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Abstract
Inspired by works of Castéras (Pac J Math 276:321–345, 2015), Li and Zhu (Calc Var Partial
Differ Equ 58:1–18, 2019), Sun and Zhu (Calc Var Partial Differ Equ 60:1–26, 2021), we
propose a heat flow for the mean field equation on a connected finite graph G = (V , E).
Namely

{
∂tφ(u) = �u − Q + ρ eu∫

V eudμ

u(·, 0) = u0,

where � is the standard graph Laplacian, ρ is a real number, Q : V → R is a function
satisfying

∫
V Qdμ = ρ, and φ : R → R is one of certain smooth functions including

φ(s) = es . We prove that for any initial data u0 and any ρ ∈ R, there exists a unique solution
u : V ×[0,+∞) → R of the above heat flow; moreover, u(x, t) converges to some function
u∞ : V → R uniformly in x ∈ V as t → +∞, and u∞ is a solution of the mean field
equation

�u∞ − Q + ρ
eu∞∫

V eu∞dμ
= 0.

Though G is a finite graph, this result is still unexpected, even in the special case Q ≡ 0.
Our approach reads as follows: the short time existence of the heat flow follows from the
ODE theory; various integral estimates give its long time existence; moreover we establish a
Lojasiewicz–Simon type inequality and use it to conclude the convergence of the heat flow.
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1 Introduction

Let us start with the mean field equation on a closed Riemann surface (�, g), which says

− �gu + Q = ρ
eu∫

�
eudvg

, (1)

where ρ ∈ R is a number, Q : � → R is a smooth function with
∫
�
Qdvg = ρ, and �g

is the Laplacian operator with respect to the metric g. This equation arises in various topics
such as conformal geometry [21], statistical mechanics [2], and the abelian Chen–Simons–
Higgs model [3,9,35]. The existence of solutions of (1) has been extensively investigated for
several decades. Landmark achievements have been obtained for the case ρ �= 8kπ , k ∈ N,
[1,7,10,11,24,25,29,32], and for the case ρ = 8π [8].

In 2015, Castéras [4,5] proposed and studied the following parabolic equation{
∂
∂t e

u = �gu − Q + ρ eu∫
� eudvg

u(x, 0) = u0(x),
(2)

where u0 ∈ C2,α(�), 0 < α < 1, is the initial data, �g , Q and ρ are described as in (1). It
is a gradient flow for the energy functional Jρ : W 1,2(�, g) → R defined by

Jρ(u) = 1

2

∫
�

|∇gu|2dvg +
∫

�

Qudvg − ρ log
∫

�

eudvg,

where ∇g is the gradient operator with respect to the metric g. It was proved by Castéras that
for any ρ �= 8kπ , k = 1, 2, . . ., there exists some initial data u0 such that u(·, t) converges
to a function u∞ in W 2,2(�), where u∞ is a solution of the mean field equation (1); For
ρ = 8π , a sufficient condition for convergence of the flow (2) was given by Li and Zhu [23].
This gives a new proof of the result of Ding et al. [8], which was extended by Chen and
Lin [6] to a general critical case, and generalized by Yang and Zhu [37] to a non-negative
prescribed function case. Recently, using a more refined analysis, Sun and Zhu [34] studied
a modified version of (2), i.e. the parabolic equation{

∂
∂t e

u = �gu − 8π
Area(�)

+ 8π heu∫
� heudvg

u(x, 0) = u0(x),
(3)

where h(x) ≥ 0, h �≡ 0 on �, and Area(�) = ∫
�
dvg denotes the area of �. Clearly this is

another method of proving the result in [37].
In this paper, we are concerned with the mean field equation on a finite graph. Let us

fix some notations. Assume G = (V , E) is a finite graph, where V denotes the vertex set
and E denotes the edge set. For any edge xy ∈ E , we assume that its weight wxy > 0 and
that wxy = wyx . Let μ : V → R

+ be a finite measure. For any function u : V → R, the
Laplacian of u is defined as

�u(x) = 1

μ(x)

∑
y∼x

wxy(u(y) − u(x)), (4)

where y ∼ x means xy ∈ E , or y and x are adjacent. The associated gradient form reads

	(u, v)(x) = 1

2μ(x)

∑
y∼x

wxy(u(y) − u(x))(v(y) − v(x)).
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Write 	(u) = 	(u, u). We denote the length of its gradient by

|∇u|(x) = √
	(u)(x) =

(
1

2μ(x)

∑
y∼x

wxy(u(y) − u(x))2
)1/2

. (5)

For any function g : V → R, an integral of g over V is defined by∫
V
gdμ =

∑
x∈V

μ(x)g(x). (6)

Let W 1,2(V ) be a Sobolev space including all real functions u with the norm

‖u‖W 1,2(V ) =
(∫

V
(|∇u|2 + u2)dμ

)1/2

.

As an analog of (1), the mean field equation on the finite graph G reads as

− �u + Q = ρ
eu∫

V eudμ
, (7)

where ρ is a real number, Q : V → R is a function with
∫
V Qdμ = ρ, and � is the graph

Laplacian with respect to themeasureμ as in (4). The equation (7) can be viewed as a discrete
version of (1). Let φ : R → R be a C1 function. We propose the following heat flow{

∂
∂t φ(u) = �u − Q + ρ eu∫

V eudμ

u(x, 0) = u0(x), x ∈ V .
(8)

This is an analog of (3). Obviously it is a gradient flow for the functional Jρ : W 1,2(V ) → R,
which is defined as

Jρ(u) = 1

2

∫
V

|∇u|2dμ +
∫
V
Qudμ − ρ log

∫
V
eudμ, (9)

where the notations (5) and (6) are used. Our main result is stated as follows:

Theorem 1 Let G = (V , E) be a connected finite graph. Suppose φ : R → R is a C1

function satisfying

lim
s→−∞ φ(s) = 0, φ′(s) > 0 for all s ∈ R, inf

s∈[0,+∞)
φ′(s) > 0. (10)

Let ρ be any real number, and Q be any function with
∫
V Qdμ = ρ. Then for any initial

function u0 : V → R, we have the following assertions:
(i) there exists a unique solution
u : V × [0,∞) → R of the heat flow (8);
(i i) there exists some function u∞ : V → R such that u(·, t) converges to u∞ uniformly in
x ∈ V as t → +∞; moreover u∞ is a solution of the mean field equation (7).

There are two interesting special cases of results in Theorem 1 as follows:

Corollary 2 Let G = (V , E) and φ be as in Theorem 1. If
∫
V f dμ = 0, then for any initial

function u0 : V → R, the heat flow{
∂
∂t φ(u) = �u − f
u(·, 0) = u0
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has a solution u : V × [0,+∞) → R. Moreover, there exists some function u∗ such that
u(·, t) converges to u∗ as t → +∞ uniformly in x ∈ V , and that u∗ satisfies{

�u∗ = f∫
V φ(u∗)dμ = ∫

V φ(u0)dμ.

Corollary 3 Let G = (V , E) and φ be as in Theorem 1. Then for any initial function u0 :
V → R, the heat flow {

∂
∂t φ(u) = �u

u(·, 0) = u0

has a solution u : V ×[0,+∞) → R; moreover, as t → +∞, u(·, t) converges to a constant
c uniformly in x ∈ V , in particular

φ(c) = 1

|V |
∫
V

φ(u0)dμ.

Obviously there are infinitely many examples of φ in Theorem 1. A typical example is

φ(s) =
{
eαs + βs p when s > 0
eαs when s ≤ 0,

where α > 0, β ≥ 0 and p > 1 are constants. Another one says for any real number a > 1,

φ(s) =
{
s2 + (log a)(s + cos s − 1) + 1 when s > 0
as when s ≤ 0.

Though G = (V , E) is a finite graph, the results in Theorem 1 are quite unexpected, even
in special cases ρ = 0 and Q ≡ 0 (Corollaries 2 and 3 ). As for its proof, we find a way of
thinking from Simon [31], Jendoubi [20], Castéras [4,5], Li and Zhu [23], and Sun and Zhu
[34]. Firstly, we use the ODE theory to conclude the short time existence of the heat flow (8).
Secondly, we obtain the global existence of the flow through estimating the uniform bound
of ‖u(·, t)‖W 1,2(V ) for all time t . This allows us to select a sequence of times (tn) → +∞
such that u(·, tn) converges to some function u∞ uniformly in V , where u∞ is a solution
of the mean field equation (7). Thirdly, we establish a Lojasiewicz–Simon type inequality
along the heat flow by employing an estimate due to Lojasiewicz ( [28], Theorem 4, page
88), namely

Lemma 4 (Lojasiewicz, 1963). Let 	 : R� → R be an analytic function in a neighborhood
of a point a ∈ R

� with ∇	(a) = 0 ∈ R
�. Then there exist σ > 0 and 0 < θ < 1/2 such that

‖∇	(y)‖ ≥ |	(y) − 	(a)|1−θ , ∀y ∈ R
�, ‖y − a‖ < σ,

where ∇	(y) = (∂y1	(y), . . . , ∂y�	(y)), and ‖ · ‖ stands for the standard norm of R�.

Finally,we conclude the uniformconvergence of u(·, t) to u∞ as t → +∞with the help of the
above Lojasiewicz–Simon type inequality. Since the graph G is finite, this inequality seems
much simpler than that of [4,5,20,23,31,34]. Moreover, in our case, all integral estimates
look very concise and very easy to understand.

Note that if themean field equation (7) has a solution, so does theKazdan–Warner equation
[14]. For such kind of equations, see for examples [12,19,22,27,33,39]. According to [14],
its solvability needs some assumptions. While Theorem 1 implies that for any real number
ρ, (7) is solvable. One may ask whether or not these two conclusions are consistent. Let us
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answer this question. Suppose that u∞ is given as in Theorem 1 and satisfies the mean field
equation (7). Clearly v = u∞ − log

∫
V eu∞dμ is a solution of the Kazdan–Warner equation

�v = Q − ρev. (11)

By the assumption in Theorem 1,
∫
V Qdμ = ρ. If we assume Q ≡ c for some constant c,

then ρ = c|V |, where |V | = ∑
x∈V μ(x) denotes the volume of the graph. It follows from

( [14], Theorems 2-4) that if c > 0 or c < 0, then (11) has a solution. This implies that the
results of Theorem 1 and those of [14] are consistent and do not contradict each other.

For flow on infinite graph, partial existence results for the mean field equation are obtained
by Ge-Jiang [13]. Also there is a possibility of solving problems in [15–18,26,30,38] by a
method of heat flow. Throughout this paper, we often denote various constants by the same
C from line to line, even in the same line. The remaining part of this paper is arranged as
follows: In Sect. 2, we prove the short time existence of the heat flow; In Sect. 3, we show
the heat flow exists for all time t ∈ [0,+∞); In Sect. 4, we establish a Lojasiewicz–Simon
type inequality and use it to prove the uniform convergence of the heat flow as t → +∞. As
a consequence, the proof of Theorem 1 is finished.

2 Short time existence

In this section, using the theory of ordinary differential equation, we shall prove that the
solution of the heat flow (8) exists on a short time interval. Also we shall give several
properties of the heat flow.

Since G = (V , E) is a finite graph, we assume with no loss of generality that V =
{x1, . . . , x�} for some integer � ≥ 1. Then any function u : V → R can be represented by
y = (y1, . . . , y�) ∈ R

� with y j = u(x j ) for 1 ≤ j ≤ �; moreover, we denote

M(u) = �u − Q + ρeu∫
V eudμ

(12)

and a map F : R� → R
� by F(y) = ( f1(y), . . . , f�(y)), where f j (y) = M(u)(x j ) for

1 ≤ j ≤ �. Then the equation (8) is equivalent to the ordinary differential system⎧⎪⎪⎪⎨
⎪⎪⎪⎩

d
dt φ(y1) = f1(y)

...
d
dt φ(y�) = f�(y)
y(0) = y0,

(13)

where y0 = (u0(x1), . . . , u0(x�)) is the initial data. For the map F , we have the following:

Lemma 5 The map F : R� → R
� is analytic.

Proof At y = (u(x1), . . . , u(x�)), we write

f j (y) = M(u)(x j ) = 1

μ(x j )

∑
z∼x j

wzx j (u(z) − u(x j )) − Q(x j ) + ρeu(x j )∑�
i=1 μ(xi )eu(xi )

.

Replacing (u(x1), . . . , u(x�)) by y on the righthand side of the above equality, we have that
f j is analytic, j = 1, . . . , �. ��
On the short time existence of solutions of (8), we obtain
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Lemma 6 There exists some constant T ∗ > 0 such that (8) has a solution u : V ×[0, T ∗] →
R.

Proof By the short time existence theorem of the ordinary differential equation ( [36], page
250), there exist some T ∗ > 0 and a C1 map y : [0, T ∗] → R

� such that y(t) satisfies (13).
Define u(x j , t) = y j (t) for 1 ≤ j ≤ �. Then u : V × [0, T ∗] → R is a solution of (8). ��

For any ρ ∈ R, let Jρ : W 1,2(V ) → R be a functional defined as in (9). One can easily
see that (8) is a negative gradient flow of Jρ . In particular

〈d Jρ(u(·, t)), φ〉 = −
∫
V
M(u(·, t))φdμ, ∀φ ∈ W 1,2(V ). (14)

Along the heat flow (8), there are two important quantities: one is invariant, the other is
monotone, namely

Lemma 7 (i) For all t ∈ [0, T ∗], we have an invariant quantity∫
V

φ(u(·, t))dμ =
∫
V

φ(u0)dμ.

(i i) Jρ(·, t) is monotone with respect to t , in particular, if 0 ≤ t1 < t2 ≤ T ∗, then

Jρ(u(·, t2)) ≤ Jρ(u(·, t1)).
Proof Since u(x, t) is a solution of (8), we have by calculating

d

dt

∫
V

φ(u(·, t))dμ =
∫
V

φ′(u)utdμ

=
∫
V

(
�u − Q + ρeu∫

V eudμ

)
dμ

= 0.

This immediately implies the assertion (i).
By the integration by parts,

d

dt
Jρ(u(·, t)) =

∫
V

∇u∇utdμ +
∫
V
Qutdμ − ρ∫

V eudμ

∫
V
euutdμ

= −
∫
V
M(u)utdμ

= −
∫
V

φ′(u)u2t dμ ≤ 0, (15)

since φ′(s) > 0 for all s ∈ R. Here we denote ut = ∂u/∂t . This concludes the assertion (i i).
��

3 Long time existence

In this section, we prove the long time existence of the heat flow (8). By Lemma 6, there
exists some T ∗ > 0 such that (8) has a solution u : V × [0, T ∗] → R. Let

T = sup
{
T ∗ > 0 : u : V × [0, T ∗] → R solves (8)

}
. (16)

Clearly, (8) has a solution u : V × [0, T ) → R.
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Proposition 8 Let T be defined as in (16). Then there exists some constant C independent of
T such that

‖u(·, t)‖W 1,2(V ) ≤ C, ∀t ∈ [0, T ).

Proof We divide the proof into several steps.
Step 1. There exists some constant C independent of T such that for all x ∈ V and

t ∈ [0, T ),

u(x, t) ≤ C .

By (10),φ′(s) > 0 for all s ∈ R and there exists some constant a > 0 such thatφ′(s) ≥ a > 0
for all s ∈ [0,+∞). There would hold φ(s) ≥ as for all s ∈ R. Indeed, the mean value
theorem implies

φ(s) − φ(0) = φ′(ξ)s,

where ξ lies between 0 and s. Hence φ(s) ≥ as for all s ≥ 0 since φ(0) > 0. Obviously
φ(s) ≥ as for all s < 0 since φ(s) > 0 for all s ∈ R. This together with (i) of Lemma 7
leads to

u(x, t) ≤ 1

a
φ(u(x, t))

≤ 1

aminx∈V μ(x)

∫
V

φ(u(·, t))dμ

= 1

aminx∈V μ(x)

∫
V

φ(u0)dμ

for all x ∈ V . This finishes the first step.
Step 2. There exists a constant C independent of T such that for any t ∈ [0, T ), one finds

a subset At ⊂ V satisfying ‖u(·, t)‖L∞(At ) ≤ C and |At | ≥ C−1.
For any ε > 0 and t ∈ [0, T ), we define a set

Vε,t = {x ∈ V : φ(u(x, t)) < ε} .

This together with (i) of Lemma 7 and Step 1 leads to∫
V

φ(u0)dμ =
∫
V

φ(u(·, t))dμ

=
∫
Vε,t

φ(u(·, t))dμ +
∫
V \Vε,t

φ(u(·, t))dμ

≤ ε|V | + φ(C)|V \ Vε,t |. (17)

Taking ε = ε0 = 1
2|V |

∫
V φ(u0)dμ, we conclude from (17) that

|V \ Vε0,t | ≥ 1

2φ(C)

∫
V

φ(u0)dμ. (18)

Set At = V \ Vε0,t . For any x ∈ At , there holds φ(u(x, t)) ≥ ε0. Since φ(s) → 0 as
s → −∞, we find some real number b such that φ(b) = ε0. It follows that u(x, t) ≥ b for
all x ∈ At . This together with Step 1 leads to

‖u(·, t)‖L∞(At ) ≤ C

If C is chosen larger but independent of T , then we have by (18) that |At | ≥ C−1.
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Step 3. There exists a positive constant C independent of T such that for all t ∈ [0, T ),
there holds ∫

V
u2(·, t)dμ ≤ C

∫
V

|∇u(·, t)|2dμ + C .

Recalling the definition of the first eigenvalue of the negative Laplacian, namely

λ1 = inf
v∈W 1,2(V ),

∫
V vdμ=0, v �≡0

∫
V |∇v|2dμ∫
V v2dμ

> 0,

we obtain for any v ∈ W 1,2(V ),∫
V

v2dμ =
∫
V
(v − v)2dμ +

∫
V

v2dμ

≤ 1

λ1

∫
V

|∇v|2dμ + 1

|V |
(∫

V
vdμ

)2

, (19)

where v = 1
|V |

∫
V vdμ. By Step 2, one calculates along the heat flow (8),

1

|V |
(∫

V
u(·, t)dμ

)2

= 1

|V |
(∫

At

u(·, t)dμ +
∫
V \At

u(·, t)dμ

)2

= 1

|V |
(∫

At

u(·, t)dμ

)2

+ 1

|V |
(∫

V \At

u(·, t)dμ

)2

+ 2

|V |
∫
At

u(·, t)dμ

∫
V \At

u(·, t)dμ

≤ C2|At |2
|V | + 1

|V |
(∫

V \At

u(·, t)dμ

)2

+C2|At |2
ε|V | + ε

|V |
(∫

V \At

u(·, t)dμ

)2

, (20)

where ε is a positive constant to be determined later. Using the Hölder inequality, one has(∫
V \At

u(·, t)dμ

)2

≤ |V \ At |
∫
V
u2(·, t)dμ.

This together with (19) and (20) implies

∫
V
u2(·, t)dμ ≤ 1

λ1

∫
V

|∇u(·, t)|2dμ + (1 + ε)|V \ At |
|V |

∫
V
u2(·, t)dμ + C2|V |

(
1 + 1

ε

)
. (21)

By Step 2, we have |At | ≥ C−1 with 0 < C−1 < |V |. Taking ε = (2C)−1/(|V | − C−1) in
(21), one gets (1 + ε)|V \ At |/|V | ≤ 1 − (2C |V |)−1, and thus

(2C |V |)−1
∫
V
u2(·, t)dμ ≤ 1

λ1

∫
V

|∇u(·, t)|2dμ + C .

This completes the proof of Step 3.
Step 4. There exists a constant C independent of T such that ‖u(·, t)‖W 1,2(V ) ≤ C for all

t ∈ [0, T ).
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It follows from the Poincaré inequality and the Young inequality that∫
V

|u(·, t) − u(t)|dμ ≤ ε

∫
V

|∇u(·, t)|2dμ + C, (22)

where ε > 0 is chosen later, C is a constant depending on ε, but independent of T . For any
fixed ρ ∈ R, in view of (9), we have by using (22),

Jρ(u(·, t)) = Jρ(u(·, t) − u(t))

= 1

2

∫
V

|∇u(·, t)|2dμ +
∫
V
Q(u(·, t) − u(t))dμ

−ρ log

(∫
V
eu(·,t)−u(t)dμ

)

≥
(
1

2
− ε

) ∫
V

|∇u(·, t)|2dμ − C − ρ log
∫
V
eu(·,t)−u(t)dμ. (23)

As in Sect. 2, we write V = {x1, . . . , x�}. Let θi = μ(xi )/|V | and si = u(xi , t), 1 ≤ i ≤ �.
Obviously 0 < θi < 1 for any i and

∑�
i=1 θi = 1. Since es is convex in s ∈ R, we have

1

|V |
∫
V
eu(·,t)dμ =

�∑
i=1

μ(xi )

|V | eu(xi ,t)

=
�∑

i=1

θi e
si

≥ e
∑�

i=1 θi si

= eu(t),

where u(t) = 1
|V |

∫
V u(·, t)dμ. This immediately gives for t ∈ [0, T ),

log
∫
V
eu(·,t)−u(t)dμ ≥ log |V |. (24)

According to the Trudinger–Moser embedding ( [14], Lemma 6), for any real number β > 0,
there exists some constant C depending only on β and the Graph G such that

∫
V
e
β

(u(·,t)−u(t))2

‖∇u(·,t)‖22 dμ ≤ C .

As a consequence,

log
∫
V
eu(·,t)−u(t)dμ ≤ log

∫
V
e

(u(·,t)−u(t))2

4ε‖∇u(·,t)‖22
+ε‖∇u(·,t)‖22

dμ

≤ ε

∫
V

|∇u(·, t)|2dμ + C (25)

for some constant C depending on ε and the graph G. Combining (24) and (25), we have for
any fixed real number ρ,

ρ log
∫
V
eu(·,t)−u(t)dμ ≤ |ρ|ε

∫
V

|∇u(·, t)|2dμ + C . (26)
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Inserting (26) into (23) and taking ε = 1/(4 + 4|ρ|), we conclude

Jρ(u(·, t)) ≥ 1

4

∫
V

|∇u(·, t)|2dμ − C . (27)

This together with (i i) of Lemma 7 implies∫
V

|∇u(·, t)|2dμ ≤ C, ∀t ∈ [0, T ).

In view of Step 3, we complete the finial step and the proof of the lemma. ��
Now we are in a position to prove the long time existence of the heat flow (8).

Proposition 9 Let T be given as in (16). Then T = +∞.

Proof Suppose T < +∞. By Proposition 8 and the short time existence theorem of the
ordinary differential equation ( [36], page 250), u(·, t) can be uniquely extended to a time
interval [0, T2] for some T2 > T . This contradicts the definition of T . Therefore T = +∞.

��
Completion of the proof of (i) of Theorem 1. An immediate consequence of Proposition 9.

��

4 Convergence of the heat flow

In this section, we shall prove (i i) of Theorem 1. Since V is finite, all norms of the function
spaceW 1,2(V ) are equivalent. Then it follows from Proposition 8 that there exists a constant
C such that for all t ∈ [0,+∞),

‖u(·, t)‖L∞(V ) ≤ C . (28)

In view of (15) and (27), we have∫ +∞

0

∫
V

φ′(u)u2t dμdt ≤ Jρ(u0) + C .

This together with the finiteness of V and φ′(s) > 0 for all s ∈ R implies that there exists
an increasing sequence tn → +∞ such that for all x ∈ V ,

φ′(u(x, t))u2t (x, t)
∣∣
t=tn

→ 0 as n → ∞. (29)

By (28), since φ′(s) > 0 for all s ∈ R, we obtain

0 < min
s∈[−C,C] φ

′(s) ≤ φ′(u(x, tn)) ≤ max
s∈[−C,C] φ

′(s), ∀n ≥ 1. (30)

Combining (29) and (30), we conclude that for all x ∈ V ,

∂

∂t
φ(u(x, t))

∣∣∣∣
t=tn

→ 0 as n → ∞. (31)

Moreover, up to a subsequence, we can find some function u∞ : V → R such that u(x, tn)
converges to u∞(x) uniformly in x ∈ V as n → ∞. This together with (8) and (31) leads to

M(u∞) = �u∞ − Q + ρeu∞∫
V eu∞dμ

= 0 on V . (32)
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In conclusion, we found an increasing sequence (tn) → +∞ such that u(x, tn) → u∞(x)
uniformly in x ∈ V as n → ∞, where u∞ is a solution of the mean field equation (32).
Hereafter we further prove that along the heat flow, u(·, t) converges to u∞ as t → +∞
uniformly on V . For this purpose, we need an estimate due to Lojasiewicz, namely Lemma 4.
The power of Lemma 4 is shown in the following finite dimensional Lojasiewicz–Simon
inequality.

Proposition 10 Let σ > 0 and 0 < θ < 1/2 be given as in Lemma 4,M(u) be defined as in
(12), and � be the number of points of V . Along the heat flow (8), if ‖u(·, t) − u∞‖L∞(V ) <

σ/
√

� for some fixed t, then there exists some constant C independent of t such that

|Jρ(u(·, t)) − Jρ(u∞)|1−θ ≤ C‖M(u)(·, t)‖L2(V ).

Proof Assume ‖u(·, t) − u∞‖L∞(V ) < σ/
√

� for some fixed t . For the sake of clarity, we
denote y = (y1, . . . , y�) = (u(x1, t), . . . , u(x�, t)), a = (u∞(x1), . . . , u∞(x�)), 	(y) =
Jρ(u(·, t)) and 	(a) = Jρ(u∞). Clearly the function 	 : R

� → R is analytic due to
Lemma 5, and

‖y − a‖ =
√√√√ �∑

i=1

(yi − ai )2 ≤ √
� max
1≤i≤�

|yi − ai | < σ.

For any 1 ≤ i ≤ �, we define a function ei : V → R by

ei (x) =
{
1, if x = xi

0, if x �= xi .

Let ei be a unit vector inR�, whose i-th component is 1 and the rest are 0. In view of (14), one
calculates the partial derivative of the analytic function 	(y) as follows. For any 1 ≤ i ≤ �,

∂yi 	(y) = lim
h→0

1

h
(	(y + hei ) − 	(y))

= lim
h→0

1

h

(
Jρ(u(x, t) + hei (x)) − Jρ(u(x, t))

)
= d Jρ(u(x, t))(ei (x))

=
∫
V
M(u)(x, t)ei (x)dμ. (33)

This together with the fact
∑�

i=1

∫
V e2i dμ = ∑�

i=1 μ(xi ) = |V | leads to

‖∇	(y)‖ =
√√√√ �∑

i=1

(
∂yi 	(y)

)2

≤
√√√√(∫

V
M(u)2dμ

) �∑
i=1

∫
V
e2i dμ

= √|V | ‖M(u)(·, t)‖L2(V ). (34)

Similar to (33), we have by (32) that for all 1 ≤ i ≤ �,

∂yi 	(a) =
∫
V
M(u∞(x))ei (x)dμ = 0. (35)
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In view of the definition of 	, (34) and (35), we obtain by applying Lemma 4 that

|Jρ(u(·, t)) − Jρ(u∞)|1−θ = |	(y) − 	(a)|1−θ

≤ ‖∇	(y)‖
≤ √|V | ‖M(u)(·, t)‖L2(V ).

This ends the proof of the proposition. ��
Finally we prove the uniform convergence of the heat flow (8), namely

Proposition 11 Along the heat flow (8), there holds

lim
t→+∞

∫
V

|u(·, t) − u∞|2dμ = 0. (36)

Proof For the proof of this proposition, we modify an argument of Sun and Zhu ( [34],
Section 5). Suppose that (36) does not hold. Then there exists some constant ε0 > 0 and an
increasing sequence of numbers (t∗n ) such that t∗n > tn and∫

V
|u(·, t∗n ) − u∞|2dμ ≥ 2ε0, (37)

where (tn) is given by (29) and satisfies u(·, tn) → u∞ uniformly on V . Obviously

lim
n→∞

∫
V

|u(·, tn) − u∞|2dμ = 0.

Thus there exists n1 ∈ N such that if n ≥ n1, then∫
V

|u(·, tn) − u∞|2dμ < ε0. (38)

We claim that Jρ(u(·, t)) > Jρ(u∞) for all t ∈ [0,+∞). Indeed, we have by (i i) of Lemma 7
that Jρ(u(·, t)) is decreasing with respect to t , and in particular Jρ(u(·, t)) ≥ Jρ(u∞) for all
t ≥ 0. Suppose there exists some t̃ > 0 such that Jρ(u(·, t̃)) = Jρ(u∞). Then Jρ(u(·, t)) ≡
Jρ(u∞) and thus ut ≡ 0 on V for all t ∈ [t̃,+∞). Hence u(x, t) ≡ u∞(x) for all x ∈ V
and all t ∈ [t̃,+∞), which contradicts (37). This confirms our claim Jρ(u(·, t)) > Jρ(u∞)

for all t ≥ 0.
For any n ≥ n1, we define

sn = inf
{
t > tn : ‖u(·, t) − u∞‖2L2(V )

≥ 2ε0
}

.

It follows from (37) that sn < +∞, and that for all t ∈ [tn, sn),∫
V

|u(·, t) − u∞|2dμ < 2ε0 =
∫
V

|u(·, sn) − u∞|2dμ. (39)

For t ∈ [tn, sn), we calculate by (15), Proposition 10, the fact ut = (φ(u))−1M(u), and (28)
that

− d

dt
(Jρ(u(·, t)) − Jρ(u∞))θ = −θ(Jρ(u(·, t)) − Jρ(u∞))θ−1 d

dt
Jρ(u(·, t))

= θ(Jρ(u(·, t)) − Jρ(u∞))θ−1
∫
V
M(u)utdμ

≥ C

∫
V (φ′(u))−1M2(u)dμ

‖M(u)‖L2(V )

≥ C‖ut‖L2(V ).
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Hence ∫ sn

tn
‖ut‖L2(V )dt ≤ C(Jρ(u(·, tn)) − Jρ(u∞))θ . (40)

By the Hölder inequality,

d

dt

(∫
V

|u(·, t) − u∞|2dμ

)1/2
= 1

‖u(·, t) − u∞‖L2(V )

∫
V

(u − u∞)ut dμ ≤
(∫

V
u2t dμ

)1/2
. (41)

and (41), we have

‖u(·, sn) − u∞‖L2(V ) − ‖u(·, tn) − u∞‖L2(V ) ≤ C(Jρ(u(·, tn)) − Jρ(u∞))θ .

This together with (38) and (39) leads to

ε0 ≤ C(Jρ(u(·, tn)) − Jρ(u∞))θ ,

which is impossible if n is chosen sufficiently large, since Jρ(u(·, tn)) → Jρ(u∞) as n → ∞.
This confirms (36). ��

Completion of the proof of (i i) of Theorem 1. Recalling V = {x1, . . . , x�}, one concludes
from Proposition 11 that

lim
t→+∞

�∑
i=1

μ(xi )|u(xi , t) − u∞(xi )|2 = 0.

Since for all j ∈ {1, . . . , �}, there holds

|u(x j , t) − u∞(x j )| ≤ 1

minx∈V μ(x)

�∑
i=1

μ(xi )|u(xi , t) − u∞(xi )|2,

one comes to a conclusion that u(x, t) converges to u∞(x) uniformly in x ∈ V as t → +∞.
By (32), u∞ is a solution of (7). Thus the proof of Theorem 1 is completely finished. ��
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