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Abstract. Though the Perturbed Matsumoto-Imai (PMI) cryptosys-
tem is considered insecure due to the recent differential attack of Fouque,
Granboulan, and Stern, even more recently Ding and Gower showed that
PMI can be repaired with the Plus (+) method of externally adding as
few as 10 randomly chosen quadratic polynomials. Since relatively few
extra polynomials are added, the attack complexity of a Gröbner basis
attack on PMI+ will be roughly equal to that of PMI. Using Magma’s
implementation of the F4 Gröbner basis algorithm, we attack PMI with
parameters q = 2, 0 ≤ r ≤ 10, and 14 ≤ n ≤ 59. Here, q is the number
of field elements, n the number of equations/variables, and r the pertur-
bation dimension. Based on our experimental results, we give estimates
for the running time for such an attack. We use these estimates to judge
the security of some proposed schemes, and we suggest more efficient
schemes. In particular, we estimate that an attack using F4 against the
parameters q = 2, r = 5, n = 96 (suggested in [7]) has a time complexity
of less than 250 3-DES computations, which would be considered insecure
for practical applications.

Keywords: public-key, multivariate, quadratic polynomials, perturba-
tion, Gröbner basis.

1 Introduction

1.1 Multivariate Quadratic Cryptosystems and Perturbation

Multivariate Quadratic (MQ) public key cryptosystems, first introduced in [6],
have become a serious alternative to number theory based cryptosystems such
as RSA, especially for small devices with limited computing resources. Since
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solving a set of multivariate polynomial equations over a finite field appears to
be difficult (analogous to integer factorization, though it is unknown precisely
how difficult either problem is), it seems reasonable to expect that we can build
secure multivariate public key cryptosystems and signature schemes. In the last
ten years, there has been significant effort put into realizing practical implemen-
tations of this idea, and many schemes have been proposed: Matsumoto-Imai,
HFE, HFEv, Sflash, Oil & Vinegar, Quartz, TTM, and TTS, to name but a few.

At this stage, we seem to be more successful in building multivariate sig-
nature schemes than encryption schemes. For example, Sflashv2 [1] has been
recommended by the New European Schemes for Signatures, Integrity, and En-
cryption (NESSIE, [17]) as a signature scheme for constrained environments. For
encryption schemes, the best choice is probably HFE [19]. However, for a secure
system, one must choose parameters which lead to a rather inefficient scheme.

Internal perturbation [7] was introduced as a general method to improve the
security of multivariate public key cryptosystems. Roughly speaking, the idea
is to “perturb” the system in a controlled way so that the resulting system is
invertible, efficient, and much more difficult to break. The first application of
this method was to the Matsumoto-Imai (MI) cryptosystem, a system that is
otherwise vulnerable to the linearization attack [18]. The resulting system, called
the perturbed Matsumoto-Imai cryptosystem (PMI), is slower as one needs to go
through a search process on the perturbation space. However, we believe that for
realistic choices of parameters, PMI is still much faster than HFE and provides
superior security against all known attacks, except the recent differential attack
of Fouque, Granboulan, and Stern [13]. Fortunately PMI is easily repaired with
the Plus (+) [20] method of externally adding relatively few random quadratic
polynomials. In fact, in the most general case of PMI, as few as 10 polynomials
will be sufficient to protect PMI from the differential attack. Since so few ex-
tra polynomials are needed to create a secure Perturbed Matsumoto-Imai-Plus
(PMI+) scheme, there is no significant difference between the two schemes re-
garding the Gröbner bases attack complexity [5,26]. Therefore, for simplicity we
will consider Gröbner bases attacks on PMI.

1.2 Attacks Against Perturbed Multivariate Cryptosystems

In [2] it is shown that the XL algorithm will always need more time and space
than either the F4 or F5 version of the Gröbner basis algorithm. Hence, it suffices
to consider only Gröbner basis attacks. Both algorithms are quite similar in that
they use the original Buchberger algorithm to compute a Gröbner basis for a
given ideal of polynomials, and so for practical reasons we use only the F4 version.
Therefore, in this paper we analyse the security of PMI against Gröbner basis
attacks as it depends on the parameter r, the perturbation dimension, and n,
the message length. Specifically we give estimates for the time complexity of
the F4 Gröbner basis attack on PMI. Based on our experimental results, we
give formulæ for these estimates that can be used to evaluate the security of
proposed PMI systems against such attacks, and suggest parameters that may
give better performance while providing sufficient security. These results can
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then be used to infer similar statements regarding the security of PMI+. Since
[8] shows that differential analysis cannot be effectively used against PMI+, it
is sufficient to consider Gröbner attacks against PMI+ to determine its security.
Hence, the most successful attack against PMI+ can be found in [12] while the
most successful one against PMI is [13].

1.3 Outline

The remainder of this paper is organised as follows. After introducing the MI
and PMI cryptosystems in Section 2, we describe our experimental evaluation of
the security of PMI in Section 3. We then interpret the data and make some sug-
gestions for improvement and give some predictions for the security of proposed
instances of PMI in Section 4. We present our conclusions in Section 5.

2 The Perturbed Matsumoto-Imai Cryptosystem

2.1 The Original Matsumoto-Imai Cryptosystem

Let k be a finite field of size q and characteristic 2, and fix an irreducible
polynomial of g(x) ∈ k[x] of degree n. Then K = k[x]/g(x) is an extension
of degree n over k, and we have an isomorphism φ : K −→ kn defined by
φ(a0 + · · · + an−1x

n−1) = (a0, . . . , an−1).
Fix θ so that gcd (1 + qθ, qn − 1) = 1 and define F : K −→ K by F (X) =

X1+qθ

. Then F is invertible and F−1(X) = Xt, where t(1+ qθ) ≡ 1 mod qn − 1.
Define the map F̃ : kn −→ kn by F̃ (x1, . . . , xn) = φ ◦ F ◦ φ−1(x1, . . . , xn) =
(F̃1, . . . , F̃n). In this case, the F̃i(x1, . . . , xn) are quadratic polynomials in the
variables x1, . . . , xn. Finally, let L1 and L2 be two randomly chosen invert-
ible affine linear maps over kn and define F : kn −→ kn by F (x1, . . . , xn) =
L1 ◦ F̃ ◦ L2 (x1, . . . , xn) = (F 1, . . . , Fn). The public key of the Matsumoto-Imai
cryptosystem (MI or C∗) consists of the polynomials F i(x1, . . . , xn). See [16] for
more details.

2.2 The Perturbed Matsumoto-Imai Cryptosystem

Fix a small integer r and randomly choose r invertible affine linear functions
z1, . . . , zn, written zj(x1, . . . , xn) =

∑n
i=1 αijxi + βj , for j = 1, . . . , r. This de-

fines a map Z : kn −→ kr by Z(x1, . . . , xn) = (z1, . . . , zr). Now randomly choose
n quadratic polynomials f1, . . . , fn in the variables z1, . . . , zr. The fi define a
map f : kr −→ kn by f(z1, . . . , zr) = (f1, . . . , fn). Define f̃ : kn −→ kn by
f̃ = f ◦ Z, and F : kn −→ kn by F = F̃ + f̃ . The map F is called the
perturbation of F̃ by f̃ , and as with MI, its components are quadratic poly-
nomials in the variables x1, . . . , xn. Finally, define the map F̂ : kn −→ kn by
F̂ (x1, . . . , xn) = L1 ◦ F ◦ L2(x1, . . . , xn) = (y1, . . . , yn). The public key of the
perturbed Matsumoto-Imai (PMI) cryptosystem consists of the components yi

of F̂ . See Fig. 1 for an illustration of this idea, and [7] for more details.
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Note that for MI there is a bijective correspondence between plaintext and
ciphertext. However, PMI does not enjoy this property. Indeed, for a given ci-
phertext c ∈ kn, F̂−1(c) may have as many as qr elements, though we may
use the technique suggested for HFE to distinguish the plaintext from the other
preimages. It has been proposed [7] that we can choose the parameters of PMI
(q = 2, r = 6, n = 136) so that the resulting system is faster than HFE, and also
claiming a very high level of security.

x1, . . . , xn

�

L2

�

F̃1, . . . , F̃n

�

�

z1, . . . , zr

f̃1, . . . , f̃n

�+

�
L1

y1, . . . , yn

Fig. 1. Structure of PMI

2.3 Known Attacks Against MI and PMI

The most successful attack against MI is that of Patarin [18]. At present it is
not clear whether this approach can be generalised to attack PMI, the main
difficulty being that PMI mixes the operations in the extension field K from MI
with the operations in the ground field k from the perturbation of MI. Another
approach might involve ideas from the cryptanalysis of Sflash [14,15], though it
is not immediately clear how this might work.

The differential attack [13] has rendered PMI insecure. However, it is easily
repaired [8] using the Plus method of externally adding relatively very few Plus
(+) polynomials [20]. The resulting scheme is call the Perturbed Matsumoto-
Imai-Plus (PMI+) cryptosystem. Since the number of polynomials in PMI+
exceeds the number of unknowns by such a small amount, the attack complex-
ity of a Gröbner basis attack very close to that of the same attack mounted
against PMI. As a result, for simplicity we henceforth consider only PMI. These
extra polynomials are added between the two linear transformations L1, L2. In
particular, this means that we have L1 : kn+a → kn+a now with a ∈ N added
polynomials. These polynomials have the form
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fn+1(x1, . . . , xn) := γ′
n+1,1,2x1x2 + . . . + γ′

n+1,n−1,nxn−1xn +
β′

n+1,1x1 + . . . β′
n+1,nxn + α′

n+1

...
fn+a(x1, . . . , xn) := γ′

n+a,1,2x1x2 + . . . + γ′
n+a,n−1,nxn−1xn +

β′
n+a,1x1 + . . . β′

n+a,nxn + α′
n+a

for γ′, β′, α′ ∈R k being random coefficients.
In [4] and [12], Gröbner bases have been used to break instances of HFE. By

exploiting the underlying algebraic structure, they are able to break HFE in a far
shorter time than it would take to solve a system of random equations [11,12].
For a fixed number of monomials in HFE, it can be shown that the running time
will be polynomial. This result applies to MI as it uses only one monomial. The
running time of this attack applied to PMI is not known.

3 Experiments with the F4 Gröbner Basis Algorithm

3.1 Methodology

We attempted to experimentally determine the running time and memory re-
quirements for a Gröbner basis attack on PMI. To this end we generated several
instances of PMI. For each resulting set of polynomials y1, . . . , yn we chose sev-
eral (y′

1, . . . , y
′
n) ∈ kn and timed how long it takes to find a Gröbner basis for

the ideal (y1 − y′
1, . . . , yn − y′

n). Such a basis allows us to swiftly determine all
(x′

1, . . . , x
′
n) ∈ kn such that F̂ (x′

1, . . . , x
′
n) = (y′

1, . . . , y
′
n).

More specifically, we randomly generated 101 instances of PMI in Magma
[3] for several values of n and r with q = 2, 14 ≤ n ≤ 59, and 0 ≤ r ≤ 10. In
addition we randomly generated 101 elements in kn and applied the F4 version
of the Gröbner basis implementation in Magma to each instance/element pair.
In both cases, we used a uniform distribution on the private key/element from
kn. For all runs, we measured the memory and time needed until the algorithm
found a solution. It did happen that some elements had no preimage under PMI,
which is the same as with random systems of multivariate quadratic equations,
hence we kept these timings in the sample. This decision was made as we were
mainly interested in understanding the security of a signature scheme. For an
encryption scheme, a more obvious choice would have been to encrypt random
vectors x ∈ kn and then solving the corresponding equations, i.e., F̂ (x) = y for
given F̂ and y and “unknown” x.

We note that in theory it would be best to measure the maximal degree of the
equations generated during a run of the F4 algorithm. Unfortunately, Magma
does not provide this feature, and so we had to use the indirect measurements
of time and memory. It should also be noted that the F5 algorithm [10] is said
to be faster than the previous algorithm F4 [9]. However, recent experiments
by Steel show that the Magma implementation of F4 is superior in the case of
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HFE systems [23]. In particular, Steel was able to solve HFE Challenge 1 in less
operations than Faugère with his own implementation of F5. This is a rather
surprising fact as F5 should be faster than F4 from a theoretical perspective
in all cases. Still, Magma’s implementation of F4 achieves better timings than
Faugère’s implementation of F5 when applied to HFE Challenge 1. For our ex-
periments, we decided to use the F4 implementation of Magma as it is the fastest,
publicly available implementation of Gröbner base algorithms. We benchmarked
its performance by solving random instances of PMI for various parameters n, r
for the finite field k = GF(2). Although other ground fields with characteristic
2 are possible, we avoid them since solving PMI for a given private key takes an
additional workload of O(qr). Also, the running time of Gröbner algorithms is
very sensitive to the ground field k. Hence, it is difficult to obtain enough data
for the cases q = 4, 8, and 16.

To ensure the accuracy and reliability of the data, we conducted the ex-
periments with two independent teams, Team Q and Team Ω. Team Q used a
cluster of identical AMD Athlon XP 2000+ with 900 MB of memory each, and
Team Ω used an UltraSPARC-III+ 1.2 GHz dual processor with 8.0 GB of main
memory. Because of these hardware and software differences, we expected to
see differences in our measurements. However both data sets point to the same
asymptotic behaviour. For brevity, we include only Team Q’s data.

3.2 Empirical Data

It is clear that the case of r = 0 corresponds to MI, while the case of r = n
corresponds to a system of n randomly selected polynomials in n variables. Thus
we expected the Gröbner basis attack on a system with r = 0 to be polynomial
in time [12], while the same attack on a system with r = n is expected to be
exponential in time. Using our data, we wanted to answer two questions. First,
for a fixed n we wanted to find the so-called “optimal perturbation dimension,”
i.e., the minimal value of r for which a PMI system with parameters n and r
is indistinguishable from a set of random polynomials. We also sought to obtain
formulæ which would allow us to predict the running time behaviour of F4
applied to PMI for any n and r.

The number of steps involved in attacking PMI with F4 can be found in
Table 5, while the memory requirements are shown in Table 6. Since no θ ∈ N

exists such that gcd(1 + 2θ, 2n − 1) = 1 for n = 16, 32, there is no corresponding
instance of PMI and we hence have no data for these two cases. Each entry in
these two tables is the median of 101 computations. This relatively small sample
size was justified by additional experiments to determine the variation in larger
(1001 computations) data sets. We found that the ratio of the maximum value to
minimum value was always less than 2 in these larger sets. Data sets with median
time below 0.05 seconds, or with memory requirements greater than 900 MB of
memory were excluded from consideration in the final analysis on the grounds
that they were either too noisy or suffered from the effects of extensive memory
swapping. However, we actually performed many more experiments than are
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listed in Tables 5 and 6. Moreover, all experiments that terminated prematurely
were due to memory shortage and not time constraints.

4 Interpretation

From the point of view of cryptanalysis, most agree that it is the computational
complexity that essentially determines the security of a cryptosystem. In our
experiments we notice that the time and memory tables are closely correlated.
The explanation for this can easily be seen from the structure of the F4 algorithm.
Therefore we believe it suffices to analyse the timing data, and hence we omit a
detailed analysis of the memory usage. However, from our experiments we notice
that the memory usage is on the same scale as that of the time complexity. Since
memory is a much more critical constraint than time, in the end we believe it
will be memory that will determine how far F4 can go.

4.1 Polynomial and Exponential Models

It is known that the case r = 0 is precisely MI. Hence the attack from Faugère
and Joux [12] using Gröbner bases should be polynomial. Thus we first consider
the hypothesis that the data is well approximated by a polynomial model. Let
t(n, r) be the time to attack PMI with parameters n and r. We assume that
our computer can perform 2 · 109 steps per second, and define the number of
steps, s(n, r) = 2 ·109 t(n, r). We use s(n, r) instead of t(n, r) for all calculations.
The polynomial model predicts the existence of constants α = α(r) and β =
β(r) such that s(n, r) is well approximated by αnβ . Table 1 shows the fitting
obtained from applying the method of least squares for a fixed r on the data
{log2 n, log2 s(n, r)}, where ε is the error sum of squares for this data set. We
note that for r = 0, the exponent β = 7.16 is greater than that predicted in [12],
though we speculate that the difference may be due to the fact that F5 is used
instead of F4.

Table 1. Polynomial fittings

r 0 1 2 3 4 5 6 7 8 9 10
log2 α -4.81 -3.33 -12.64 -7.71 -13.74 -10.87 -29.38 -29.30 -29.84 -31.09 -30.27

β 7.16 7.12 9.50 9.22 10.81 10.18 14.90 15.02 15.17 15.48 15.28
ε 4.20 5.28 6.97 2.17 1.51 3.29 6.51 2.32 0.91 1.10 0.80

It should also be observed that there is some sort of “phase transition” that
occurs in the fitting behaviour as r increase from 5 to 6. This is most obviously
seen by looking at the values of log2 α, which should not be either unusually
small or unusually large, as this quantity represents the expected complexity
for small n. Our data shows that as r increases from 5 to 6, α decreases from



Complexity Estimates for the F4 Attack on the PMI Cryptosystem 269

Table 2. Exponential fittings

r 0 1 2 3 4 5 6 7 8 9 10
log2 α 21.88 22.37 19.83 20.62 18.02 19.10 11.58 11.65 11.05 11.16 10.94
log2 β 0.27 0.30 0.45 0.55 0.72 0.68 1.15 1.18 1.22 1.21 1.23

ε 6.73 11.44 2.57 5.22 2.95 6.34 2.54 1.91 0.82 1.10 0.89

Fig. 2. Graph of log2 s(n, 0)

the reasonable scale of approximately 2−10 to 2−30, which would seem to be
unreasonable. Therefore, we suspect that it is at r = 6 where the transition from
polynomial to exponential behaviour occurs.

To examine this possibility, we also consider the hypothesis that the data
is well approximated by an exponential model. As before, let t(n, r) be the
time to attack PMI with parameters n and r. The exponential model predicts
the existence of constants α = α(r) and β = β(r) such that s(n, r) is well
approximated by αβn. Table 2 shows the fitting obtained from applying the
method of least squares for a fixed r on the data {n, log2 s(n, r)}, where again
ε is the error sum of squares. To illustrate the fittings we present Table 2 and
Fig. 2–5.

Observe that ε does not help to decide which fitting is more appropriate, so
we must study the other parameters of the fitting. In particular, from Table 2
we note that again there is a transition happening with log2 α between r = 5
and r = 6. Once again, the important feature is the transition in log2 α, which
again happens between r = 5 and 6. Our reasoning is as before; i.e., we do not
believe α should either be too large or too small. In the case of the exponential
model, α is too large for r < 6. Hence, we find the exponential model much more
convincing for the case of r ≥ 6, and the polynomial model a better fit for r < 6.

In summary, from this data we observe that the complexity makes a transi-
tion between two distinct regions, where the first region represents polynomial
behaviour such as that of MI, and the second represents the exponential behav-
iour of a system defined by a random set of polynomials. We call the point at
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Fig. 3. Graph of log2 s(n, 4)

Fig. 4. Graph of log2 s(n, 5)

Fig. 5. Graph of log2 s(n, 6)
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which this transition occurs the phase transition point, which we believe is r = 6.
In our data, we did not find any other transition point. In particular, this behav-
iour fits well with the corresponding theory: as soon as the number of linearly
independent monomials reaches a certain threshold, Gröbner base algorithms
like F4 or F5 cannot make use of the structure of the private key anymore.

4.2 Optimal Perturbation Dimension

The analysis in the previous two sections assumed a fixed r and variable n.
We now consider fixing n and varying r in order to study how the complexity
achieves its maximum as r increases from zero (polynomial) to n (exponential).
Fig. 6 illustrates the typical features of such a transition process.

Fig. 6. Graph of log2 s(21, r)

It is important not to confuse the phase transition point with the minimal
value of r (for a fixed n) for which the maximal complexity is achieved and no
further advantage is gained by increasing r. We call such an r the optimal pertur-
bation dimension for a given n. Based on the experiments above, we empirically
determined this dimension and summarise our findings in Table 3.

Table 3. Optimal perturbation dimension

n 14. . .15 17. . .21 22. . .24
r 4 7 10

This data agrees very well with the theoretical explanation of the behaviour
of Gröbner bases algorithms for solving HFE. There, the maximal degree of the
polynomial equations derived during one computation is also discrete. It seems
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that we get similar behaviour here. As was already pointed out, we could not
make this observation directly as Magma does not provide the maximal degree.
In order to confirm this behaviour and find formulæ that can be used to predict
the location of the optimal perturbation dimension, we would need more data
for larger values of n. However, this is not possible at present as the memory
requirements for F4 are quite severe, cf Table 6.

4.3 Practical Security

We now evaluate the security of some implementations of PMI. As was already
pointed out, PMI by itself is insecure under the differential attack. Therefore the
following analysis assumes that the Plus method has been applied. We first use
the fittings to evaluate the security of the practical system proposed in [7]. We
then use our fittings to propose some new optimised practical systems.

Evaluation of Practical Examples. In [7] the practical example suggested
is the case of q = 2, r = 6, and n = 136. First we evaluate this example using
the exponential model. The predicted security in this model is greater than 2160.
Assuming the validity of this model, the proposed system is very secure against
Gröbner based attacks. In particular, according to the exponential model, since
log2 β > 1 for r ≥ 6, the running time of F4 increases faster than exhaustive
key search for q = 2. Therefore, these instances of PMI should be secure against
these types of attacks assuming the validity of the exponential model. In fact, a
practical and secure instance of PMI can use the parameters q = 2, r = 6, and
n = 83 to meet the NESSIE requirements of 280 3-DES computations, if our
model is valid. In particular, the security of the exponential model suggests a
strength of 2100 3-DES computations. However, for q = 2, n < 80, a brute-force
search would take less than the required 280 computations in 3-DES. Therefore,
we decided to chose the first prime above 80, to rule out subfield-attacks as
suggested in [22].

To be on the safe side, we also evaluate the system with q = 2, r = 6, and
n = 136 using the polynomial model. The predicted security for this model is
roughly 270 3-DES computations. According to this model, n must be greater
than 227 to achieve the required NESSIE security level. However, if we consider
the memory requirements needed to attack such a system, breaking these systems
will be practically impossible with currently available resources. In particular,
it is not clear at present how such an attack could be distributed over different
machines, e.g., using a distributed network of machines all agreeing to collaborate
or possibly being captured by Trojan horses.

It is speculated in [7] that q = 2, r = 5, and n = 96 may also be secure.
To evaluate this claim it is more appropriate to assume the polynomial model.
According to this fitting, the security level is less than 250 3-DES computations,
which is much less than the security level as requested in NESSIE. Therefore
we conclude that this speculation may be overly optimistic. But again, we point
out the severe memory requirements. Based on our experiments, we expect a
number well above 260 bytes.
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The PMI scheme was originally proposed for use as an encryption scheme.
One can easily modify the system for signature purposes; for example, one can
use the Feistel-Patarin-Network, as in the signature scheme Quartz [21]. The
scheme with the parameters q = 2, r = 6, n = 83 suggested above can be used
in this way to build a secure signature scheme with only 83 bits.

Practical Perturbation Dimension. For PMI cryptosystems, one of the fun-
damental questions one should answer is how to choose r appropriately for a
fixed n. From the behaviour of the complexity, a natural choice would be the
optimal perturbation dimension, where the system becomes indistinguishable
from a system defined by a random set of polynomials. However, we notice that
this number may be too large for practical purposes, so we must choose some
smaller value for r such that the system is practical and secure. Since the phase
transition point is the minimal r that provides exponential behaviour we suggest
this value for the perturbation dimension in practice.

4.4 Further Research

While the security of MI and also the behaviour of Gröbner base algorithm
is well understood, this is not the case for PMI. Hence, it would be nice to
have empirical data about the behaviour of other algorithms, e.g., F5 in the
case of PMI. This proves difficult at present as F5 is not available in a public
implementation.

Using the maximal degree of the polynomials generated during a run on F4
would have been more telling than our time or memory measurements. From
[12], we expect this degree to be far more stable than the time or memory
requirements. However, as Magma is also closed source, we could not modify the
code to obtain this information. Hence, an open source implementation of F4
would be preferable. In any case, we believe that this information would help
us find the optimal perturbation dimension for a fixed n, the determination of
which is important to completely understand PMI.

Apart from this, PMI seems secure against Gröbner attacks, and so we con-
clude that PMI+ is secure against both differential and Gröbner basis attacks.

5 Conclusions

In this paper we presented a security analysis of the PMI cryptosystem against
Gröbner basis attacks. From this analysis we saw that for reasonable choices
of parameters, PMI is secure against such attacks. Since PMI can be protected
from the differential attack by externally adding as few as 10 random Plus poly-
nomials, we conclude that this security analysis extends to that of PMI+.

Running various experiments with random instances of PMI, we established
that PMI with small security parameter r can likely be solved in polynomial
time. However, the rather large memory requirements will prevent such an attack
from being practical with currently available resources. On the other hand, for
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Table 4. Comparison between Quartz and PMI

Quartz-7m PMI
ground field k GF(2)

variables n 107 83
equations m 100 83

Signature Size [bits] 128 83
Public Key Size [kByte] 71 35

r ≥ 6, we saw that the attacks using Gröbner bases become less efficient than
exhaustive key search. Hence, we conclude that PMI is secure against these type
of attacks. In particular, we suggest q = 2, r = 6, and n = 83 as a secure instance
of PMI.

These results suggest that we can obtain a signature scheme from PMI that
allows shorter signatures than other multivariate schemes, and in particular
Quartz (128 bit, cf Table 4). For our comparison, we use the tweaked version
Quartz-7m from [24–Sect. 4.3]. Moreover, this scheme would be the only known
instance that gives a security level of 280 3-DES computations and still allows
efficient decryption of messages in a multivariate public key scheme.
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Appendix

Table 5. Steps s(n, r) in log2 for solving instances of PMI

n \ r 0 1 2 3 4 5 6 7 8 9 10
14 24.10 24.10 25.18 27.56 27.70 27.96 27.96 27.96 27.96 27.96 27.96
15 24.10 25.18 25.84 28.25 28.34 29.21 29.16 29.16 29.17 29.16 29.16
16
17 25.18 25.79 26.84 29.78 30.58 30.81 30.94 32.35 32.35 32.35 32.35
18 25.32 25.84 27.83 31.13 31.33 31.66 31.79 33.37 33.37 33.37 33.37
19 25.84 26.55 28.34 31.71 32.02 32.37 32.50 34.33 34.32 34.31 34.32
20 26.22 27.58 28.83 32.16 32.75 33.35 33.97 35.32 35.35 35.34 35.34
21 26.58 27.44 29.34 32.71 33.51 34.03 36.45 36.25 36.61 36.61 36.61
22 27.04 28.51 30.14 33.12 34.09 34.62 37.38 37.16 37.46 38.28 38.29
23 27.56 28.42 30.16 33.68 34.79 35.30 38.21 37.97 38.98 39.14 38.97
24 28.17 29.57 30.66 33.84 35.88 35.39 39.26 40.16 40.28 39.82 40.02
25 28.34 29.21 31.03 34.84 36.41 36.34 40.19 41.31 41.40 41.28
26 28.84 30.25 31.51 35.20 36.96 36.75 41.34
27 29.30 30.73 31.97 35.84 37.66 37.31
28 29.84 31.27 32.40 36.47 38.22 37.85
29 30.21 31.53 32.69 36.75 38.76 38.27
30 30.46 31.88 33.10 37.28 39.18 38.59
31 30.90 32.30 33.57 38.08 39.63 39.29
32
33 31.79 33.01 35.08 39.28 41.68 41.99
34 32.02 33.18 35.58 39.46
35 32.08 33.30 36.01 39.75
36 32.33 33.85 36.33 40.11
37 32.31 33.80 37.09 40.55
38 32.58 33.99 37.24 40.87
39 32.84 34.18 37.46
40 33.11 35.14 38.00
41 33.34 34.48 38.63
42 33.60 34.84 38.74
43 33.83 34.94 39.06
44 33.88 35.76 39.35
45 34.09 35.41 40.07
46 34.13 35.68 40.23
47 34.36 35.67 40.36
48 34.67 37.50 41.28
49 34.82 36.01
50 35.22 36.59
51 35.61 36.75
52 36.00 37.90
53 36.37
54 36.78
55 36.95
56 37.35
57 37.23
58 37.61
59 38.02
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Table 6. Memory requirements in log2 for solving instances of PMI

n \ r 0 1 2 3 4 5 6 7 8 9 10
14 21.69 21.73 21.82 22.19 22.03 22.33 22.32 22.33 22.32 22.33 22.32
15 21.83 21.90 22.00 22.46 22.67 22.78 22.66 22.67 22.66 22.67 22.66
16
17 22.34 22.33 22.44 23.12 23.52 23.59 23.53 24.74 24.73 24.74 24.73
18 23.01 23.01 22.97 23.55 24.06 24.07 24.47 25.41 25.41 25.41 25.41
19 23.81 23.81 23.47 24.08 24.60 24.63 24.71 26.08 26.09 26.09 26.09
20 24.46 24.46 24.22 24.72 25.17 25.20 25.77 26.71 26.71 26.71 26.71
21 24.46 24.46 24.22 24.72 25.17 25.20 28.00 27.10 27.10 27.10 27.10
22 24.46 24.46 24.22 24.85 25.40 25.64 28.35 27.61 27.61 28.56 28.57
23 24.46 24.46 23.47 25.25 25.75 26.36 28.94 28.12 29.18 29.29 29.05
24 24.46 24.46 24.22 25.50 26.24 26.83 29.61 29.90 29.99 29.72 29.78
25 24.46 24.46 24.22 26.11 26.44 27.35 29.90 30.41 30.55 30.43
26 24.46 24.46 24.22 26.51 26.80 27.91 30.33
27 24.46 23.36 24.22 26.87 27.85 28.30
28 24.46 24.46 24.22 27.24 27.90 28.64
29 24.46 24.46 24.35 27.55 28.37 29.05
30 24.46 24.46 24.73 27.93 29.02 29.45
31 24.46 24.46 24.79 28.16 29.40 29.79
32
33 24.46 24.64 25.70 28.82 30.39 30.69
34 24.46 24.64 26.14 29.11
35 24.46 24.64 26.57 29.40
36 24.46 25.34 26.86 29.68
37 24.46 25.34 27.01 29.89
38 24.85 25.34 27.60 30.16
39 24.85 26.05 27.87
40 25.29 26.00 28.01
41 25.30 26.06 28.21
42 25.30 26.65 28.77
43 25.30 26.77 28.71
44 25.31 26.77 28.96
45 25.51 27.30 29.51
46 25.61 27.30 29.78
47 25.72 27.30 29.68
48 25.92 27.97 30.13
49 25.98 27.93
50 26.09 28.40
51 26.28 28.41
52 26.33 28.41
53 26.43
54 26.65
55 26.67
56 26.77
57 27.03
58 27.03
59 27.11
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