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Abstract: In this paper, we prove two existence results of solutions to mean field equa-
tions

�u + eu = ρδ0

and

�u = λeu(eu − 1) + 4π
M∑

j=1

δp j

on an arbitrary connected finite graph, where ρ > 0 and λ > 0 are constants, M is a
positive integer, and p1, . . . , pM are arbitrarily chosen distinct vertices on the graph.

1. Introduction

The mean field equation
�u + eu = ρδ0 (1.1)

has its origin in the prescribed curvature problem in geometry, where constant ρ > 0
and δ0 is the Dirac delta mass at the zero point. Closely related is the Kazdan–Warner
equation [9]

�u + heu = c. (1.2)

The name of the Eq. (1.1) comes from statistical physics as themean field limits of the
Euler flow [1]. It has also been shown to be related to the Chern–Simons–Higgs model.
The existence of solutions to Eq. (1.1) has been studied in [3,4,10,11] on Euclidean
spaces and on the two dimensional flat tori. For example, on the two dimensional flat
tori, when ρ �= 8mπ for any m ∈ Z, Eq. (1.1) always has solutions, see [3,4]. When
ρ = 8π , it was shown in [10] that Eq. (1.1) has solutions if and only if the Green’s
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function on the two dimensional flat tori has critical points other than the three half
period points.

In [5], Grigorigan, Lin and Yang have obtained a few sufficient conditions when
Eq. (1.2) has a solution on a finite graph. There are several further results regarding the
solutions of (1.2) on graphs in [6–8].

In this paper, we study Eq. (1.1) and also the followingmean field equation on graphs:

�u = λeu(eu − 1) + 4π
M∑

j=1

δp j , (1.3)

where λ > 0, M is any fixed positive integer, and p1, . . . , pM are arbitrarily chosen
distinct vertices on the graph and δp j is the Dirac delta mass at the vertex p j .

Caffarelli and Yang in [2] proved an existence result of solutions to Eq. (1.3) on
doubly periodic regions in R2 (the 2-tori), depending on the value of the parameter λ.

Let G = (V, E) be a connected finite graph, where V is the set of vertices and E is
the set of edges. For a vertex x ∈ V , we denote dx as the degree of x , i.e. the number
of vertices in V connected to x . For any function f : V → R, we use the notation∫
V f (x)dμ(x) = ∑

xεV f (x)μ(x) to denote the integral of function f on vertex set V .
We use the notation V (G) = ∑

x∈V μ(x) to denote the volume of graph G.
In this paper, we show that Eq. (1.1) always has a solution on any connected finite

graph (Theorem 2.1), in contrast to the continuous case.We shall also prove an existence
result for Eq. (1.3) on a connected finite graph (Theorem 2.2), depending on the value
of the parameter λ, which is in line with the result of Caffarelli and Yang on the 2-tori.

We obtain these results by a mostly straightforward adaption of existing treatments
from the continuous case [1,5,9]. Once we have the setup, some analysis tend to simplify
on finite graphs since there is only a finite number of degrees of freedom. Theorem 2.1
on the other hand shows that the existence of solutions for (1.1) on the discrete two
dimensional tori graph given as the quotient of the two dimensional lattice infinite graph
by a rank 2 sublattice of finite index, differs from that on the continuous limit– the two
dimensional flat tori, when the parameter ρ takes on certain special values such as 8π .

Remark 1. As a side remark, it appears interesting to study the Green’s function on the
2-tori by studying the corresponding discrete Green’s function on the 2-tori graph stated
above. For example, when the torus parameter τ = 1

2 + i , there exist two additional
critical points of the Green’s function besides the half periods by [10]. A computer study
aided by this discrete Green’s function indicates that the slope of the line through these
two additional critical points of the Green’s function is equal to 25

64 .

2. Settings and Main Results

Let G = (V, E) be a connected finite graph. Denote N = |V |. We assume positive
symmetric weights wxy = ωyx on edges xy ∈ E . Let μ : V → R

+ be a finite measure.
For any function u : V → R, the Laplace operator acting on u is defined by

�u(x) = 1

μ(x)

∑

y∼x

wxy(u(y) − u(x)),

where y ∼ x means xy ∈ E . The gradient form of u is by definition


(u) = 1

2

∫

V
| � u|2 :=

∑

x∈V

1

2μ(x)

∑

y∼x

wxy(u(y) − u(x))2.
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As in [5], we define a Sobolev Space and a norm by

W 1,2(V ) = {u : V → R :
∫

V
(| � u|2 + u2)dμ < +∞}

and

||u||W 1,2(V ) = (

∫

V
(| � u|2 + u2)dμ)1/2

respectively. Since V is a finite graph, W 1,2(V ) is VR, the finite dimensional vector
space of all real functions on V . We have the following Sobolev embedding (Lemma 5
in [5]):

Lemma 2.1. Let G = (V, E) be a finite graph. The Sobolev Space W 1,2(V ) is precom-
pact. Namely, if {u j } is bounded in W 1,2(V ), then there exits some u ∈ W 1,2(V ) such
that there is a subsequence uni , uni → u in W 1,2(V ).

Remark 2. For finite graphs, Lemma 2.1 can be avoided for the purpose of the present
paper. But we include it for potential generalizations to infinite graphs.

By using the variational principle (see the similar approach in [9] and [5]), we prove
the following

Theorem 2.1. Equation (1.1) has a solution on G.

Using an iteration method, we next prove the following

Theorem 2.2. There is a critical value λc depending on G satisfying

λc ≥ 16πM

|V | ,

such that when λ > λc, the Eq. (1.3) has a solution on G, and when λ < λc, the Eq. (1.3)
has no solution.

3. The Proof of Theorem 2.1

In this section, we fix the vertex x0 ∈ V and denote the δ0 as the Dirac delta mass at the
vertex x0.

Proof. For u ∈ W 1,2(V ), we consider the functional

J (u) = 1

2

∫

V
| � u|2 +

∫

V
ρ · δ0 · u.

Let the set

B = {u ∈ W 1,2(V ) :
∫

V
eu =

∫

V
ρ · δ0 = ρ}.

We can choose that u(x) ≡ log ρ
V (G)

, then
∫
V eu = ρ, therefore B �= ∅.

For any u ∈ B,
∫
V eu = ρ, choose xD ∈ V such that

eu(xD) = min
x∈V {eu(x)},
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then

Neu(xD) ≤ ρ,

u(xD) ≤ log
ρ

N
.

Choose a shortest path on G from x0 to xD (therefore non-backtracking): x0 ∼ x1 ∼
· · · xD−1 ∼ xD ,

1

2

∫

V
| � u|2 =

∑

x∈V

1

2μ(x)

∑

y∼x

ωxy(u(y) − u(x))2

≥ Deg[(u(x1) − u(x0))
2 + (u(x2) − u(x1))

2 + · · · + (u(xD) − u(xD−1))
2]

≥ Deg
(u(x0) − u(xD))2

D

≥ Deg

D
· (u(x0) − log

ρ

N
)2

≥ Deg

2D
· u2(x0) − 2Deg

D
· log2 ρ

N
.

where Deg = minx∈V,y∼x
ωxy
2μ(x) , and we use Cauchy-Schwartz inequality in the proof

of second inequality.
So there exists c = max{log2 ρ

N ,
4Dρ
Deg

+ 4} > 0, such that when |u(x0)| ≥ c,

1

4

∫

V
| � u|2 ≥ ρ · |u(x0)|.

Therefore we have in this case

J (u) ≥ 1

4

∫

V
| � u|2. (3.1)

When |u(x0)| < c,

J (u) >
1

2

∫

V
| � u|2 − ρc. (3.2)

Therefore J (u) has a lower bound on B. So we can choose

uk(x) ∈ B, J (uk(x)) → b (k → ∞),

where b = infu∈B J (u).

From (3.1) and (3.2), for all k,
∫

V
| � uk |2 ≤ c1

for some constant c1, since |J (uk)| ≤ c2 for some constant c2. As

J (uk) = 1

2

∫

V
| � uk |2 + ρ · uk(x0),
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there exists a constant c′, such that |uk(x0)| ≤ c′ for all k. For any x ∈ V , choose a
shortest path on G from x0 to x :

x0 ∼ x1 ∼ . . . xL−1 ∼ x,

where L is at most the diameter of G which is bounded by N ,

|uk(x)| ≤ |uk(x) − uk(xL−1)| + |uk(xL−1) − uk(xL−2)| + · · ·
+ |uk(x1) − uk(x0)| + |uk(x0)|

≤ L · [|uk(x) − uk(xL−1)|2 + · · · + |uk(x1) − uk(x0)|2]1/2 + c′

≤ L

Deg

∫

V
| � uk |2 + c′.

As L ≤ N , the L∞ norm of uk(x) is uniformly bounded, and therefore uk(x) are
uniformly bounded inW 1,2(V ). From the Sobolev embedding (Lemma 2.1), there exits
a subsequence uk1(x) → u∞(x) ∈ W 1,2(V ) in W 1,2(V ), and

∫

V
eu∞ = lim

k1→∞

∫

V
euk1 = ρ.

Finally we prove that u∞ is the solution of Eq. (1.1). This is based on the method of
Lagrange maltiplies. Let

L(t, λ) = 1

2

∫

V
| � (u∞ + tϕ)|2 +

∫

V
ρ · δ0(u∞ + tϕ) + λ(−

∫

V
eu∞+tϕ + ρ),

where ϕ ∈ W 1,2(V ). So we have

∂L

∂λ
|t=0 = −

∫

V
eu∞ + ρ = 0,

since u∞ ∈ B. And

0 = ∂L

∂t
|t=0 = −

∫
�u∞ · ϕ +

∫
ρ · δ0 · ϕ − λ

∫
eu∞ · ϕ = 0.

Therefore by the variational principle,

−�u∞ + ρ · δ0 − λ · eu∞ = 0.

Since
∫
V �u∞ = 0, we have

λ

∫

V
eu∞ =

∫

V
ρ · δ0 = ρ.

So λ = 1, and

�u∞ + eu∞ = ρ · δ0.

This finishes the proof of Theorem 2.1. �
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4. The Proof of Theorem 2.2

Weuse themethod of upper and lower solutions to prove Theorem 2.2, adaptingmethods
from [1,9] and [5] to the graph setting.

Lemma 4.1 (Maximum principle). Let G = (V, E), where V is a finite set, and K ≥ 0
is a constant. Suppose a real function u(x) : V → R satisfies

(� − K )u(x) ≥ 0 for all x ∈ V,

then u(x) ≤ 0 for all x ∈ V .

Proof. Let u(x0) = maxx∈V {u(x)}, we only need to show that u(x0) ≤ 0. Suppose this
is not the case. Since

(� − K )u(x0) ≥ 0,

we have
∑

y∼x0

u(y) ≥ (dx0 + K )u(x0) ≥ dx0u(x0),

where we have used the assumption that u(x0) > 0, and that K ≥ 0 in the last inequality.
This implies that for any y ∼ x0, u(y) ≥ u(x0). Since G is a connected graph, by
induction, for any xy ∈ E, u(y) = u(x0). From

K
∫

V
u(x) ≤

∫
�u(x) = 0

and K ≥ 0 we get that u(x0) ≤ 0. This is a contradiction. �
Let u0 be a solution of the Poisson equation

�u0 = −4πM

|V | + 4π
M∑

j=1

δp j . (4.1)

The solution of (4.1) always exists, as the integral of the right side is equal to 0. Inserting
u = u0 + v into Eq. (1.3), we get

�v = λeu0+v(eu0+v − 1) +
4πM

|V | . (4.2)

Sum the two sides of the about equation, we get

λ(eu0+v − 1

2
)2 = λ

4
− 4πM

|V | ,

which implies that

λ ≥ 16πM

|V | . (4.3)

We call a function v+ an upper solution of (4.2) if for any x ∈ V , it satisfies

�v+(x) ≥ λeu0(x)+v+(x)(eu0(x)+v+(x) − 1) +
4πM

|V | . (4.4)
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Let v0 = −u0, we define a sequence {vn} by iterating for a constant K ≥ 2λ,

(� − K )vn = λeu0+vn−1(eu0+vn−1 − 1) − Kvn−1 +
4πM

|V | . (4.5)

We next prove that {vn} is a monotone sequence and it converges to a solution of
Eq. (4.2).

Lemma 4.2. Let {vn} be a sequence defined by (4.5). Then

v0 ≥ v1 ≥ v2 ≥ · · · ≥ vn · · · ≥ v+

for any upper solution v+ of (4.2).

Proof. We prove the Lemma by induction. As v0 = −u0, for v1 we have by (4.5),

(� − K )v1 = Ku0 +
4πM

|V | .

Together with (4.1), we obtain

(� − K )(v1 − v0)(x) = 4π
M∑

j=1

δp j (x) ≥ 0

for any x ∈ V , and

K
∫

V
(v1 − v0) = −4πM < 0.

Therefore v1 − v0 ≤ 0 by Lemma 4.1. Suppose that v0 ≥ v1 ≥ · · · ≥ vk for k ≥ 1.
From (4.5) and K ≥ 2λ, we get

(� − K )(vk+1 − vk) = λe2u0+2vk − λeu0+vk − Kvk − λe2u0+2vk−1 + λeu0+vk−1 + Kvk

= λe2u0(e2vk − e2vk−1) − λeu0(evk − evk−1) − K (vk − vk−1)

≥ λe2u0(e2vk − e2vk−1) − K (vk − vk−1)

= 2λe2u0+2v
∗
(vk − vk−1) − K (vk − vk−1)

≥ K (e2u0+2v0 − 1)(vk − vk−1)

≥ 0.

Where vk ≤ v∗ ≤ vk−1 ≤ v0. Lemma 4.1 then implies that vk+1 − vk ≤ 0 on V .
Next we prove that vk ≥ v+ for any k.

First consider the case k = 0. From (4.1) and (4.4) ,

�(v+ − v0) ≥ λeu0+v+(eu0+v+ − 1) + 4π
M∑

j=1

δp j

≥ λeu0+v+(eu0+v+ − 1)

= λev+−v0(ev+−v0 − 1). (4.6)
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Let v+(x0)− v0(x0) = maxx∈V {v+(x0) − v0(x0)}. We only need to prove that v+(x0)−
v0(x0) ≤ 0. Suppose not, then from (4.6) we have

�(v+ − v0)(x0) > 0

which contradicts with the assumption that x0 is a point where v+ −v0 attains maximum
in V . Hence v+ − v0 ≤ 0 in V . Now suppose that v+ ≤ uk for k ≥ 0. From (4.4) and
(4.5), we have

(� − K )(v+ − vk+1) = λe2u0(e2v+ − e2vk ) − K (v+ − vk) − λeu0(ev+ − evk )

≥ λe2u0(e2v+ − e2vk ) − K (v+ − vk)

= 2λe2u0+2v
∗
(v+ − vk) − K (v+ − vk)

≥ K (e2u0+2v0 − 1)(v+ − vk)

= 0,

where v+ ≤ v∗ ≤ vk ≤ v0. So Lemma 4.1 implies that vk+1 ≥ v+.
This finishes the proof of Lemma 4.2. �

Lemma 4.3. The Eq. (1.3) has a solution on G, when λ is sufficiently big.

Proof. We only need to prove that Eq. (4.2) has an upper solution v+. Suppose u0 is
a solution of (4.1). Choose v+ = −c′′ < 0 to be a constant function, where −c′′ is
sufficiently small such that u0 + v+ < 0 in V . Then eu0+v+ − 1 < 0. So we can choose
λ > 0 big enough such that

λeu0+v+(eu0+v+ − 1) +
4πM

|V | < 0.

Therefore

0 = �v+ > λeu0+v+(eu0+v+ − 1) +
4πM

|V | .

So v+ ≡ −c is an upper solution of (4.2). �
Lemma 4.4. If u is a solution of Eq. (1.3) on G, then u < 0 on G.

Proof. Let u(x0) = maxx∈V {u(x)}, we only need to show that u(x0) < 0. Suppose
u(x0) ≥ 0. Then eu(x0) − 1 ≥ 0. From Eq. (1.3) we get that

�u(x0) ≥ 0,

that is
∑

y∼x

u(y) ≥ dx0u(x0).

This implies that for any

y ∼ x, u(y) ≥ u(x0).

Since G is a connected finite graph, by iterating the above process, we get that for any

y ∈ V, u(y) = u(x0).

So the left side of Eq. (1.3) is 0 and the right side is positive on p j ∈ V , which is a
contradiction. �
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Now we prove Theorem 2.2, which is similar to the proof of Lemma 4 in [2].

Proof. Denote

 = {λ > 0|λ is such that equation (1.3) has a solution}.
We will show that  is an interval. Suppose that λ′ ∈ . We need to prove that

[λ′,+∞) ∈ .

In fact, let u′ = u0+v′ is the solution of Eq. (1.3) at λ = λ′, where v′ is the corresponding
solution of Eq. (4.2). Since

u′ = u0 + v′ < 0,

we see that v′ is an upper solution of Eq. (4.2) for any λ ≥ λ′. By Lemma 4.2, we obtain
that λ ∈  as desired.

Set λc = inf {λ|λ ∈ } . Then λ ≥ 16πM
|V | for any λ > λc by (4.3) and that  is an

interval. Taking the limit, we get that

λc ≥ 16πN

|V | .

�

Acknowledgements Y. Lin is supported by the National Science Foundation of China (Grant No. 11271011
and 11761131002), S.-T. Yau is supported by the NSF DMS-0804. Part of the work was done when Y. Lin
visited the Harvard CMSA in 2018.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

References

1. Caglioti, E., Lions, P.L., Marchioro, C., Pulvirenfi, M.: A special class of stationary flows for two-
dimensional Euler equations: a statistical mechanics description. Commun. Math. Phys. 143, 501–525
(1992)

2. Caffarelli, L.A., Yang, Y.: Vortex condensation in the Chern–Simons Higgs model: an existence theorem.
Commun. Math. Phys. 168, 321–336 (1995)

3. Chen, C.C., Lin, C.S.: Topological degree for a mean field equation on Riemann surfaces. Commun. Pure
Appl. Math. LVI, 1667–1727 (2003)

4. Chen, C.C., Lin, C.S., Wang, G.: Concentration phenomenon of two-vortex solutions in a Chern–Simons
model. Ann. Scuola Norm. Sup. Pisa CI. Sci. (5) III, 367–379 (2004)

5. Grigor’yan, A., Lin, Y., Yang, Y.: Kazdan–Warner equation on graph. Calc. Var. Part. Differ. Equ. 55(4),
1–13 (2016)

6. Ge, H.: Kazdan–Warner equation on graph in the negative case. J. Math. Anal. Appl. 453, 1022–1027
(2017)

7. Ge, H., Jiang, W.: Kazdan–Warner equation on infinite graphs. J. Korean Math. Soc. 55(5), 1091–1101
(2017)

8. Keller, M., Schwarz, M.: The Kazdan–Warner equation on canonically compactifiable graphs. Calc. Var.
Part. Differ. Equ. 57(2), 1–20 (2018)

9. Kazdan, J., Warner, F.: Curvature functions for compact 2-manifolds. Ann. Math. 99(1), 14–47 (1974)
10. Lin, C.-S., Wang, C.-L.: Elliptic functions, Green functions and the mean field equations on tori. Ann.

Math. 172(2), 911–954 (2010)
11. Lin, C.-S., Yan, S.: Existence of bubbling solutions for Chern–Simons model on a torus. Arch. Ration.

Mech. Anal. 207(2), 353–392 (2013)

Communicated by H. T. Yau


	Existence of Solutions to Mean Field Equations on Graphs
	Abstract:
	1 Introduction
	2 Settings and Main Results
	3 The Proof of Theorem 2.1
	4 The Proof of Theorem 2.2
	Acknowledgements
	References




