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Abstract
Let G = (V , E) be a locally finite graph. Firstly, using calculus of variations, includ-
ing a direct method of variation and the mountain-pass theory, we get sequences of
solutions to several local equations on G (the Schrödinger equation, the mean field
equation, and the Yamabe equation). Secondly, we derive uniform estimates for those
local solution sequences. Finally, we obtain global solutions by extracting convergent
sequence of solutions. Our method can be described as a variational method from local
to global.

Keywords Analysis on graph · Variational method on graph · Sobolev embedding
theorem

Mathematics Subject Classification 35R02 · 34B45

1 Introduction

Partial differential equations on Euclidean space or manifolds are important topics
in mathematical physics and differential geometry. As their discrete versions, it is
important to study thedifference equations ongraph, particularly the existenceproblem
for such equations.

About five years ago, joined with Grigor’yan, we systematically raised and studied
Kazdan–Warner equations, Yamabe equations and Schördinger equations on graphs in
[6–8]. We first established the Sobolev spaces and the functional framework. Then the
problem of solving the equations is transformed into finding critical points of various
functionals. As a consequence, variational methods are applied to these problems. If
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the graph is finite, then all the Sobolev spaces have finite dimensions, and whence they
are pre-compact. For this reason, the variational problems for finite graph are compar-
atively simple [6,7]. Since the graph has no concept of dimension, if it includes infinite
vertices, the Sobolev embedding theorems becomes unusual. An easy-to-understand
one was observed by us [8] under the assumption that the graph is locally finite and
its measure has positive lower bound (see next section for details). Any other Sobolev
embedding theorem for infinite graph would be extremely interesting.

In recent years, the research in this field has aroused great interest. Motivated by
[8,15], Zhang–Zhao [17] obtained nontrivial solutions to certain nonlinear Schrödinger
equation. Similar equations on infinite metric graphs were studied by Akduman–
Pankov [2]. The Kazdan–Warner equation was extended by Keller–Schwarz [11] to
canonically compactifiable graphs, and by Ge–Jiang [5] to certain infinite graph. For
other related works, we refer the reader to [9,10,12–14,16] and the references therein.

In this paper, we study various equations on locally finite graphs, say Schrördinger
equation, Mean field equation and Yamabe equation. Assuming that the weights of
the graph have a positive lower bound and the distance function of the graph belongs
to L p, we derive a Sobolev embedding theorem, which is crucial in our analysis. In
addition to the Sobolev embedding theorem, we also employ calculus of variations,
including a direct method of variation and themountain-pass theorem. It is remarkable
that we show how to get solutions from local to global by using variational method.

2 Notations andmain results

Let G = (V , E) be a connected graph, where V denotes the vertex set and E denotes
the edge set. For any edge xy ∈ E , we assume that its weight wxy > 0 and that
wxy = wyx . Let μ : V → R

+ be a finite measure. For any function u : V → R, the
Laplacian of u is defined as

�u(x) = 1

μ(x)

∑

y∼x

wxy(u(y) − u(x)), (1)

where y ∼ x means xy ∈ E or y is adjacent to x . The gradient form is written by

�(u, v)(x) = 1

2μ(x)

∑

y∼x

wxy(u(y) − u(x))(v(y) − v(x)). (2)

Denote �(u) = �(u, u) and ∇u∇v = �(u, v). The length of the gradient of u is
represented by

|∇u|(x) = √
�(u)(x) =

(
1

2μ(x)

∑

y∼x

wxy(u(y) − u(x))2
)1/2

. (3)
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The integral of a function f on V is given as

∫

V
f dμ =

∑

x∈V
μ(x) f (x). (4)

For any q > 0, we let Lq(V ) be a linear space of functions f : V → Rwith the norm

‖ f ‖Lq (V ) =
(∫

V
| f |qdμ

)1/q

. (5)

While L∞(V ) includes all functions f : V → R satisfying

‖ f ‖L∞(V ) = sup
x∈V

| f (x)| < ∞.

If x, y ∈ V and y is adjacent to x , then the distance between x and y is defined as
1. While if y is not adjacent to x , then there exists a shortest path γ connecting y and
x , and thus the distance between x and y is defined as the number of edges belonging
to γ . Given any O ∈ V . Denote the distance between x and O by

ρ(x) = ρ(x, O). (6)

For any integer k ≥ 1, we denote a ball centered at O with radius k by

Bk = Bk(O) = {x ∈ V : ρ(x) < k} . (7)

The boundary of Bk is written as

∂Bk = {x ∈ V : ρ(x) = k}. (8)

According to [7], W 1,2
0 (Bk) stands for a Sobolev space including all functions u :

Bk → R with u = 0 on the boundary ∂Bk given as in (8). For any fixed k, it is
pre-compact. Precisely, if (u j ) is a bounded sequence in W 1,2

0 (Bk), i.e.

‖uk‖W 1,2
0 (Bk )

=
(∫

Bk
|∇uk |2dμ

)1/2

≤ C, (9)

where the notations in (2), (3) and (4) are used, then there exists a subsequence of (u j )

converging to some function u under the norm in (9).
Recall another important Sobolev space W 1,2(V ) including all functions u : V →

R with

‖u‖W 1,2(V ) =
(∫

V
(|∇u|2 + u2)dμ

)1/2

< +∞. (10)
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Let Cc(V ) be a set of all functions with finite support, and W 1,2
0 (V ) be a completion

of Cc(V ) under the norm as in (10). Both ofW 1,2(V ) andW 1,2
0 (V ) are Hilbert spaces

with the same inner product 〈u, v〉 = ∫
V (∇u∇v + uv)dμ.

A connected graph is said to be locally finite if for any fixed O ∈ V , Bk is a finite
subgraph. In [8], we made a key observation under the assumption that G is locally
finite, and there exists a constant μ0 > 0 satisfying

μ(x) ≥ μ0 for all x ∈ V . (11)

Namely, a Sobolev embedding theorem holds.

Theorem 1 [8]. Let G = (V , E) be a connected locally finite graph. If (11) is satisfied,
then for any u ∈ W 1,2(V ) and any 2 ≤ q ≤ ∞, there exists a positive constant C
depending only on q and μ0 satisfying ‖u‖Lq (V ) ≤ C‖u‖W 1,2(V ). In particular,

‖u‖L∞(V ) ≤ 1√
μ0

‖u‖W 1,2(V ).

If instead of (11), there exists some constant w0 > 0 such that

wxy ≥ w0 for all y ∼ x, x, y ∈ V , (12)

and the distance function ρ(x) defined as in (6) belongs to L p(V ), we shall prove a
Sobolev embedding as follows.

Theorem 2 Let G = (V , E) be a connected locally finite graph. If the weights wxy

satisfy (12), and the distance function ρ(x) = ρ(x, O) ∈ L p(V ) for some p > 0 and
some O ∈ V , then there exists some constant C depending only on w0, μ(O) and p
such that

‖u‖L p(V ) ≤ C(‖ρ‖L p(V ) + 1)‖u‖W 1,2(V ).

If a function h : V → R has a positive lower bound on V , thenwe define a subspace
of W 1,2

0 (V ), which is also a Hilbert space, namely

H =
{
u ∈ W 1,2

0 (V ) :
∫

V
(|∇u|2 + hu2)dμ < ∞

}
(13)

with an inner product

〈u, v〉H =
∫

V
(∇u∇v + huv)dμ. (14)

The first equation we concern is the following linear Schrödinger equation

{−�u + hu = f din V
u ∈ H ,

(15)
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where � is the Laplacian operator defined as in (1), and H is defined as in (13). We
now state the following existence result.

Theorem 3 Let G = (V , E) be a connected locally finite graph. Assume there is some
constant a0 > 0 such that h(x) ≥ a0 for all x ∈ V . If one of the following three
hypotheses is satisfied:

(i) f ∈ L2(V );
(i i) μ(x) ≥ μ0 > 0 for all x ∈ V , f ∈ L1(V );

(i i i) the weights of the graph satisfies (12), the distance function ρ(x) = ρ(x, O) ∈
L p(V ) for some p > 1, O ∈ V , and f ∈ L p/(p−1)(V ),
then the Eq. (15) has a unique solution. If in addition f ≥ 0 and f 
≡ 0 on V ,
then u(x) > 0 for all x ∈ V .

The second equation we concern is the mean field equation, which is also known
as the Kazdan–Warnar equation, namely

�u = f − geu in V . (16)

Theorem 4 Let G = (V , E) be a locally finite graph. Suppose that g ≤ f < 0 on V
and g ∈ L1(V ). Then the Eq. (16) has a solution.

We remak that using a method of the heat equation, Ge-Jiang [5] obtained similar
result as that of Theorem 4 under different assumptions on f and g. In the case g > 0,
it is not likely to find a nontrivial solution as in Theorem 4 in general. The main
difficulty is that

∫
V |∇u|2dμ does not control ‖u‖W 1,2(V ) if V is an infinite graph.

However, it is natural to consider the following mean field equation

{
−�u + hu = geu∫

V geudμ
− f in V

u ∈ H ∩ L∞(V ),
(17)

where h has a positive lower bound, andH is defined as in (13). To seek solutions of
(17), we need certain Trudinger–Moser embedding. It suffices to assume (11) for the
graph in order to get that kind of embedding. Precisely we have the following:

Theorem 5 Let G = (V , E) be a connected locally finite graph. Suppose (11) is
satisfied, there exists some constant a0 > 0 such that h(x) ≥ a0 for all x ∈ V , g ≥ 0
and g 
≡ 0 on V , g ∈ L1(V ), and f ∈ Lq(V ) for some q ∈ [1, 2]. Then the Eq. (17)
has a solution.

Note that in Theorem 5, the function f allows the form
∑�

i=1 ciδxi for some con-
stants c1, · · · , c�, where δxi stands for the Dirac function satisfying

δxi (x) =
{
1 if x = xi
0 if x 
= xi .

As a consequence, it makes sense to consider Chern–Simons–Higgs model in locally
finite graph. Such a model in finite graph was recently studied by Huang–Lin–Yau
[10].
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The third equation we are interested in is the Yamabe equation

{−�u + hu = |u|q−2u in V
u ∈ H ,

(18)

where h has a positive lower bound,H is defined as in (13), and q > 2. In order to find
a solution to the Eq. (18), we seek the Sobolev embedding theorem, say Theorem 1
or Theorem 2. Inspired by [1,4,15], we have solved this problem in [8] by employing
Theorem 1. For application of Theorem 2, we state the following:

Theorem 6 Let G = (V , E) be a connected locally finite graph. Let O be a fixed
point of V , the distance function ρ(x) = ρ(x, O) ∈ L p(V ) for some p > 2. Suppose
h(x) ≥ a0 > 0 for some constant a0 and all x ∈ V . If further 1/h ∈ L1(V ) or
h(x) → +∞ as ρ(x) → +∞, then for any q with 2 < q < p, the Eq. (18) has a
nontrivial solution.

The remaining part of this paper is organized as follows: In Sect. 3, a Sobolev
embedding theorem (Theorem 2) is proved; In Sect. 4, we study the linear Schrödinger
equation, and prove Theorem 3; In Sect. 5, the mean field equations are discussed, and
Theorems 4 and 5 are proved; In Sect. 6, we consider the Yamabe equation and prove
Theorem 6. Throughout this paper, we do not distinguish sequence and subsequence,
and denote various constants by the same C .

3 A Sobolev embedding

In this section, using definitions of W 1,2(V ) and L p(V ), we prove Theorem 2.

Proof of Theorem 2 Let O be a fixed point in V . For any x ∈ V , we denote the distance
between x and O by ρ(x) = ρ(x, O). Choose a shortest path γ = {x1, · · · , xk+1}
connecting x and O . In particular x1 = x , · · · , xk+1 = O , xi is adjacent to xi+1 for
all 1 ≤ i ≤ k, and k = ρ(x). For any u ∈ W 1,2(V ), we get

|u(x)| ≤ |u(x1) − u(x2)| + · · · + |u(xk) − u(xk+1)| + |u(O)|. (19)

Noting that (10) implies

‖u‖W 1,2(V ) =
⎛

⎝
∑

z∈V , y∼z

wzy(u(y) − u(z))2 +
∑

z∈V
μ(z)u2(z)

⎞

⎠
1/2

, (20)

and that μ(z) > 0 for all z ∈ V , we have

|u(O)| ≤ 1√
μ(O)

‖u‖W 1,2(V ); (21)
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since wzy ≥ w0 > 0 for all z adjacent to y, in view of (20),

k∑

i=1

|u(xi ) − u(xi+1)| ≤ k max
1≤i≤k

|u(xi ) − u(xi+1)|

≤ k√
w0

max
1≤i≤k

√
wxi xi+1 |u(xi ) − u(xi+1)|

≤ 1√
w0

ρ(x)‖u‖W 1,2(V ).

(22)

Combining (19), (21) and (22), we obtain

|u(x)| ≤
(

1√
w0

ρ(x) + 1√
μ(O)

)
‖u‖W 1,2(V ). (23)

Since ρ ∈ L p(V ) for some p > 0 and ρ(x, y) ≥ 1 for all x 
= y, in view of (5), there
holds

‖1‖L p(V ) =
(

∑

z∈V
μ(z)

)1/p

≤
(

∑

z∈V
μ(z)ρ p(z) + μ(O)

)1/p

≤ 21/p max

⎧
⎨

⎩

(
∑

z∈V
μ(z)ρ p(z)

)1/p

, μ(O)1/p

⎫
⎬

⎭

= 21/p max
{
‖ρ‖L p(V ), μ(O)1/p

}
.

This together with (23) leads to

‖u‖L p(V ) ≤ C

(
1√
w0

‖ρ‖L p(V ) + 1√
μ(O)

‖1‖L p(V )

)
‖u‖W 12(V )

≤ C(‖ρ‖L p(V ) + 1)‖u‖W 1,2(V )

for some constant C depending only on w0, μ(O) and p, as we expected. ��

4 Schrödinger equation

In this section, we prove Theorem 3 by using a direct method of variation from local
to global.

Proof of Theorem 3 Fix some point O ∈ V . Denote the distance between x and O by
ρ(x) = ρ(x, O). For any positive integer k, we write Bk = {x ∈ V : ρ(x) < k}. Note
that h(x) ≥ a0 > 0 for all x ∈ V . Let W 1,2

0 (Bk) be the Sobolev space including all
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functions u : Bk → R, u = 0 on ∂Bk , with the norm

‖u‖W 1,2
0 (Bk )

=
(∫

Bk
(|∇u|2 + hu2)dμ

)1/2

. (24)

For any fixed k, the norm in (24) is equivalent to that in (9), due to the Poincaré
inequality

∫

Bk
u2dμ ≤ Ck

∫

Bk
|∇u|2dμ, ∀u ∈ W 1,2

0 (Bk),

where Ck is a constant depending on k. In general, Ck tends to infinity as k → ∞.
It is convenient for us to use (24) as the norm in W 1,2

0 (Bk). Define a functional

Jk : W 1,2
0 (Bk) → R by

Jk(u) = 1

2

∫

Bk
(|∇u|2 + hu2)dμ −

∫

Bk
f udμ. (25)

Set 	k = infu∈W 1,2
0 (Bk )

Jk(u). Obviously

	k ≤ Jk(0) = 0. (26)

Case (i). f ∈ L2(V ).
By the Hölder inequality and the Young inequality, we have

∫

Bk
f udμ ≤ 1√

a0

(∫

V
f 2dμ

)1/2 (∫

Bk
hu2dμ

)1/2

≤ 1√
a0

‖ f ‖L2(V )‖u‖W 1,2
0 (Bk )

≤ 1

4
‖u‖2

W 1,2
0 (Bk )

+ 1

a0
‖ f ‖2L2(V )

, (27)

where ‖u‖W 1,2
0 (Bk )

is defined as in (24). It follows from (25) and (27) that

Jk(u) ≥ 1

4
‖u‖2

W 1,2
0 (Bk )

− 1

a0
‖ f ‖2L2(V )

. (28)

Hence

	k = inf
u∈W 1,2

0 (Bk )
Jk(u) ≥ − 1

a0
‖ f ‖2L2(V )

. (29)

Combining (26) and (29), we know that (	k) is a bounded sequence of numbers.
Now we fix a positive integer k and take a sequence of functions (̃u j ) ⊂ W 1,2

0 (Bk)
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satisfying

Jk (̃u j ) → 	k as j → ∞. (30)

It follows from (28) that (̃u j ) is bounded in W 1,2
0 (Bk). By the Sobolev embedding

theorem for finite graph [7], there exists auk ∈ W 1,2
0 (Bk) such that up to a subsequence,

ũ j converges to uk under the norm (24). Clearly Jk(uk) = 	k , and uk satisfies the
Euler–Lagrange equation

{−�uk + huk = f in Bk

uk = 0 on ∂Bk .
(31)

Noting that (	k) is bounded, in view of (28) and (30), we obtain

‖uk‖2W 1,2
0 (Bk )

=
∫

Bk
(|∇uk |2 + hu2k)dμ ≤ C (32)

for some constant C independent of k. For any finite set K ⊂ V , there holds K ⊂ Bk

for sufficiently large k. The power of (32) is evident. It ensures that

‖uk‖L∞(K ) ≤ 1√
a0 minx∈K μ(x)

‖uk‖2W 1,2
0 (Bk )

≤ C .

Note that (uk) is naturally viewed as a sequence of functions defined on V , say uk ≡ 0
on V \ Bk . There would exist a subsequence of (uk) (which is still denoted by (uk))
and a function u∗ such that (uk) converges to u∗ locally uniformly in V , i.e. for any
fixed positive integer �,

lim
k→∞ uk(x) = u∗(x) for all x ∈ B�.

Now we show that

u∗ ∈ H . (33)

Since uk is viewed as a function on the whole V , uk = 0 on V \ Bk , and the weights of
the graph is symmetric, i.e. wxy = wyx for all y adjacent to x , we have the following
estimate

‖uk‖2H =
∑

y∼x

wxy(uk(y) − uk(x))
2 +

∑

x∈V
μ(x)h(x)u2k(x)

=
∑

y∼x, x∈Bk
wxy(uk(y) − uk(x))

2 +
∑

x∈Bk
μ(x)h(x)u2k(x)

+
∑

y∼x, x∈∂Bk

wxy(uk(y) − uk(x))
2
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≤ 2
∑

y∼x, x∈Bk
wxy(uk(y) − uk(x))

2 +
∑

x∈Bk
μ(x)h(x)u2k(x)

≤ 2‖uk‖2W 1,2
0 (Bk )

. (34)

Up to a subsequence, we assume (uk) converges to u∗ locally uniformly in V . In view
of (32) and (34), we know that (uk) is bounded in H . Since every Hilbert space is
weakly compact, it follows that up to a subsequence, (uk) converges to some function
u∗
1 weakly inH . This in particular implies

∫

V
ukφdμ →

∫

V
u∗
1φdμ, ∀φ ∈ Cc(V ).

Let z ∈ V be any fixed point. In the above estimate, we take φ satisfying φ(x) = 1 at
x = z and φ(x) = 0 at x 
= z. Then uk(z) → u∗

1(z). Hence by the uniqueness of the
limit, u∗

1(z) ≡ u∗(z) for all z ∈ V , and (33) follows immediately.
It then follows from (31) that for any fixed x ∈ V , there holds

−�u∗(x) + h(x)u∗(x) = f (x).

Therefore u∗ is a solution of (15). To prove that u∗ is a unique solution of (15), it
suffices to show the homogenueous equation

{−�u + hu = 0
u ∈ H

(35)

has only one solution u ≡ 0. Since u ∈ H , there exists a sequence (ϕk) ⊂ Cc(V )

such that ϕk → u inH . Testing (35) by ϕk , we have by integration by parts

〈ϕk, u〉H =
∫

V
(∇u∇ϕk + huϕk)dμ = 0,

where 〈·, ·〉H is the inner product inH defined as in (14). Passing to the limit k → ∞,
we conclude 〈u, u〉H = 0, and thus u ≡ 0. This confirms the uniqueness of u∗.

If f (x) ≥ 0 for all x ∈ V , then applying the maximum principle to (31), we obtain
uk(x) ≥ 0 for all x ∈ Bk . Indeed, suppose there exists some x0 ∈ Bk satisfying
minBk uk = uk(x0) < 0, we have by (31) that

−�uk(x0) = f (x0) − h(x0)uk(x0) > 0.

This is impossible, and leads to uk ≥ 0 on Bk . As a consequence, u∗(x) ≥ 0 for all
x ∈ V . Since f 
≡ 0, one has u∗ 
≡ 0. We now prove u∗(x) > 0 for all x ∈ V .
Suppose not, there would be a point x∗ ∈ V such that u∗(x∗) = 0 = minV u∗ and
�u∗(x∗) > 0. It follows that

0 > −�u∗(x∗) = f (x∗) ≥ 0,
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which is a contradiction, and implies u∗(x) > 0 for all x ∈ V .
Case (i i). μ(x) ≥ μ0 > 0 for all x ∈ V .
By the Sobolev embedding theorem (Theorem 1), we have for all u ∈ W 1,2

0 (Bk),

‖u‖L∞(Bk ) ≤ 1√
μ0

‖u‖W 1,2
0 (Bk)

.

Similar to (27), there holds

∫

Bk
f udμ ≤ ‖u‖L∞(Bk )‖ f ‖L1(Bk )

≤ 1√
μ0

‖u‖W 1,2
0 (Bk )

‖ f ‖L1(V )

≤ 1

4
‖u‖2

W 1,2
0 (Bk )

+ 1

μ0
‖ f ‖2L1(V )

.

In the same way, for any u ∈ W 1,2
0 (Bk), we obtain analogs of (28) and (29), namely

Jk(u) ≥ 1

4
‖u‖2

W 1,2
0 (Bk )

− 1

μ0
‖ f ‖2L1(V )

and

	k = inf
u∈W 1,2

0 (Bk )
Jk(u) ≥ − 1

μ0
‖ f ‖2L1(V )

.

The remaining part of the proof is completely analogous to that of the case (i), and is
omitted.

Case (i i i).wxy ≥ w0 > 0 for all y adjacent to x,ρ ∈ L p(V ) and f ∈ L p/(p−1)(V )

for some p ∈ [1,∞], in particular f ∈ L∞(V ) if p = 1.
It follows from the Sobolev embedding (Theorem 2) that there exists some constant

C depending only on w0, μ(O), ‖ρ‖L p(V ) and p satisfying

‖u‖L p(Bk ) ≤ C‖u‖W 1,2
0 (Bk )

, ∀u ∈ W 1,2
0 (Bk).

Similar to (27), we have

∫

Bk
f udμ ≤ ‖u‖L p(Bk )‖ f ‖

L
p

p−1 (V )

≤ C‖u‖W 1,2
0 (Bk )

‖ f ‖
L

p
p−1 (V )

≤ 1

4
‖u‖2

W 1,2
0 (Bk )

+ C2‖ f ‖2
L

p
p−1 (V )

.
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As a consequence, we obtain analogs of (28) and (29) as follows:

Jk(u) ≥ 1

4
‖u‖2

W 1,2
0 (Bk )

− C2‖ f ‖2
L

p
p−1 (V )

,

and

	k = inf
u∈W 1,2

0 (Bk )
Jk(u) ≥ −C2‖ f ‖2

L
p

p−1 (V )

.

Again the remaining part of the proof in this case is completely analogous to that of
Case (i), and thus is omitted. ��

5 Mean field equation

In this section, we consider mean field equations. Precisely we prove Theorems 4 and
5 by variational method from local to global.

5.1 The case g ≤ f < 0

Proof of Theorem 4 Fix some point O ∈ V . For any x ∈ V , ρ(x) = ρ(x, O) denotes
the distance between x and O . For any positive integer k, we let Bk = {x ∈ V :
ρ(x) < k}, and define a functional Jk : W 1,2

0 (Bk) → R by

Jk(u) = 1

2

∫

Bk
|∇u|2dμ +

∫

Bk
f udμ −

∫

Bk
geudμ.

Step 1. For any positive integer k, Jk has a lower bound on W 1,2
0 (Bk).

Since g ≤ f < 0 and g ∈ L1(V ), we have also f ∈ L1(V ). An elementary
inequality et ≥ 1 + t for all t ∈ R implies that for all u ∈ W 1,2

0 (Bk),

Jk(u) ≥
∫

Bk
f udμ −

∫

Bk
geudμ

≥
∫

Bk
f (u − eu)dμ

≥
∫

Bk
(− f )dμ

=
∫

V
(− f )dμ + ok(1), (36)

where ok(1) → 0 as k → ∞. Denoting ck = ∫
Bk

(− f )dμ, we obtain Jk(u) ≥ ck for

all u ∈ W 1,2
0 (Bk).
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Step 2. For any positive integer k, there exists a function uk ∈ W 1,2
0 (Bk) such that

Jk(uk) = 	k = inf
u∈W 1,2

0 (Bk )
Jk(u). (37)

Moreover uk satisfies the Euler–Lagrange equation

{
�uk = f − geuk in Bk

uk = 0 on ∂Bk .
(38)

Obviously there holds

	k ≤ Jk(0) =
∫

Bk
(−g)dμ ≤

∫

V
(−g)dμ.

This together with (36) gives

‖ f ‖L1(V ) + ok(1) ≤ 	k ≤ ‖g‖L1(V ). (39)

Take a minimizing sequence (̃u j ) ⊂ W 1,2
0 (Bk) satisfying

Jk (̃u j ) → 	k = inf
u∈W 1,2

0 (Bk )
Jk(u) as j → ∞. (40)

For any function v : V → R, we write

v+(x) =
{

v(x) if v(x) > 0
0 if v(x) ≤ 0; v−(x) =

{
v(x) if v(x) < 0
0 if v(x) ≥ 0.

To see a lower bound of Jk (̃u j ), we calculate

Jk (̃u j ) = 1

2

∫

Bk
|∇ũ j |2dμ +

∫

Bk
( f ũ+

j − geũ
+
j )dμ

−
∫

Bk
geũ

−
j dμ +

∫

Bk
f ũ−

j dμ +
∫

Bk
gdμ

≥ 1

2

∫

Bk
|∇ũ j |2dμ +

∫

Bk
( f ũ+

j − geũ
+
j )dμ +

∫

Bk
f ũ−

j dμ +
∫

Bk
gdμ.

(41)

Combining (40) and (41), and noting that g(x) ≤ f (x) < 0, ũ−
j (x) ≤ 0 for all x ∈ Bk ,

we conclude that (̃u−
j ) is bounded in Bk with respect to j , or equivalently there exists

some constant C depending on k such that

|̃u−
j (x)| ≤ C for all x ∈ Bk . (42)
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Note also that

f ũ+
j − geũ

+
j ≥ f ũ+

j − f eũ
+
j ≥ − f

2
(̃u+

j )
2
,

which together with (40) and (41) leads to

ũ+
j (x) ≤ C for all x ∈ Bk, (43)

where C is some constant depending on k. It follows from (42) and (43) that (u j ) is
uniformly bounded in Bk with respect to j . Hence there exist a subsequence of (̃u j ),
which is still denoted by (̃u j ), and a function uk ∈ W 1,2

0 (Bk) such that ũ j converges
to uk uniformly in Bk as j → ∞. This together with (40) immediately leads to (37).
By a straightforward calculation, uk satisfies the Euler–Lagrange equation (38).

Step 3. For any finite set A ⊂ V , (uk) is uniformly bounded in A.
Let A be a finite subset of V . An obvious analog of (41) reads

Jk(uk) ≥ 1

2

∫

Bk
|∇uk |2dμ +

∫

Bk
( f u+

k − geu
+
k )dμ +

∫

Bk
f u−

k dμ +
∫

Bk
gdμ

≥
∫

A
( f u+

k − geu
+
k )dμ +

∫

A
f u−

k dμ +
∫

Bk
gdμ,

provided that k is sufficiently large. As a consequence, one derives

max
x∈A

|u−
k (x)| ≤ Jk(uk) − ∫

Bk
gdμ

minx∈A μ(x)| f (x)| ; max
x∈A

u+
k (x) ≤

√
2Jk(uk) − 2

∫
Bk

gdμ

minx∈A μ(x)| f (x)| .

(44)

Combining (37), (39) and (44), we conclude that there exists some constantC depend-
ing only on h, g, μ and A such that

max
x∈A

|uk(x)| ≤ C .

Step 4. There exists a subsequence of (uk), which is still denoted by (uk), and a
function u∗ : V → R such that (uk) converges to u∗ locally uniformly in V . Moreover,
u∗ is a solution of the equation (16).

By Step 3, (uk) is uniformly bounded in B1. Hence there exists a subsequence of
(uk), which is written as (u1,k), and a function u∗

1 such that u1,k converges to u∗
1 in

B1. By Step 3 again, (u1,k) is uniformly bounded in B2. Then there would exist a
subsequence of (u1,k), which is written as (u2,k), and a function u∗

2 such that u2,k
convergence to u∗

2 uniformly in B2. Obviously u∗
2 = u∗

1 on B1. Repeating this process,
one finds a diagonal subsequence (uk,k), which is still denoted by (uk), and a function
u∗ : V → R such that for any finite set A ⊂ V , (uk) converges to u∗ uniformly in A.
For any fixed x ∈ V , passing to the limit k → ∞ in (38), we obtain

�u∗(x) = f (x) − g(x)eu
∗(x).
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This ends the final step and completes the proof of the theorem. ��

5.2 The case g > 0

Proof of Theorem 5 Fix some point O ∈ V . For any x ∈ V , ρ(x) = ρ(x, O) denotes
the distance between x and O . Let Bk = {x ∈ V : ρ(x) < k}, W 1,2

0 (Bk) be the
Sobolev space including all functions u satisfying u = 0 on ∂Bk , with the norm

‖u‖W 1,2
0 (Bk )

=
(∫

Bk
(|∇u|2 + hu2)dμ

)1/2

,

where h(x) ≥ a0 > 0, μ(x) ≥ μ0 > 0 for all x ∈ V . Define a functional Jk :
W 1,2

0 (Bk) → R by

Jk(u) = 1

2

∫

Bk
(|∇u|2 + hu2)dμ +

∫

Bk
f udμ − log

∫

Bk
geudμ. (45)

Since f ∈ Lq(V ) for some q with 1 ≤ q ≤ 2, we have by the Sobolev embedding
(Theorem 1),

∣∣∣∣
∫

Bk
f udμ

∣∣∣∣ ≤ ‖ f ‖Lq (V )‖u‖L p(Bk ) ≤ C‖ f ‖Lq (V )‖u‖W 1,2
0 (Bk )

(46)

for some constant C depending only on μ0, a0 and q, where 1/p + 1/q = 1. Since

‖v‖L∞(Bk ) ≤ 1√
μ0a0

‖v‖W 1,2
0 (Bk )

, ∀v ∈ W 1,2
0 (Bk),

there holds for any ε > 0,

eu ≤ e

u2

4ε‖u‖2
W1,2
0 (Bk )

+ε‖u‖2
W1,2
0 (Bk ) ≤ e

1
4εμ0a0

+ε‖u‖2
W1,2
0 (Bk ) .

It then follows that

log
∫

Bk
geudμ ≤ log ‖g‖L1(V ) + 1

4εμ0a0
+ ε‖u‖2

W 1,2
0 (Bk )

. (47)

Note that ‖g‖L1(V ) > 0, since g ≥ 0 but g 
≡ 0. Inserting (46) and (47) into (45), we
obtain

Jk(u) ≥
(
1

2
− ε

)
‖u‖2

W 1,2
0 (Bk )

− 1

4
‖u‖2

W 1,2
0 (Bk )

−C2‖ f ‖2Lq (V ) − log ‖g‖L1(V ) − 1

4εμ0a0
.
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Choosing ε = 1/8, we immediately have for any u ∈ W 1,2
0 (Bk),

Jk(u) ≥ 1

8
‖u‖2

W 1,2
0 (Bk )

− C2‖ f ‖2Lq (V ) − log ‖g‖L1(V ) − 2

μ0a0
. (48)

Hence Jk has a lower bound in W 1,2
0 (Bk). Take a minimizing sequence (̃u j ) ⊂

W 1,2
0 (Bk) such that

Jk (̃u j ) → 	k = inf
u∈W 1,2

0 (Bk )
Jk(u) as j → ∞. (49)

Since g ≥ 0 and there exists some x0 ∈ V such that g(x0) > 0, there holds

μ(x0)g(x0) ≤
∫

Bk
gdμ,

and thus

	k ≤ Jk(0) = − log
∫

Bk
gdμ ≤ − log(μ(x0)g(x0)). (50)

Combining (48), (49) and (50), we have

‖ũ j‖W 1,2
0 (Bk )

≤ C

for some constant C independent of k. Hence there exists a subsequence of (̃u j ),
which is still denoted by (̃u j ), and a function uk ∈ W 1,2

0 (Bk) such that (̃u j ) converges
to uk uniformly in Bk as j → ∞. It is easy to see that uk is a minimizer of Jk , or
equivalently

Jk(uk) = 	k = inf
u∈W 1,2

0 (Bk )
Jk(u).

Moreover uk satisfies the Euler–Lagrange equation

{−�uk + huk = 1
γk
geuk − f in Bk

uk ∈ W 1,2
0 (Bk), γk = ∫

Bk
geuk dμ.

(51)

Since (	k) is bounded due to (48) and (50), we conclude that

‖uk‖W 1,2
0 (Bk)

≤ C (52)

for some constant C independent of k. Using the same argument as Step 4 of the proof
of Theorem 4, one easily extracts a subsequence of uk , which is still denoted by uk ,
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and finds some function u∗ such that (uk) converges to u∗ locally uniformly in V . In
view of (52), the Sobolev embedding theorem (Theorem 1) implies

‖uk‖L∞(Bk ) ≤ 1√
μ0

‖uk‖W 1,2
0 (Bk )

≤ C . (53)

This immediately leads to

e−C‖g‖L1(Bk) ≤ γk ≤ eC‖g‖L1(Bk ),

where γk is given as in (51). Then up to a subsequence, γk converges to some number
γ ∗ with

e−C‖g‖L1(V ) ≤ γ ∗ ≤ eC‖g‖L1(V ). (54)

It follows from (51) and (54) that

− �u∗ + hu∗ = 1

γ ∗ ge
u∗ − f in V . (55)

We now prove

γ ∗ =
∫

V
geu

∗
dμ. (56)

On one hand, for any fixed � > 1, there holds

∫

B�

geu
∗
dμ = lim

k→∞

∫

B�

geuk dμ ≤ lim
k→∞

∫

Bk
geuk dμ = γ ∗,

which leads to

∫

V
geu

∗
dμ ≤ γ ∗. (57)

On the other hand, in view of (53) and the assumption g ∈ L1(V ), for any η > 0,
there would exist a sufficiently large �0 > 1 such that if � ≥ �0, then

∫

Bk
geuk dμ ≤ η +

∫

B�

geuk dμ. (58)

Indeed, (53) and g ∈ L1(V ) lead to

∫

Bk\B�

geuk dμ ≤ eC
∫

V \B�

gdμ = o�(1),
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where o�(1) → 0 as � → ∞. Thus (58) is satisfied. Passing to the limit k → ∞ first,
and then � → ∞ in (58), we obtain

γ ∗ ≤ η +
∫

V
geu

∗
dμ.

Since η > 0 is arbitrary, there must hold

γ ∗ ≤
∫

V
geu

∗
dμ. (59)

Hence (56) follows from (57) and (59) immediately. Combining (56) and (55), we
conclude that u∗ is a solution of

{
−�u∗ + hu∗ = 1

γ ∗ geu
∗ − f in V

γ ∗ = ∫
V geu

∗
dμ.

Since uk is naturally viewed as a function on V , using the same argument as the
proof of (33), we conclude from (52) and (34) that u∗ ∈ H . This completes the proof
of the theorem. ��

6 Yamabe equation

In this section, using the mountain-pass theorem due to Ambrosetti–Rabinowitz [3],
we prove the existence of nontrivial solutions to the Yamabe equation (18). The key
estimate is the Sobolev embedding theorem. In [8], we have used Theorem 1 under
the assumption (11). Here we shall apply Theorem 2 to the mountain-pass theory. Our
assumptions on the locally finite graph are wxy ≥ w0 > 0 for all y adjacent to x , and

∫

V
ρ pdμ =

∑

x∈V
μ(x)ρ p(x) < +∞

for some p > 2, where ρ(x) = ρ(x, O) denotes the distance between x and O . It
seems that Theorem 2 has a lot of room for improvement.

To begin with, we have the following compactness embedding for H , where H
is a Hilbert space defined as in (13).

Lemma 7 If h ≥ a0 > 0 and 1/h ∈ L1(V ), thenH is embedded in Lq(V ) compactly
for all 1 ≤ q < p; If h ≥ a0 > 0 and h(x) → +∞ as ρ(x) → +∞, then H is
embedded in Lq(V ) compactly for all 2 ≤ q < p.

Proof Suppose (uk) is a bounded sequence inH , namely

‖uk‖2H =
∫

V
(|∇uk |2 + hu2k)dμ ≤ C . (60)
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Since the Hilbert space H is reflexive, there exists some function u ∈ H such that
up to a subsequence, (uk) converges to u weakly in H , locally uniformly in V . If
1/h ∈ L1(V ), then for any ε > 0, there exists some � > 1 such that

∫

V \B�

1

h
dμ < ε2.

Moreover, there holds

∫

V
|uk − u|dμ ≤

∫

B�

|uk − u|dμ +
(∫

V \B�

1

h
dμ

)1/2 (∫

V \B�

h|uk − u|2dμ

)1/2

≤ Cε + ok(1).

This immediately implies

lim
k→∞ ‖uk − u‖L1(V ) = 0. (61)

For any q ∈ (1, p), there exists a unique λ ∈ (0, 1) such that q = λ + (1 − λ)p. By
the Hölder inequality, (60) and Theorem 2,

∫

V
|uk − u|qdμ ≤

(∫

V
|uk − u|dμ

)λ (∫

V
|uk − u|pdμ

)1−λ

≤ C

(∫

V
|uk − u|dμ

)λ

,

which together with (61) leads to

lim
k→∞ ‖uk − u‖Lq (V ) = 0. (62)

If h(x) → +∞ as ρ(x) → ∞, then for any ε > 0, there exists some �1 > 1 such
that

h(x) ≥ C

ε
for all x ∈ V \ B�1 .

As a consequence

∫

V
|uk − u|2dμ =

∫

B�1

|uk − u|2dμ +
∫

V \B�1

|uk − u|2dμ

≤ ε

C

∫

V \B�1

h|uk − u|2dμ + ok(1).

This implies that

lim
k→∞ ‖uk − u‖L2(V ) = 0. (63)
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Using the same argument as in the proof of (62), we obtain from (63) that

lim
k→∞ ‖uk − u‖Lq (V ) = 0 for all 2 < q < p.

This ends the proof of the lemma. ��
Let f be a function of one variable defined by

f (s) = |s|q−2s, s ∈ R (64)

and F be its primitive function, namely

F(s) =
∫ s

0
f (t)dt = 1

q
|s|q , s ∈ R. (65)

Obviously s f (s) = qF(s) for all s ∈ R. Define a functional J : H → R by

J (u) = 1

2

∫

V
(|∇u|2 + hu2)dμ −

∫

V
F(u)dμ. (66)

Lemma 8 Assume q ∈ (2, p), f , F and J are defined as in (64), (65) and (66)
respectively. Then for any c ∈ R, J satisfies the (PS)c condition. Precisely, if for any
sequence (uk) ⊂ H with J (uk) → c and J ′(uk) → 0, then up to a subsequence,
(uk) → u inH for some function u ∈ H .

Proof Since (uk) ⊂ H , J (uk) → c and J ′(uk) → 0, we have

1

2
‖uk‖2H −

∫

V
F(uk)dμ = c + ok(1) (67)

〈uk, φ〉H −
∫

V
f (uk)φdμ = ok(1)‖φ‖H , ∀φ ∈ H . (68)

Taking φ = uk in (68) and noting that uk(x) f (uk(x)) = qF(uk(x)) for all x ∈ V ,
we obtain

q

2
‖uk‖2H − qc + ok(1) = ‖uk‖2H + ok(1)‖uk‖H . (69)

Since 2 < q < p, (69) implies that (uk) is bounded inH . By Lemma 7, there exist a
subsequence of (uk), which is still denoted by (uk), and some function u ∈ H such
that

lim
k→∞

∫

V
|uk − u|qdμ = 0. (70)
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One calculates

∫

V
|F(uk) − F(u)|dμ =

∫

V
| f (ξk)||uk − u|dμ

≤
∫

V
(|uk |q−1 + |u|q−1)|uk − u|dμ

≤ C‖uk − u‖Lq (V ), (71)

where Theorem 2 is used, C is a constant independent of k, and ξk lies between uk
and u. Combining (70) and (71), we obtain

lim
k→∞

∫

V
F(uk)dμ =

∫

V
F(u)dμ. (72)

In the same way,

∣∣∣∣
∫

V
f (uk)(uk − u)dμ

∣∣∣∣ ≤
(∫

V
| f (uk)|

q
q−1 dμ

)1−1/q (∫

V
|uk − u|qdμ

)1/q

≤ ‖uk‖q−1
Lq (V )‖uk − u‖Lq (V )

≤ C‖uk − u‖Lq (V ).

As a consequence

lim
k→∞

∫

V
f (uk)(uk − u)dμ = 0. (73)

Taking φ = uk − u in (68) and noting (73), we obtain

〈uk, uk − u〉H = ok(1). (74)

Since up to a subsequence, uk⇀u weakly inH , it follows that

〈u, uk − u〉H = ok(1). (75)

Combining (74) and (75), we conclude that (uk) converges to u inH . In view of (67),
(68), (72) and (73), we have

J (u) = c, J ′(u) = 0.

This ends the proof of the lemma. ��
Proof of Theorem 6 Let J ∈ C1(H ,R) be the functional defined as in (66). We claim
that J satisfies (H1) J (0) = 0; (H2) for some δ > 0, inf‖u‖H =δ J (u) > 0; (H3)
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J (v) < 0 for some v ∈ H with ‖v‖H > δ. Firstly, (H1) is obvious. Secondly, to see
(H2), we have by Lemma 7,

J (u) ≥ 1

2
‖u‖2H − 1

q

∫

V
|u|qdμ

≥ 1

2
‖u‖2H − C‖u‖qH

for some constantC depending on q. Hence, if ‖u‖H = δ for sufficiently small δ > 0,
there holds J (u) ≥ C > 0 for some constant C depending on q and δ. This confirms
(H2). Finally, to see (H3), we take a function

u0(x) =
{
1, x = O
0, x 
= O

for some fixed point O ∈ V . It then follows that

J (tu0) = t2

2
‖u0‖2H − tq

q

∫

V
uq0dμ

→ −∞ as t → +∞,

since 2 < q < p. If we choose v = tu0 for sufficiently large t > 0, then J (v) < 0
and (H3) holds.

Let

c = min
γ∈�

max
u∈γ

J (u),

where � = {γ |γ : [0, 1] → H is a C1 curve with γ (0) = 0, γ (1) = v}. Clearly
0 < c < +∞. In view of Lemma 8, applying the mountain-pass theorem due to
Ambrosetti–Rabinowitz [3], we conclude that c is a critical value of J . In particular,
there exists some u ∈ H such that J (u) = c, J ′(u) = 0. Clearly u 
≡ 0, and u
satisfies the Euler–Lagrange equation (18). ��
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