are separately equivalent to the ultracontractivity property of the heat semigroup,
i.e., the uniform upper bound of the heat kernel, for both continuous and discrete time.

Bakry and Émery [1] suggested a notion analogous to curvature that would work in
the very general framework of a Markov semigroup. On graphs, curvature conditions
have been extensively studied in literature (see, e.g., [3,15]) and have proved to be
useful to estimate the heat kernel. Until now, however, no notion of curvature on graphs
has been sufficient to imply these four functional inequalities. In thiswork,we consider
non-negatively curved graphs, in the sense of CDE(n, 0), and derive all of the above
functional inequalities under the assumption of volume condition. Furthermore, we
derive a uniform upper bound for the heat kernel, in both continuous and discrete time,
under the same assumptions.However, it seems to be impossible to prove a continuous-
time uniform upper bound for the heat kernel on graphs. Indeed, in the papers ofDavies
[8] and Pang [19], they obtain upper bounds for the heat kernel on graphs, by using
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certain functions defined as the Legendre transform. From their results (see, e.g., [19,
Cor. 2.7]), it is not difficult to see that, for small t/d(x, y), the continuous-time uniform
upper estimate is not true on graphs. Meanwhile, we prove this for any non-negatively
curved graph under the assumption of polynomial volume of growth.

The remainder of this manuscript is organized as follows: In Sect. 2, we provide
the basic setting and give the main results. In Sect. 3, we prove the equivalence of the
log-Sobolev inequalities and the ultracontractivity of the heat semigroup. In Sect. 4,
we prove the equivalence of the Nash equalities and the ultracontractivity of the heat
semigroup.

2 Setting and Main Results

Let us now introduce the necessary definitions and notations to state the results. Let
G = (V, E) be an infinite connected graph. We allow the edges on the graph to be
weighted by making use of a symmetric weight function ω : V × V → [0,∞) so that
the edge xy from x to y has weight ωxy > 0, and we write x ∼ y. The symmetry
assumption means that ωxy = ωyx for all vertices x and y. In this paper, we are
interested in locally finite graphs, i.e., where the degree of each vertex is finite:

m(x) :=
∑

y∼x

ωxy < ∞ for any x ∈ V .

We denote by VR the space of real-valued functions on V and by �p = {
f ∈ VR :∑

x∈V m(x)| f (x)|p < ∞}
, 1 ≤ p < ∞, the space of �p-integrable functions on V

with respect to the degree m. If p = 2, let the inner product be defined by 〈 f, g〉 =∑
x∈V m(x) f (x)g(x), so that the space �2 is a Hilbert space. For p = ∞, let �∞ =

{ f ∈ VR : supx∈V | f (x)| < ∞} be the set of bounded functions. For all 1 ≤ p ≤ ∞,
we endow these spaces with their standard norms.

We denote by Cc(V ) ⊂ �2 the set of functions f ∈ VR with finite support. The
graph is endowed with its natural graph metric d(x, y), i.e., the smallest number of
edges of a path between two vertices x and y. We define balls B(x, r) = {y ∈ V :
d(x, y) ≤ r}, and the volume of a subset A of V , V (A) = ∑

x∈A m(x). We will write
V (x, r) for V (B(x, r)).

For any function f ∈ VR and any x ∈ V , let � : VR → VR on G be the graph
Laplacian. It is defined by

� f (x) = 1

m(x)

∑

y∼x

ωxy( f (y) − f (x)). (2.1)

To the operator � is associated the semigroup Pt : �p → �p defined by

Pt f (x) =
∑

y∈V

m(y)p(t, x, y) f (y),
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where p(t, x, y) is the heat kernel with continuous time on infinite graphs (see [16] and
also [21]). Pt f (x) is then a solution of the heat equation. We know that the operator
Pt is contractive and self-adjoint on Cc(V ), and that the semigroup property holds on
Cc(V ) as well. We shall keep considering the discrete-time heat kernel pk(x, y) on G
because of its probabilistic significance, which is defined by

{
p0(x, y) = δxy,

pk+1(x, z) = ∑
y∈V p(x, y)pk(y, z),

where p(x, y) := ωxy/m(x) is the transition probability of the random walk on the
graph, and δxy = 1 when x = y, and 0 otherwise.

Now, following [3,15], we introduce the gradient forms associated to the Laplacian
and the curvature dimension conditions on graphs.

Definition 2.1 The gradient form � and the iterated gradient form �2 are defined by

2�( f, g)(x) = (�( f g) − f �(g) − g�( f ))(x)

= 1

m(x)

∑

y∼x

ωxy( f (y) − f (x))(g(y) − g(x)),

2�2( f, g)(x) = (��( f, g) − �( f,�(g)) − �(g,�( f )))(x).

We write �( f ) = �( f, f ), �2( f ) = �2( f, f ) for short.

Definition 2.2 We say that a graph G satisfies the curvature dimension inequality
CDE(x, n, K ) if, for any positive function f ∈ VR such that (� f )(x) < 0, we have

�̃2( f )(x) := �2( f )(x) − �

(
f,

�( f )

f

)
(x) ≥ 1

n
(� f (x))2 + K�( f )(x). (2.2)

We say that CDE(n, K ) is satisfied if CDE(x, n, K ) is satisfied for all x ∈ V .

To simplify the notation, we denote 〈 f 〉 = ∑
x∈V m(x) f (x). In this paper we will

consider the following inequalities on graphs:

Definition 2.3 Let D > 2. We shall consider the following properties on G:

(LS) (log-Sobolev inequality) 〈 f 2 log f 〉 − ‖ f ‖22 log ‖ f ‖2 ≤ ε〈�( f )〉 + β(ε)‖ f ‖22,
where β(ε) is a monotonically decreasing continuous function of ε, for all
ε > 0, for any function f with finite support in G;

(S) (Sobolev inequality) ‖ f ‖2D/(D−2) ≤ c〈�( f )〉, for any function f with finite
support in G;

(N) (Nash inequality) ‖ f ‖2+4/D
2 ≤ c〈�( f )〉‖ f ‖4/D

1 , for any function f with finite
support in G;

(FK) (Faber–Krahn inequality) λ1(�) ≥ cV (�)−2/D , for every finite subset � of G,
where λ1(�) = inf {〈�( f )〉/‖ f ‖22; supp( f ) ⊂ �}.
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We also study a similar upper estimate for the continuous-time heat kernel p(t, x, y)

and the discrete-time heat kernel pk(x, y) separately. In fact, p(t, x, y) is not an exact
analogue of pk(x, y).

Definition 2.4 We define two estimates of the heat kernel on G as follows:

(CUE) (Continuous-time uniform upper estimate) supx,y∈V p(t, x, y) ≤ Ct−D/2.
(DUE) (Discrete-time uniform upper estimate) supx,y∈V pk(x, y)/m(x) ≤ Ck−D/2.

Study of the heat kernel upper bounds and the above inequalities has been the sub-
ject of great investigations for decades.Many authors (such asVaropoulos, Grigor’yan,
Coulhon–Ledoux, etc.) have contributed to the development of this area in a very gen-
eral setting (metricmeasure spaces) containing graphs as a particular case; for example,
the paper [6] gathered some conclusions on graphs. (N) and (S) are equivalent from
the Hölder inequality and the truncated functions technique (see [2]). Moreover, (N)

implies (FK) by the Hölder inequality, the converse being mainly due to Grigor’yan
[13]. In fact, the equivalence of (N) and (DUE), in a general setting, is covered in the
paper [4]. Moreover, by proving a Nash-type inequality, the authors proved that (FK)

implies the continuous-time uniform upper estimate of the Dirichlet heat kernel in an
abstract setting (see [14, Lems. 5.4 and 5.5]).

As alluded to in the introduction, there are no related results involving (CUE) and
(LS) on graphs. In this paper, we prove that (CUE) is equivalent to (LS) and (N)

separately (see Theorems 3.5 and 4.1). We basically use Davies and Simon’s method
[7,9]. A new proof given by Patrick deserves to be mentioned here [17]. They used
the Nash-type inequality as an intermediate step, instead of the �p version of (LS) and
Stein’s interpolation.

We summarize the above results and our conclusions as follows: The main contri-
bution of this theorem is to provide the equivalence between (CUE), (LS) and (N) on
graphs.

Theorem 2.5 Let D > 2. The following properties are equivalent on graphs:

1. Sobolev inequality (S).
2. Nash inequality (N).
3. Faber–Krahn inequality (FK).
4. Discrete-time uniform upper estimate (DUE).
5. Continuous-time uniform upper estimate (CUE).
6. log-Sobolev inequality (LS) with β(ε) = c − D

4 log ε.

Remark 2.6 Note that the requirement D > 2 is only necessary for the Sobolev
inequality to ensure that 2D/(D − 2) > 0 in (S), but not for the rest of the results.
Actually, the proof that the ultracontractive bounds (CUE) will transit through Nash
inequalities (N) (see Theorem 4.1) and log-Sobolev inequality (LS) (see Theorem
3.5) can be extended to any D > 0.

Another main purpose of this paper is to reveal that non-negatively curved graphs
with the assumption of polynomial volume growth can ensure the above properties.

In this paper, we say that the graph satisfies polynomial volume growth if, for all
x ∈ V, r ≥ 0, there exists D > 0 such that

V (x, r) ≥ cr D. (V)
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This condition is true on Abelian Cayley graphs which also satisfy CDE(n, 0).

Theorem 2.7 Let D = D(n) > 2, and assume a graph G satisfies CDE(n, 0) and
(V), then all of the properties (S), (N), (FK), (DUE), (CUE) hold with appropriate
constants, and also (LS) holds with β(ε) = c(n) − (D(n)/4 log ε).

To prove Theorem 2.7, we need the global estimate of the heat kernel from [3] (see
Theorem 7.6).

Lemma 2.8 Suppose G satisfies CDE(n, 0), then there exists a constant C ′, so that,
for t > 0,

p(t, x, y) ≤ C ′ 1

V (x,
√

t)
. (2.3)

Proof of Theorem 2.7 Adding the condition (V), we immediately obtain (CUE) from
Lemma 2.8, and combining with Theorem 2.5, we get Theorem 2.7.

Remark 2.9 Note that, if we do not consider (DUE), the above results can be extended
to bounded and unbounded Laplacians on weighted graphs. For bounded Laplacians,
the proof is basically the same as for the normalized Laplacian. For unbounded Lapla-
cians, it is slightly more complicated. In another paper, Gong and Lin proved that
(N) ⇔ (CUE) ⇒ (LS) for unbounded Laplacians on a complete graph with nonde-
generate measure (see [11, Thms. 3.1 and 4.1]). Furthermore, from [12, Thm. 1.3],
under the same assumptions, (2.3) holds if the graph satisfies CDE′(n, 0). Therefore,
for unbounded Laplacians, we can derive that, if a complete graph with nondegenerate
measure satisfiesCDE′(n, 0) and (V), then (S), (N), (FK), (CUE) holdwith appropriate
constants, and also (LS) with β(ε) = c(n) − (D(n)/4) log ε.

3 log-Sobolev Inequality and Ultracontractivity on Graphs

We say that the operator Pt = et� is ultracontractive if Pt is bounded from �2 to
�∞ for all t ≥ 0. Let ‖A‖p→q be the norm of an operator A from �p to �q , that is
‖A‖p→q := sup f ∈�p ‖A f ‖q/‖ f ‖p. We have, by duality, for all t > 0,

‖Pt/2‖2→∞ = ‖Pt/2‖1→2 = ‖Pt‖1/21→∞.

Indeed, the result follows from the semigroup property of the operator Pt , namely
Pt/2 ◦ Pt/2 = Pt , the symmetric property P∗

t = Pt , as well as the following well-
known equality:

‖A∗ A‖1→∞ = ‖A‖21→2.

Moreover,

‖Pt‖1→∞ = sup
x,y∈V

p(t, x, y);
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that is to say, obtaining the ultracontractivity property we mentioned before is the
same as obtaining a uniform upper bound for the heat kernel p(t, x, y).

Now, we introduce an analogous result on graphs from Davies’ theorem [7].

Theorem 3.1 For any f ∈ �2, if the ultracontractivity property

‖Pt f ‖∞ ≤ eM(t)‖ f ‖2
holds, where M(t) is a continuous and decreasing function of t , then for any 0 ≤ f ∈
Cc(V ), the logarithmic Sobolev inequality

∑

x∈V

m(x) f (x)2 log f (x) ≤ ε〈�( f )〉 + β(ε)‖ f ‖22 + ‖ f ‖22 log ‖ f ‖2

holds with β(ε) = M(ε) for any ε > 0.

Weassume that, if f (x) = 0,we take f (x)2 log f (x) to be zero in the above inequality.
In fact, there is a similar result in [15] (see Lemma 7.2) where the authors restrict to
functions in �∞(V, μ). However, the proof is basically the same.We simply reproduce
it here for the sake of completeness.

Proof Let p(s) be a bounded and continuous function of s such that p(s) ≥ 2 and
p′(s) is bounded. For any 0 ≤ f ∈ Cc(V ), note that the functions (Ps f )p(s) log Ps f
and �Ps f (Ps f )p(s)−1 are in �1. Therefore, we have

d

ds
‖Ps f ‖p(s)

p(s) = p′(s)〈(Ps f )p(s) log Ps f 〉 + p(s)〈�Ps f (Ps f )p(s)−1〉.

At s = 0, and specializing to p(s) = 2t/(t − s), 0 ≤ s < t , we obtain

d

ds
‖Ps f ‖p(s)

p(s)

∣∣
s=0 = 2

t
〈 f 2 log f 〉 + 2〈 f � f 〉.

We assume ‖ f ‖2 = 1. Combining the ultracontractivity property and the fact that
‖Pt f ‖2 ≤ ‖ f ‖2, and using the Stein interpolation theorem, we have

‖Ps f ‖p(s) ≤ eM(t)s/t .

From this point, we obtain

d

ds
‖Ps f ‖p(s)

p(s)

∣∣
s=0 ≤ 2M(t)

t
,

by observing ‖Ps f ‖p(s)
p(s)

∣∣
s=0 = 1, eM(t)sp(s)/t

∣∣
s=0 = 1, and

1 ≥ lim
s→0+

‖Ps f ‖p(s)
p(s) − 1

eM(t)sp(s)/t − 1
= d

ds
‖Ps f ‖p(s)

p(s)

∣∣
s=0

t

2M(t)
.
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Using the fact that−〈 f � f 〉 = 〈�( f )〉 from the symmetry of the weight of each edge,
and combining with the above equality, we obtain

〈 f 2 log f 〉 ≤ t〈�( f )〉 + M(t), t > 0.

If ‖ f ‖2 �= 1, we put f = g/‖g‖2 in the above inequality, and switch notation from t
to ε, yielding the logarithmic Sobolev inequality as we desired. ��

Now we turn to the converse of the above result. First, we introduce the following
lemma, which is similar to a result of Varopoulos [20] on a measure space:

Lemma 3.2 If there exists a monotonically decreasing continuous function β(ε) such
that, for any ε > 0 and 0 ≤ f ∈ Cc(V ),

〈 f 2 log f 〉 ≤ ε〈�( f )〉 + β(ε)‖ f ‖22 + ‖ f ‖22 log ‖ f ‖2, (3.1)

then, for all 2 < p < ∞, we have

〈 f p log f 〉 ≤ ε〈�( f p−1, f )〉 + 2β(ε)

p
‖ f ‖p

p + ‖ f ‖p
p log ‖ f ‖p.

Proof Putting f = g p/2 (2 < p < ∞) in (3.1), for all 0 ≤ g ∈ Cc(V ), we obtain

p

2
〈g2 log g〉 ≤ ε〈�(g p/2)〉 + β(ε)‖g‖p

p + p

2
‖g‖p

p log ‖g‖p.

We observe that the following inequality between �(g p/2) and �(g p−1, g) holds:

�(g p/2) ≤ p2

4(p − 1)
�(g p−1, g).

To prove this, we use the definition of � and the Schwartz inequality as follows:

(α p/2 − β p/2)2 =
(∫ β

α

p

2
s p/2−1 ds

)2

≤ p2

4
(α − β)

∫ β

α

s p−2 ds

= p2

4(p − 1)
(α − β)(α p−1 − β p−1).

Then

p

2
〈g2 log g〉 ≤ εp2

4(p − 1)
〈�(g p−1, g)〉 + β(ε)‖g‖p

p + p

2
‖g‖p

p log ‖g‖p.

Switching the notation from g to f yields the result. ��
The following theorem is a discrete analogue of the result of Davies and Simon [9]:
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Theorem 3.3 Let ε(p) > 0 and δ(p) be two continuous functions defined for all
2 < p < ∞ such that

〈 f p log f 〉 ≤ ε(p)〈�( f p−1, f )〉 + δ(p)‖ f ‖p
p + ‖ f ‖p

p log ‖ f ‖p

for any 0 ≤ f ∈ Cc(V ). If

t =
∫ ∞

2

ε(p)

p
dp, M =

∫ ∞

2

δ(p)

p
dp

are both finite, then

‖Pt‖2→∞ ≤ eM .

Proof Define the function p(s) for 0 ≤ s < t by

dp

ds
= p

ε(p)
, p(0) = 2, (3.2)

so that p(s) is monotonically increasing and p(s) → ∞ as s → t . Define also the
function N (s) for 0 ≤ s < t by

dN

ds
= δ(p)

ε(p)
, N (0) = 0,

so that N (s) → M as s → t . We consider the functional log
(
e−N (s)‖Ps f ‖p(s)

)
, for

any 0 < s < t and any 0 ≤ f ∈ Cc(V ). We obtain

d

ds
log

(
e−N (s)‖Ps f ‖p(s)

)

= d

ds

(
−N (s) + 1

p(s)
log ‖Ps f ‖p(s)

p(s)

)
= δ(p)

ε(p)
− 1

p2
p

ε(p)
log ‖Ps f ‖p

p

+ 1

p‖Ps f ‖p
p

(
p

ε(p)

〈
(Ps f )p log Ps f

〉 − p〈�((Ps f )p−1, Ps f )〉
)

= 1

ε(p)‖Ps f ‖p
p

( 〈
(Ps f )p log Ps f

〉

−ε(p)〈�((Ps f )p−1, Ps f )〉 − δ(p)‖Ps f ‖p
p − ‖Ps f ‖p

p log ‖Ps f ‖p

)

≤ 0.

So, for all 0 ≤ s < t ,

e−N (s)‖Ps f ‖p(s) ≤ ‖ f ‖2.
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We can derive that ‖Pt f ‖p
p is a decreasing function with respect to t as follows:

∂t‖Pt f ‖p
p = 〈p(Pt f )p−1�Pt f 〉 = − p〈�((Pt f )p−1, Pt f )〉

≤ − p · 4(p − 1)

p2
〈�((Pt f )p/2)〉 ≤ 0.

Therefore, combining the above two inequalities, for all 0 ≤ s < t , we have

‖Pt f ‖p(s) ≤ ‖Ps f ‖p(s) ≤ eN (s)‖ f ‖2.

Taking the limit s → t , we obtain

‖Pt f ‖∞ ≤ eM‖ f ‖2.

If 0 ≤ f ∈ �2, then there exists an increasing sequence of functions { fn}n∈N, i.e.,
0 ≤ fn ≤ fn+1 ∈ Cc(V ), such that fn(x) ≤ f (x) for any x ∈ V , and ‖ fn − f ‖2 →
0 (n → ∞); for example, take f (x) = ∑∞

n=1[ fn(x) − fn−1(x)] and f0 = 0.
Since ‖Pt fn − Pt f ‖2 → 0 (n → ∞) and from the above calculations, we have

‖Pt fn‖∞ ≤ eM‖ fn‖2.

Therefore,

‖Pt f ‖∞ ≤ eM‖ f ‖2.

For a general f ∈ �2, we know |Pt f | ≤ Pt | f | by the positivity of Pt , so

‖Pt f ‖∞ ≤ ‖Pt | f |‖∞ ≤ eM‖ f ‖2.

This completes the proof. ��
In the above theorem, we can choose

ε(p) = 2t

p
, δ(p) = 2β(ε(p))

p
,

so that the solution of (3.2) is

p(s) = 2t

t − s
,

and

M =
∫ ∞

2

δ(p)

p
dp =

∫ ∞

2

2β(ε(p))

p2
dp = 1

t

∫ t

0
β(ε) dε = M(t).

Therefore, combining Lemma 3.2 with Theorem 3.3, we obtain the following result:
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Corollary 3.4 Let β(ε) be a monotonically decreasing continuous function of ε such
that, for all ε > 0 and 0 ≤ f ∈ Cc(V ),

〈 f 2 log f 〉 ≤ ε〈�( f )〉 + β(ε)‖ f ‖22 + ‖ f ‖22 log ‖ f ‖2.

If

M(t) = 1

t

∫ t

0
β(ε) dε

is finite for all t > 0, then Pt is ultracontractive, and for all 0 < t < ∞,

‖Pt‖2→∞ ≤ eM(t).

Now, we give an example of the relationship between the bounds on ‖Pt‖2→∞ and
the efficiency of log-Solobev inequality using Theorem 3.1 and Corollary 3.4. If there
exist constants c1 > 0 and N > 0 such that, for all t > 0,

eM(t) ≤ c1t−N/4,

then there exists a constant c2 > 0 such that, for all ε > 0,

β(ε) ≤ c2 − N

4
log ε.

Conversely, the above inequality implies that there exists a constant c3 > 0 such that,
for all t > 0,

eM(t) ≤ c3t−N/4.

From the relationship between the upper bound on p(t, x, y) and ‖Pt‖2→∞ mentioned
above, we have the following conclusion:

Theorem 3.5 The following two inequalities are equivalent:

• For some constants C > 0, N > 0 and for all t > 0,

sup
x,y∈V

p(t, x, y) ≤ Ct−N/2.

• For some constant C ′ > 0 and for all ε > 0,

〈 f 2 log f 〉 ≤ ε〈�( f )〉 +
(

C ′ − N

4
log ε

)
‖ f ‖22 + ‖ f ‖22 log ‖ f ‖2.
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4 Nash Inequalities and Ultracontractivity on Graphs

The equivalence between Nash inequalities and the ultracontractivity property goes
back to Nash [18] and was further studied by Fabes and Stroock [10] in the smooth
setting, and [5] and [4] in a measure space.

Theorem 4.1 Let μ > 0. The following two bounds are equivalent:

(1) For some constant c1 > 0 and all t > 0, f ∈ �2,

‖Pt f ‖∞ ≤ c1t−μ/4‖ f ‖2.

(2) For some constant c2 > 0 and all 0 ≤ f ∈ Cc(V ),

‖ f ‖2+4/μ
2 ≤ c2〈�( f )〉‖ f ‖4/μ1 .

Proof First, we introduce an equality similar to the one in [3] that wewill use later. For
any f ∈ Cc(V ) and all s > 0, from the facts that Pt is self-adjoint and Pt commutes
with �, and the semigroup property of Pt (that is, Pt/2 ◦ Pt/2 = Pt ), we obtain

〈 f, f 〉 − 〈Ps f, f 〉 = 〈 f − Ps f, f 〉 =
∑

x∈V

μ(x) f (x)(P0 f − Ps f )(x)

= −
∫ s

0

∑

x∈V

μ(x) f (x)∂t Pt f (x) dt

= −
∫ s

0

∑

x∈V

μ(x) f (x)�Pt f (x) dt

= −
∫ s

0

∑

x∈V

μ(x)Pt/2 f (x)�Pt/2 f (x) dt =
∫ s

0
〈�(Pt/2 f )〉 dt.

Given (1), we have ‖Pt f ‖2 ≤ c1t−μ/4‖ f ‖1 by duality. Then, for all f ∈ Cc(V ),

c21t−μ/2‖ f ‖21 ≥ ‖Pt f ‖22 = 〈P2t f, f 〉
= 〈 f, f 〉 − ∫ 2t

0 〈�(Ps/2 f )〉 ds ≥ 〈 f, f 〉 − 2t〈�( f )〉.

In the last step, we used that the function 〈�(Pt f )〉 is nonincreasing with respect to t ,
for any t > 0, which follows from

d

dt
〈�(Pt f )〉 = d

dt

(1
2

∑

x∈V

∑

y∼x

ωxy(Pt f (y) − Pt f (x))2
)

=
∑

x∈V

∑

y∼x

ωxy(Pt f (y) − Pt f (x))(�Pt f (y) − �Pt f (x))

= 2〈�(Pt f,�Pt f )〉 = −2〈�Pt f,�Pt f 〉 ≤ 0.
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Therefore,

‖ f ‖22 ≤ 2t〈�( f )〉 + c21t−μ/2‖ f ‖21,

and (2) follows by putting

t = 〈�( f )〉e−2/(μ+2)‖ f ‖4/(μ+2)
1 .

Conversely, given (2), for all 0 ≤ f ∈ Cc(V ), we know that ‖ f ‖1 ≥ ‖Pt f ‖1, so we
have

− d

dt
‖Pt f ‖22 = 〈�(Pt f )〉 ≥ ‖Pt f ‖2+4/μ

2

c2‖Pt f ‖4/μ1

≥ ‖Pt f ‖2+4/μ
2

c2‖ f ‖4/μ1

.

Hence,

− d

dt
(‖Pt f ‖−4/μ

2 ) ≥ 2

c2μ‖ f ‖4/μ1

,

and, integrating the above inequality from 0 to t , we obtain

‖Pt f ‖−4/μ
2 ≥ ‖Pt f ‖−4/μ

2 − ‖ f ‖−2/μ ≥ 2t

c2μ‖ f ‖4/μ1

.

Thus,

‖Pt f ‖2 ≤
(

c2μ

2t

)μ/4

‖ f ‖1 = c1t−μ/4‖ f ‖1.

Finally, (1) follows by duality.
As in the proof of Theorem 3.3, for general f ∈ �2, we have the same conclusion.

Proof of Theorem 2.5. From Theorem 3.5 [(CUE) ⇔ (LS) with β(ε) = c −
(D/4) log ε] and Theorem 4.1 [(CUE) ⇔ (N)], and that we already know that
(S) ⇔ (N) ⇔ (FK) ⇔ (DUE) from the summary in Sect. 2, we finally obtain
our desired result.
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