Revista Matematica Complutense
https://doi.org/10.1007/s13163-021-00405-y

®

Check for
updates

Calculus of variations on locally finite graphs

Yong Lin' - Yunyan Yang?

Received: 29 January 2021 / Accepted: 27 July 2021
© Universidad Complutense de Madrid 2021

Abstract

Let G = (V, E) be alocally finite graph. Firstly, using calculus of variations, includ-
ing a direct method of variation and the mountain-pass theory, we get sequences of
solutions to several local equations on G (the Schrodinger equation, the mean field
equation, and the Yamabe equation). Secondly, we derive uniform estimates for those
local solution sequences. Finally, we obtain global solutions by extracting convergent
sequence of solutions. Our method can be described as a variational method from local
to global.

Keywords Analysis on graph - Variational method on graph - Sobolev embedding
theorem

Mathematics Subject Classification 35R02 - 34B45

1 Introduction

Partial differential equations on Euclidean space or manifolds are important topics
in mathematical physics and differential geometry. As their discrete versions, it is
important to study the difference equations on graph, particularly the existence problem
for such equations.

About five years ago, joined with Grigor’yan, we systematically raised and studied
Kazdan—Warner equations, Yamabe equations and Schordinger equations on graphs in
[6-8]. We first established the Sobolev spaces and the functional framework. Then the
problem of solving the equations is transformed into finding critical points of various
functionals. As a consequence, variational methods are applied to these problems. If
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the graph is finite, then all the Sobolev spaces have finite dimensions, and whence they
are pre-compact. For this reason, the variational problems for finite graph are compar-
atively simple [6,7]. Since the graph has no concept of dimension, if it includes infinite
vertices, the Sobolev embedding theorems becomes unusual. An easy-to-understand
one was observed by us [8] under the assumption that the graph is locally finite and
its measure has positive lower bound (see next section for details). Any other Sobolev
embedding theorem for infinite graph would be extremely interesting.

In recent years, the research in this field has aroused great interest. Motivated by
[8,15], Zhang—Zhao [17] obtained nontrivial solutions to certain nonlinear Schrédinger
equation. Similar equations on infinite metric graphs were studied by Akduman-—
Pankov [2]. The Kazdan—Warner equation was extended by Keller—Schwarz [11] to
canonically compactifiable graphs, and by Ge—Jiang [5] to certain infinite graph. For
other related works, we refer the reader to [9,10,12—-14,16] and the references therein.

In this paper, we study various equations on locally finite graphs, say Schrordinger
equation, Mean field equation and Yamabe equation. Assuming that the weights of
the graph have a positive lower bound and the distance function of the graph belongs
to L?, we derive a Sobolev embedding theorem, which is crucial in our analysis. In
addition to the Sobolev embedding theorem, we also employ calculus of variations,
including a direct method of variation and the mountain-pass theorem. It is remarkable
that we show how to get solutions from local to global by using variational method.

2 Notations and main results

Let G = (V, E) be a connected graph, where V denotes the vertex set and E denotes
the edge set. For any edge xy € E, we assume that its weight wy, > 0 and that
Wyy = Wyy. Let 1V — R™ be a finite measure. For any function u : V — R, the
Laplacian of u is defined as

Aux) = —— Y wey (u(y) — u(x)), e

yx

1
p(x)
where y ~ x means xy € E or y is adjacent to x. The gradient form is written by

I, v)(x) = Wy (U (y) — ux))(w(y) — v(x)). (2)

2px) 7=

Denote I'(u) = I'(u, u) and VuVv = I'(u, v). The length of the gradient of u is
represented by

1

1/2
00 D wey (y) — u(x))z) : 3)

y~x

[Vul|(x) = vT'(w)(x) = (
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Calculus of variations on locally finite graphs

The integral of a function f on V is given as

fv fdp =" p@x) fx). @

xeV

Forany g > 0, we let L9 (V) be a linear space of functions f : V — R with the norm

1/q
I fllzavy = (/;/ IfquM> . ©)

While L*°(V) includes all functions f : V — R satisfying

I fllLeoqvy = sup | f(x)]| < oo.
xeV

If x, y € V and y is adjacent to x, then the distance between x and y is defined as
1. While if y is not adjacent to x, then there exists a shortest path y connecting y and
x, and thus the distance between x and y is defined as the number of edges belonging
to y. Given any O € V. Denote the distance between x and O by

p(x) = p(x, 0). (6)
For any integer k > 1, we denote a ball centered at O with radius k by
By = Br(0)={xeV:px) <k}. @)
The boundary of By is written as
0By ={x eV :px) =k} ®)

According to [7], Wé’z(Bk) stands for a Sobolev space including all functions u :
Bry — R with u = 0 on the boundary 9By given as in (8). For any fixed k, it is
pre-compact. Precisely, if (u ) is a bounded sequence in W(}‘Q(Bk), i.e.

1/2
||”k||WO'=2(Bk)=</ |Vuk|2du) <C, )
By

where the notations in (2), (3) and (4) are used, then there exists a subsequence of (u ;)
converging to some function u# under the norm in (9).

Recall another important Sobolev space W'-2(V) including all functions u : V —
R with

1/2
lllwragy) = ( f (IVu|2+u2)dM) < +o0. (10)
\%4
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Let C.(V) be a set of all functions with finite support, and W01’2(V) be a completion
of C.(V) under the norm as in (10). Both of W1-2(V) and WOI’Z(V) are Hilbert spaces
with the same inner product (i, v) = fv (VuVv + uv)dpu.

A connected graph is said to be locally finite if for any fixed O € V, By is a finite
subgraph. In [8], we made a key observation under the assumption that G is locally
finite, and there exists a constant o > 0 satisfying

ux) > o forall x eV. an

Namely, a Sobolev embedding theorem holds.

Theorem 1 [8]. Let G = (V, E) be a connected locally finite graph. If (11) is satisfied,
then for any u € W“2(V) and any 2 < q < 00, there exists a positive constant C
depending only on q and o satisfying |\ullLevy < Cllullyi2yy- In particular,

lull Looqvy < lluell w12 vy

0]

If instead of (11), there exists some constant wg > O such that
wyy >wo forall y~x, x,yeV, (12)

and the distance function p(x) defined as in (6) belongs to L”(V), we shall prove a
Sobolev embedding as follows.

Theorem 2 Let G = (V, E) be a connected locally finite graph. If the weights w,,
satisfy (12), and the distance function p(x) = p(x, O) € LP(V) for some p > 0 and
some O € V, then there exists some constant C depending only on wg, u(0O) and p
such that

lullLrvy < Clplizevy + Dllullyrzey).

Ifafunction s : V — R has apositive lower bound on V, then we define a subspace
of WO1 ’2(V), which is also a Hilbert space, namely

H = {u e Wy (V) : /V(|W|2 + hud)du < oo} (13)
with an inner product
(U, v) p = /V(Vqu + huv)d. (14)
The first equation we concern is the following linear Schrodinger equation

(15)

—Au+hu= fdinV
u e 7,
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where A is the Laplacian operator defined as in (1), and 5 is defined as in (13). We
now state the following existence result.

Theorem 3 Let G = (V, E) be a connected locally finite graph. Assume there is some
constant ag > 0 such that h(x) > ag for all x € V. If one of the following three
hypotheses is satisfied:

(i) feL*(V)
(ii) w(x) > po>O0forallx €V, f e LY(V);
(iii) the weights of the graph satisfies (12), the distance function p(x) = p(x, O) €
LP(V) for some p > 1, 0 € V, and f € LP/P=D(V),
then the Eq. (15) has a unique solution. If in addition f > 0and f #£00n 'V,
thenu(x) > Oforallx € V.

The second equation we concern is the mean field equation, which is also known
as the Kazdan—Warnar equation, namely

Au=f —ge' in V. (16)

Theorem 4 Let G = (V, E) be a locally finite graph. Suppose that g < f <QonV
and g € LY (V). Then the Eq. (16) has a solution.

We remak that using a method of the heat equation, Ge-Jiang [5] obtained similar
result as that of Theorem 4 under different assumptions on f and g. In the case g > 0,
it is not likely to find a nontrivial solution as in Theorem 4 in general. The main
difficulty is that fv |Vu|?dp does not control lullwr2(yy if V' is an infinite graph.
However, it is natural to consider the following mean field equation

Y ;
—Au+hu—m—fﬂl V (17)
ue€ A NL*WV),

where & has a positive lower bound, and .77 is defined as in (13). To seek solutions of
(17), we need certain Trudinger—Moser embedding. It suffices to assume (11) for the
graph in order to get that kind of embedding. Precisely we have the following:

Theorem5 Let G = (V, E) be a connected locally finite graph. Suppose (11) is
satisfied, there exists some constant ag > 0 such that h(x) > ag forallx € V, g >0
andg £0o0nV, g € LY(V), and f € L1(V) for some q € [1,2]. Then the Eq. (17)
has a solution.

Note that in Theorem 5, the function f allows the form Zle ¢;d,,; for some con-

stants cy, - - - , c¢, where 8y, stands for the Dirac function satisfying

1 ifx=x
8 (x) = {O if x # x;.
As a consequence, it makes sense to consider Chern—Simons—Higgs model in locally
finite graph. Such a model in finite graph was recently studied by Huang—Lin—Yau
[10].
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The third equation we are interested in is the Yamabe equation
—Au+hu=ul?%u in V
{ u e A, (18)

where A has a positive lower bound, .77 is defined as in (13), and ¢ > 2. In order to find
a solution to the Eq. (18), we seek the Sobolev embedding theorem, say Theorem 1
or Theorem 2. Inspired by [1,4,15], we have solved this problem in [8] by employing
Theorem 1. For application of Theorem 2, we state the following:

Theorem 6 Let G = (V, E) be a connected locally finite graph. Let O be a fixed
point of V, the distance function p(x) = p(x, O) € LP(V) for some p > 2. Suppose
h(x) > ao > 0 for some constant ay and all x € V. If further 1/h € LY(V) or
h(x) — 400 as p(x) — 400, then for any g with 2 < q < p, the Eq. (18) has a
nontrivial solution.

The remaining part of this paper is organized as follows: In Sect. 3, a Sobolev
embedding theorem (Theorem 2) is proved; In Sect. 4, we study the linear Schrodinger
equation, and prove Theorem 3; In Sect. 5, the mean field equations are discussed, and
Theorems 4 and 5 are proved; In Sect. 6, we consider the Yamabe equation and prove
Theorem 6. Throughout this paper, we do not distinguish sequence and subsequence,
and denote various constants by the same C.

3 A Sobolev embedding

In this section, using definitions of WL2(V) and LP(V), we prove Theorem 2.
Proof of Theorem 2 Let O be a fixed pointin V. Forany x € V, we denote the distance
between x and O by p(x) = p(x, O). Choose a shortest path y = {x1, -+, Xk41}

connecting x and O. In particular x| = x, ---, xx+1 = O, x; is adjacent to x;4 for
alll <i <k,andk = p(x). Forany u € wh2(v), we get

lu()] < fulxr) —u(x2)[ + -+ [uxx) — ule )] + [ (0)]. (19)

Noting that (10) implies

1/2
lullwrzgy = D woy@() —u@)+ Y w@u*@ | . (0
zeV,y~z zeV
and that x(z) > 0 for all z € V, we have
1
[u(0)| = ——=llullwi2¢v); (21)

Vi (0)
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Calculus of variations on locally finite graphs

since w;y > wo > 0 for all z adjacent to y, in view of (20),

k
E l(x;) — u(xip1)| < k max u(x;) — u(xiyr)
N 1<i<k
i=1
a V [ (x;) — u(xiq1)]
— max Wy x: ux;) — ulx;
Wo 1=i<k XiXi41 i i+1
1

E_
JWo

,o(x)||u||W1,2(V).
(22)

Combining (19), (21) and (22), we obtain

1 1

Since p € LP(V) for some p > 0 and p(x, y) > 1 forall x # y, in view of (5), there
holds

1/p 1/p
ILev) = <Zu(z)> < (Zu(z)pp(mw(O))

zeV zeV

(23)

1/p
< 2P max (Z M(Z)PP(Z)> L n(0)'”

zeV

= 2/7 max {||,0||LP(V), M(O)l/p} :

This together with (23) leads to

1 1
lullprvy < C <_||,0||L1’ vy + ———==I1llLrv ) Nl wrzgy
V) \/w—o V) /_M(O) V) V)
< CdlpllLrvy + Dllullwrzgyy

for some constant C depending only on wg, ;1 (O) and p, as we expected. O

4 Schrodinger equation

In this section, we prove Theorem 3 by using a direct method of variation from local
to global.

Proof of Theorem 3 Fix some point O € V. Denote the distance between x and O by

p(x) = p(x, O). For any positive integer k, we write By = {x € V : p(x) < k}. Note
that h(x) > ag > O forall x € V. Let W(}’Z(Bk) be the Sobolev space including all
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functions u : By — R, u = 0 on 0 By, with the norm

1/2
Iy, (f (IVul? +hu2)du> : (24)

For any fixed k, the norm in (24) is equivalent to that in (9), due to the Poincaré
inequality

/ wdp < G / \VulPdu, Vue Wy (By),
By By

where Cy is a constant depending on k. In general, Cj tends to infinity as k — oo.
It is convenient for us to use (24) as the norm in W(;’Z(Bk). Define a functional

Je : W 2(By) — Rby

Je(u) = 1/ (Vul> + hu>)ydp — | fudp. (25)
2 By By,

Set Ay = inf Ji (u). Obviously

ueWy*(By)
Ar < Ji(0) =0. (26)

Case (i). f € L>(V).
By the Holder inequality and the Young inequality, we have

1/2 1/2
o= ([ ), )

< \/_a_OHfHLz(V)“u”WOI’Z(Bk)

A

1
2 2
where ||u|| W2 (B is defined as in (24). It follows from (25) and (27) that
0
Je@) > S L 28
k(l/l) - ZHMHW(}Z(B/() - %”f”LZ(V) ( )
Hence
A nf S > —— | £ (29)
k= 1n k() =2 —— 207y
ueWy > (By) ap L*m

Combining (26) and (29), we know that (Ax) is a bounded sequence of numbers.
Now we fix a positive integer k and take a sequence of functions (;) C Wol’z(Bk)

@ Springer
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satisfying
Je@ij) = Ar as j— oo. (30)

It follows from (28) that (i j) is bounded in W(}’z(Bk). By the Sobolev embedding
theorem for finite graph [7], there exists auy € W(} 2 (By) such that up to a subsequence,
iij converges to ux under the norm (24). Clearly Jx(ux) = Ak, and uy satisfies the
Euler-Lagrange equation

—Aug + hup = f in By
{uk =0 on 0 Bg. @1
Noting that (Ag) is bounded, in view of (28) and (30), we obtain
2 _ 2 2
ol 5 = | GVl i < C 32)

for some constant C independent of k. For any finite set K C V, there holds K C B
for sufficiently large k. The power of (32) is evident. It ensures that

C.

2
Nkl ooy = Nkl 12
(K) W,

<
ap minyeg u(x) (Br) —
Note that (uy) is naturally viewed as a sequence of functions defined on V, say uy = 0
on V \ Bj. There would exist a subsequence of () (which is still denoted by (ux))
and a function u™* such that (uy) converges to u™ locally uniformly in V, i.e. for any
fixed positive integer ¢,

lim up(x) =u*(x) for all x € By.
k— 00

Now we show that
u* e . (33)
Since uy is viewed as a function on the whole V, u; = 0 on V' \ By, and the weights of

the graph is symmetric, i.e. wyy = wy, for all y adjacent to x, we have the following
estimate

Ikl =Y way (i (v) — k() + Y p()h(x)uz (x)

y~x xeV

Yo way () —ue(x)* 4+ Y p)h@UE )

y~x, X€By xX€By

+ > () — u(x)?

y~x,x€d By

@ Springer



Y.Lin,Y.Yang

<2 ) wo ) )+ Y a0 (x)

y~x,x€Bg xeBg

< 2lug ) 34
= 2wl (34)

Up to a subsequence, we assume (ux) converges to u™ locally uniformly in V. In view
of (32) and (34), we know that (uy) is bounded in J#. Since every Hilbert space is
weakly compact, it follows that up to a subsequence, (ux) converges to some function
u} weakly in J#. This in particular implies

/uk¢du—>/u’f¢>du, V¢ € C.(V).
v v

Let z € V be any fixed point. In the above estimate, we take ¢ satisfying ¢ (x) = 1 at
x =zand ¢(x) = 0at x # z. Then uy(z) — uj(z). Hence by the uniqueness of the
limit, u}(z) = u*(z) for all z € V, and (33) follows immediately.

It then follows from (31) that for any fixed x € V, there holds

—Au*(x) + h(x)u*(x) = f(x).

Therefore u* is a solution of (15). To prove that u™* is a unique solution of (15), it
suffices to show the homogenueous equation

—Au+hu=0
2% &
has only one solution # = 0. Since u € 7, there exists a sequence (¢x) C C.(V)
such that gy — u in 7. Testing (35) by ¢, we have by integration by parts

(O, u) s = / (VuVer + hugp)dp =0,
v

where (-, -)_y is the inner product in 7# defined as in (14). Passing to the limitk — oo,
we conclude (u, u) » = 0, and thus u = 0. This confirms the uniqueness of u*.

If f(x) > Oforall x € V, then applying the maximum principle to (31), we obtain
ur(x) > 0 for all x € Bj. Indeed, suppose there exists some xog € By satisfying

ming, u; = ug(xp) < 0, we have by (31) that

—Aug(x0) = f(x0) — h(xo)ug(xo) > 0.
This is impossible, and leads to u;y > 0 on Bi. As a consequence, u*(x) > 0 for all
x € V. Since f # 0, one has u* # 0. We now prove u*(x) > 0 forall x € V.
Suppose not, there would be a point x* € V such that u*(x*) = 0 = miny u* and
Au*(x*) > 0. It follows that

0> —Au*(x*) = f(x*) >0,
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Calculus of variations on locally finite graphs

which is a contradiction, and implies u*(x) > O forall x € V.
Case (ii). uw(x) > uo > Oforallx € V.
By the Sobolev embedding theorem (Theorem 1), we have for all u € WO1 ’Z(Bk),

llell oo By <

\/— g w2 s

Similar to (27), there holds

/ SJudp < llullLeom I f L1 (8
By

IA

1
\/ﬁ ”u“W(;z(Bl‘) ”f”Ll(V)

< 1 2 1 2
= ZHMHWOI’Z(BA) + %”f”Ll(V)-
In the same way, for any u € Wol’z(Bk), we obtain analogs of (28) and (29), namely

1 2 2
T 2 s = =1y

and

1
Ap=inf  Je@) = —— [ FI2 -
v s o L)

The remaining part of the proof is completely analogous to that of the case (i), and is
omitted.

Case (iii). wxy > wo > Oforall y adjacenttox, p € LP(V)and f € Lr/(r=D(y)
for some p € [1, 00], in particular f € L®(V) if p = 1.

It follows from the Sobolev embedding (Theorem 2) that there exists some constant
C depending only on wg, n(0), llpllLr(v)y and p satisfying

1,2
lullzosy < Cllullya g Vi € Wo(Bo).

Similar to (27), we have

Sudp < |ullLrs ||f||
5 (Br) l(V)

Cllullyaz g I£1 e,

IA

W

IA

1 2 2 2
- C .
3120 + CUE oy
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As a consequence, we obtain analogs of (28) and (29) as follows:

B = Sl NP,
- 4 W()’ (Bk) LpT (V)
and
_ : 2 2
Ag = inf Jew) = =CIfII* »
ueWy*(By) Lr=T(v)

Again the remaining part of the proof in this case is completely analogous to that of
Case (i), and thus is omitted. ]

5 Mean field equation

In this section, we consider mean field equations. Precisely we prove Theorems 4 and
5 by variational method from local to global.

5.1 Thecaseg <f<0
Proof of Theorem 4 Fix some point O € V. Forany x € V, p(x) = p(x, O) denotes

the distance between x and O. For any positive integer k, we let By = {x € V :
p(x) < k}, and define a functional J;, : W&’Z(Bk) — R by

1
Jew) = 5 fB VulPdp + fB fudp — /B gedy.
k k k

Step 1. For any positive integer k, Ji has a lower bound on Wé ’Z(Bk).
Since g < f < 0 and g € L'(V), we have also f € L'(V). An elementary
inequality e’ > 1+ ¢ for all t € R implies that for all u € Wé’z(Bk),

Ji (u) Z/ fMdM—/ ge'dp
By By

> [ flu—edu

By
> [ —pap
By
_ /V (= f)dp + ok (D), (36)

where o; (1) — 0 as k — o0. Denoting ¢} = ka (—f)du, we obtain Ji(u) > ¢y for
all u € Wy*(By).
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Step 2. For any positive integer k, there exists a function uy € WOl ’2(Bk) such that

J(up) = Ay = inf Ji(u). 37
ueWy*(By)

Moreover uy satisfies the Euler—Lagrange equation

Aup = f — ge' in By
{uk =0 on 0 By. (38)
Obviously there holds
ez h0 = [ Codus [ -oan.
By Vv
This together with (36) gives
I fllLtevy + o0k (D) < Ak < MIgllL1(vy- (39)
Take a minimizing sequence (i ;) C WOl ’Z(Bk) satisfying
Je@j) = A= inf  Jx(u) as j — oo. (40)

ueWy 2 (By)
For any function v : V. — R, we write

_Jvx) ifvx) >0 _ _Jvx) ifvx) <0
v = {o ifo) <0; U W= {0 if v(x) > 0.

To see a lower bound of Ji (if j), we calculate
~ 1 ~ 2 ~t it
I(ij) = 5 | \ViPdp+ | (Fif - ge"dp
2 By By

—/ geﬁ;du—}-/ fﬁ;du—f-/ gdu
By By By

1 ~ 2 ~t ut ~

- [Vuj;|“dp + (fuj —gei)du + fujdu+ gdu.
2 By By By,

By
41)

v

Combining (40) and (41), and noting that g(x) < f(x) < O, ﬁ;(x) < Oforallx € By,

we conclude that (ﬁ;) is bounded in By with respect to j, or equivalently there exists
some constant C depending on k such that

li; ()] < C forall x € By (42)
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Note also that

~t ut ~f ut f ~f 2
fuj —ge'i zfuj — fei Z_E(uj) ,
which together with (40) and (41) leads to
izj(x) < C forall x € By, (43)

where C is some constant depending on k. It follows from (42) and (43) that (u;) is
uniformly bounded in By with respect to j. Hence there exist a subsequence of (i),
which is still denoted by (i), and a function uy € Wol’z(Bk) such that i7; converges
to uy uniformly in By as j — oo. This together with (40) immediately leads to (37).
By a straightforward calculation, uy satisfies the Euler-Lagrange equation (38).
Step 3. For any finite set A C V, (uy) is uniformly bounded in A.
Let A be a finite subset of V. An obvious analog of (41) reads

Ji (ug)

v

1 + _
5 [ vulan [ cruf =gVt [ pupdu [ gan
B By By ):

v

/(fu;f—ge”;)dwr/ fu,jdwr/ gdu,
A A By

provided that k is sufficiently large. As a consequence, one derives

Je(ug) — [ gdp 20k (k) =2 [ gdp
max lup (x)] < fB" ; maxu (x) < ka
X€

minyes p(x)| f ()| mingea u(x)|f(x)|
(44)

Combining (37), (39) and (44), we conclude that there exists some constant C depend-
ing only on 4, g, u and A such that

max |ug(x)| < C.
xeA

Step 4. There exists a subsequence of (uy), which is still denoted by (uy), and a
function u® : V. — R such that (uy) converges to u™ locally uniformly in V. Moreover,
u* is a solution of the equation (16).

By Step 3, (u) is uniformly bounded in Bj. Hence there exists a subsequence of
(ux), which is written as (u1 ), and a function u7} such that u; x converges to u} in
B;. By Step 3 again, (u «) is uniformly bounded in B;. Then there would exist a
subsequence of (i1 ), which is written as (u ), and a function u3 such that u;
convergence to #3 uniformly in B. Obviously u3 = u} on Bj. Repeating this process,
one finds a diagonal subsequence (u k), which is still denoted by (1), and a function
u* : 'V — R such that for any finite set A C V, (ux) converges to u* uniformly in A.
For any fixed x € V, passing to the limit k — oo in (38), we obtain

Au*(x) = f(x) — g(x)e”" @,
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This ends the final step and completes the proof of the theorem. O

5.2 Thecaseg > 0
Proof of Theorem 5 Fix some point O € V.Forany x € V, p(x) = ,o(x 0) denotes

the distance between x and O. Let By = {x € V : p(x) < k}, W0 (Bk) be the
Sobolev space including all functions u satisfying u = 0 on d By, with the norm

12
Iully125, (/ (IVal? +hu2)du> ,

where h(x) > agp > 0, u(x) > o > 0 for all x € V. Define a functional J; :
Wi 2(By) — R by

1
S =5 | (VP +hddp | fudi—tog /B ge'du.  (45)
k k k

Since f € L(V) for some g with 1 < g < 2, we have by the Sobolev embedding
(Theorem 1),

‘/;kfudu

for some constant C depending only on ¢, ag and g, where 1/p + 1/g = 1. Since

= I lellulir sy = CUf s lully 2 g, (46)

Vv e Wy (B,

lvllzes) < F 1l 2 g,
there holds for any € > 0,
”2"74‘5\“’“2 12
o < 84 I ”WA‘Z(Bk) Wo'“ (B - e4euoao+€” (s w2
It then follows that
log / getdy < logllgliigy) + —— + eull? (47)
B = L 4e poay Wo(Br)

Note that ||g||L1(V) > 0, since g > 0 but g # 0. Inserting (46) and (47) into (45), we

obtain
7 > 1 2 1 2
(u) > 5—5 ”u”WOI’z(Bk)_ZHMHWOIZ(B)

—C*1 f11Zavy = log liglpigyy —

4epoao
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Choosing € = 1/8, we immediately have for any u € WO1 ’Z(Bk),

1 2 2 2 2
Jie(u) = gllullw(}.zw = Colf zaqvy —logliglipivy — oy’ (48)

)

Hence J; has a lower bound in WOl ’2(Bk). Take a minimizing sequence (i;) C
Wol’z(Bk) such that

Je@j) = A= inf  Jr(u) as j — oo. (49)
uew,?(By)

Since g > 0 and there exists some xg € V such that g(x¢) > 0, there holds
u(x0)g(xo) < / gdu,
By

and thus

Ax < Jx(0) = —log / gdp < —log(11(x0)g (x0)). (50)

Bx

Combining (48), (49) and (50), we have

u; <
1125 < €
for some constant C independent of k. Hence there exists a subsequence of (i),

which is still denoted by (), and a function u; € WOl ’Z(Bk) such that (i ;) converges
to uy uniformly in By as j — oo. It is easy to see that uj is a minimizer of Ji, or
equivalently

Jr(up) = A = inf  Jr(u).
ueWy*(By)

Moreover uy satisfies the Euler—Lagrange equation

—Auy —i;éluk = #ge”k — fin By 51)
ux € Wy (Bi), vk = [p, ge"*dpu.
Since (Ay) is bounded due to (48) and (50), we conclude that
IIMkIIWOl,z(Bk) <cC (52)

for some constant C independent of k. Using the same argument as Step 4 of the proof
of Theorem 4, one easily extracts a subsequence of uy, which is still denoted by uy,
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and finds some function u* such that (uy) converges to u* locally uniformly in V. In
view of (52), the Sobolev embedding theorem (Theorem 1) implies

el ooy = ——=luklly12 5, = C. (53)

f By)

This immediately leads to

—C
e Clglimy < v < €CliglLics,).

where yy is given as in (51). Then up to a subsequence, y, converges to some number
.
y* with

e Cligllpiyy < v* < eligllLiy)- (54)

It follows from (51) and (54) that
— Au* + hu* = %ge”* —f in V. (55)
We now prove
vt = fv g du. (56)

On one hand, for any fixed £ > 1, there holds

/ g du = lim ge'*dp < lim ge'*du = y*,
By k—o00 By k

— 00 Bk

which leads to
/ gedp < y*. (57)
v

On the other hand, in view of (53) and the assumption g € LY(V), for any n > 0,
there would exist a sufficiently large ¢ > 1 such that if £ > ¢, then

f ge'tdu < n+/ ge'tdpu. (58)
By By

Indeed, (53) and g € L'(V) lead to

/ ge'du < eC/ gdp = o¢(1),
Bi\By VB
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where 0¢(1) — 0 as £ — oo. Thus (58) is satisfied. Passing to the limit k — oo first,
and then £ — o0 in (58), we obtain

y*<n +/ ge' du.
v
Since n > 0 is arbitrary, there must hold

y* S/ge”*du. (59)
\%4

Hence (56) follows from (57) and (59) immediately. Combining (56) and (55), we
conclude that u* is a solution of

—Au* + hu* = #ge“* —finV
Y =/ ge" du.

Since uy is naturally viewed as a function on V, using the same argument as the
proof of (33), we conclude from (52) and (34) that u* € 7. This completes the proof
of the theorem. O

6 Yamabe equation

In this section, using the mountain-pass theorem due to Ambrosetti—Rabinowitz [3],
we prove the existence of nontrivial solutions to the Yamabe equation (18). The key
estimate is the Sobolev embedding theorem. In [8], we have used Theorem 1 under
the assumption (11). Here we shall apply Theorem 2 to the mountain-pass theory. Our
assumptions on the locally finite graph are wy, > wo > 0 for all y adjacent to x, and

/Vp”du = Zu(x)p”(x) < +00

xeV

for some p > 2, where p(x) = p(x, O) denotes the distance between x and O. It
seems that Theorem 2 has a lot of room for improvement.

To begin with, we have the following compactness embedding for .77, where 77
is a Hilbert space defined as in (13).

Lemma7 Ifh > ayp > 0and1/h € LY(V), then 7 is embedded in L (V) compactly
foralll < g < p; Ifh > ap > 0 and h(x) — 400 as p(x) — 400, then H is
embedded in L1(V) compactly forall2 < g < p.

Proof Suppose (uy) is a bounded sequence in Z, namely
iy = [ (sl + i < C. (60)
1%
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Since the Hilbert space .77 is reflexive, there exists some function u € J# such that
up to a subsequence, (uy) converges to u weakly in .77, locally uniformly in V. If
1/h € L'(V), then for any € > 0, there exists some £ > 1 such that

[
—du < €”.
v\B, I

Moreover, there holds
| 12 172
[ = ulan < [ |uk—u|dﬂ+(/ —du> (/ h|uk—u|2dﬂ>
v B, v\B, h V\B;
< Ce + or(1).
This immediately implies
kll)ngo luk — ullproyy = 0. (61)

For any g € (1, p), there exists a unique A € (0, 1) such thatg = A 4 (1 — A)p. By
the Holder inequality, (60) and Theorem 2,

A 1-Xx
/|Mk—u|qdﬂf (/ |uk—u|du) (/ |uk—u|f’du)
14 1% 1%
A
sC(/ |uk—u|du) ,
1%

which together with (61) leads to
lim |Jux —ullravy = 0. (62)
k— o0

If h(x) - +o00 as p(x) — oo, then for any € > 0, there exists some £; > 1 such
that

h(x) >

LY e

for all x € V\ By,.

As a consequence

/|’4k—u|2dﬂ=/ |uk—u|2du+/ g — ulPdpe
% By, VAB,

€
<— hlug — ul*dp + ok (1).
C Jv\s,,
This implies that
klggo lug — M||L2(V) =0. (63)
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Using the same argument as in the proof of (62), we obtain from (63) that
lim |lug —ul|lpaqvy =0 forall 2 <gq < p.
k— 00

This ends the proof of the lemma. O

Let f be a function of one variable defined by
f@)=|s|"%, seR (64)
and F be its primitive function, namely
§ 1
F(s) :/ fdt = —|s|?, s eR. (65)
0 q

Obviously sf(s) = g F(s) for all s € R. Define a functional J : 5 — R by

J(u) = %/V(|W|2+hu2)du—/vF(u)du. (66)

Lemma 8 Assume q € (2, p), f, F and J are defined as in (64), (65) and (66)
respectively. Then for any ¢ € R, J satisfies the (P S). condition. Precisely, if for any
sequence (uy) C A with J(uy) — c and J'(ux) — 0, then up to a subsequence,
(ux) — u in A for some function u € .

Proof Since (uy) C 37, J(uy) — c and J'(ux) — 0, we have
1
SluklZe — /V Fu)dp = ¢ + or(1) (67)
(uk, ) — /v fupdu = ox (DBl . VP € H. (68)

Taking ¢ = uy in (68) and noting that uy (x) f (ur(x)) = gF (ux(x)) forall x € V,
we obtain

q
E”Mk”z,)f —qc+or(1) = luelBp + ox (D) lukl - (69)

Since 2 < g < p, (69) implies that (1) is bounded in 7. By Lemma 7, there exist a
subsequence of (uy), which is still denoted by (u), and some function u € # such
that

lim lup — u|?du = 0. (70)
k—o0 Jy
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One calculates

/VIF(uk)—F(M)IdM=fvlf(€k)||uk—uldu

< / (u ™+ [l g — uldpe
\%

< Cllug —ullLa(vy, (71)

where Theorem 2 is used, C is a constant independent of k, and & lies between uj
and . Combining (70) and (71), we obtain

lim | FQup)dw = / Fuw)dpu. (72)
1% \%

k— 00

In the same way,

L\ 1/q
< (f |f(“k)|"_'dﬂ) <f |uk—u|qdu>
\% \%

g—1
=< ”Mk”Lq(V)”Mk - u”L‘I(V)
< Cllug — ullLaqvy-

‘fv S () (ux — uyd

As a consequence

kli)ngo/v S ) —wydp = 0. (73)
Taking ¢ = uy — u in (68) and noting (73), we obtain
(g, up — u) p = o (1). (74)
Since up to a subsequence, uy—u weakly in 72, it follows that
(, up —u) yp = o (1). (75)

Combining (74) and (75), we conclude that (uy) converges to « in 7. In view of (67),
(68), (72) and (73), we have

Jw)=c, J(u)=0.

This ends the proof of the lemma. O

Proof of Theorem6 Let J € C' (7, R) be the functional defined as in (66). We claim
that J satisfies (Hy) J(0) = 0; (H2) for some 6 > 0, infy,,, =s /(@) > 0; (H3)
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J(v) < 0 for some v € 57 with ||v
(H»), we have by Lemma 7,

. > 6. Firstly, (H}) is obvious. Secondly, to see

\%

J@ = Su)? 1f| 9d
u) > —|lu - — ulldu
27V Jy

v

1

Sl = Cllulll,

for some constant C depending on ¢. Hence, if ||u|| ,» = § for sufficiently small § > 0,
there holds J (1) > C > 0 for some constant C depending on g and §. This confirms
(H>). Finally, to see (H3), we take a function

1 =
uo<x)={0’ o

for some fixed point O € V. It then follows that

oo, 1 q
J(tug) = 5””0”920_ —/ ugdp
q Jv

— —00 as t — +o00o,

since 2 < g < p. If we choose v = tuy for sufficiently large t > 0, then J(v) < 0
and (H3) holds.
Let

¢ = minmax J (u),
yell uey

where I' = {y|y : [0,1] — 2 is a C! curve with y(0) = 0, y(1) = v}. Clearly
0 < ¢ < 4o00. In view of Lemma 8, applying the mountain-pass theorem due to
Ambrosetti-Rabinowitz [3], we conclude that c is a critical value of J. In particular,
there exists some u € % such that J(u) = ¢, J'(u) = 0. Clearly u # 0, and u
satisfies the Euler—Lagrange equation (18). O
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