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Witten-Morse functions and Morse inequalities on

digraphs

Yong Lin∗, Chong Wang†

Abstract.In this paper, we prove that discrete Morse functions on digraphs

are flat Witten-Morse functions and Witten complexes of transitive digraphs

approach to Morse complexes. We construct a chain complex consisting of

the formal linear combinations of paths which are not only critical paths of

the transitive closure but also allowed elementary paths of the digraph, and

prove that the homology of the new chain complex is isomorphic to the path

homology. On the basis of the above results, we give the Morse inequalities

on digraphs.

1 Introduction

Digraphs are important topological models in complex networks. A digraph G is determined

by a finite set V and a non-empty subset E of V × V \ {diag}. V is called the vertex set of

G and E is called the directed edge set of G. For vertices u, v ∈ V , the pair (u, v) ∈ E is

denoted as u → v. G is called transitive if for any two directed edges u → v and v → w of

G, there is a directed edge u → w of G. The transitive closure of G is the smallest transitive

digraph containing G, which is denoted as Ḡ in this paper if there is no ambiguity.

Let R be the real numbers. For any integer n ≥ 0, an elementary n-path is a sequence

v0v1 · · · vn of n+ 1 vertices in V . Let Λn(V ) be the linear space consisting of all the formal

linear combinations of the n-paths on V . The i-th face map is defined as the R-linear map

di : Λn(V ) −→ Λn−1(V )

which sends v0v1 · · · vn to v0 · · · v̂i · · · vn, where v̂i means omission of the vertex vi. Let

∂n =
n
∑

i=0

(−1)idi. Then ∂n is an R-linear map from Λn(V ) to Λn−1(V ) satisfying ∂n∂n+1 = 0

for each n ≥ 0 (cf. [10, 11, 12, 13, 14, 15, 16]). Hence {Λn(V ), ∂n}n≥0 is a chain complex.

An allowed elementary n-path on G is a n-path v0v1 . . . vn on V such that vi−1 → vi is a

directed edge of G and vi−1 6= vi for each 1 ≤ i ≤ n. Let Pn(G) be the linear space consisting

of all the formal linear combinations of allowed elementary n-paths on G. Then Pn(G) is a

subspace of Λn(V ), whereas the image of an allowed elementary path under the boundary

operator ∂ does not have to be allowed. Consider the space Ωn(G) formed by all the linear

combinations of the ∂-invariant n-paths in Pn(G). Obviously, Ωn(G) is a subspace of Pn(G).
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The path homology of G is defined as the homology of chain complex {Ωn(G), ∂n}n≥0 and

denoted as H∗(G;R). That is,

Hm(G;R) = Hm({Ωn(G), ∂n}n≥0), m ≥ 0.

Morse theory can simplify the calculation of homology groups. Using Morse theory, one

can determine the cell decomposition of manifolds by studying the negative inertia index of

Hessian matrix of Morse functions at the critical points, so as to characterize the homology

groups. In 1925, M. Morse first invented the method of Morse theory (cf. [20]). In 1963,

J.W. Milnor combed, studied and developed Morse’s method, and Morse theory was given in

[19]. Since then, there have been numerous researches on Morse theory (cf. [5, 22], etc). In

recent years, Morse theory has been applied to cell complexes, simplicial complexes, graphs

and other combinatorial objects, and discrete Morse theory has gradually become a hot

research topic (cf. [1, 2, 3, 4, 6, 7, 8, 9]).

It is well known that the homology groups of simplicial complexes or cell complexes can

be characterized by chain complexes made of the linear combinations of critical simplices.

Inspired by this, in this paper, based on [18, 23], we further study the properties of discrete

Morse functions on digraphs and critical paths on transitive digraphs, characterize the path

homology groups of digraphs with chain complex consisting of the formal linear combinations

of paths which are not only critical paths of the transitive closure but also allowed elementary

paths of the digraph, prove that Witten complexes of transitive digraphs approach to Morse

complexes, which is not necessarily true for general digraphs.

Let G be a digraph and f : V (G) −→ [0,+∞) a discrete Morse function on G as defined

in [23] and Definition 2.1. By [6, Definition 6.1], the (algebraic) discrete gradient vector

field of f is defined as an R-linear map gradf : Pn(G) → Pn+1(G) such that for any allowed

elementary n-path α on G,

(gradf)(α) = −〈∂γ, α〉γ,

where γ > α and f(γ) = f(α). Otherwise (gradf)(α) = 0. Here 〈, 〉 is the inner product in

Λn(V ) (with respect to which the elementary n-paths are orthonormal).

Let f̄ be a discrete Morse function on a transitive digraph and V = gradf̄ the discrete

gradient vector field on it. By [6, Definition 6.2], the discrete gradient flow is denoted as

Φ = Id + ∂V + V ∂.

Let ∆n(t) be the Laplace operator with one-parameter t and Wn(t) the span of the eigenvec-

tors of ∆n(t) corresponding to the eigenvalues which tend to 0 as t → ∞. Denote Critn(−)

as the span of all critical n-paths on “−”.

The paper is organized as follows. In Section 2, we review the definition of discrete Morse

functions on digraphs and prove that discrete Morse functions on digraphs are discrete

flat Witten-Morse functions in Proposition 2.8. Then we prove that Witten complexes
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approach to Morse complexes for transitive digraphs in Section 3. Furthermore, we study

the path homology of general digraphs in Section 4 which is divided into two subsections. In

Subsection 4.1, we give some properties of transitive digraphs. Particularly, we characterize

Φ-invariant space with critical paths in Proposition 4.6. Let G be a digraph and Ḡ the

transitive closure of G. Suppose Ω∗(G) is V -invariant (V (Ω(G)) ⊆ Ω(G)). Then

Hm(G;R) ∼= Hm

(

{R(α+ V ∂(α)) ∩ Ωn(G), ∂n}n≥0

)

where α ∈ Crit(Ḡ). This is proved in Theorem 4.8.

Moreover, in Subsection 4.2, we give a description of path homology of digraphs by

homology of a chain complex which is related to critical sets of the transitive closure of G in

Corollary 4.11. That is, if Ω∗(G) is V -invariant and Φ(α) ∈ Ω(G) for any α ∈ Crit(Ḡ)∩P (G),

then

Hm({Critn(Ḡ) ∩ Pn(G), ∂̃n}n≥0) ∼= Hm(G;R)

where ∂̃ = (Φ
∞
)−1 ◦ ∂ ◦ Φ

∞
and Φ

∞
is the stabilization map of Φ.

Finally, in Section 5, we give the Morse inequalities on digraphs.

2 Preliminaries

In this section, we mainly review the definition of discrete Morse functions on digraphs and

prove that discrete Morse functions on digraphs are flat Witten-Morse functions.

For any allowed elementary paths α and β, if β can be obtained from α by removing

some vertices, then we write α > β or β < α.

Definition 2.1. (cf. [23]) A map f : V (G) −→ [0,+∞) is called a discrete Morse function

on G, if for any allowed elementary path α = v0v1 · · · vn on G, both of the followings hold:

(i). #
{

γ(n+1) > α(n) | f(γ) = f(α)
}

≤ 1;

(ii). #
{

β(n−1) < α(n) | f(β) = f(α)
}

≤ 1.

where

f(α) = f(v0v1 · · · vn) =

n
∑

i=0

f(vi).

For an allowed elementary path α, if in both (i) and (ii), the inequalities hold strictly,

then α is called critical. Precisely,

Definition 2.2. An allowed elementary n-path γ(n) is called critical, if both of the followings

hold:

(i)’ #
{

β(n−1) < α(n) | f(β) = f(α)
}

= 0,

(ii)’ #
{

γ(n+1) > α(n) | f(γ) = f(α)
}

= 0.
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It follows from Definition 2.2 that an allowed elementary p-path is not critical if and only

if either of the following conditions holds

(i)” there exists β(n−1) < α(n) such that f(β) = f(α);

(ii)” there exists γ(n+1) > α(n) such that f(γ) = f(α).

A directed loop on G is an allowed elementary path v0v1 · · · vnv0, n ≥ 1.

Lemma 2.3. (cf. [18, Lemma 2.4]) Let G be a digraph and f a discrete Morse function on

G. Let α = v0v1 · · · vnv0 be a directed loop. Then for each 0 ≤ i ≤ n, f(vi) > 0.

Lemma 2.4. (cf. [18, Lemma 2.5]) Let G be a digraph and f a discrete Morse function on

G as defined in Definition 2.1. Then for any allowed elementary path in G, there exists at

most one index such that the corresponding vertex is with zero value.

Lemma 2.5. Let f be a discrete Morse function on digraph G. Then for any allowed

elementary path α = v0v1 · · · vn in G, (i)” and (ii)” cannot both be true.

Proof. Suppose to the contrary. By (i)”, there exists an allowed elementary (n − 1)-path β

such that β < α and f(β) = f(α). Hence, there exists some 0 ≤ i ≤ n such that f(vi) = 0.

By (ii)”, there exists an allowed elementary (n + 1)-path γ such that f(γ) = f(α). Hence,

there exists a vertex u ∈ V (G) with f(u) = 0 such that γ = v0 · · · vjuvj+1 · · · vn. We assert

that u 6= vi. Suppose to the contrary. Since γ is allowed, it follows that u and vi are

not adjacent. Hence there exists a directed loop in which u is a vertex. This contradicts

Lemma 2.3. Therefore, there are two distinct vertices with zero value in γ which contradicts

Lemma 2.4.

The lemma follows.

Definition 2.6. (cf. [9, Definition 0.6]) A function f : V (G) −→ [0,+∞) is called a discrete

Witten-Morse function on G if, for any allowed elementary path α,

(i) f(α) < average{f(γ1), f(γ2)} where γ1 > α, γ2 > α and γ1 6= γ2;

(ii) f(α) > average{f(β1), f(β2)} where β1 < α, β2 < α and β1 6= β2.

Note that each Witten-Morse function is, in fact, a Morse function.

Definition 2.7. (cf. [9, Definition 0.7]) A discrete Witten-Morse funtion is flat if for any

allowed elementary path α,

(i) f(α) ≤ min{f(γ1), f(γ2)} where γ1 > α, γ2 > α and γ1 6= γ2;

(ii) f(α) ≥ max{f(β1), f(β2)} where β1 < α, β2 < α and β1 6= β2.

Proposition 2.8. Let G be a digraph and f : V (G) −→ [0,+∞) a discrete Morse function

on G. Then f is a discrete flat Witten-Morse function.
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Proof. Let α be an arbitrary allowed elementary path on G. Consider the following cases.

Case 1. α is critical. Then by Definition 2.2, we have that f(α) < f(γ) for any γ > α

and f(α) > f(β) for any β < α. Hence,

f(α) < min{f(γ1), f(γ2)}

where γ1 > α and γ2 > α, and

f(α) > max{f(β1), f(β2)}

where β1 < α and β2 < α.

Case 2. α is not critical.

Subcase 2.1. (i)” holds for α. Then there exists an unique allowed elementary path

β < α such that f(β) = f(α). Let β1 < α, β2 < α and β1 6= β2. Then


















f(β1) < f(α), f(β2) < f(α), if β1 6= β and β2 6= β;

f(β1) = f(α), f(β2) < f(α), if β1 = β and β2 6= β;

f(β1) < f(α), f(β2) = f(α), if β1 6= β and β2 = β.

Hence,

f(α) ≥ max{f(β1), f(β2)}

where β1 < α, β2 < α and β1 6= β2.

By Lemma 2.3, (ii)” does not hold for α. Then for any γ1 > α, γ2 > α and γ1 6= γ2, we

have that f(γ1) > f(α) and f(γ2) > f(α). Hence,

f(α) < min{f(γ1), f(γ2)}

where γ1 > α, γ2 > α and γ1 6= γ2.

Subcase 2.2. (ii)” holds for α. Then there exists an unique allowed elementary path

γ > α such that f(γ) = f(α). Let γ1 > α, γ2 > α and γ1 6= γ2. Similarly,



















f(γ1) > f(α), f(γ2) > f(α), if γ1 6= γ and γ2 6= γ;

f(γ1) = f(α), f(γ2) > f(α), if γ1 = γ and γ2 6= γ;

f(γ1) > f(α), f(γ2) = f(α), if γ1 6= γ and γ2 = γ.

Hence,

f(α) ≤ min{f(γ1), f(γ2)}

where γ1 > α, γ2 > α and γ1 6= γ2.

By Lemma 2.3, (i)” does not hold for α. Then for any β1 > α, β2 > α and β1 6= β2, we

have that f(β1) < f(α) and f(β2) < f(α). Hence,

f(α) > max{f(β1), f(β2)}

where β1 < α, β2 < α and β1 6= β2.

Combining Case 1 and Case 2, the assertion is proved.
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Remark 2.9. The key of Proposition 2.8 is the definition of discrete Morse functions

on digraphs. Let f be a discrete Morse function on digraph G. Then f(β) ≤ f(α) for

any β < α and f(γ) ≥ f(α) for any γ > α. Meanwhile, for any allowed elementary

path, (i)” and (ii)” can not both be true.

Next, we consider the equivalent discrete Morse functions on digraphs.

Definition 2.10. Let G be a digraph and f : V (G) −→ [0,+∞) a discrete Morse function

on G. The set of all vertices v ∈ V (G) such that f(v) = 0 is called zero-point set of f ,

denoted as S(f).

Definition 2.11. (cf. [9, Definition 1.2]) Let f, g be two discrete Morse functions on G.

We say f and g are equivalent if for any n ≥ 0 and every α(n) < γ(n+1),

f(α) < f(γ) ⇐⇒ g(α) < g(γ).

Proposition 2.12. Let f, g be two discrete Morse functions on G such that S(f) = S(g).

Let f̄ , ḡ be the extensions of f, g on transitive closure Ḡ of G. Then they induce the same

Morse complexes.

Proof. Let α(n) and γ(n+1) be allowed elementary paths on Ḡ such that α < γ and f̄(α) <

f̄(γ). We assert that ḡ(α) < ḡ(γ). Suppose to the contrary, ḡ(γ) = ḡ(α). Then there exists

a vertex v in V (γ) \ V (α) (Consider α and γ as subgraphs of Ḡ) such that ḡ(v) = 0. Since

S(f) = S(g), it follows that S(f̄) = S(ḡ). Hence f̄(v) = 0 and f̄(α) = f̄(γ) which contradict

f̄(α) < f̄(γ). Thus,

f̄(α) < f̄(γ) =⇒ ḡ(α) < ḡ(γ).

Similarly, we have that

ḡ(α) < ḡ(γ) =⇒ f̄(α) < f̄(γ).

Hence, by Definition 2.11, f̄ and ḡ are equivalent. Therefore, for any allowed elementary

path α on Ḡ,

V f̄ (α) = V ḡ(α),

Φf̄ (α) = Φḡ(α)

and

Critf̄ (Ḡ) = Critḡ(Ḡ)

which imply that the induced Morse complexes are the same.
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3 Witten Complexes of Transitive Digraphs

In this section, we prove that Witten complexes approach to Morse complexes for transitive

digraphs.

Let G be a transitive digraph. Similar to [9], consider the chain complex

0−→Ωn(G)
∂

−→ Ωn−1(G)
∂

−→ · · ·
∂

−→ Ω0(G) −→ 0. (3.1)

Define a chain homomorphism

etf : Ωn(G) −→ Ωn(G)

by setting

etf (α) = etf(α)α (3.2)

for any allowed elementary path α on G, and extending linearly to Ω(G). Replace the

boundary operator ∂ with

∂t = etf∂e−tf .

Then

∂t(α) = etf∂e−tf(α)

= etf∂e−tf(α)α

= e−tf(α)etf(∂α)

=
∑

β<α,β∈Ω(G)

et[f(β)−f(α)]β.

Hence, ∂t(α) ∈ Ω(G) which implies that

0−→Ωn(G)
∂t−→ Ωn−1(G)

∂t−→ · · ·
∂t−→ Ω0(G) −→ 0 (3.3)

is still a chain complex. Moreover, by a similar argument to [21, Section 5.1, P.54], we have

that

Proposition 3.1. Let G be a transitive digraph. Then for each t ∈ R, the complexes (3.1)

and (3.3) have the same path homology. That is,

Hm({Ωn(G), ∂n}n≥0) ∼= Hm({Ωn(G), ∂t}n≥0).

Proof. Note that Ω(G) = P (G) for transitive digraphs. For any x ∈ Ker∂, under the map

(3.2), we have that

∂te
tf(x) = etf∂(x)

= etf (∂x)

= 0.
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That is, etf (x) ∈ Ker∂t. And if x = (∂y) ∈ Im∂, then

∂te
tf (y) = etf∂(y)

= etf (x).

Hence, etf(x) ∈ Im∂t.

Therefore, the invertible map of (4.4) maps ∂-invariant paths which are closed but not

exact in the usual sense to ∂-invariant paths which are closed but not exact in the sense of

∂t.

The proposition is proved.

Let

∆n(t) = ∂t∂
∗
t + ∂∗

t ∂t

be the Laplace operator induced by ∂t where ∂∗
t is the adjoint of ∂t with respect to the

inner product on the chain spaces Λ∗(V ) such that all paths are orthonormal. Then by [17,

Section 3.1],

Ker(∆n(t)) ∼= Hm({Ωn(G), ∂t}n≥0).

Hence, by Proposition 3.1,

Ker(∆n(t)) ∼= Hm({Ωn(G), ∂n}n≥0). (3.4)

Denote Wn(t) as the span of the eigenvectors of ∆n(t) corresponding to the eigenvalues

which tend to 0 as t → ∞. Since ∆(t)∂t = ∂t∆(t), ∂t preserves the eigenspaces. The Witten

complex is defined as

0−→Wn(t)
∂t−→ Wn−1(t)

∂t−→ · · ·
∂t−→ W0(t) −→ 0.

Let Critn(G) be the span of the critical n-paths on G. We have the following theorem.

Theorem 3.2. Let G be a transitive digraph and f a discrete Morse function on G. Then

lim
t→∞

Wn(t) = Critn(G).

Proof. Since G is transitive, Pn(G) = Ωn(G) for each n ≥ 0. By [9, Theorem 2.1] and

Proposition 2.8, we have that

∆n(t)α = [
∑

β<α

〈∂α, β〉
2
e2t(f(β)−f(α)) +

∑

γ>α

〈∂γ, α〉
2
e2t(f(α)−f(γ))]α+O(e−tc)

for some c > 0, where γ, α, β are allowed elementary paths on G. Hence, if and only if α is

critical, the eigenvalues of ∆n(t)

〈∆n(t)α, α〉 =
∑

β<α

〈∂α, β〉2e2t(f(β)−f(α)) +
∑

γ>α

〈∂γ, α〉2e2t(f(α)−f(γ))
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tend to 0 as t → ∞.

The theorem is proved.

Corollary 3.3. Let G be a transitive digraph. Then Witten complex {Wn(t), ∂t}n≥0 ap-

proaches to the complex {Critn(G), ∂̃n}n≥0.

Proof. By [18, Theorem 2.1],

Hm({Critn(G), ∂̃n}n≥0) ∼= Hm({Ωn(G), ∂n}n≥0).

By (3.4), for all t,

Hm({Wn(t), ∂t}n≥0) ∼= Hm({Ωn(G), ∂n}n≥0).

Therefore, by Theorem 3.2, the assertion is followed.

Note that for general digraph G, the image of each ∂-invariant element x ∈ Ωn(G) under

∂t may be not in Ωn−1(G). This implies that {Ω(G), ∂t} is not a chain complex in general.

For example,

Example 3.4. Let G be a square with vertex set V = {v0, v1, v2, v3} and directed edge set

E = {v0v1, v0v2, v1v3, v2v3}. Then

Ω(G) = {v0, v1, v2, v3, v0v1, v0v2, v1v3, v2v3, v0v1v3 − v0v2v3}

and

∂t(v0v1v3 − v0v2v3) = etf∂e−tf(v0v1v3 − v0v2v3)

= etf∂e−tf(v0v1v3)− etf∂e−tf(v0v2v3)

= e−tf(v0v1v3)etf∂(v0v1v3)− e−tf(v0v2v3)etf∂(v0v2v3)

= [et[f(v0v1)−f(v0v1v3)]v0v1 + et[f(v1v3)−f(v0v1v3)]v1v3]

−[et[f(v0v2)−f(v0v2v3)]v0v2 + et[f(v2v3)−f(v0v2v3)]v2v3]

+[et[f(v0v3)−f(v0v2v3)]v0v3 − et[f(v0v3)−f(v0v1v3)]v0v3]. (3.5)

Since the coefficient of v0v3 in (3.5) may not be zero, it follows that

∂t(v0v1v3 − v0v2v3) 6∈ Ω1(G).

Moreover,

∂∗ |Ω(G) (v0v1) = v0v1v3,

(∂ |Ω(G))
∗(v0v1) = v0v1v3 − v0v2v3.

Hence,

∂∗ |Ω(G) 6= (∂ |Ω(G))
∗.

Therefore, we will further consider the path homology of general digraphs based on the results

of [18] instead of techniques from Hodge theory.
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4 Description of Path Homology of Digraphs

In this section, we will characterize the path homology of digraphs by chain complex related

to critical sets of transitive closure of digraphs.

4.1 Φ-invariant Module of Transitive Digraph

Firstly, we give some properties of critical paths on transitive digraphs.

Proposition 4.1. Let G be a digraph. Then G is transitive if and only if for any al-

lowed elementary paths γ(n+2) > α(n+1) > β(n), there exists an allowed elementary n-path

α′(n+1) 6= α(n+1) such that γ > α′ > β.

Proof. Suppose γ(n+2) > α(n+1) > β(n). Then by [23, Proposition 2.6], there are two cases.

Case 1. There exists an allowed elementary (n + 1)-path α′(n+1) 6= α(n+1) such that

γ > α′ > β.

Case 2. β is obtained by removing two subsequent vertices vi → vi+1 in γ where

0 ≤ i ≤ n+ 1.

Hence the critical part is to verify that the assertion is followed for Case 2. Let

γ = v0v1 · · · vn+2

and

β = v0 · · · vi−1vi+2 · · · vn+2.

Suppose G is transitive. Then

v0 · · · vi−1vi+1vi+2 · · · vn+2

and

v0 · · · vi−1vivi+2 · · · vn+2

are both allowed elementary paths on G which can be denoted as α and α′ respectively.

Since vi 6= vi+1, it follows that α 6= α′.

Hence, summarizing Case 1 and Case 2, we have that if G is transitive, then there exists

an allowed elementary n-path α′(n+1) 6= α(n+1) such that γ > α′ > β.

On the other hand, suppose for any allowed elementary paths γ(n+2) > α(n+1) > β(n),

there exists an allowed elementary n-path α′(n+1) 6= α(n+1) such that γ > α′ > β. Let

u → v and v → w be direct edges of G. Let γ = uvw, α = uv and β = u. Then α′ = uw

must be an allowed elementary path on G. Hence, G is transitive.

Lemma 4.2. Let α = v0 · · · vn (n > 1) be a critical path on transitive digraph G. Let f be

a discrete Morse function on G. Then there exists at most one djα (0 ≤ j ≤ n) such that

djα is non-critical.

10



Proof. Since G is transitive and α is critical, it follows that diα is allowed on G and f(vi) > 0

for any 0 ≤ i ≤ n. Suppose β = djα is non-critical for some 0 ≤ j ≤ n. Then there exists

an unique vertex u ∈ V (G) with f(u) = 0 such that

α′ = v0 · · · vj−1v̂jvj+1 · · · vkuvk+1 · · · vn

is an allowed elementary n-path on G, α′ > β and f(α′) = f(β).

Step 1. We assert that

α′ = v0 · · · vj−1uvj+1 · · · vn. (4.1)

Suppose to the contrary, either

α′ = v0 · · · vkuvk+1 · · · vj−1vj+1 · · · vn

or

α′ = v0 · · · vj−1vj+1 · · · vkuvk+1 · · · vn.

Without loss of generality,

α′ = v0 · · · vj−1vj+1 · · · vkuvk+1 · · · vn.

Then

γ = v0 · · · vj · · · vkuvk+1 · · · vn.

is an allowed elementary (n + 1)-path on G such that γ > α and f(γ) = f(α). This

contradicts that α is critical. Hence the assertion is proved.

Step 2. We will prove that for any 0 ≤ i 6= j ≤ n, diα is critical. Suppose to the

contrary, there exists an allowed elementary path β′ = diα (i 6= j) which is non-critical.

Then by a discussion similar to the above, there exists an unique vertex w ∈ V (G) with

f(w) = 0 and

α′′ = v0 · · · vi−1wvi+1 · · · vn (4.2)

is an allowed elementary n-path on G such that α′′ > β′ and f(α′′) = f(β′). Without of

loss of generality, 0 ≤ i < j ≤ n.

Firstly, we assert that u 6= w. Suppose to the contrary, u = w. Consider the following

two cases.

Case 1. j = i + 1. Then i = j − 1. By (4.1) and (4.2), γ = v0 · · · vi−1viwvi+1 · · · vn is

an allowed elementary path on G such that γ > α and f(γ) = f(α). This contradicts that

α is critical.

Case 2. j > i + 1. Then j − 1 > i. Hence, wvi+1 · · · vj−1w (or uvi+1 · · · vj−1u) is a

directed loop with f(w) = 0 (or f(u) = 0) which contradicts Lemma 2.3.

Combining Case 1 and Case 2, u 6= w.
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Secondly, according to the value of i, we divide it into two cases to complete the proof

of Step 2.

Case 3. i ≥ 1. Since G is transitive and j > i, vi−1 → vj−1 is a directed edge of G.

Thus, vi−1 → u is also a directed edge of G. Moreover, since u 6= w, it follows that vi−1 → u

and vi−1 → w are two distinct directed edges of G with f(u) = f(w) = 0. This contradicts

that f is a discrete Morse function on G.

Case 4. i = 0. There are two subcases.

Subcase 4.1. j < n. Since G is transitive and j > i, vi+1 → vj+1 is a directed edge

of G. Thus, w → vj+1 is also a directed edge of G. Moreover, since u 6= w, it follows that

u → vj+1 and w → vj+1 are two distinct directed edges of G with f(u) = f(w) = 0. This

contradicts that f is a discrete Morse function on G.

Subcase 4.2. j = n. Then wv1 · · · vn−1u is an allowed path on G with f(u) = f(w) = 0.

Since u 6= w, there are two distinct zero-points in the path wvi+1 · · · vn−1u which contradicts

Lemma 2.4.

By Step 1 and Step 2, the lemma follows.

Remark 4.3. Note that in the proof of Lemma 4.2, the condition n > 1 ensures that

w → vi+1 and vj−1 → u are directed edges of G. If n = 1, then Lemma 4.2 may not

hold. For example, let G is a digraph with V (G) = {v0, v1, v2, v3} and

E(G) = {v0 → v1, v2 → v1, v0 → v3}.

Then G is a transitive digraph. Let f be a function on G with f(v2) = f(v3) = 0

and f(v0) > 0, f(v1) > 0. It is easy to verify that f is a discrete Morse function

and α = v0v1 is critical. Let β1 = v0 < α and β2 = v1 < α. Then v0v3 > β1 and

f(v0v3) = f(β1), and v2v1 > β2 and f(v2v1) = f(β2). Hence, β1 and β2 are both

non-critical.

Denote PΦ
∗ (G) as the sub-chain complex of P∗(G) consisting of all Φ-invariant chains

where G is a transitive digraph.

Lemma 4.4. Let G be a transitive digraph and f a discrete Morse function on G. If

α = uv is critical and either β0 = u or β1 = v is not critical. Then α /∈ PΦ
1 (G) and

(

α+ V ∂(α)
)

∈ PΦ
1 (G).

Proof. Since α is critical, f(u) > 0 and f(v) > 0. We divide the proof into the following

cases.

Case 1. Only one of β0 and β1 is not critical. Without loss of generality, β0 is not

critical and β1 is critical. Then there exists an unique vertex w ∈ V (G) such that f(w) = 0

and f(uw) = f(u). Hence

α+ V ∂(α) = uv + V (v − u)

= uv − uw
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and

Φ(α + V ∂(α)) = (Id + ∂V + V ∂)(uv − uw)

= (Id + ∂V + V ∂)(uv)− (Id + ∂V + V ∂)(uw)

=
(

uv + (V ∂)(uv)
)

−
(

uw + (V ∂)(uw)
)

=
(

uv + V (v − u)
)

−
(

uw + V (w − u)
)

= (uv − uw) ∈ PΦ
1 (G).

Case 2. Both β0 = u and β1 = v are not critical. Then there exist α0 > β0 and α1 > β1

such that f(α0) = f(β0) and f(α1) = f(β1) where α0 and α1 are allowed elementary paths

on G. By Remark 4.3, we assert that the direction of α0 and α1 are not consistent with

α. Suppose to the contrary, at least one of α0 and α1 is consistent with α. Without loss

of generality, α0 = uw, α1 = vw′ and f(w) = f(w′) = 0. Let γ = uvw′. Then γ > α and

f(γ) = f(α) which contradicts α is critical. Hence, α0 and α1 can be written as uw and w′v

respectively with f(w) = f(w′) = 0.

Moreover, we can prove that w 6= w′. Suppose to the contrary, w = w′. Let γ = uwv.

Then α < γ and f(α) = f(γ) which contradicts that α is critical.

Therefore,

Φ(α) = (Id + ∂V + V ∂)(α)

= α+ V ∂(α)

= uv + V (v − u)

= uv − w′v − uw

and

Φ(α+ V ∂(α)) = Φ(uv − w′v − uw)

= (Id + ∂V + V ∂)(uv − w′v − uw)

= (uv − w′v − uw) + V ∂(uv − w′v − uw)

= (uv − w′v − uw) + V (w′ − w)

= uv − w′v − uw

= α+ V ∂(α).

The lemma is proved.

Lemma 4.5. Let G be a transitive digraph and f a discrete Morse function on G. Then

Φ(α) = 0

for any α ∈ P (G) where α is not critical.
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Proof. By Lemma 2.5, there are two cases.

Case 1. There exists an unique allowed elementary path β′ on G such that β′ < α and

f(β′) = f(α). Then

V (β′) = −〈∂α, β′〉α

and by Lemma 2.3, V (α) = 0.

Hence,

V ∂(α) = V
(

∑

β<α

〈∂α, β〉β
)

= 〈∂α, β′〉V (β′)

= −〈∂α, β′〉
2
α

= −α

and

Φ(α) = α− α

= 0.

Case 2. There exists an unique allowed elementary path γ on G such that γ > α and

f(γ) = f(α). Then V (α) = −〈∂γ, α〉γ 6= 0.

Let

α = v0 · · · vn, γ = v0 · · · vjuvj+1 · · · vn

where f(u) = 0. Then

(V ∂ + ∂V )(α) =

n
∑

i=0

V
(

(−1)idiα
)

− 〈∂γ, α〉∂γ

=
n
∑

i=0

(−1)iV
(

diα
)

− (−1)j+1∂γ. (4.3)

Consider the following subcases.

Subcase 2.1. 0 ≤ i ≤ j. Then

V (diα) = −〈∂α′, diα〉α
′

= −(−1)jα′

where

α′ = v0 · · · v̂i · · · vjuvj+1 · · · vn.

Hence, the term containing α′ in (4.3) is

V
(

(−1)idi(α)
)

− (−1)j+1〈∂γ, α′〉α′ = −(−1)i+jα′ − (−1)j+1(−1)iα′

= (−1)i+j+1α′ − (−1)i+j+1α′

= 0.
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Subcase 2.2. j + 1 ≤ i ≤ n. Then

V (diα) = −〈∂α′′, diα〉α
′′

= −(−1)j+1α′′

where

α′′ = v0 · · · vjuvj+1 · · · v̂i · · · vn.

Hence, the term containing α′′ in (4.3) is

V ((−1)idi(α)) − (−1)j+1〈∂γ, α′′〉α′′ = −(−1)i(−1)j+1α′′ − (−1)j+1(−1)i+1α′′

= (−1)i+j+2α′′ − (−1)i+j+2α′′

= 0.

Combing Subcase 2.1 and Subcase 2.2, we have that all terms of V ∂(α) are cancelled

out with terms of ∂V (α) and there is only one item left in V ∂(α) + ∂V (α). Specifically,

Φ(α) = α+ V ∂(α) + ∂V (α)

= α+ (−(−1)j+1(−1)j+1)α

= 0.

Therefore, the assertion follows.

Next, we give the characterization of the Φ-invariant set of transitive digraphs.

Proposition 4.6. Let G be a transitive digraph and f a discrete Morse function on G.

Then

PΦ
∗ (G) = R

(

α+ V ∂(α)
)

where α is critical in G.

Proof. We divide the proof into the following two steps.

Step 1. We prove that R
(

α+ V ∂(α)
)

⊆ PΦ
∗ (G).

Let α is a critical n-path on G. Then V (α) = 0 and

Φ(α) = α+ V ∂(α).

Consider the following cases according to the value of V ∂(α).

Case 1. β is critical for any β < α. Then V ∂(α) = 0. Hence,

Φ
(

α+ V ∂(α)
)

= Φ(α)

= α+ V ∂(α)

which implies that
(

α+ V ∂(α)
)

∈ PΦ
∗ (G).
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Case 2. There exists an allowed elementary path β′ < α such that β′ is not critical.

Then n ≥ 1.

Suppose

α = v0v1 · · · vn

and β′ = diα. There are two subcases.

Subcase 2.1. n > 1. Then by Lemma 4.2, β′ is unique and V (β′) = −〈∂α′, β′〉α′ where

α′ = v0 · · · vi−1v
′
ivi+1 · · · vn, v′i 6= vi, f(v′i) = 0.

Notice that,

〈∂α, β′〉 = 〈∂α′, β′〉.

Hence,

V ∂(α′) = V (〈∂α′, β′〉β′)

= −〈∂α′, β′〉
2
α′

= −α′

and

Φ(α+ V ∂(α)) = Φ(α+ 〈∂α, β′〉V (β′))

= Φ(α− α′)

= α− α′ + V ∂(α− α′)

= α− α′

= α+ V ∂(α).

Subcase 2.2. n = 1. Then by Lemma 4.4, we have that

Φ(α+ V ∂(α)) = α+ V ∂(α).

Combining Case 1 and Case 2, we have that

(

α+ V ∂(α)
)

∈ PΦ
∗ (G)

for any α ∈ Crit(G).

Step 2. We prove that PΦ
∗ (G) ⊆ R

(

α+ V ∂(α)
)

.

Let x =
m
∑

i=1

aiαi ∈ PΦ
∗ (G) where ai 6= 0 for 1 ≤ i ≤ m and α1, · · · , αm are distinct

allowed elementary n-paths on G. Consider the following cases.

Case 3. Each αi, 1 ≤ i ≤ m is not critical. That is, x is a formal linear combination

of non-critical paths on G. Then by Lemma 4.5, Φ(x) = 0 which contradicts x ∈ PΦ
∗ (G).

Hence, this case does not hold.

Case 4. Each αi, 1 ≤ i ≤ m is critical. Consider the following two subcases.
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Subcase 4.1. V ∂(αi) = 0 for any αi. Then

x =
m
∑

i=1

aiαi =
m
∑

i=1

ai
(

αi + V ∂(αi)
)

and by Case 1 of Step 1, we have that Φ(x) = x.

Subcase 4.2. There exists some αi such that V ∂(αi) 6= 0. Since V ∂(αi) can not be

cancelled out by any critical path and Φ(x) = x, it follows that there must exist some

αj , 1 ≤ j 6=≤ m such that V ∂(αj) 6= 0 and V ∂(αi) is cancelled out by V ∂(αj). Specifically,

• n>1. By Lemma 4.2, there exists an unique allowed elementary path β on G such that

β < αi and V (β) 6= 0. Then

V ∂(αi) = V (〈∂αi, β〉β)

= −〈∂α′
i, β〉〈∂α

′
i, β〉α

′
i

= −α′
i

where α′
i > β and f(α′

i) = f(β).

Similarly,

V ∂(αj) = V (〈∂αj , β〉β
′)

= −〈∂αj , β
′〉〈∂α′

j , β
′〉α′

j

= −α′
j

where β′ is the unique allowed elementary path on G such that β′ < αj and V (β′) 6= 0,

and α′
j > β′ and f(α′

j) = f(β′).

Since Φ(x) = x, it follows that aiV ∂(αi)+ajV ∂(αj) = 0. Hence, α′
i = α′

j and ai = −aj

(In fact, β = β′). Thus,

ai(αi + V ∂(αi)) + aj(αj + V ∂(αj)) = aiαi − aiα
′
i + ajαj − ajα

′
j

= aiαi + ajαj . (4.4)

Therefore, by Subcase 4.1 of Step 2 and (4.4),

x = Φ(x)

= Φ(

m
∑

i=1

aiαi)

= Φ
(

m
∑

i=1

ai
(

αi + V ∂(αi)
)

)

.

By Step 1,

Φ
(

m
∑

i=1

ai
(

αi + V ∂(αi)
)

)

=

m
∑

i=1

ai
(

αi + V ∂(αi)
)

which implies that x can be written as a formal linear combination of α+V ∂(α) where

α ∈ Crit(G).
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• n=1. Suppose αi = v0v1 and β = v0 is not critical. By Lemma 4.4, there exists an

unique allowed elementary path α′
i = v0v such that α′

i > β and f(α′
i) = f(β). That

is,

V (β) = v0v.

Since Φ(x) = x, it follows that V ∂(αi) must be cancelled out by some V ∂(αj), 1 ≤

j 6= i ≤ m. Let αj = u0u1. Then β′ = u0 is not critical and

V (β′) = u0u

where α′
j = u0u > β′ and f(α′

j) = f(β′). Moreover, v0 = u0, v = u and ai = −aj .

Similarly, if β′′ = u1 is not critical, then there must exist another critical path αk

(k 6= i, j) in x such that β′′ is cancelled out by V ∂(αk). Hence, by finite steps, we can

have that

m
∑

i=1

aiV ∂(αi) = 0.

Therefore,

x =

m
∑

i=1

aiαi

=
m
∑

i=1

aiαi +
m
∑

i=1

aiV ∂(αi)

=

m
∑

i=1

ai
(

αi + V ∂(αi)
)

.

Case 5. Some αi are critical and some are not critical. Without loss of generality, α1

is not critical. Then Φ(α1) = 0. Since all αi are distinct, α1 can not be cancelled out by

any critical path and x ∈ PΦ
∗ (G), it follows that there must exist some critical path αi

(2 ≤ i ≤ m) such that V ∂(αi) = α1 and a1 = ai. Thus,

a1α1 + aiαi = ai(αi + V ∂(αi)). (4.5)

Moreover, by (4.5) and Step 1,

Φ(a1α1 + aiαi) = aiΦ(αi + V ∂(αi))

= ai(αi + V ∂(αi))

= a1α1 + aiαi.

Hence, any non critical path αj in x can be written as V ∂(αi) where αi is critical (1 ≤

i 6= j ≤ n). And after removing such non-critical paths αj and the corresponding critical

paths αi from x, the rest is a formal linear combination of critical paths which is invariant

under Φ, denoted as x′. Therefore, by Case 4 of Step 2, x′ can be written as a formal linear

combination of α+ V ∂(α) where α ∈ Crit(G). So is x.
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Combining Case 3, Case 4 and Case 5, we have that for any x ∈ PΦ
∗ (G), it can be written

as a linear combination of α+ V ∂(α) where α ∈ Crit(G).

Therefore, by Step 1 and Step 2, the proposition is proved.

Finally, we give a description of path homology groups of digraphs with critical paths of

transitive closure.

Theorem 4.7. (cf. [18, Corollary 2.16]) Let G be a digraph and f a discrete Morse function

on G. Let f̄ be the extension of f on Ḡ and V = gradf̄ the discrete gradient vector field on

Ḡ. Suppose Ω∗(G) is V -invariant (V (Ω∗(G)) ⊆ Ω∗(G)). Then

Hm(G;R) ∼= Hm(ΩΦ
∗ (G)),m ≥ 0

where

ΩΦ
∗ (G) = Ω∗(G) ∩ PΦ

∗ (Ḡ).

By Proposition 4.6 and Theorem 4.7, we have that

Theorem 4.8. Let G be a digraph and f a discrete Morse function on G. Let f̄ be the

extension of f on Ḡ and V = gradf̄ the discrete gradient vector field on Ḡ. Suppose Ω∗(G)

is V -invariant. Then

Hm(G;R) ∼= Hm

(

{R(α+ V ∂(α)) ∩ Ωn(G), ∂n}n≥0

)

.

where α ∈ Critn(Ḡ).

We give an example to illustrate Theorem 4.8.

Example 4.9. (cf. [18, Example 3.2]) Let G be a square as follows and Ḡ the transitive

closure of G. Let f be a function on G with

f(v1) = 0, f(vi) > 0 for i = 0, 2, 3.

It is easy to verify that f is a discrete Morse function on G and f can be extended to be a

v0

v1

v2

v3G: v0

v1

v2

v3Ḡ:

Figure 1: Example 4.9.

discrete Morse function f̄ on Ḡ. Then

P∗(Ḡ) = {v0, v1, v2, v3, v0v1, v0v2, v0v3, v1v3, v2v3, v0v1v3, v0v2v3},

Ω∗(G) = {v0, v1, v2, v3, v0v1, v0v2, v1v3, v2v3, v0v1v3 − v0v2v3},

Crit∗(Ḡ) = {v1, v2, v0v2, v2v3, v0v2v3}.
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Let V = gradf̄ be the discrete gradient vector field on Ḡ and Φ = Id+ ∂V +V ∂ the discrete

gradient flow of Ḡ. Then

V (v0) = v0v1, V (v3) = −v1v3,

V (v0v3) = v0v1v3,

V (α) = 0 for any other allowed elementary path α on Ḡ.

and

Φ(v0) = v1, Φ(v1) = v1,

Φ(v2) = v2, Φ(v3) = v1,

Φ(v0v1) = 0, Φ(v0v2) = v0v2 − v0v1,

Φ(v1v3) = 0, Φ(v2v3) = v2v3 − v1v3,

Φ(v0v3) = 0, Φ(v0v1v3) = 0,

Φ(v0v2v3) = v0v2v3 − v0v1v3.

Hence,

V (Ωn(G)) ⊆ Ωn+1(G), n ≥ 0.

and

R({α+ V ∂(α) | α ∈ Crit(Ḡ)}) = PΦ
∗ (Ḡ)

= R(v1, v2, v0v2 − v0v1, v2v3 − v1v3, v0v2v3 − v0v1v3).

Therefore,

∂(v0v2 − v0v1) = v2 − v1, ∂(v2v3 − v1v3) = v1 − v2,

∂(v0v2v3 − v0v1v3) = (v0v2 − v0v1) + (v2v3 − v1v3),

and

H0

(

{R(α+ V ∂(α)) ∩ Ωn(G), ∂n}n≥0

)

= R, (4.6)

Hm

(

{R(α+ V ∂(α)) ∩ Ωn(G), ∂n}n≥0

)

= 0 for m ≥ 1, (4.7)

where α ∈ Critn(Ḡ). (4.6) and (4.7) are consistent with the path homology groups Hm(G;R)

(m ≥ 0) given in [10, Proposition 4.7].

4.2 Description of Path Homology of Digraphs

In this section, we prove that path homology of digraph G is isomorphic to the homology

of chain complex consisting of the formal linear combinations of paths which are not only

critical paths of the transitive closure Ḡ but also allowed elementary paths of G.

Firstly, we prove an isomorphism of graded R-modules in the following theorem.
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Theorem 4.10. Let G be a digraph and Ḡ the transitive closure of G. Let f̄ be a discrete

Morse function on Ḡ. Suppose Φ(α) ∈ Ω(G) for any α ∈ Crit(Ḡ) ∩ P (G) where V is the

discrete gradient vector field on Ḡ and Φ is the discrete gradient flow of Ḡ. Then

Φ
∞

|Critn(Ḡ)∩Pn(G): Critn(Ḡ) ∩ Pn(G) −→ PΦ
n (Ḡ) ∩ Ωn(G), n ≥ 0 (4.8)

is a graded R-module isomorphism.

Proof. Let α ∈ Critn(Ḡ) ∩ Pn(G). By Step 1 of Proposition 4.6, we have that

Φ(α) =
(

α+ V ∂(α)
)

∈ PΦ
n (Ḡ).

Then

Φ
∞
(α) =

(

α+ V ∂(α)
)

∈ PΦ
n (Ḡ). (4.9)

Since

Φ(α) ∈ Ωn(G),

it follows that

Φ
∞
(α) = Φ(α) ∈ Ωn(G).

Hence,

Φ
∞
(α) ∈ PΦ

n (Ḡ) ∩ Ωn(G)

which implies that (4.8) is well-defined.

Suppose α′, α′′ ∈ Critn(Ḡ) ∩ Pn(G) where α′, α′′ are distinct. Then by (4.9),

Φ
∞
(α′) = α′ + V ∂(α′)

Φ
∞
(α′′) = α′′ + V ∂(α′′).

We assert that

Φ
∞
(α′) 6= Φ

∞
(α′′).

Suppose to the contrary,

α′ + V ∂(α′) = α′′ + V ∂(α′′). (4.10)

Let α be an arbitrary allowed elementary n-path on Ḡ. Then either V (α) = 0 or V (α) = γ

where γ is an allowed elementary (n + 1)-path on Ḡ such that γ > α and f̄(γ) = f̄(α).

Hence, both V ∂(α′) and V ∂(α′′) are either equal to 0 or formal linear combinations of non-

critical paths on Ḡ. Then by (4.10), α = α′ which contradicts that α and α′ are distinct.

Thus, (4.8) is a monomorphism.

Moreover, by Proposition 4.6, we know that

PΦ
n (Ḡ) = R

(

α+ V ∂(α)
)
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where α ∈ Critn(Ḡ). Let x =
m
∑

i=1

ai
(

αi + V ∂(αi)
)

∈ PΦ
n (Ḡ) where ai ∈ R and αi ∈ Crit(Ḡ).

For any 1 ≤ j 6= k ≤ m, since the pairs

αj and αk αj and V ∂(αj) αj and V ∂(αk)

αk and V ∂(αj) αk and V ∂(αk)

can not cancel out each other in x, it follows that if x ∈ Pn(G), then αi ∈ Pn(G) for each

1 ≤ i ≤ m. Hence,

PΦ
n (Ḡ) ∩ Ωn(G) ⊆ {x =

m
∑

i=1

ai(αi + V ∂(αi)) | αi ∈ Critn(Ḡ) ∩ Pn(G), ∂x ∈ P (G)}.

Furthermore, since

Φ(α) = (α + V ∂(α)) ∈ Ω(G)

and by Proposition 4.6,

Φ(α) ∈ PΦ
∗ (Ḡ)

where α ∈ Crit(Ḡ) ∩ P (G), it follows that

PΦ
n (Ḡ) ∩ Ωn(G) ⊇ {x =

m
∑

i=1

ai(αi + V ∂(αi)) | αi ∈ Critn(Ḡ) ∩ Pn(G)}.

Hence,

PΦ
n (Ḡ) ∩ Ωn(G) = {x =

m
∑

i=1

ai(αi + V ∂(αi)) | αi ∈ Critn(Ḡ) ∩ Pn(G)}.

That is, PΦ
n (Ḡ)∩Ωn(G) is a R-module of all the formal linear combinations of elements

in the form

α+ V ∂(α)

where α ∈ Critn(Ḡ)∩Pn(G). This implies that (4.8) is an epimorphism. Therefore, (4.8) is

an isomorphism.

Next, we give an isomorphism of homology groups.

Corollary 4.11. Let G be a digraph and Ḡ the transitive closure of G. Suppose Ω∗(G) is

V -invariant and Φ(α) ∈ Ω(G) for any α ∈ Crit(Ḡ) ∩ P (G) where V is the discrete gradient

vector field on Ḡ and Φ is the discrete gradient flow of Ḡ, respectively. Then

Hm({Critn(Ḡ) ∩ Pn(G), ∂̃n}n≥0) ∼= Hm(G;R) (4.11)

where ∂̃ = (Φ
∞
)−1 ◦ ∂ ◦ Φ

∞
and Φ

∞
is the stabilization map of Φ.

Proof. Let α ∈ Critn(Ḡ) ∩ Pn(G). Since Φ(α) ∈ Ω(G) for any α ∈ Crit(Ḡ) ∩ P (G) , by the

proof of Theorem 4.10, it follows that

Φ
∞
(α) = α+ V ∂(α) ∈ PΦ

n (Ḡ) ∩ Ωn(G).
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By [18, Theorem 2.14 (iii)], {PΦ
∗ (Ḡ) ∩ Ω∗(G), ∂∗} is a chain complex. Then

∂Φ
∞
(α) ∈ PΦ

n−1(Ḡ) ∩ Ωn−1(G).

By Theorem 4.10, we know that

Φ
∞

|Crit∗(Ḡ)∩P∗(G)

is an isomorphism. Hence

∂̃(α) = (Φ
∞
)−1 ◦ ∂ ◦ Φ

∞
(α) ∈ Critn−1(Ḡ) ∩ Pn−1(G).

Thus, {Critn(Ḡ) ∩ Pn(G), ∂̃n}n≥0 is a chain complex.

Moreover, for each n ≥ 0, Φ
∞

◦ ∂̃n = ∂n ◦ Φ
∞

. That is, the following diagram

Critn(Ḡ) ∩ Pn(G)

Φ
∞

��

∂̃n
// Critn−1(Ḡ) ∩ Pn−1(G)

Φ
∞

��

PΦ
n (Ḡ) ∩ Ωn(G)

∂n
// PΦ

n−1(Ḡ) ∩Ωn−1(G)

is commutative.

Hence, by Theorem 4.10,

Hm({Critn(Ḡ) ∩ Pn(G), ∂̃n}n≥0) ∼= Hm({PΦ
n (Ḡ) ∩Ωn, ∂n}n≥0). (4.12)

By Theorem 4.7,

Hm(G;R) ∼= Hm({PΦ
n (Ḡ) ∩ Ωn, ∂n}n≥0). (4.13)

Therefore, by (4.12) and (4.13),

Hm({Critn(Ḡ) ∩ Pn(G), ∂̃n}n≥0) ∼= Hm(G;R).

Finally, we give some examples to illustrate Corollary 4.11.

Example 4.12. (cf. [18, Example 3.5]) Consider the following digraph G and its transitive

closure Ḡ. Let f : V (G) −→ [0,+∞) be a function on G with f(v1) = 0 and f(vi) > 0,

0 ≤ i ≤ 5, i 6= 1. It’s easy to verify that f can be extended to be a Morse function f̄ on Ḡ

such that f̄(v) = f(v) for all vertices v ∈ V (G). Then

P (G) = {v0, v1, v2, v3, v4, v5, v0v1, v0v2, v1v3, v1v4, v2v3, v2v4,

v5v3, v5v4, v0v1v3, v0v1v4, v0v2v3, v0v2v4}

Ω(G) = {v0, v1, v2, v3, v4, v5, v0v1, v0v2, v1v3, v1v4, v2v3, v2v4,

v5v3, v5v4, v0v1v3 − v0v2v3, v0v1v4 − v0v2v4}

Crit(Ḡ) = {v1, v2, v5, v0v2, v2v3, v2v4, v5v3, v5v4, v0v2v3, v0v2v4}

Crit(Ḡ) ∩ P (G) = {v1, v2, v5, v0v2, v2v3, v2v4, v5v3, v5v4, v0v2v3, v0v2v4}.
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Let V = gradf̄ be the discrete gradient vector field on Ḡ. Then

V (v0) = v0v1, V (v3) = −v1v3, V (v4) = −v1v4,

V (v0v3) = v0v1v3, V (v0v4) = v0v1v4,

V (α) = 0 for any other allowed elementary path α on Ḡ.

Hence Ω(G) is V -invariant. Let Φ = Id+ ∂V +V ∂ be the discrete gradient flow of Ḡ. Then

v0

v1 v2

v3 v4

v5

G:

v0

v1 v2

v3 v4

v5

Ḡ:

Figure 2: Example 4.12.

Φ(v0) = v1, Φ(v1) = v1,

Φ(v2) = v2, Φ(v3) = v1,

Φ(v4) = v1, Φ(v5) = v5,

Φ(v0v1) = 0, Φ(v0v2) = v0v2 − v0v1,

Φ(v0v3) = 0, Φ(v0v4) = 0,

Φ(v1v3) = 0, Φ(v1v4) = 0,

Φ(v0v1v3) = 0, Φ(v2v4) = v2v4 − v1v4,

Φ(v0v1v4) = 0, Φ(v5v4) = v5v4 − v1v4,

Φ(v2v3) = v2v3 − v1v3, Φ(v0v2v3) = v0v2v3 − v0v1v3,

Φ(v5v3) = v5v3 − v1v3, Φ(v0v2v4) = v0v2v4 − v0v1v4,

and for any α ∈ Crit(Ḡ) ∩ P (G), Φ(α) ∈ Ω(G).
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By calculate directly, we have that Φ
∞

= Φ. Then

∂̃(v0v2) = v2 − v1,

∂̃(v2v3) = v1 − v2,

∂̃(v2v4) = v1 − v2,

∂̃(v5v3) = v1 − v5,

∂̃(v5v4) = v1 − v5,

∂̃(v0v2v3) = v0v2 + v2v3,

∂̃(v0v2v4) = v0v2 + v2v4.

Therefore,

H0({Crit(Ḡ) ∩ P (G), ∂̃}) = R

H1({Crit(Ḡ) ∩ P (G), ∂̃}) = R

Hm({Crit(Ḡ) ∩ P (G), ∂̃}) = 0 for m ≥ 2,

which are consistent with the path homology groups of G.

By [18, Remark 3.6], the condition that Ω(G) is V -invariant in Theorem 4.7 is sufficient

but not necessary. The following example will show us that the condition

Φ(Crit(Ḡ) ∩ P (G)) ⊆ Ω(G) (4.14)

in Corollary 4.11 is also sufficient but not necessary.

Example 4.13. (cf. [18, Example 3.5]) We still consider the digraph G in Example 4.12.

Different from Example 4.12, we firstly define f with f(v0) = 0 and f(vi) > 0, 0 < i ≤ 5.

It is easy to verify that f is a discrete Morse function on G and it can be extended to be a

discrete Morse function f̄ on Ḡ. By [18, Example 3.5], we have that

Crit(Ḡ) = {v0, v5, v5v3, v5v4},

Crit(Ḡ) ∩ P (G) = {v0, v5, v5v3, v5v4},

Φ(v5v3) = (v5v3 − v0v3) 6∈ Ω(G),

Φ(v5v4) = (v5v4 − v0v4) 6∈ Ω(G).

Hence, (4.14) does not hold.

On the other hand,

∂̃(v5v3) = v0 − v5,

∂̃(v5v4) = v0 − v5.
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Therefore,

H0({Crit(Ḡ) ∩ P (G), ∂̃}) = R

H1({Crit(Ḡ) ∩ P (G), ∂̃}) = R

Hm({Crit(Ḡ) ∩ P (G), ∂̃}) = 0 for m ≥ 2,

which are consistent with the path homology groups of G.

Example 4.14. Consider the following digraph G and its transitive closure Ḡ. Let f :

V (G) −→ [0,+∞) be a function on G with f(v0) = 0 and f(vi) > 0, 0 < i ≤ 3. Then f is a

discrete Morse function on G which can be extended to Ḡ. Hence,

Ω(G) = {v0, v1, v2, v3, v0v1, v1v2, v2v3, v0v3}

Crit(Ḡ) = {v0}

Crit(Ḡ) ∩ P (G) = {v0}

and

V (v2v3) = −v0v2v3 6∈ Ω(G) V (v1v2) = −v0v1v2 6∈ Ω(G).

However,

H0({Crit(Ḡ) ∩ P (G), ∂̃}) = R,

Hm({Crit(Ḡ) ∩ P (G), ∂̃}) = 0 for m > 0

which are not consistent with the path homology groups of G (cf. [10, Proposition 4.7]).

v0

v1 v2

v3

G:

v0

v1 v2

v3

Ḡ:

Figure 3: Example 4.14.

Remark 4.15. By Example 4.13 and Example 4.14, we know that if a digraph does

not satisfy the conditions in Corollary 4.11, then the isomorphism of homology groups

given in (4.11) may or not hold.

Generally speaking, Crit∗(Ḡ) ∩ P∗(G) in Theorem 4.10 and Corollary 4.11 can not be

replaced by Crit∗Ḡ ∩ Ω∗(G) which will be illustrated by the following example.

Example 4.16. Consider the digraph given in Example 4.9. Then

Crit∗(Ḡ) ∩ Ω∗(G) = {v1, v2, v0v2, v2v3}.
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By [18, Example 3.2],

Φ(v0) = v1, Φ(v1) = v1,

Φ(v2) = v2, Φ(v3) = v1,

Φ(v0v1) = 0, Φ(v0v2) = v0v2 − v0v1,

Φ(v1v3) = 0, Φ(v2v3) = v2v3 − v1v3,

Φ(v0v3) = 0, Φ(v0v1v3) = 0,

Φ(v0v2v3) = v0v2v3 − v0v1v3

where Φ = Id + ∂V + V ∂ is the discrete gradient flow of Ḡ. By calculate directly, we have

that Φ
∞

= Φ. Then

PΦ
∗ (Ḡ) ∩Ω∗(G) = {v1, v2, v0v2 − v0v1, v2v3 − v1v3, v0v2v3 − v0v1v3}.

Hence, Crit∗(Ḡ) ∩ Ω∗(G) and PΦ
∗ (Ḡ) ∩ Ω∗(G) can not be isomorphic. Moreover,

∂̃(v0v2) = v2 − v1,

∂̃(v2v3) = v1 − v2.

Therefore,

H0({Crit(Ḡ) ∩Ω(G), ∂̃}) = R,

H1({Crit(Ḡ) ∩Ω(G), ∂̃}) = R,

Hm({Crit(Ḡ) ∩Ω(G), ∂̃}) = 0 for m ≥ 2,

which are not consistent with the path homology groups of G given in [10, Proposition 4.7].

5 Morse Inequalities

In this section, we will give the Morse inequalities on digraphs by Corollary 4.11.

Given a chain complex

0−→Cn
∂n−→ Cn−1

∂n−1

−→ · · ·
∂1−→ C0 −→ 0

where Cp is a finite dimensional vector space over R for each 0 ≤ p ≤ n. Consider its

homology

Hp(C∗;R) = Ker∂p/Im∂p+1.

Then

dimCp = dimKer∂p + dimIm∂p,

dimHp(C∗;R) = dimKer∂p − dimIm∂p+1

= dimCp − dimIm∂p − dimIm∂p+1. (5.1)
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Hence

dimCp ≥ dimHp(C∗;R) (5.2)

and

(

dimCp − dimHp(C∗;R)
)

−
(

dimCp−1 − dimHp−1(C∗;R)
)

+ · · ·

+(−1)p
(

dimC0 − dimH0(C∗;R)
)

=
(

dimIm∂p + dimIm∂p+1

)

−
(

dimIm∂p−1 + dimIm∂p
)

+ · · ·

+(−1)p
(

dimIm∂0 + dimIm∂1
)

= dimIm∂p+1 + (−1)pdimIm∂0

= dimIm∂p+1 ≥ 0.

Thus,

dimCp − dimCp−1 + · · ·+ (−1)pdimC0

≥ dimHp(C∗;R)− dimHp−1(C∗;R) + · · ·+ (−1)pdimH0(C∗;R). (5.3)

Moreover, by (5.1), the Euler characteristic of {C∗, ∂∗} is

χ =
n
∑

p=0

(−1)pdimHp(C∗;R)

=

n
∑

p=0

(−1)pdimCp.

Hence

dimC0 − dimC1 + · · ·+ (−1)ndimCn

= dimH0(C∗;R)− dimH1(C∗;R) + · · ·+ (−1)ndimHn(C∗;R). (5.4)

Let G be a digraph and Ḡ the transitive closure of G. Denote

bm = dimHm(G;R),

lm = dim
(

Critm(Ḡ) ∩ Pm(G)
)

,

Lm = dimCritm(G).

Then we have the following theorem.

Theorem 5.1. (Morse Inequalities on Digraphs) Let G be a digraph and Ḡ the transitive

closure of G. Suppose Ω∗(G) is V -invariant and Φ(α) ∈ Ω(G) for any α ∈ Crit(Ḡ) ∩ P (G)

where V is the discrete gradient vector field on Ḡ and Φ is the discrete gradient flow of Ḡ,

respectively. Then

Lm ≥ lm, (5.5)

lm − lm−1 + · · · ± l0 ≥ bm − bm−1 + · · · ± b0 (5.6)
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and

l0 − l1 + · · · ± ldimG ≥ b0 − b1 + · · · ± bdimG (5.7)

where m ≥ 0 and dimG = max{p | Ωp(G) 6= 0}.

Proof. By Corollary 4.11,

Hm({Crit∗(Ḡ) ∩ P∗(G), ∂̃∗}) ∼= Hm(G;R).

By substituting Cm and Hm(C∗;R) with Critm(Ḡ)∩Pm(G) and Hm(G;R) respectively

and by (5.2), we have that

lm ≥ bm.

By (5.3) and (5.4), we can obtain (5.6) and (5.7) respectively.

Moreover, since G ⊆ Ḡ, by Definition 2.2, it follows that

Crit∗(Ḡ) ∩ P∗(G) ⊆ Crit∗(G).

Hence (5.5) is proved.

We take the digraphs and discrete Morse functions in Example 4.9 and Example 4.12 as

examples to illustrate the above results in Theorem 5.1.

Example 5.2. By Example 4.9, we have that

Crit∗(Ḡ) ∩ P∗(G) = {v1, v2, v0v2, v2v3, v0v2v3},

Crit∗(G) = {v1, v2, v0v2, v2v3, v0v1v3, v0v2v3}.

and

V (Ω(G)) ⊆ Ω(G)

Φ
(

Crit∗(Ḡ) ∩ P∗(G)
)

⊆ Ω∗(G).

Then

l0 = 2, l1 = 2, l2 = 1, li = 0 for i > 2,

L0 = 2, L1 = 2, L2 = 2, Li = 0 for i > 2.

and

b0 = 1, bi = 0 for i ≥ 1.

Hence

Lm ≥ lm for any m ≥ 0,

2 > 1 for m = 0,

2− 2 > 0− 1 for m = 1,

1− 2 + 2 ≥ 0− 0 + 1 for m ≥ 2,

χ(G) = 2− 2 + 1 = 1− 0 + 0 = 1.
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Similarly, by Example 4.12, we have that

Crit∗(Ḡ) ∩ P∗(G) = {v1, v2, v5, v0v2, v2v3, v2v4, v5v3, v5v4, v0v2v3, v0v2v4},

Crit∗(G) = {v1, v2, v5, v0v2, v2v3, v2v4, v5v3, v5v4, v0v1v3, v0v2v3, v0v1v4, v0v2v4},

V (Ω(G)) ⊆ Ω(G),

Φ
(

Crit∗(Ḡ) ∩ P∗(G)
)

⊆ Ω∗(G).

Then

l0 = 3, l1 = 5, l2 = 2, li = 0 for i > 2,

L0 = 3, L1 = 5, L2 = 4, Li = 0 for i > 2.

and

b0 = 1, b1 = 1, bi = 0 for i > 1.

Hence

Lm ≥ lm for any m ≥ 0,

3 > 1 for m = 0,

5− 3 > 1− 1 for m = 1,

2− 5 + 3 ≥ 0− 1 + 1 for m ≥ 2,

χ(G) = 3− 5 + 2 = 1− 1 = 0.
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