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Abstract. We introduce the notions of a path complex and its homologies. Particular cases of path
homologies are simplicial homologies and digraph homologies. We state and prove some properties of path
homologies, in particular, the Künneth formulas for Cartesian product and join, which happen to be true
at the level of chain complexes.

1. Introduction

The subject of this paper is the notion of a path complex, which unifies and generalizes the notions
of a simplicial complex and a digraph (=directed graph). In short, a path complex P on a finite set V is
a collection of paths (=sequences of points) on V such that if a path v belongs to P , then a truncated
path, which is obtained from v by removing either the first or the last point, is also in P . Given a path
complex P , all the paths in P are called allowed.

Any simplicial complex S determines naturally a path complex by associating with any simplex from S
the sequence of its vertices (see Sec. 3 for details).

However, the main motivation for considering path complexes comes from digraphs. A digraph G is
a pair (V, E), where V is any set and E is a binary relation on V , i.e., E is a subset of V ×V . If (a, b) ∈ E,
then the pair (a, b) is called a directed edge or arrow; this fact is also denoted by a → b. Any digraph
naturally gives rise to a path complex where allowed paths are those that go along arrows of the digraph.

One of our key observations is that any path complex P allows one to define a chain complex with an
appropriate boundary operator that leads to the notion of homology groups of P . We refer to this notion
as a path homology.

In the case where P arises from a simplicial complex S, the path homology of P coincides with the
simplicial homology of S. If P arises from a digraph G, then we obtain a new notion: the path homology
of a digraph. Although most of the results are presented in this paper for arbitrary path complexes, we
always have in mind applications for digraphs. On the other hand, the notion of a path complex provides
an alternative viewpoint for the classical results about simplicial complexes.

There has been a number of attempts to define the notion of (co)homology for graphs. At a trivial
level, any graph can be regarded as a one-dimensional simplicial complex, so that its simplicial homologies
are defined. However, all homology groups in dimension 2 and higher are trivial, which makes this
approach uninteresting.

Another way to make a graph into a simplicial complex is to consider all its cliques (=complete
subgraphs) as simplexes of the corresponding dimensions (cf. [4,15]). Then higher dimensional homologies
may be nontrivial, but in this approach the notion of graph loses its identity and becomes a particular
case of the notion of a simplicial complex. Besides, some desirable functorial properties of such homologies
fail; for example, the Künneth formula is not true for the Cartesian product of graphs (for example, the
Cartesian product of two 4-cycles has trivial H2 whereas H1 of 4-cycle is nontrivial).

Yet another approach to homologies of digraphs can be realized via Hochschild homology. Indeed,
allowed paths on a digraph have a natural operation of product, which allows to define the notion of
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a path algebra of a digraph. The Hochschild homology of the path algebra is a natural object to consider.
However, it was shown in [14] that Hochschild homologies of order ≥ 2 are trivial, which makes this
approach not so attractive.

In singular homology theories of graphs one uses predefined “small” graphs as basic cells and defines
singular chains as formal sums of the maps of the basic cell into the graph (see, for example, [15, 18]).
However, simple examples show that the homology groups obtained in this way, depend essentially on
the choice of the basic cells. Moreover, such homologies are extremely difficult to compute, even for small
graphs, and the functorial properties are not known at all.

The path homologies of digraphs that we present in this paper have the following advantages in
comparison with the previously studied notions of graph homologies.

(1) The path homologies of all dimensions can be nontrivial; even for planar graphs the path homolo-
gies can be nontrivial in dimension 2. Also, the chain complex associated with a path complex has
a richer structure than simplicial chain complexes. It contains not only cliques but also binary
hypercubes and other interesting subgraphs, some of them are reminiscent of polyhedra.

(2) The path homologies are easy to compute. For small digraphs their path homologies can be
computed by hand, either by definition or by using simple properties. For larger digraphs it can be
done using any software package containing operations with matrices, in particular, computation
of the rank of a matrix.

(3) The path homology theory is compatible with the homotopy theory of digraphs. The latter was
introduced by the authors in [9] (a homotopy theory for undirected graphs was developed earlier
in [1, 2]), where they proved that the path homologies of digraphs are invariant with respect to
homotopy and that the abelization of the fundamental group is isomorphic to the one-dimensional
homology group.

(4) Path homologies have good functorial properties with respect to graph-theoretical operations, for
example, morphisms of digraphs induce homomorphisms of path homologies. Also, the homologies
of the Cartesian product of digraphs (as well as of the join) satisfy the Künneth formula (Theorems
5.5 and 6.6 of the present paper).

(5) The path homology theory is dual to the cohomology theory of digraphs that was introduced by
Dimakis and Müller-Hoissen [5, 6] and was further developed in [12]. The latter theory is based
on a classification of [3] of exterior derivations on algebras, and the coboundary operator arises
naturally as an exterior derivative on the algebra of functions on the vertex set of the digraph.
However, in the present paper we do not discuss cohomologies.

We feel that the notion of path homologies (and the dual notion of cohomologies) has a rich mathemat-
ical content and hope that it will become a useful tool in various areas of pure and applied mathematics.
For example, this notion was employed in [11] to give a new elementary proof of a theorem of Gerstenhaber
and Schack [7] that gives a representation of simplicial homology as a Hochschild homology. A link be-
tween path homologies of digraphs and cubical homologies was revealed in [10]. Homology and homotopy
of digraphs may become use in some graph coloring problems; a simple example of this type has appeared
in [9]. On the other hand, it is conceivable that the notion of path homologies of digraphs can be used in
practical applications such as coverage verification in sensor networks (cf. [17]), and many others.

Let us briefly describe the structure of the paper and the main results. In Sec. 2 we introduce the
notion of a boundary operator on paths on a finite set V . In Sec. 3 we define the notions of a path
complex, a ∂-invariant path (an element of a chain complex), and the path homologies.

In Sec. 4, we give some examples of digraphs and ∂-invariant paths there. We state some basic results
about path homologies of digraphs, which allow to compute homology groups of simple digraphs (the
proofs can be found in [8]).

In Sec. 5, we introduce the operation join of two path complexes and prove the Künneth formula for
it (Theorem 5.5). Particular cases of join are operation of taking a cone and suspension of a digraph that
behave homologically in the same way as those in the classical algebraic topology.
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In Sec. 6, we introduce the notions of cross product of paths and Cartesian product of path complexes.
The latter matches the notion of the Cartesian product of digraphs. We state and prove the Künneth
formula for Cartesian product (Theorem 6.6) and give some examples.

Most difficult and interesting results of this paper are Theorems 5.5 and 6.6. In the setting digraphs
these theorem were proved in [13], while in the present paper we prove them in a more general setting of
path complexes.

2. Paths on a Finite Set

Let V be an arbitrary nonempty finite set whose elements will be called vertices. For any nonnegative
integer p, an elementary p-path on a set V is any sequence {ik}p

k=0 of p + 1 vertices of V (a priori the
vertices in the path do not have to be distinct). For p = −1, an elementary p-path is an empty set ∅.
The p-path {ik}p

k=0 will also be denoted simply by i0 . . . ip, without delimiters between the vertices.

2.1. Boundary Operator. Fix a field K and consider the K-linear space Λp = Λp(V ) that consists of
all formal linear combinations of all elementary p-paths with coefficients from K. The elements of Λp are
called p-paths on V . An elementary p-path i0 . . . ip as an element of Λp will be denoted by ei0...ip . The
empty set as an element of Λ−1 will be denoted by e.

By definition, the family {ei0...ip : i0, . . . , ip ∈ V } is a basis in Λp, and any p-path v ∈ Λp has a unique
representation in the form

v =
∑

i0,...,ip∈V

vi0...ipei0...ip , (2.1)

where vi0...ip ∈ K. For example, Λ0 consists of all linear combinations of ei, where i ∈ V , Λ1 consists of
all linear combinations of eij , where i, j ∈ V , etc. Note that Λ−1 consists of all multiples of e so that
Λ−1

∼= K.
For any p ≥ 0, define the boundary operator ∂ : Λp → Λp−1 as a linear operator that acts on elementary

paths by

∂ei0...ip =
p∑

q=0

(−1)qei0...̂ıq ...ip , (2.2)

where the hat ı̂q means omission of the index iq. For example, we have

∂ei = e, ∂eij = ej − ei, ∂eijk = ejk − eik + eij . (2.3)

It follows that, for any v ∈ Λp,

(∂v)j0...jp−1 =
∑

k∈V

p∑

q=0

(−1)qvj0...jq−1k jq ...jp−1 . (2.4)

For example, for any u ∈ Λ0 and v ∈ Λ1 we have

∂u =
∑

k∈V

uk and (∂v)i =
∑

k∈V

(vki − vik).

Set also Λ−2 = {0} and define ∂ : Λ−1 → Λ−2 to be zero.

Lemma 2.1. We have ∂2 = 0. Hence, Λ∗ = {Λp} is a chain complex.

566



Proof. The operator ∂2 acts from Λp to Λp−2, so that the identity ∂2 = 0 makes sense for all p ≥ 0. In
the case p = 0, the identity ∂2 = 0 is trivial. For p ≥ 1, we have by (2.2)

∂2ei0...ip =
p∑

q=0

(−1)q∂ei0...̂ıq...ip =
p∑

q=0

(−1)q

( q−1∑

r=0

(−1)rei0...̂ır...̂ıq...ip +
p∑

r=q+1

(−1)r−1ei0...̂ıq...̂ır...ip

)

=
∑

0≤r<q≤p

(−1)q+rei0...̂ır...̂ıq ...ip −
∑

0≤q<r≤p

(−1)q+rei0...̂ıq...̂ır...ip .

After switching q and r in the last sum, we see that the two sums cancel out, whence ∂2ei0...ip = 0. This
implies that ∂2v = 0 for all v ∈ Λp.

2.2. Join of Paths. For all p, q ≥ −1 and for any two paths u ∈ Λp and v ∈ Λq define their join
uv ∈ Λp+q+1 as follows:

(uv)i0...ipj0...jq = ui0...ipvj0...jq . (2.5)
Clearly, join of paths is a bilinear operation that satisfies the associative law (but is not commutative).
It follows from (2.5) that

ei0...ipej0...jq = ei0...ipj0...jq . (2.6)
If p = −2 and q ≥ −1, then set uv = 0 ∈ Λq−1. A similar rule applies if q = −2 and p ≥ −1.

Lemma 2.2 (product rule). For all p, q ≥ −1 and u ∈ Λp, v ∈ Λq, we have

∂(uv) = (∂u)v + (−1)p+1u∂v. (2.7)

Proof. It suffices to prove (2.7) for u = ei0...ip and v = ej0...jq . We have

∂(uv) = ∂ei0...ipj0...jq = ei1...ipj0...jq − ei0i2...ipj0...jq + · · · + (−1)p+1(ei0...ipj1...jq − ei0...ipj0j2...jq + . . .)

= (∂ei0...ip)ej0...jq + (−1)p+1ei0...ip∂ej0...jq ,

whence (2.7) follows.

2.3. Regular Paths. We say that an elementary path i0 . . . ip is regular if ik−1 �= ik for all k = 1, . . . , p,
and nonregular otherwise. For example, a 2-path iij is nonregular, while a 2-path iji is regular provided
i �= j.

For any p ≥ −1, consider the following subspace of Λp spanned by the regular elementary paths:

Rp = Rp(V ) := span{ei0...ip : i0 . . . ip is regular}.
The elements of Rp are called regular p-paths.

We would like to consider the operator ∂ on the spaces Rp. However, ∂ is not invariant on the family
{Rp}. For example, eiji ∈ R2 for i �= j while

∂eiji = eji − eii + eij /∈ R1

as it has a nonregular term eii. The same applies to the notion of join of paths: the join of two regular
paths does not have to be regular, for example, eiei = eii.

However, it is easy to show that ∂ is invariant on the complementary spaces Np spanned by nonregular
p-paths, which allows us to extend ∂ to the quotient spaces Λp/Np. Then we pull this ∂ back to Rp using
Rp

∼= Λp/Np. The operator ∂ : Rp → Rp−1 defined in this way is called the regular boundary operator.
The formula (2.2) remains true for the regular ∂ except that in this case all nonregular terms on the
right-hand side should be treated as zero. For example, we have for the regular operator ∂

∂eiji = eji − eii + eij = eji + eij ∈ R1

provided i �= j.
Similarly one defines the regular join, using the fact that the join of an element of Np with any element

of Λq is in Np+q+1 (see [8] for details). This allows us to define join on the quotients Λp/Np and then pull
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back to Rp. The formula (2.6) remains true for regular join provided we treat a nonregular path in the
right-hand side as zero. For example, for the regular join we have eijeji = eijji = 0.

It follows from the above constructions that the regular versions of ∂ and join also satisfy ∂2 = 0 and
the product rule (2.7), for all u ∈ Rp and v ∈ Rq. In particular, R∗ = {Rp} is a chain complex.

Let V and V ′ be two finite sets. Any map f : V → V ′ induces the map

f∗ : Λp(V ) → Λp(V ′)

by the rule
f∗(ei0...ip) = ef(i0)...f(ip).

The map f∗ evidently commutes with ∂ and, hence, is a morphism Λ∗(V ) → Λ∗(V ′) of chain complexes.
Since f∗ maps nonregular paths to nonregular, it induces a morphism R∗(V ) → R∗(V ′) of chain complexes.

3. Path Complexes

3.1. The Notion of a Path Complex.

Definition 3.1. A path complex over a set V is a nonempty collection P of elementary paths on V with
the following property:

if i0 . . . in ∈ P , then i0 . . . in−1 ∈ P and i1 . . . in ∈ P . (3.1)

When a path complex P is fixed, all the paths from P are called allowed, whereas the elementary
paths that are not in P are called nonallowed. Condition (3.1) means that if we remove the first or the
last element of an allowed n-path, then the resulting (n − 1)-path is also allowed.

The set of all n-paths from P is denoted by Pn. The set P−1 consists of a single empty path e. The
elements of P0 (i.e., allowed 0-paths) are called the vertices of P . Clearly, P0 is a subset of V . By the
property 3.1, if i0 . . . in ∈ P , then all ik are vertices of P . Hence, we can (and will) remove from the set V
all nonvertices so that V = P0.

Example 3.2. By definition, an abstract finite simplicial complex S is a collection of subsets of a finite
vertex set V that satisfies the following property:

if σ ∈ S, then any subset of σ is also in S.

Let us enumerate the elements of V by distinct reals and identify any subset s of V with the elementary
path that consists of the elements of s put in the (strictly) increasing order. Denote by P (S) this
collections of elementary paths on V , which uniquely determines S. The defining property of a simplex
can be restated the following:

if v ∈ P (S), then any subsequence of v is also in P (S). (3.2)

Consequently, the family P (S) satisfies the property (3.1) so that P (S) is a path complex. The allowed
n-paths in P (S) are exactly the n-simplexes.

Fig. 1. A simplicial complex (left) and a digraph (right).
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For example, the simplicial complex on Fig. 1 (left) has the following path complex:

P0 = {0, 1, . . . , 8},
P1 = {01, 02, 03, 04, 05, 06, 07, 08, 12, 34, 35, 45, 67, 68, 78},
P2 = {012, 034, 035, 045, 345, 678},
P3 = {0345}.

Example 3.3. Let G = (V, E) be a finite digraph, where V is a finite set of vertices and E is the set of
directed edges, i.e., E ⊂ V × V . The fact that (i, j) ∈ E will also be denoted by i → j.

An elementary n-path i0 . . . in on V is called allowed if ik−1 → ik for any k = 1, . . . , n. Denote by
Pn = Pn(G) the set of all allowed n-paths. In particular, we have P0 = V and P1 = E. Clearly, the
collection P =

⋃
n

Pn of all allowed paths satisfies the condition (3.1) so that P is a path complex. This

path complex is naturally associated with the digraph G and will be denoted by P (G).
For example, a digraph on Fig. 1 (right) has the following path complex:

P0 = {0, 1, . . . , 8},
P1 = {01, 02, 03, 04, 05, 06, 07, 08, 12, 34, 35, 45, 67, 68, 78},
P2 = {012, 034, 035, 045, 067, 068, 678},
P3 = {0345, 0678}.

It is easy to see that a path complex arises from a digraph if and only if it satisfies the following
additional condition: if in a path i0 . . . in all pairs ik−1ik are allowed, then the whole path i0 . . . in is
allowed.

It is easy to show that a path complex P arises from a simplicial complex if and only if it satisfies
the following two properties.

(1) Any subsequence of any path from P is also in P (we say in this case that the path complex P
is perfect).

(2) There is an injective real-valued function on the vertex set of P that is strictly monotone increasing
along any path from P .

3.2. Homologies of Path Complex. Given an arbitrary path complex P = {Pn}∞n=0 over a finite
set V , consider for any integer n ≥ −1 the K-linear space An that is spanned by all the elementary
n-paths from P , i.e.

An = An(P ) = span{ei0...in : i0 . . . in ∈ Pn}.
The elements of An are called allowed n-paths. By construction, An is a subspace of Λn. For example,
Ap = Λp for p ≤ 0, while A1 is spanned by all edges of P and can be smaller than Λ1.

We would like to restrict the operator ∂ defined on spaces Λn to the subspaces An. For some path
complexes it can happen that ∂An ⊂ An−1, so that the restriction is straightforward. If it is not the case,
then an additional construction is needed as will be explained below. The inclusion ∂An ⊂ An−1 takes
place, for example, for perfect path complexes. In this case, we obtain a chain complex

0 ← K ← A0 ← . . . ← An−1 ← An ← . . . , (3.3)

whose homology groups are denoted by H̃n(P ), n ≥ −1, and are referred to as the reduced path homologies
of P . Consider also the truncated complex

0 ← A0 ← . . . ← An−1 ← An ← . . . , (3.4)

whose homology groups are denoted by Hn(P ), n ≥ 0, and are referred to as the path homologies of P .
For example, this construction works if the path complex P arises from a simplicial complex S. Then the
path homology groups of P coincide with the corresponding simplicial homology groups of S.
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Now consider the general case where ∂An does not have to be a subspace of An−1. For example, this
is the case for a digraph

↗
1•↘

0 • •2

where the 2-path e012 is allowed, while ∂e012 = e12 − e02 + e01 is nonallowed because e02 is nonallowed.
For a general path complex P and for any n ≥ −1, define the following subspace of An:

Ωn = Ωn(P ) = {v ∈ An : ∂v ∈ An−1}. (3.5)

Note that Ωn = An for n ≤ 1 while for n ≥ 2 the space Ωn can be actually smaller that An. We claim
that always ∂Ωn ⊂ Ωn−1. Indeed, if v ∈ Ωn, then ∂v ∈ An−1 and ∂(∂v) = 0 ∈ An−2 whence it follows
that ∂v ∈ Ωn−1, which was to be proved.

The elements of Ωn are called ∂-invariant n-paths. Thus, we obtain the augmented chain complex of
∂-invariant paths:

0 ← K ← Ω0 ← . . . ← Ωn−1 ← Ωn ← Ωn+1 ← . . . , (3.6)

where all mappings are given by ∂. Consider also its standard (nonaugmented) version

0 ← Ω0 ← . . . ← Ωn−1 ← Ωn ← Ωn+1 ← . . . . (3.7)

The homology groups of (3.7) are referred to as the path homology groups of the path complex P and
are denoted by Hn(P ), n ≥ 0. The homology groups of (3.6) are called the reduced path homology groups
of P and are denoted by H̃n(P ), n ≥ −1.

Definition 3.4. A path complex P is called regular if it contains no 1-path of the form ii. Equivalently,
P is regular if all the paths i0 . . . in ∈ P are regular.

For example, the path complex of a simplicial complex is always regular. The path complex of
a digraph is regular if and only if the digraph is loopless, i.e., if the 1-paths ii are not edges.

For a regular path complex the above construction of the spaces Ωn allows the following variation.
As the space An of allowed n-path is in this case a subspace of the space Rn of regular n-paths, we can
replace in (3.5) the nonregular boundary operator ∂ on Λn by the regular boundary operator on Rn as
described in Sec. 2.3. The resulting space Ωn is referred to as a regular space of ∂-invariant paths. Hence,
if the path complex P is regular then we can consider also regular versions of the chain complexes (3.6)
and (3.7) and the regular versions of homology groups.

If the path complex P is perfect, then we obtain Ωn(P ) = An(P ) for all n (in this case, there is
no difference between regular and nonregular versions). Hence, in this case the chain complex (3.6) is
identical to (3.3), and (3.7) is identical to (3.4).

If P (G) is the path complex of a digraph G, then we use the notation Ωn(G) := Ωn

(
P (G)

)
. The

corresponding homology groups are denoted by Hn(G), respectively H̃n(G), and are referred to as the
path homologies of the digraph G.

The Euler characteristic of the path complex is defined by

χ(P ) =
n∑

p=0

(−1)p dim Hp(P ) (3.8)

provided there exists n such that dimHp(P ) = 0 for all p > n. For a regular path complex P , there are
a regular and nonregular versions of χ(P ), which do not have to match.

3.3. Some Properties of Path Homologies. Let us state some simple properties of the space Ωn(P )
and Hn(P ).

Proposition 3.5 ([8]).
(a) If dim Ωn = 0, then dim Ωp = 0 for all p > n.
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(b) For a regular chain complex {Ω∗}, the condition dim Ωn ≤ 1 for some n implies that dim Ωp = 0
for all p > n.

A connected component of a path complex P is any minimal subset U of V such that if i ∈ U , then
U contains any vertex j ∈ V such that ij or ji is an allowed 1-path.

Proposition 3.6 ([8]). For any path complex P , we have dim H0(P ) = k, where k is the number of
connected components of P . Moreover, H0(P ) is generated by any set {ei1 , . . . , eik} of k vertices belonging
to different connected components. In particular, if P is connected, then dim H0(P ) = 1 and, hence,
dim H̃0(P ) = 0.

Let P be a regular path complex over a set V and P ′ be a regular path complex over a set V ′.

Definition 3.7. We say that a map f : V → V ′ is a morphism of path complexes from P to P ′ if, for any
path v ∈ P , the path f∗(v) either lies in P ′ or is nonregular.

Proposition 3.8. Any morphism f : V → V ′ of path complexes P and P ′ induces a morphism of regular
chain complexes

f∗ : Ω∗(P ) → Ω∗(P ′)
and, consequently, a homomorphism of regular homology groups

f∗ : H∗(P ) → H∗(P ′).

Proof. Any allowed path v ∈ An(P ) is a linear combination of paths ei0...in ∈ P and, hence, f∗(v) is
a linear combination of paths f∗(ei0...in) that are either in P ′ or nonregular. Since nonregular paths are
treated as zero, we obtain that f∗(v) ∈ An(P ′). If v ∈ Ωn(P ), then ∂v ∈ An−1(P ) and, hence,

∂
(
f∗(v)

)
= f∗(∂v) ∈ An−1(P ′),

which implies f∗(v) ∈ Ωn(P ′). Hence, f∗ is a morphism of regular chain complexes. The second claim is
standard.

4. Digraphs

4.1. Path Homologies on Digraphs. In this section, we give some examples of ∂-invariant paths on
digraphs without loops, i.e., edges of the form a → a. If G = (V, E) is a digraph without loops, then
its path complex P (G) is regular. We deal here with the regular spaces Ωn(G) = Ωn

(
P (G)

)
and regular

homology groups Hn(G) = Hn

(
P (G)

)
and H̃n(G) = H̃n

(
P (G)

)
.

4.1.1. Triangles and squares. Let us call by a triangle a sequence of three distinct vertices a, b, c ∈ V such
that there are arrows a → b, b → c, and a → c:

b•
a•↗ → ↘•c

.

Note that a triangle determines a 2-path eabc ∈ Ω2 as eabc ∈ A2 and ∂eabc = ebc − eac + eab ∈ A1. The
2-path eabc will also be referred to as a triangle.

Let us call by a square a sequence of four distinct vertices a, b, b′, c ∈ V such that there are arrows
a → b, b → c, a → b′, and b′ → c:

b• −→ •c

↑ ↑
a• −→ •b′

.

Note that a square determines a 2-path v := eabc − eab′c ∈ Ω2 as v ∈ A2 and

∂v = (ebc − eac + eab) − (eb′c − eac + eab′) = eab + ebc − eab′ − eb′c ∈ A1.

The 2-path v will also be referred to as a square.

571



A double edge is a pair of distinct vertices a, b ∈ V such that there are arrows a → b and b → a. It
determines a 2-path eaba ∈ Ω2 because eaba ∈ A2 and

∂eaba = eba − eaa + eab = eba + eab ∈ A2

(since the chain complex {Ω∗} is regular, we have eaa = 0). The 2-path eaba will also be referred to as
a double edge.

Proposition 4.1 ([9, Proposition 2.9; 8]).

(a) Any element of Ω2(G) is a linear combination of double edges, triangles, and squares.
(b) Assume that a digraph G = (V, E) contains neither double edges nor squares. Then dim Ω2(G) is

equal to the number of distinct triangles in G, and dim Ωp(G) = 0 for all p > 2.

Consequently, if G contains neither double edges nor triangles nor squares, then dim Ωp(G) =
dim Hp(G) = 0 for all p ≥ 2.

In part (a) one cannot relate directly dim Ω2 to the number of squares and triangles, since there may
be a linear dependence between. Indeed, consider the following digraph:

1•
0

↗• →
↘

2• ↘→ •
↗

4

•
3

.

It contains three squares 0124, 0134, and 0234, which determine three ∂-invariant paths

e014 − e024, e024 − e034, e034 − e014.

These paths are linearly dependent as their sum is equal to 0. It is easy to see that dim Ω2 = 2. For this
digraph, all reduced homologies are trivial.

In the presence of squares one may have nontrivial Ωp for arbitrary p as one can see from numerous
examples in the next sections.

4.1.2. Snake. A snake of length p is a digraph with p + 1 vertices, say 0, 1, . . . , p, and with the arrows
i → (i + 1) and i → (i + 2) (see Fig. 2). In particular, any triple i(i + 1)(i + 2) is a triangle.

Fig. 2. A snake.

A snake of length p contains a ∂-invariant p-path v = e01...p. Indeed, this path is obviously allowed,
its boundary

∂v =
p∑

k=0

(−1)ke0...k̂...p

is also allowed (because (k − 1)(k + 1) is an arrow), whence v ∈ Ωp.
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4.1.3. Simplex-digraph. Let us define for any n ≥ 0 a simplex-digraph Smn as follows: its set of vertices
is {0, 1, . . . , n} and the arrows are i → j for all i < j. For example, we have

Sm1 = 0• → •1, Sm2 = ↗
2•↖

0• → •1
,

and Sm3 is shown on Fig. 3.

Fig. 3. A 3-simplex digraph Sm3.

Since a simplex contains a snake as a subgraph, the n-path v = e01...n is ∂-invariant on Smn.

4.1.4. Star-shaped digraphs. We say that a digraph G is star-shaped if there is a vertex a (called a star
center) such that there is an arrow a → b for all b �= a. Similarly, a digraph G is called inverse star-shaped
if there is a vertex a (called a star center) such that there is an arrow b → a for all b �= a.

For example, any simplex-digraph is star-shaped and inverse star-shaped.

Proposition 4.2 (a Poincaré lemma). If G is a (inverse) star-shaped digraph, then all reduced homologies
H̃n(G) are trivial.

The proof can be found in [8]. Alternatively, Proposition 4.2 is an easy consequence of Theorem 5.5,
as will be explained below in Sec. 5.2.

It follows from Proposition 4.2 that all reduced homologies of Smn are trivial.

4.1.5. Cycles. We say that a digraph G = (V, E) is a cycle-graph if it is connected (as an undirected
graph) and every vertex has the degree 2. For a cycle-graph we have dimH0(G) = 1 and dim Ω0(G) =
|V | = |E| = dim Ω1(G).

Proposition 4.3 ([8; 9, Ex. 2.8]). Let G be a cycle-graph. Then

dim Ωp(G) = 0 for all p ≥ 3 and dim Hp(G) = 0 for all p ≥ 2.

If G is a triangle or a square, then

dim Ω2(G) = 1, dim H1(G) = 0, χ(G) = 1,

whereas otherwise
dim Ω2(G) = 0, dim H1(G) = 1, χ(G) = 0.

In the latter case, the spanning element of H1(G) is the 1-path σ such that

σi(i+1) =

{
1 if i(i + 1) is an edge,
−1 if (i + 1)i is an edge,

(4.1)

and all other components of σ vanish.
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Fig. 4. Graph G in two representations: embedded on the Möbius band (left) and in R
3 (right).

4.1.6. Möbius band. Consider a (undirected) graph G on Fig. 4 with 6 vertices and 12 edges. As a one-di-
mensional simplicial complex, G has simplicial homologies H∗

(
C∗(G)

)
.

On the other hand, let us introduce arbitrarily a set D of directions on the edges of G, so that (G, D)
is a digraph and, hence, has the digraph homologies H∗(G, D). Let us show that for, any choice of D,

H1

(
C∗(G)

) �= H1(G, D). (4.2)

Let Ω∗ be the chain complex of the digraph (G, D). In particular, dim Ω0 = 6, which is the number of
vertices, and dim Ω1 = 12, which is the number of edges. By homological algebra, we have the following
universal identity

dim H1(Ω) − dim H0(Ω) = dim Ω1 − dim Ω0 − dim ∂Ω2

and an analogous identity for the simplicial homologies. Since the graph G is connected, we have
dim H0(Ω) = 1. It follows that

dim H1(Ω) = 7 − dim ∂Ω2.

A similar formula holds for the simplicial homologies:

dim H1

(
C∗(G)

)
= 7 − dim ∂C2(G) = 7,

since C2(G) is trivial.
It remains to show that the space ∂Ω2 is nontrivial for any choice D of the edge directions, which will

yield
dim H1(G, D) ≤ 6

and, hence, (4.2). It suffices to verify that there is at least one triangle abc in (G, D), since eabc ∈ Ω2 and
∂eabc �= 0. Indeed, let us try to define directions D on the edges of G so that (G, D) contains no triangles.
Then any undirected triangle in G must become one of the two cycles

• ←− •
↘•↗ or

• −→ •
↖•↙ .

Fig. 5. Any direction of the edge 23 will create a triangle.
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Given a direction of the edge 03, this requirement determines uniquely the directions of all other edges
(cf. Fig. 5), up to the edge 23. However, with any direction on 23 the sequence 023 will become a triangle,
which finishes the proof.

4.1.7. Connected sum. A digraph G = (V, E) is called the connected sum of digraphs G′ = (V ′, E′) and
G′′ = (V ′′, E′′) if V = V ′ ∪ V ′′, E = E′ ∪ E′′, and V ′ ∩ V ′′ consists of a single vertex.

Proposition 4.4 ([12]). If G is a connected sum of G′ and G′′, then

H̃∗(G) ∼= H̃∗(G′) ⊕ H̃∗(G′′).
For example, the digraph G on the right panel of Fig. 1 is a connected sum of a triangle 012 and two

3-simplexes 0678 and 0345. Since all reduced homologies of simplexes are trivial, we obtain that all the
reduced homology groups of G are trivial.

4.2. Homologies of Subgraphs.

Proposition 4.5 ([8, 9]). Suppose that a digraph G has a vertex a with n outcoming arrows a → b0,
a → b1, . . . , a → bn−1 and no incoming arrows. Assume also that there are arrows b0 → bi for all i ≥ 1:

a
↗• →
↘

• b1
↑•
↓

b0

• b2

· · · G′ G .

Denote by G′ the digraph that is obtained from G by removing the vertex a with all adjacent edges. Then
H∗(G) ∼= H∗(G′).

The same is true if a vertex a has n incoming arrows b0 → a, b1 → a, . . . , bn−1 → a and no outcoming
arrows, while there are arrows bi → b0 for all i ≥ 1.

Corollary 4.6. Let a digraph G be a tree (i.e., the underlying undirected graph is a tree). Then Hp(G) = 0
for all p ≥ 1.

Example 4.7. Consider a digraph G as shown in Fig. 6.

Fig. 6. A digraph with many triangles and squares.

Each of the vertices ak satisfies the hypotheses of Proposition 4.5 with n = 2 (either with incoming
or outcoming arrows). Removing successively the vertices ak, we see that all the homologies of G are the
same as those of the remaining digraph b• → •c. Since it is a star-shaped digraph, we obtain dimH0 = 1
and dimHp = 0 for all p ≥ 1. In particular, χ = 1.

A pair cb of distinct vertices on a digraph is called a semi-edge if c �→ b but there is a vertex j such
that c → j and j → b as on the diagram:

•b
�
•c

↖
↗ • j.
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Proposition 4.8 ([8]). Let the field K has characteristic 0. Suppose that a digraph (V, E) has a vertex a
such that there is only one outcoming arrow a → b from a and only one incoming arrow c → a, where
b �= c. Denote by G′ the digraph that is obtained from G by removing the vertex a and the adjacent edges
a → b and c → a:

a •↗↖
•b
...
•c

G′ G .

Then the following is true.
(a) For any p ≥ 2,

dim Hp(G) = dimHp(G′). (4.3)
(b) If cb is an edge or a semi-edge in G′, then (4.3) is satisfied also for p = 0, 1, i.e., for all p ≥ 0.
(c) If cb is neither edge nor semi-edge in G′, but b and c belong to the same connected component of

G′, then dim H1(G) = dimH1(G′) + 1 and dim H0(G) = dimH0(G′).
(d) If b and c belong to different connected components of G′, then dim H1(G) = dimH1(G′) and

dim H0(G) = dimH0(G′) − 1.

Consequently, in the case (b), χ(G) = χ(G′), whereas in the cases (c) and (d), χ(G) = χ(G′) − 1.

Example 4.9. Consider the digraphs

G =

b•
a•↗↖ ↓ ↖

↗•d

•
c

and G′ =

b•
↓ ↖

↗•d

•
c

.

Since cb is semi-edge in G′, we have case (b) so that all homologies of G and G′ are the same. Removing
further vertex d, we obtain a digraph b• → •c, which will be denoted by G′′. It is a star-shaped digraph
with dimHp(G′′) = 0 for p ≥ 1. Since cb is neither edge nor semi-edge in G′′, but the digraph is connected,
we conclude by case (c) that

Hp(G′) = Hp(G′′) for p ≥ 2
and

dim H1(G′) = dimH1(G′′) + 1 = 1.

It follows that dimHp(G) = 0 for p ≥ 2 and dimH1(G) = 1.

Example 4.10. Consider a digraph on Fig. 7 (an anti-snake).

Fig. 7. An anti-snake.

We start building this digraph with 1 → 2. Since 21 is neither edge nor semi-edge, adding a path
2 → 3 → 1 increases dim H1 by 1 and preserves other homologies. Since 23 is an edge, adding a path
2 → 4 → 3 preserves all homologies. Since 34 is neither edge nor semi-edge, adding a path 3 → 5 → 4
increases dim H1 by 1 and preserves other homologies. Similarly, adding a path 5 → 6 → 4 preserves all
homologies.
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One can repeat this pattern arbitrarily many times. By doing so we construct a digraph with a pre-
scribed positive integer value of dim H1 while keeping dim Hp = 0 for all p ≥ 2. Consequently, the Euler
characteristic χ can take arbitrary negative integer values.

Example 4.11. Consider a digraph on Fig. 1 (right). By Proposition 4.5, we can remove the vertices 5
and 8 (and their adjacent edges) without change of homologies. Then by the same proposition we can
remove 4 and 7. By Proposition 4.8 we can remove the vertex 1. The resulting digraph with the vertices
0, 2, 3, and 6 is star-shaped, so that by Proposition 4.2 the homology groups Hp are trivial for all p ≥ 1,
while dim H0 = 1.

5. Join of Path Complexes

In this and the next sections, we use a slightly different way of denoting the path spaces associated
with a given path complex as we will have to consider path complexes on more than one set. Given a finite
set V , denote by P (V ) a path complex on V . The space An

(
P (V )

)
of all allowed n-paths will be denoted

shortly by An(V ). Similarly, the space Ωn

(
P (V )

)
of all ∂-invariant n-paths will be denoted by Ωn(V ).

Similar notation will apply to all other relevant notions including path homologies Hn(V ), etc.
In this section, the range of n is n ≥ −1, so that we use the augmented chain complexes (3.6).

5.1. Definition and Examples of Join.

Definition 5.1. Given two disjoint finite sets X and Y and their path complexes P (X) and P (Y ), set
Z = X � Y and define a path complex P (Z) as follows: P (Z) consists of all paths of the form uv, where
u ∈ P (X) and v ∈ P (Y ). The path complex P (Z) is called a join of P (X) and P (Y ) and is denoted by
P (Z) = P (X) ∗ P (Z).

The operation ∗ on the path complexes is obviously noncommutative but associative. An example of
the path uv ∈ P (Z) is shown on Fig. 8 (left). Note that each of u, v can be empty so that all allowed
paths on X and Y will also be allowed on Z.

Fig. 8. Join of two paths (left) and join of two digraphs (right).

Example 5.2. Let X and Y be two digraphs with disjoint sets of vertices. Consider the digraph Z whose
set of vertices is X � Y , while the set of edges of Z consists of all the edges of X and Y , as well as of all
the edges x → y for all x ∈ X and y ∈ Y . The digraph Z is called a join of X and Y and is denoted by
X ∗ Y . An example of a join of two digraphs is shown on Fig. 8 (right).

Let P (Z) be the path complex arising from the digraph structure of Z. Then it is obvious from the
definition that P (Z) is the join of P (X) and P (Y ) so that P (X ∗Y ) = P (X)∗P (Y ). Hence, the operation
of joining of digraphs is compatible with the operation of joining path complexes.
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Example 5.3. Let X and Y be the vertex sets of finite simplicial complexes S(X) and S(Y ). Let
us construct a simplicial complex S(Z) with the vertex set Z = X � Y as follows. Assuming that
|X| = n and |Y | = m, embed the set X (together with all simplexes from S(X)) into a hyperplane
hn−1 ⊂ R

n+m−1 and Y into a hyperplane hm−1 ⊂ R
n+m−1, where the hyperplanes hn−1, hm−1 are

orthogonal and nonintersecting. For any two simplexes σ1 ∈ S(X) and σ2 ∈ S(Y ), define their join σ1 ∗σ2

as the convex hull of σ1 and σ2 embedded in R
n+m−1 as above (see Fig. 9).

Fig. 9. A join σ1 ∗ σ2 of two one-dimensional simplexes σ1, σ2 (case n = m = 2).

Due to a general position of σ1 and σ2, the join σ1 ∗σ2 is also a simplex. Then S(Z) is a collection of
all simplexes σ1 ∗ σ2 with σ1 ∈ S(X) and σ2 ∈ S(Y ). We refer to S(Z) as a join of simplicial complexes
S(X), S(Y ) and denote it by S(X) ∗ S(Y ).

Equivalently, one can define S(Z) in an abstract way without embedding into a Euclidean space.
Indeed, considering simplexes as sequences of vertices, we can say that S(Z) consists of all simplexes
of the form [x0, . . . , xp, y0, . . . , yq], where [x0, . . . , xp] ∈ S(X) and [y0, . . . , yq] ∈ S(Y ). It is clear that
S(Z) is a simplicial complex as it satisfies the defining property (3.2). It is also obvious that the path
complexes P (X), P (Y ), and P (Z) of the simplicial complexes S(X), S(Y ), and S(Z), respectively, satisfy
P (Z) = P (X) ∗ P (Y ). Hence, the operation of joining of simplicial complexes is compatible with the
operation of joining path complexes.

Proposition 5.4. Let P (X) and P (Y ) be two path complexes and let P (Z) = P (X)∗P (Y ). If u ∈ Ωp(X)
and v ∈ Ωq(Y ), then uv ∈ Ωp+q+1(Z). Moreover, the operation u, v �→ uv of join extends to that for the
homology classes u ∈ H̃p(X) and v ∈ H̃q(Y ) so that uv ∈ H̃p+q+1(Z).

Proof. If u and v are allowed, then uv is allowed on Z by definition. In particular, if u ∈ Ωp(X) and
v ∈ Ωq(Y ), then uv ∈ Ap+q+1(Z). Let us show that ∂(uv) ∈ Ap+q(Z), which would imply uv ∈ Ωp+q+1(Z).
Indeed, we have by (2.7)

∂(uv) = (∂u)v + (−1)p+1u(∂v). (5.1)
Since ∂u and ∂v are also allowed, we obtain that the right-hand side here is allowed, whence the claim
follows.

If u and v are cycles, then by (5.1) the join uv is a cycle for Z. We are left to verify that the homology
class of uv depends only on the homology classes of u and v. For that it suffices to prove that if either u
or v is a boundary, then so is uv. Indeed, if u = dw, then ∂(wv) = (∂w)v + (−1)pw(∂v) = uv, so that uv
is a boundary.
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5.2. Path Homologies of Join. Before we state the main theorem, let us recall some notation from
homological algebra. Let {Ap}p≥p0 be a sequence of finite-dimensional linear spaces over K enumerated
by an integer parameter p. Denote by A• the direct sum of all Ap, i.e.,

A• =
⊕

p≥p0

Ap,

so that A• is a graded linear space. If {Ap} is a chain complex with the boundary operator ∂A, then ∂A

extends linearly to an operator in A• that respects a graded structure. It will be convenient to identify
A• with the chain complex A∗ = {Ap} as A• contains the same information as A∗. The sequence of
homologies {Hp(A•)} of the chain complex A• gives rise to a graded linear space H•(A•).

Given two graded linear spaces A• and B• as above, define their tensor product by

A• ⊗ B• =
⊕

p,q

(Ap ⊗ Bq),

where Ap⊗Bq is the tensor product over K of the linear spaces Ap and Bq. In other words, A•⊗B• = C•,
where

Cr =
⊕

{p,q : p+q=r}
(Ap ⊗ Bq).

If A• and B• are chain complexes with the boundary operators ∂A and ∂B, respectively, then define
the boundary operator ∂C in C• by

∂C(u ⊗ v) = (∂Au) ⊗ v + (−1)pu ⊗ (∂Bv) (5.2)

for all u ∈ Ap and v ∈ Bq. It is well known that ∂2
C = 0 so that C• with ∂C is a chain complex.

Furthermore, by a theorem of Künneth, we have the following identity for homologies:

H•(C•) ∼= H•(A•) ⊗ H•(B•) (5.3)

i.e.,
Hr(C•) ∼=

⊕

{p,q : p+q=r}
Hp(A•) ⊗ Hq(B•)

(see [16]). Given a graded linear space A•, define a graded space A′• by

A′
n := An−1.

If A• is a chain complex, then also A′• is a chain complex with the same boundary operator.
Given a regular path complex P (V ) on a finite set V , we consider as before the spaces Rn(V ), An(V ),

and Ωn(V ), where n ≥ −1. Then we have the chain complexes R•(V ), R′•(V ), Ω•(V ), Ω′•(V ) with the
regular boundary operator ∂ and a graded space A•(V ).

Theorem 5.5. Let X and Y be two finite nonempty sets and P (X) and P (Y ) be regular path complexes
on X and Y , respectively. Set Z = X �Y and consider the join path complex P (Z) = P (X)∗P (Y ). Then
we have the following isomorphism of the chain complexes:

Ω•(Z) ∼= Ω′
•(X) ⊗ Ω•(Y ), (5.4)

where the mapping Ω′•(X) ⊗ Ω•(Y ) → Ω•(Z) is given by u ⊗ v �→ uv.

It follows from (5.4) that, for any r ≥ −1,

Ωr(Z) ∼=
⊕

{p,q≥−1: p+q=r−1}

(
Ωp(X) ⊗ Ωq(Y )

)
(5.5)

and, for any r ≥ 0,
H̃r(Z) ∼=

⊕

{p,q≥0: p+q=r−1}

(
H̃p(X) ⊗ H̃q(Y )

)
(5.6)

(a Künneth formula for join).

579



The identity (5.6) gives easily the proof of Proposition 4.2. Indeed, let G be a star-shaped digraph
with a star center a. Denote by G′ the digraph that is obtained from G by removing the vertex a and
all adjacent edges. Then G = {a} ∗ G′, and by (5.6) we obtain H̃r(G) ∼= {0} for all r ≥ 0 because
H̃p({a}) ∼= {0} for all p ≥ 0. If G is an inverse star-shaped digraph, then G = G′ ∗ {a} and again
H̃r(G) ∼= {0}.
Example 5.6. Consider the digraph Z = X ∗ Y as on Fig. 8 (right). In this case, we have by Proposi-
tion 4.3 that all homologies H̃p(X) and H̃q(Y ) are trivial except for

H1(X) = span{e01 + e12 + e20},
H1(Y ) = span{e35 − e65 + e64 − e34}.

Therefore, all H̃r(Z) are trivial except for H3(Z), which is generated by a single element

e0135 − e0165 + e0164 − e0134 + e1235 − e1265 + e1264 − e1234 + e2035 − e2065 + e2064 − e2034.

5.3. Cone and Suspension. A cone over a digraphX is a digraph Cone X that is obtained from X by
adding one more vertex a and all the edges of the form b → a for all b ∈ X. The vertex a is called the
cone vertex. Clearly, we have Cone X = X ∗ Y , where Y consists of a single vertex a.

Proposition 5.7. For any digraph X, we have for any r ≥ 0

Ωr(Cone X) ∼= Ωr(X) ⊕ Ωr−1(X), (5.7)

where the isomorphism is given by the map u, v �→ u + vea, where u ∈ Ωr(X), v ∈ Ωr−1(X), and a is the
cone vertex. Furthermore, all the reduced homologies of Cone X are trivial.

Proof. Since Cone X = X∗Y with Y = {a}, the isomorphism (5.7) follows from (5.5), Ω−1(Y ) = span{1K},
Ω0(Y ) = span{ea}, and Ωq(Y ) = {0} for q ≥ 1. Since all the homologies H̃q(Y ) are trivial, it follows
from (5.6) that all homologies H̃r(Z) are also trivial. The latter follows also from Proposition 4.2, since
Cone X is inverse star-shaped.

Example 5.8. Clearly, a simplex-digraph Smn can be regarded as a cone over Smn−1 (cf. Sec. 4.1.3).
Since Ω0(Sm0) is spanned by a 0-path e0, we obtain by induction from (5.7) that Ωn(Smn) is spanned by
a path e01...n.

Definition 5.9. A suspension over a digraph X is a digraph SusX that is obtained from X by adding
two vertices a and b and all the edges c → a and c → b for all c ∈ X. The vertices a and b are called the
suspension vertices.

Clearly, we have Sus X = X ∗ Y , where Y = {a, b} is a digraph that consists of two vertices a and b
and no edges.

Proposition 5.10. For any digraph X and for any r ≥ 0, we have that

Ωr(Sus X) ∼= Ωr(X) ⊕ Ωr−1(X) ⊕ Ωr−1(X), (5.8)

where the isomorphism is given by the map u, v, w �→ u + vea + web, where u ∈ Ωr(X), v, w ∈ Ωr−1(X),
and a and b are the suspension vertices. Furthermore, we have that

H̃r(Sus X) ∼= H̃r−1(X), (5.9)

where the isomorphism is given by the map u �→ u(ea − eb), u ∈ H̃r−1(X). Consequently, we have

χ(Sus X) = 2 − χ(X). (5.10)
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Proof. Let Y as above. The isomorphism (5.8) follows from (5.5) because Ω−1(Y ) = span{1K}, Ω0(Y ) =
span{ea, eb}, and Ωq(Y ) = {0} for q ≥ 1. Since H̃q(Y ) = {0} for all q �= 0 and H̃0(Y ) = span{ea − eb},
(5.9) follows from (5.6). Finally, setting Z = Sus X and using (5.9), we obtain

χ(Z) = 1 +
∑

r≥1

(−1)r dim Hr(Z) = 1 +
∑

r≥1

(−1)r dim H̃r−1(X)

= 1 −
∑

s≥0

(−1)s dim H̃s(X) = 2 −
∑

s≥0

(−1)s dim Hs(X) = 2 − χ(X),

that proves (5.10).

In particular, having examples of digraphs X with arbitrary negative integer values of χ (cf. Exam-
ple 4.10), we obtain examples of digraphs SusX with arbitrary positive integer values of χ.

Example 5.11. Let S be any cycle-graph that is neither triangle nor square; it will be considered as an
analog of a circle. Define Sn inductively by S1 = S and Sn+1 = Sus Sn. Then Sn can be regarded as
an n-dimensional sphere-graph. Since χ(S) = 0 by Proposition 4.3, it follows that χ(Sn) = 0 if n is odd
and χ(Sn) = 2 if n is even. Proposition 5.10 implies that dimHn(Sn) = dim H1(S) = 1, which gives an
example of a nontrivial Hn for an arbitrary n.

For example, the octahedron digraph Oct on Fig. 10 is S2 based on the cycle S with the vertices
0, 1, 2, 3. It follows that Oct has nontrivial H2(Oct) despite the fact that this digraph is obviously planar.

Fig. 10. The octahedron digraph.

Let v be a 1-path on S that spans H1(S) (see Sec. 4.1.5). If Sn+1 is a suspension of Sn on the vertices
an, bn, then we obtain by induction that the spanning element of Hn(Sn) is

u = v(ea1 − eb1)(ea2 − eb2) . . . (ean−1 − ebn−1).

For the cycle S on Fig. 10, by Proposition 4.3 we have v = e12 − e02 + e03 − e13, which implies that the
spanning element of H2(Oct) is

u = v(e4 − e5) = e124 − e024 + e034 − e134 − e125 + e025 − e035 + e135.

Obviously, each term in this sum corresponds to one of the eight faces of the octahedron, and the sum u
represents in some sense the surface of the octahedron.

Applying Proposition 4.3 to compute the homology groups of S and then Proposition 5.10, we obtain

dim H0(Oct) = dimH2(Oct) = 1, dim Hp(Oct) = 0 if p = 1 or p ≥ 3. (5.11)
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Fig. 11. A digraph with 12 vertices and 32 edges.

Example 5.12. Consider a digraph G on Fig. 11 (left).
Removing successively the vertices A, B, 8, 9, 6, and 7, by Proposition 4.5 we obtain a digraph G′ as

on Fig. 11 (right) with the vertex set {0, 1, 2, 3, 4, 5} that has the same homologies as G. The digraph G′
is clearly the same as Oct on Fig. 10. Hence, we obtain by (5.11) that dimH2(G) = 1 while Hp(G) = {0}
for p = 1 and p > 2. The spanning element of H2(G) is hence

u = e124 − e024 + e034 − e134 − e125 + e025 − e035 + e135.

In other words, this 2-path u determines a 2-dimensional “hole” in G given by the octahedron. Note that
on Fig. 11 this octahedron is hardy visible, but it can be determined purely algebraically using the above
tools.

5.4. Some Properties of ∂-Invariant Paths on Joins. We prove here some auxiliary results needed
for the proof of Theorem 5.5. For a finite set V , denote by R(V ) the path complex on V consisting of all
regular elementary paths on V . Then, for any n ≥ −1, Rn(V ) denotes the set of all regular elementary
n-paths on V . As before, Rn(V ) is the space of all finite K-linear combinations of the paths from Rn(V ).

Let X and Y be two finite nonempty sets and P (X) and P (Y ) be regular path complexes on X
and Y , respectively. Set Z = X � Y and consider the join of path complexes P (Z) = P (X) ∗ P (Y ).

Lemma 5.13. Any w ∈ Ω•(Z) admits a representation

w =
∑

x∈P (X)

exax =
∑

y∈P (Y )

byey, (5.12)

where ax ∈ Ω•(Y ) and by ∈ Ω•(X) are uniquely determined.

Proof. Since any allowed elementary path on X is a join of elementary paths on X and Y , we see that
any w ∈ A•(Z) admits a representation

w =
∑

x∈P (X), y∈P (Y )

cxyexey, (5.13)

where the coefficients cxy ∈ K are uniquely determined. It follows from (5.13) that

w =
∑

x∈P (X)

exax, (5.14)

where
ax =

∑

y∈P (Y )

cxyey ∈ A•(Y ).

Clearly, ax are uniquely determined.
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Now assume that w ∈ Ω•(Z) and show that ax ∈ Ω•(Y ). Let us define the coefficients δx
x′ ∈ {0, 1,−1}

by
∂ex =

∑

x′∈R(X)

δx′
x ex′ . (5.15)

Also, if x ∈ Pp(X), then set εx = (−1)p+1. Using (5.14) and the product rule (2.7), we obtain

∂w =
∑

x∈P (X)

(∂ex)ax + εxex(∂ax) =
∑

x∈P (X)

∑

x′∈R(X)

δx′
x ex′ax +

∑

x∈P (X)

εxex∂ax.

Switching in the double sum the designations x and x′ and interchanging the summation signs, we obtain

∂w =
∑

x∈R(X)

∑

x′∈P (X)

δx
x′exax′

+
∑

x∈P (X)

εxex∂ax

=
∑

x∈P (X)

ex

( ∑

x′∈P (X)

δx
x′ax′

+ εx∂ax

)
(5.16)

+
∑

x∈R(X)\P (X)

ex

( ∑

x′∈P (X)

δx
x′ax′

)
. (5.17)

Note that any elementary path of the full expansion of the sum (5.17) has a nonallowed X-part, while
that of (5.16) has the allowed X-part. Therefore, there is no cross cancellation between the elementary
paths of (5.16) and (5.17). Since their sum ∂w is allowed, it follows that the sum (5.17) consisting only
of nonallowed paths must vanish.

On the other hand, since ∂w ∈ Ω∗(Z), we have analogously to (5.14) a representation

∂w =
∑

x∈P (X)

exãx,

where ãx ∈ A∗(Y ). Comparison with (5.16) yields

ãx =
∑

x′∈P (X)

δx
x′ax′

+ εx∂ax.

Since ax′ ∈ A∗(Y ), it follows that ∂ax ∈ A∗(Y ), which proves that ax ∈ Ω∗(Y ).
The second identity in (5.12) is proved similarly.

Let V be a finite set. If u ∈ Rn(V ) and x ∈ Rm(V ), then we denote by ux ∈ K the coefficient of
x-component of u if n = m and set ux = 0 ∈ K if n �= m. Let us introduce in Ap(V ) the K-scalar product
as follows: for all u, v ∈ Ap(V ) we put

[u, v] :=
∑

x∈P (V )

uxvx, (5.18)

where as before ux and vx are the coefficients of the components of u and v, respectively. If K = R, then
[·, ·] is a proper scalar product, but for a general field K there is no positivity property (in fact, it can
happen that [u, u] = 0). Set also

Ω⊥
p (V ) = {u ∈ Ap(V ) : [u, v] = 0 for all v ∈ Ωp(V )}. (5.19)

If K = R, then Ω⊥
p is an orthogonal complement of Ωp in Ap and Ap = Ωp ⊕ Ω⊥

p .
For a general K, this is not true, since Ωp and Ω⊥

p may have a nontrivial intersection. However, for
any field K, it is still true that

dim Ωp + dim Ω⊥
p = dimAp

(see [13, Lemma 6.1]).
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Lemma 5.14. If u ∈ Ω⊥
p (X) and v ∈ Aq(Y ), then uv ∈ Ω⊥

r (Z), where r = p + q + 1. Similarly, if
u ∈ Ap(X) and v ∈ Ω⊥

q (Y ), then uv ∈ Ω⊥
r (Z).

Proof. To prove the first claim, we need to show that [uv, w] = 0 for any w ∈ Ωr(Z). By Lemma 5.13,
w is a sum of the joins ϕψ, where ϕ ∈ Ω•(X) and ψ ∈ A•(Y ). Hence, it suffices to prove that

[uv, ϕψ] = 0, (5.20)

assuming that ϕ ∈ Ωp′(X) and ψ ∈ Aq′(Y ). If p′ + q′ + 1 �= r, then uv and ϕψ do not have common
elementary paths in their expansions, and (5.20) is trivially satisfied. Assuming p′ + q′ + 1 = r, we obtain

[uv, ϕψ] =
∑

z∈Pr(Z)

(uv)z(ϕψ)z =
∑

x∈Pp(X), y∈Pq(Y )

uxvyϕxψy.

If p′ �= p, then ϕx = 0 and again (5.20) holds trivially. Finally, if p′ = p and, hence, q′ = q, then we obtain

[uv, ϕψ] =
∑

x∈Pp(X)

uxϕx
∑

y∈Pq(Y )

vyψy = [u, ϕ][v, ψ] = 0,

because [u, ϕ] = 0 based on the assumption that u ∈ Ω⊥
p (X). The second claim is proved similarly.

5.5. Proof of the Künneth Formula for Join. The main technical part of the proof of Theorem 5.5
is contained in the following theorem.

Theorem 5.15. Let P (X) and P (Y ) be two regular path complexes and let P (Z) = P (X)∗P (Y ) be their
join. Then any ∂-invariant path w on Z admits a representation in the form

w =
k∑

i=1

uivi (5.21)

for some finite k, where ui and vi are ∂-invariant paths on X and Y , respectively.

The proof of Theorem 5.15 will be given at the end of Sec. 6.5 because it is similar to the proof of an
analogous property for Cartesian products of path complexes (Theorem 6.12 below).

Proof of Theorem 5.5. First, let us show how (5.5) and (5.6) follow from (5.4). By definition the isomor-
phism (5.4) means that

Ωr(Z) ∼=
⊕

{p≥0, q≥−1: p+q=r}

(
Ω′

p(X) ⊗ Ωq(Y )
)
,

whence (5.5) follows by changing p − 1 to p. The isomorphism (5.4) of the chain complexes Ω•(Z) and
Ω′•(X)⊗Ω•(Y ) implies that their homologies are also isomorphic. On the other hand, by (5.3) we obtain

H•
(
Ω′
•(X) ⊗ Ω•(Y )

) ∼= H•
(
Ω′
•(X)

) ⊗ H•
(
Ω•(Y )

)
,

whence
H•

(
Ω•(Z)

) ∼= H•
(
Ω′
•(X)

) ⊗ H•
(
Ω•(Y )

)
.

More explicitly this means that, for any r ≥ −1,

Hr

(
Ω•(Z)

) ∼=
⊕

{p′≥0, q≥−1: p′+q=r}

(
Hp′

(
Ω′
•(X)

) ⊗ Hq

(
Ω•(Y )

))

=
⊕

{p,q≥−1: p+q=r−1}

(
Hp

(
Ω•(X)

) ⊗ Hq

(
Ω•(Y )

))
.

Since the homology group H−1(Ω•) is always trivial, the condition p, q ≥ −1 can be replaced here by
p, q ≥ 0. Finally, using that Hp

(
Ω•(X)

)
= H̃p(X) and Hq

(
Ω•(Y )

)
= H̃q(Y ) are the reduced homologies,

we obtain (5.6).
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Now we concentrate on the proof of (5.4). We use the graded spaces {R•}, {A•}, and {Ω•} associated
with the path complexes P (X), P (Y ), and P (Z). If {W•} is one of these spaces, then set

W•(X, Y ) = W ′
•(X) ⊗ W•(Y ).

Then (5.4) can be restated as follows:
Ω•(Z) ∼= Ω•(X, Y ).

To prove this, we will construct explicitly a mapping

Φ: Ωr(X, Y ) → Ωr(Z)

that will be isomorphism of linear spaces and will commute with the boundary operator ∂.
First, consider a larger chain complex

R•(X, Y ) = R′
•(X) ⊗R•(Y )

and define for any r ≥ −1 the linear mapping

Φ: Rr(X, Y ) → Rr(Z)

as follows: for all u ∈ R′
p(X) and v ∈ Rq(Y ) with p + q = r, set

Φ(u ⊗ v) = uv,

where uv is the join of u and v on Z (note that X and Y are subsets of Z).
It follows from Lemma 2.2 that, for u, v as above,

∂(uv) = (∂u)v + (−1)pu∂v. (5.22)

Here the operator ∂ is the boundary operator on R•(Z), but in the expressions ∂u and ∂v it coincides
with the boundary operators on R•(X) and R•(Y ), respectively. By (5.2) we have for the operator ∂ on
R•(X, Y )

∂(u ⊗ v) = (∂u) ⊗ v + (−1)pu ⊗ ∂v.

The comparison with (5.22) shows that the following diagram is commutative:

Rr−1(X, Y ) ∂←−−−− Rr(X, Y )
⏐⏐Φ

⏐⏐Φ

Rr−1(Z) ∂←−−−− Rr(Z)

.

Hence, the mapping Φ is a homomorphism of chain complexes R•(X, Y ) and R•(Z).
Let us verify that Φ is in fact a monomorphism. Indeed, the basis in Rr(X, Y ) consists of all elements

of the form ex ⊗ ey, where x ∈ Rp(X) and y ∈ Rq(Y ) with p + q = r. Since Φ(ex ⊗ ey) = exy and all such
paths exy are linearly independent in Rr(Z), we see that Φ is injective.

Next, observe that
Φ

(Ar(X, Y )
)

= Ar(Z).
Indeed, the basis in Ar(X, Y ) consists of all elements of the form ex ⊗ ey, where x ∈ Rp(X), y ∈ Rq(Y )
with p + q = r, while the basis in Ar(Z) consists of the paths exy with the same set of x, y, whence the
claim follows. In particular, the linear spaces Ar(X, Y ) and Ar(Z) are isomorphic.

Finally, let us prove that, for all r ≥ −1,

Φ
(
Ωr(X, Y )

)
= Ωr(Z),

which will finish the proof of (5.4). The inclusion

Φ
(
Ωr(X, Y )

) ⊂ Ωr(Z)

is trivial because by Proposition 5.4 u ∈ Ω′
p(X) and v ∈ Ωq(Y ) with p + q = r imply uv ∈ Ωr(Z). The

opposite inclusion
Φ

(
Ωr(X, Y )

) ⊃ Ωr(Z)
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follows from Theorem 5.15. Indeed, any w ∈ Ωr(Z) admits a representation in the form

w =
∑

i

uivi,

where ui and vi are ∂-invariant paths on X and Y , respectively. It follows that

Φ
( ∑

i

ui ⊗ vi

)
=

∑

i

uivi = w

and, hence, w ∈ Φ
(
Ωr(X, Y )

)
.

6. Cartesian Product of Path Complexes

In this section, we slightly redefine the sequence {Rn(V )} of spaces of regular paths on a finite set V .
Namely, instead of the previous convention R−1 = span{e}, now we set R−1 = {0}. In other words, the
index n has now the range n ≥ 0 instead of n ≥ −1 in Sec. 5.

All path complexes in this section are regular, and we always use a regular standard chain complex
{Ωn}n≥0 given in (3.7) and the associated homology groups {Hn}n≥0.

6.1. Cross Product of Paths. Given two finite sets X and Y , consider their Cartesian product Z =
X × Y . Let z = z0z1 . . . zr be a regular elementary r-path on Z, where zk = (xk, yk) with xk ∈ X and
yk ∈ Y . We say that the path z is step-like if, for any k = 1, . . . , r, either xk−1 = xk or yk−1 = yk. In
fact, exactly one of these conditions holds as z is regular.

Any step-like path z on Z determines by projection regular elementary paths x on X and y on Y .
More precisely, x is obtained from z by taking the sequence of all X-components of the vertices of z and
then by collapsing in it any subsequence of repeated vertices to one vertex. The same rule applies to y.
By construction, the projections x and y are regular elementary paths on X and Y , respectively. If the
projections of z = z0 . . . zr are x = x0 . . . xp and y = y0 . . . yq, then p + q = r (cf. Fig. 12 (left)).

Fig. 12. Left: a step-like path z and its projections x and y. Right: a staircase S(z) and
its elevation L(z) (here L(z) = 30).

Every vertex zk = (xi, yj) of a step-like path z can be represented as a point (i, j) of Z
2 so that the

whole path z is represented by a staircase S(z) in Z
2 connecting the points (0, 0) and (p, q). Define the

elevation L(z) of the path z as the number of cells in Z
2
+ below the staircase S(z) (the shaded area on

Fig. 12 (right)).

Definition 6.1. Given paths u ∈ Rp(X) and v ∈ Rq(Y ) with some p, q ≥ 0, define a path u× v on Z by
the following rule: for any step-like elementary (p + q)-path z on Z, the component (u× v)z is defined by

(u × v)z = (−1)L(z)uxvy, (6.1)

where x and y are the projections of z onto X and Y , respectively, and ux and vy are the corresponding
components of u and v. For nonstep-like paths z, set (u × v)z = 0.

The path u × v is called the cross product of u and v. It follows that u × v ∈ Rp+q(Z).
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For given elementary regular p-path x on X and q-path y on Y , denote by Πx,y the set of all step-like
paths z on Z whose projections on X and Y are x and y, respectively. It follows from (6.1) that

ex × ey =
∑

z∈Πx,y

(−1)L(z)ez. (6.2)

It is not difficult to see that the cross product is associative.

Example 6.2. Let us denote the vertices of X by the letters a, b, c, . . . and the vertices of Y by the
integers 0, 1, 2, . . . so that the vertices of Z can be denoted as chessboard fields, for example, a0, b1, etc.
Then we have

eabc × e012 = ea0b0c0c1c2 − ea0b0b1c1c2 + ea0b0b1b2c2 + ea0a1b1c1c2 − ea0a1b1b2c2 + ea0a1a2b2c2

as one can see on Fig. 13.

Fig. 13. The staircase a0b0b1c1c2 has elevation 1. Hence, ea0b0b1c1c2 enters the product
eabc × e012 with the negative sign.

From now on and throughout this section we use the regular boundary operator ∂ acting on the chain
complex {Rn}n≥0 (note the difference with Sec. 5, where we used {Rn}n≥−1).

It turns out that the boundary operator ∂ satisfies the product rule with respect to the cross product.

Proposition 6.3 (product rule). If u ∈ Rp(X) and v ∈ Rq(Y ), where p, q ≥ 0, then

∂(u × v) = (∂u) × v + (−1)pu × (∂v). (6.3)

The proof of this statement is rather involved and can be found in [13, Proposition 4.4].

6.2. Path Homologies of Cartesian Product.

Definition 6.4. Given two finite sets X and Y with path complexes P (X) and P (Y ), respectively, define
on the set Z = X × Y a path complex P (Z) as follows: the elements of P (Z) are step-like paths on Z
whose projections on X and Y belong to P (X) and P (Y ), respectively. The path complex P (Z) is called
the Cartesian product of the path complexes P (X) and P (Y ) and is denoted by P (X) � P (Y ).

In short, a step-like path z on Z is allowed if and only if its projections on X and Y are allowed. In
particular, if x and y are elementary allowed paths on X and Y , respectively, then all the paths z ∈ Πx,y

are allowed on Z. It clearly follows from (6.2) that

u ∈ Ap(X) and v ∈ Aq(Y ) =⇒ u × v ∈ Ap+q(Z).

Furthermore, the following is true.

Proposition 6.5. If u ∈ Ωp(X) and v ∈ Ωq(Y ), then u × v ∈ Ωp+q(Z).
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Proof. Indeed, ∂u and ∂v are allowed, whence also ∂u × v and u × ∂v are allowed, whence ∂(u × v) is
allowed by the product rule (6.3). It follows that u × v ∈ Ωp+q(Z).

The next theorem is one of the main results of this paper. It gives a complete description of ∂-invariant
paths on Z.

Theorem 6.6. Let P (X) and P (Y ) be two regular path complexes. Then for their Cartesian product
P (Z) = P (X) � P (Y ) the following isomorphism of chain complexes holds:

Ω•(Z) ∼= Ω•(X) ⊗ Ω•(Y ), (6.4)

where the mapping Ω•(X) ⊗ Ω•(Y ) → Ω•(Z) is given by u ⊗ v �→ u × v.

A more detailed version of (6.4) is the following: for any r ≥ 0,

Ωr(Z) ∼=
⊕

{p,q≥0: p+q=r}

(
Ωp(X) ⊗ Ωq(Y )

)
. (6.5)

Consequently, we obtain the Künneth formula

H•(Z) ∼= H•(X) ⊗ H•(Y ), (6.6)

i.e., for any r ≥ 0,
Hr(Z) ∼=

⊕

{p,q≥0: p+q=r}

(
Hp(X) ⊗ Hq(Y )

)
. (6.7)

The proof of Theorem 6.6 will be given in Sec. 6.5 after a necessary preparation in Sec. 6.4. Before that
we consider some examples of Cartesian products.

Let X be a digraph. For simplicity of notation, we denote the set of vertices of X by the same
letter X, and the set of edges denote by EX . Given two digraphs X and Y , their Cartesian product is
the digraph Z = X � Y , where the set of vertices of Z is the Cartesian product of the sets of vertices of
X and Y , while the set EZ of edges is defined as follows: (x, y) → (x′, y′) if and only if either x → x′ and
y = y′, or y → y′ and x = x′:

y′• . . .
(x,y′)• −→ (x′,y′)• . . .

↑ ↑ ↑
y• . . .

(x,y)• −→ (x′,y)• . . .

Y
� X . . . •

x
−→ •

x′ . . .

.

Clearly, any allowed path on Z is step-like, and its projections onto X and Y are also allowed. Hence, the
path complex of the digraph Z is the Cartesian product of the path complexes of the digraphs X and Y .

Example 6.7. Let Z = X�Y , where X is a 3-cycle and Y is a square, i.e.,

X = ↗
b•↘

a• ← •c
and Y =

2• −→ •3

↑ ↑
0• −→ •1

.

We have

Ω0(X) = span{ea, eb, ec}, Ω1(X) = span{eab, ebc, eca}, Ωp(X) = {0} for p ≥ 2

and

Ω0(Y ) = span{e0, e1, e2, e3}, Ω1(Y ) = span{e01, e13, e23, e02},
Ω2(Y ) = span{e013 − e023}, Ωq(Y ) = {0} for q ≥ 3.

Hence, by (6.5) we obtain that
Ω3(Z) ∼= Ω1(X) ⊗ Ω2(Y )
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and
Ω3(Z) = span{eab × (e013 − e023), ebc × (e013 − e023), eca × (e013 − e023)}.

Similarly one computes Ωr(Z) for other values of r.
By Proposition 4.3, we have that

H1(X) = span{eab + ebc + eca}, Hp(X) = {0} for p ≥ 2

and
H0(Y ) = span{e0}, Hq(Y ) = {0} for all q ≥ 1.

By (6.7) we obtain that
H1(Z) ∼= H1(X) ⊗ H0(Y )

and
H1(Z) = span{(eab + ebc + eca) × e0}.

It follows also from (6.7) that Hr(Z) = {0} for all r ≥ 2.

6.3. Cylinders and Cubes. For any digraph X, the cylinder over X is the digraph

CylX := X � {0• → •1}.
Assuming that the vertices of X are enumerated by 0, 1, . . . , n−1, we can enumerate the vertices of Cyl X
by 0, 1, . . . , 2n− 1 using the following rule: (x, 0) is assigned the number x, while (x, 1) is assigned x + n.

Every regular p-path v on X has two copies on Cyl X: v(0) = v × e0 and v(1) = v × e1. Moreover,
v gives rise to the following (p + 1)-path on CylX: v(01) = v × e01, which is called the lifting of v. For
example, if v = ei0...ip , then

v(01) = ei0...ip × e01 =
p∑

k=0

(−1)p−kei0...ik(ik+n)...(ip+n). (6.8)

By Proposition 6.5, if v is ∂-invariant, then v(0), v(1), v(01) are also ∂-invariant.

Proposition 6.8. For any digraph X and for any r ≥ 0, we have

Ωr(Cyl X) ∼= Ωr(X) ⊕ Ωr(X) ⊕ Ωr−1(X),

where the isomorphism is given by the map u, v, w �→ u(0) + v(1) + w(01), for u, v ∈ Ωr(X) and w ∈
Ωr−1(X). Furthermore, we have

Hr(Cyl X) ∼= Hr(X),
where the isomorphism is given by the map u �→ u(0) for u ∈ Hr(X).

Proof. All claims follow directly from Theorem 6.6 and the knowledge of Ω∗ and H∗ of the digraph
Y = {0• → •1}.

Define for any nonnegative integer n the n-cube digraph by

Cuben = Cyl Cuben−1, Cube0 = {0}.
For example, Cube1 = {0• → •1}, Cube2 is a square:

2• −→ •3

↑ ↑
0• −→ •1

,

and Cube3 is shown in Fig. 14.
Lifting a ∂-invariant 1-path v1 = e01 on 1-cube, we obtain the following ∂-invariant 2-path on 2-cube:

v2 = e013 − e023. Lifting further v2, we obtain the following ∂-invariant 3-path on the 3-cube:

v3 = e0457 − e0157 + e0137 − e0467 + e0267 − e0237.

We obtain by induction a ∂-invariant n-path vn on Cuben that is a lifting of a ∂-invariant (n − 1)-path
vn−1 on Cuben−1. It is easy to see that vn is an alternating sum of n! elementary terms, corresponding to
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Fig. 14. A 3-cube.

partitioning of a geometric n-cube into n! simplexes. It follows from Proposition 6.8 that Ωn(Cuben) =
span(vn) so that the path vn represents the n-cube. Proposition 6.8 also implies that homology groups of
Cuben are trivial except for H0.

6.4. Some Properties of ∂-Invariant Paths on Products. Here we prove some lemma needed for
the proof of Theorem 6.6. Given a regular path complex P (V ) on a finite set V , we consider the spaces
Rn(V ), An(V ), and Ωn(V ) with n ≥ 0, as well as their direct sums R•(V ), A•(V ), and Ω•(V ).

In all statements, we consider two regular paths complexes P (X) and P (Y ) and their Cartesian
product P (Z) = P (X) � P (Y ), where Z = X × Y .

Lemma 6.9. Any path w ∈ Ω•(Z) admits a representation

w =
∑

x∈P (X), y∈P (Y )

cxy(ex × ey) (6.9)

with some coefficients cxy ∈ K (only finitely many coefficients are nonvanishing). Furthermore, the
coefficients cxy are uniquely determined by w.

Proof. First, let us show the uniqueness of cxy, which is equivalent to the linear independence of the
family {ex × ey} across all x ∈ P (X) and y ∈ P (Y ). Indeed, assume that, for some scalars cxy,

∑

x∈P (X), y∈P (Y )

cxyex × ey = 0

and prove that cxy = 0 for any couple x, y as in the summation. Fix such a couple x, y and choose one
z ∈ Πx,y. Then by (6.1)

(ex′ × ey′)z =

{
(−1)L(z), x′ = x and y′ = y,

0 otherwise,

which implies that ( ∑

x′∈P (X), y′∈P (Y )

cx′y′
ex′ × ey′

)z

= (−1)L(z)cxy

and, hence, cxy = 0.
Let us show the existence of the representation (6.9) for any w ∈ Ωr(Z) and any r ≥ 0. As before,

for any elementary r-path z on Z, wz denotes the ez-coordinate of w. If z is an elementary r′-path with
r′ �= r, then set wz = 0. For any x ∈ P (X) and y ∈ P (Y ), choose some z ∈ Πx,y and set

cxy = (−1)L(z)wz. (6.10)

First, let us show that the value of cxy in (6.10) is independent of the choice of z ∈ Πx,y. Set z = i0 . . . ir.
Let k be an index such that one of the couples ik−1ik, ikik+1 is vertical and the other is horizontal. If
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ik−1 = (a, b) and ik+1 = (a′, b′), where a, a′ ∈ X and b, b′ ∈ Y , then ik is either (a′, b) or (a, b′). Denote
the other of these two vertices by i′k, as, for example, on the diagram:

...
...

b′• i′k• −→ ik+1• . . .
↑ ↑ ↑

b• . . .
ik−1• −→ ik•

...
...

||
y

x= . . . •
a

−→ •
a′ . . .

.

Replacing in the path z = i0 . . . ir the vertex ik by i′k, we obtain the path z′ = i0 . . . ik−1i
′
kik+1 . . . ir that

clearly belongs to Πx,y and, hence, is allowed. Since the (r − 1)-path i0 . . . ik−1ik+1 . . . ir is regular but
nonallowed (as it is not step-like), while ∂w is allowed, we have

(∂w)i0...ik−1ik+1...ir = 0. (6.11)

On the other hand, we have by (2.4)

(∂w)i0...ik−1ik+1...ir =
∑

j∈Z

( k−1∑

m=0

(−1)mwi0...im−1jim...ik−1ik+1...ir (6.12)

+ (−1)kwi0...ik−1jik+1...ir (6.13)

+
r+1∑

m=k+2

(−1)m−1wi0...ik−1ik+1...im−1jim...ir

)
. (6.14)

All the components of w in the sums (6.12) and (6.14) vanish, since they correspond to nonallowed paths,
while w is allowed. The path i0 . . . ik−1jik+1 . . . ir in the term (6.13) is also nonallowed unless j = ik or
j = i′k (note that ik and i′k are uniquely determined by ik−1 and ik+1). Hence, the only nonzero terms in
(6.12)–(6.14) are wi0...ik−1ikik+1...ir = wz and wi0...ik−1i′kik+1...ir = wz′ . Combining (6.11) and (6.12)–(6.14),
we obtain 0 = wz + wz′ . Since L(z′) = L(z) ± 1, it follows that

(−1)L(z′)wz′ = (−1)L(z)wz. (6.15)

The transformation z �→ z′ described above, allows us to obtain from a given z ∈ Πx,y in a finite
number of steps any other path in Πx,y. Since the quantity (−1)L(z)wz does not change under this
transformation, it follows that it does not depend on a particular choice of z ∈ Πx,y, which was claimed.
Hence, the coefficients cxy are well-defined by (6.10).

Finally, let us show that the equality (6.9) holds with the coefficients cxy from (6.10). By (6.2) we
have

ex × ey =
∑

z∈Πx,y

(−1)L(z)ez.

Using (6.10), we obtain
∑

x∈P (X), y∈P (Y )

cxy(ex × ey) =
∑

x∈P (X), y∈P (Y )

cxy
∑

z∈Πx,y

(−1)L(z)ez

=
∑

x∈P (X), y∈P (Y )

∑

z∈Πx,y

wzez =
∑

z∈P (Z)

wzez = w,

which finishes the proof.
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Corollary 6.10. Any path w ∈ Ω•(Z) admits representations

w =
∑

x∈P (X)

ex × ax =
∑

y∈P (Y )

by × ey, (6.16)

where ax ∈ Ω•(Y ) and by ∈ Ω•(X) are uniquely determined.

Proof. It follows from (6.9) that

w =
∑

x∈P (X)

ex × ax,

where
ax =

∑

y∈P (Y )

cxyey ∈ A•(Y ).

It is obvious that ax are uniquely determined as so are the coefficients cxy. Let us show that, in fact,
ax ∈ Ω•(Y ). Let us define the coefficients δx

x′ ∈ {0, 1,−1} by

∂ex =
∑

x′∈R(X)

δx′
x ex′ . (6.17)

Also, if x ∈ Pp(X), then set εx = (−1)p. By the product rule (6.3) and by (6.17) we have that

∂w =
∑

x∈P (X)

∂ex × ax + εxex × ∂ax

=
∑

x∈P (X)

∑

x′∈R(X)

δx′
x ex′ × ax +

∑

x∈P (X)

εxex × ∂ax

=
∑

x∈R(X)

∑

x′∈P (X)

δx
x′ex × ax′

+
∑

x∈P (X)

εxex × ∂ax

=
∑

x∈P (X)

ex ×
( ∑

x′∈P (X)

δx
x′ax′

+ εx∂ax

)
(6.18)

+
∑

x∈R(X)\P (X)

ex ×
( ∑

x′∈P (X)

δx
x′ax′

)
. (6.19)

Every elementary path on Z that is present in the full expansion of the sums (6.18) and (6.19) has
the X-projection equal to x. Since in (6.18) x is allowed, while in (6.19) it is nonallowed, there is no
cross cancellation of the elementary paths in (6.18) and (6.19). Since every elementary path in (6.19) is
nonallowed, while the sum ∂w of (6.18) and (6.19) is allowed, we see that the sum in (6.19) vanishes.

On the other hand, since ∂w ∈ Ω•(Z), we have by Lemma 6.9 a representation

∂w =
∑

x∈P (X)

ex × ãx,

where ãx ∈ A•(Y ). Comparison with (6.18) shows that

ãx =
∑

x′∈P (X)

δx
x′ax′

+ εx∂ax.

Since ax′ ∈ A•(Y ), it follows that ∂ax ∈ A•(Y ), which proves that ax ∈ Ω•(Y ). The second identity
in (6.16) is proved similarly.

In the next lemma, we use the K-scalar product [·, ·] of paths that was introduced in Sec. 5.5 (see
(5.18) and (5.19)).
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Lemma 6.11. If u ∈ Ω⊥
p (X) and v ∈ Aq(Y ), then u × v ∈ Ω⊥

r (Z), where r = p + q. Similarly, if
u ∈ Ap(X) and v ∈ Ω⊥

q (Y ), then u × v ∈ Ω⊥
r (Z).

Proof. We need to prove that, for any w ∈ Ωr(Z),

[u × v, w] = 0, (6.20)

assuming that u ∈ Ω⊥
p (X) (the second claim is proved similarly). We have

[u × v, w] =
∑

z∈Pr(Z)

(u × v)zwz

=
∑

z∈Pr(Z)

(−1)L(z)uxvywz (x, y are projections of z)

=
∑

x∈Pp(X)

∑

u∈Pq(Y )

∑

z∈Πx,y

(−1)L(z)uxvywz.

By Corollary 6.10, the path w is a sum of the terms ϕ × ψ, where ϕ ∈ Ω•(X) and ψ ∈ A•(Y ), so that it
suffices to prove (6.20) for w = ϕ × ψ. Let ϕ ∈ Ωp(X) and, hence, ψ ∈ Aq(Y ). Then we have by (6.1)

wz = (−1)L(z)ϕxψy

and, hence,
[u × v, w] =

∑

x∈Pp(X)

∑

y∈Pq(Y )

∑

z∈Πx,y

uxϕxvyψy.

Since ∑

x∈Pp(X)

uxϕx = [u, ϕ] = 0,

we obtain (6.20). If ϕ ∈ Ωp′ with p′ �= p, then wz = 0 for any z ∈ Πx,y with x ∈ Pp(X), and (6.20) is
trivially satisfied.

6.5. Proof of the Künneth Formula for Product. Here we prove Theorem 6.6. The major part of
the proof of Theorem 6.6 is contained in the following Theorem 6.12 that is similar to Theorem 5.15 for
join. Since the proofs of Theorems 6.12 and 5.15 are practically identical, we prefer to give a detailed
proof of Theorem 6.12 for the product and sketch of the proof of Theorem 5.15 for join at the end of this
section.

Theorem 6.12. Let P (X) and P (Y ) be two regular path complexes and let P (Z) = P (X) � P (Y ) be
their Cartesian product. Then any ∂-invariant path w on Z admits a representation in the form

w =
k∑

i=1

ui × vi (6.21)

for some finite k, where ui and vi are ∂-invariant paths on X and Y , respectively.

Proof. The representation (6.21) is simple in a special case where the path complexes P (X) and P (Y )
are perfect, i.e., when all allowed paths are ∂-invariant. Indeed, by Lemma 6.9, any w ∈ Ωr(Z) admits
a representation in the form (6.9), where ex and ey are allowed paths on X and Y , respectively. By the
assumption of the perfectness of P (X) and P (Y ), the paths ex and ey are ∂-invariant. Thus, (6.9) implies
(6.21).

For arbitrary path complexes P (X) and P (Y ), the previous argument does not work, since ex×ey does
not have to be ∂-invariant. Hence, we need a more elaborate strategy. Given two subspaces U ⊂ Ap(X)
and V ⊂ Aq(Y ), denote by U ×V the subspace of Ar(Z) that is spanned by all products u×v with u ∈ U
and v ∈ V . For any r ≥ 0, set

Ω̃r(Z) =
∑

p+q=r

Ωp(X) × Ωq(Y ), (6.22)
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i.e., Ω̃r(Z) is the space of paths on Z that is spanned by all paths of the form u × v, where u ∈ Ωp(X)
and v ∈ Ωq(Y ) with some p, q ≥ 0 such that p+ q = r. By Proposition 6.5, we have u×v ∈ Ωr(Z) whence
it follows that

Ω̃r(Z) ⊂ Ωr(Z).
The existence of the representation (6.21) is equivalent to the opposite inclusion, i.e., to the identity

Ω̃r(Z) = Ωr(Z).

Clearly, it suffices to show that
dim Ωr(Z) ≤ dim Ω̃r(Z). (6.23)

Consider also the space
Ãr(Z) =

∑

p+q=r

Ap(X) ×Aq(Y ).

By definition of the cross product, all the paths in Ãr(Z) are allowed, i.e.,

Ãr(Z) ⊂ Ar(Z).

By Lemma 6.9, any path from Ωr(Z) is a linear combination of paths ex × ey with allowed x, y, which
means that

Ωr(Z) ⊂ Ãr(Z).
In particular, we have also

Ω̃r(Z) ⊂ Ãr(Z).
Fix some triple p, q, r with p + q = r and consider the following spaces (cf. (5.19)):

• Ω⊥
p (X), an orthogonal complement of Ωp(X) in Ap(X);

• Ω⊥
q (Y ), an orthogonal complement of Ωq(Y ) in Aq(Y );

• Ω⊥
r (Z), an orthogonal complement of Ωr(Z) in Ãr(Z) (warning: not in Ar(Z)!).

First, consider the case where the field K is R or Q. In this case, a linear space with a K-scalar product
is represented as a direct sum of a subspace with its orthogonal complement. For each u ∈ Ap(X) consider
a decomposition

u = uΩ + u⊥, (6.24)
where uΩ ∈ Ωp(X) and u⊥ ∈ Ω⊥

p (X), and a similar decomposition v = vΩ + v⊥ for v ∈ Aq(Y ). Then we
have

u × v = uΩ × vΩ + uΩ × v⊥ + uΩ × v⊥ + u⊥ × v⊥.

Here uΩ × vΩ ∈ Ω̃r(Z), while by Lemma 6.11 all other terms in the right-hand side belong to Ω⊥
r (Z),

whence it follows that
u × v ∈ Ω̃r(Z) + Ω⊥

r (Z).

Since Ãr(Z) is spanned by the products u × v, where u and v are allowed, we obtain that

Ãr(Z) = Ω̃r(Z) + Ω⊥
r (Z).

Comparing with the decomposition

Ãr(Z) = Ωr(Z) ⊕ Ω⊥
r (Z),

we obtain (6.23).
Now consider the most general case of an arbitrary field K. Let us introduce the following notation:

ap = dimAp(X), aq = dimAq(Y ), ar = dim Ãr(Z),

ωp = dim Ωp(X), ωq = dim Ωq(Y ), ωr = dim Ωr(Z),

and observe that

dim Ω⊥
p (X) = ap − ωp, dim Ω⊥

q (Y ) = aq − ωq, dim Ω⊥
r (Z) = ar − ωr. (6.25)
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Let us prove that
ar =

∑

p+q=r

apaq. (6.26)

Indeed, Ap(X) is spanned by all elementary paths ex with x ∈ Pp(X) and Aq(Y ) is spanned by all
elementary paths ey with y ∈ Pq(Y ). Therefore, Ãr(Z) is spanned by all products ex × ey, where x and y
as above are considered for all possible p and q such that p + q = r. The number of such products ex × ey

is equal to the right-hand side of (6.26), so that the identity (6.26) follows from the linear independence
of the family {ex × ey} (cf. Lemma 6.9).

It follows from the above argument that

dim
(Ap(X) ×Aq(Y )

)
= apaq (6.27)

and that
Ãr(Z) =

⊕

p+q=r

(Ap(X) ×Aq(Y )
)
. (6.28)

Before we can proceed further, let us prove two claims about properties of subspaces of Ap(X) and
Aq(Y ).

Claim 1. For any two subspaces U ⊂ Ap(X) and V ⊂ Aq(Y ), we have

dim(U × V ) = dimU dim V. (6.29)

Indeed, let u1, u2, . . . , uk be a basis in U and v1, . . . , vl be a basis in V . Then U × V is spanned by
all products ui × vj , so that

dim(U × V ) ≤ kl. (6.30)
Let us complement the basis {ui} to a basis in Ap(X) by adding additional paths u′

1, . . . , u
′
k′ , and, similarly,

complement {vj} to a basis in Aq(Y ) by adding v′1, . . . , v′l′ . Set U ′ = span{u′
i} and V ′ = span{v′j}. Then

Ap(X) ×Aq(Y ) = (U + U ′) × (V + V ′) = U × V + U × V ′ + U ′ × V + U ′ × V ′, (6.31)

whence by (6.27) and (6.30) we have

apaq ≤ dim(U × V ) + dim(U × V ′) + dim(U ′ × V ) + dim(U ′ × V ′) (6.32)

≤ kl + kl′ + k′l + k′l′.

The right-hand side here is equal to (k + k′)(l + l′) = apaq; this implies that we must have the equality
in (6.32), in particular, dim(U × V ) = kl, which proves (6.29).

Claim 2. For any two subspaces U ⊂ Ap(X) and V ⊂ Aq(Y ), we have
(
U ×Aq(Y )

) ∩ (Ap(X) × V ) = U × V. (6.33)

Indeed, it follows from Claim 1 that the sum on the right-hand side of (6.31) is direct and, hence,

U ×Aq(Y ) = U × (V ⊕ V ′) = (U × V ) ⊕ (U × V ′)

and
Ap(X) × V = (U ⊕ U ′) × V = (U × V ) ⊕ (U ′ × V ),

whence (6.33) follows.
By Lemma 6.11, we have that

Ω⊥
p (X) ×Aq(Y ) ⊂ Ω⊥

r (Z)
and

Ap(X) × Ω⊥
q (Y ) ⊂ Ω⊥

r (Z),
so that ∑

p+q=r

[(
Ω⊥

p (X) ×Aq(Y )
)

+
(Ap(X) × Ω⊥

q (Y )
)] ⊂ Ω⊥

r (Z) (6.34)

(see Fig. 15).
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Fig. 15. Space Ãr(Z) and its subspaces Ω⊥
r (Z), Ap(X) × Aq(Y ) (two instances), and

Ω⊥
p (X) ×Aq(Y ) + Ap(X) × Ω⊥

q (Y ).

Note that the space in the square brackets in (6.34) is a subspace of Ap(X) × Aq(Y ). It follows
from (6.28) that the sum

∑
in (6.34) is direct, which implies an inequality

∑

p+q=r

dim
[(

Ω⊥
p (X) ×Aq(Y )

)
+

(Ap(X) × Ω⊥
q (Y )

)] ≤ dim Ω⊥
r (Z). (6.35)

By Claim 2, the subspaces Ω⊥
p (X)×Aq(Y ) and Ap(X)×Ω⊥

q (Y ) have intersection Ω⊥
p (X)×Ω⊥

q (Y ), whence

dim
[(

Ω⊥
p (X) ×Aq(Y )

)
+

(Ap(X) × Ω⊥
q (Y )

)]

= dim
(
Ω⊥

p (X) ×Aq(Y )
)

+ dim
(Ap(X) × Ω⊥

q (Y )
) − dim

(
Ω⊥

p (X) × Ω⊥
q (Y )

)
. (6.36)

Using (6.25), we obtain that the right-hand side of (6.36) is equal to

(ap − ωp)aq + ap(aq − ωq) − (ap − ωp)(aq − ωq) = apaq − ωpωq.

Substituting this into (6.35) yields
∑

p+q=r

(apaq − ωpωq) ≤ ar − ωr,

which together with (6.26) implies that
ωr ≤

∑

p+q=r

ωpωq.

Finally, we are left to observe that, by (6.22),
∑

p+q=r

ωpωq = dim Ω̃r(Z),

which finishes the proof of inequality (6.23).

Proof of Theorem 6.6. The isomorphism (6.6) follows from (6.4) and (5.3), so we only need to prove (6.4).
Consider the tensor product of the graded linear spaces

A•(X, Y ) := A•(X) ⊗A•(Y )

and a linear mapping
Φ: Ar(X, Y ) → Ar(Z)

defined on the basis by
Φ(ex ⊗ ey) = ex × ey
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for all x ∈ Pp(X) and y ∈ Pq(Y ) with p + q = r. In fact, we have

Φ
(Ar(X, Y )

)
= Ãr(Z),

where Ãr(Z) is defined in (6.28). It follows from the argument in the proof of Theorem 6.12 that the
mapping Φ is injective.

Now consider the tensor product of the chain complexes

Ω•(X, Y ) := Ω•(X) ⊗ Ω•(Y ),

i.e., set for any r ≥ 0
Ωr(X, Y ) =

⊕

{p,q≥0: p+q=r}

(
Ωp(X) ⊗ Ωq(Y )

)

and define the boundary operator ∂ on Ωr(X, Y ) by (5.2). It follows from the definition of Φ and Ω̃r(Z)
that

Φ
(
Ωr(X, Y )

)
= Ω̃r(Z).

Since by Theorem 6.12
Ω̃r(Z) = Ωr(Z), (6.37)

we obtain that the mapping Φ provides a linear isomorphism of the spaces Ω•(X, Y ) and Ω•(Z). Moreover,
Φ commutes with ∂, which follows from (5.2) and the product rule of Proposition 6.3. Hence, Φ is an
isomorphism of the chain complexes Ω•(X, Y ) and Ω•(Z), which finishes the proof.

Proof of Theorem 5.15. The proof of Theorem 5.15 is obtained from the proof of Theorem 6.12 by
a “search and replace” operation. Indeed, we need only to make the following changes in the proof
of Theorem 6.12:

• remove everywhere the sign × of cross product, so that the cross product u × v of two paths u
on X and v on Y will be replaced by their join uv. The same applies to the cross product U × V
of subspaces U ⊂ Ap(X) and V ⊂ Aq(Y ): it is replaced by the join UV that is by the space
spanned by all joins uv with u ∈ U and v ∈ V ;

• replace everywhere Ap(X) by A′
p(X) and Ωp(X) by Ω′

p(X);
• replace the (implicitly used) range p ≥ 0, q ≥ 0 of the parameters p and q by p ≥ 0, q ≥ −1.

Let us verify that after these changes the proof remains valid. For that we only need to trace the places
where the properties of the cross product were used and replace them by the corresponding properties
(and references) of join. Here is the list of the properties of cross product that were used in the proof of
Theorem 6.12, and their replacements for join.

(1) If u ∈ Ap(X) and v ∈ Aq(Y ), then u×v ∈ Ap+q(Z), which follows immediately from the definition
of the cross product. The same property is true for join: if u ∈ A′

p(X) and v ∈ Aq(Y ), then
uv ∈ Ap+q(Z), which is also a trivial consequence of the definition.

(2) Proposition 6.5: if u ∈ Ωp(X) and v ∈ Ωq(Y ), then u × v ∈ Ωp+q(Z). It should be replaced by
Proposition 5.4: if u ∈ Ω′

p(X) and v ∈ Ωq(Y ), then uv ∈ Ωp+q(Z).
(3) Lemma 6.9: any path w ∈ Ωr(Z) is a unique linear combination of the products ex × ey, where x

is an allowed path on X and y is an allowed path on Y . It should be replaced by the following
property of join: any path w ∈ Ar(Z) is a unique linear combination of joins exey with x and y
as above, which is a trivial consequence of the definition of join of path complexes.

(4) Lemma 6.11: if u ∈ Ω⊥
p (X) and v ∈ Aq(Y ), then u × v ∈ Ω⊥

p+q(Z). It should be replaced by
Lemma 5.14: if u ∈ Ω′⊥

p (X) and v ∈ Aq(Y ), then uv ∈ Ω⊥
p+q(Z).

By these observations we finish the proof.
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