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Abstract. In ACISP ’00, Wu et al. proposed attacks to break the Poly-
nomial Authentication and Signature Scheme (PASS), in particular, they
are able to generate valid authentication transcripts and digital signa-
tures without knowing the private key and any previous transcripts/
signatures. They showed that PASS can be broken with around 238.3

trials. In this paper, we analyze the security of the improved versions of
PASS; viz. PASS II and MiniPASS, and extend the Wu et al.’s attacks
to PASS II and MiniPASS to break them. Furthermore, we discuss why
and how these schemes are broken from the view point of the structure
of cryptosystems and point out the fundamental weakness behind.

Keywords: Authentication scheme, digital signature scheme, crypt-
analysis, NTRU, partial polynomial evaluation.

1 Introduction

For electronic communications and commerce in a common networked and open
environment, security issues are always the main concern. In this context, public
key authentication and digital signature schemes that provide authentication and
non-repudiation services to communicating parties have been of steadily increas-
ing interest in cryptographic studies. They are not only need to be secure, but
also have to be fast and can be implemented on low power computing devices,
i.e. low-cost smart cards and RFID devices. Since year 1996, researchers from
NTRU Cryptosystem Inc. have proposed a group of fast public key cryptosystem
based on the hard problems of partial evaluation of constrained polynomial over
polynomial rings. These comprise of NTRU public key encryption algorithm [3],
NTRUSign digital signature scheme [1], Polynomial Authentication and Signa-
ture Scheme, PASS [2], and its variant PASS II [5] and MiniPASS [4]. The hard
problem underlying this group of cryptosystem can be related to short vectors
in a lattice due to properties of short polynomials used in the system.
� The first author acknowledges the Malaysia IRPA grant (04-99-01-00003-EAR).

S. Qing et al. (Eds.): ICICS 2005, LNCS 3783, pp. 159–168, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



160 B.-M. Goi, J. Ding, and M.U. Siddiqi

In ACISP ’00, Wu et al. presented two attacks on PASS [6]. In particular,
they are able to generate valid authentication transcripts and digital signatures
without knowing the private key or previous transcripts / signatures. Though
their first attack can be easily prevented with some proper parameter settings,
PASS can still be broken with around 238.3 trials under their second attack.

In this paper, we further analyze the security of the improved versions of
PASS; viz. PASS II and MiniPASS, and extend the Wu et al.’s attacks to PASS
II and MiniPASS, and show how to break them efficiently as well. Further-
more, we discuss how and why these schemes are broken from the point view of
the structure of cryptosystems and point out the fundamental weakness behind
which allows these attacks, namely the participation of a verifier in the process
setting up the challenge. Therefore, though we believe that the concept behind
the construction of PASS, namely the hard problems of partial evaluation of
constrained polynomials over polynomial rings, is still correct and sound, any
new system based on the same idea as that of PASS needs to overcome such
a fundamental weakness in order to work securely, in particular, in terms of
resisting the type of attack like that of the Wu et al.’s attacks.

The paper is organized as following. In the next section, we will outline the
authentications systems PASS, PASS II and MiniPASS [2,5,4]. We then briefly
introduce the basic idea of the Wu et al.’s attacks [6] in Section 3. In Section 4,
we will present the details of our attack to break the PASS II and MiniPASS,
which is an extension of the idea of Wu et al.. Then, we elaborate the structure
analysis of PASS cryptosystems in Section 5. Finally, we conclude in Section 6.

2 An Overview of PASS and PASS II

2.1 Preliminary and Notations

The ring of truncated polynomials is defined as: R = (Z/qZ)[X ]/(XN − 1),
where q and N are co-relative prime integer. Note that all arithmetic operations
are in R in this paper. The resultant coefficients are reduced modulo q and
exponents are reduced modulo N . For the proposed schemes in [2, 5, 4], q and
N were chosen be a prime number (i.e., 769) and a divisor of (q − 1) (i.e., 768),
respectively. A element g ∈ R is denoted as a polynomial with degree of (N − 1)
and its coefficients gi ∈ Z/qZ, for i = 0, 1, ..., (N − 1), as g(X) =

∑N−1
i=0 giX

i =
g0 + g1X + g2X

2 + ... + gN−1X
N−1.

For each element α ∈ Z/qZ, g(α) means that substituting the variable X in
the polynomial g with the value α and the result is reduced modulo q. For multi-
plication of two polynomials in R, since the exponents of the product are reduced
modulo N , thus it is a cyclic convolution multiplication. For example, given
f, g ∈ R, the product h = fg in R will be h(X) =

∑N−1
i=0 fiX

i
∑N−1

j=0 gjX
j =

∑N−1
k=0 hkXk, where hk =

∑
i+j=k mod N figj . Note that if αN = 1 mod q, then

h(α) = f(α)g(α). Informally, a short polynomial g is a polynomial with small

norm value ‖g‖2 =
√∑N−1

i=0 g2
i . For example, it may contain many zero coeffi-

cients and few coefficients with small value (i.e., -1 or +1). A polynomial g in
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Table 1. The notations

P The prover
V The verifier
co The 80-bit challenge
M The message to be signed
S The set of t distinct non-zero elements of α ∈ Z/qZ, where αN = 1 mod q

and α−1 ∈ S. Note that t ≈ q
2

f1, f2 The private key and its corresponding public key is (f1(α), f2(α)) for α ∈ S.
Note that only one private polynomial f for PASS II

g1, g2 The commitment polynomials with corresponding commitment values
(g1(α), g2(α)) for α ∈ S

di The polynomial i which contains di coefficients equal to each of 1 and −1,
and the rest equal to 0, for i = f, g and c. For example, the suggested
parameters for PASS are df = dg = 256, dc = 1

Li The public special subset of R, for i = f, g, c and h. Note that h is com-
puted based on the private key, commitment polynomials and the outputs
of Hash. In more detail, Lf , Lg and Lc are those special subsets whose ele-
ment polynomials contain df , dg and dc parameters, respectively; whereas,
Lh = h ∈ R : ‖h‖2 ≤ γq

Hash(·) The special hash function which hashes co or M with the commitments to
produce some polynomials in Lc

R is called moderately short if its norm is smaller than a constant times q, such
that ‖g‖2 ≤ γq, where the value of γ is determined by the particular application
via experiment.

For ease of explanation, we use the notations similar to those in [2, 6, 5], as
shown in Table 1.

2.2 PASS

The prover P randomly chooses two polynomial (f1, f2) from Lf as his private
key. Then he generates his public key as (f1(α), f2(α)) for α ∈ S. The private
key is well protected due to the fact that recovering a short polynomial in R
by providing only a certain subset values of the polynomial is a hard problem.
Furthermore, it is also difficult to find another two short polynomials (f ′

1, f
′
2),

which for α ∈ S, must satisfy the conditions:

f ′
1(α) = f1(α) and f ′

2(α) = f2(α). (1)

We refer readers to [2] for more security analysis of PASS. For simplicity, we
depict the PASS authentication scheme and the PASS digital signature scheme
in Fig. 1 and Fig. 2, respectively.

2.3 PASS II and MiniPASS

In [5], Hoffstein and Silverman have proposed another improved version of PASS,
called as PASS II. PASS II only involves single polynomial f in key pair creation
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Prover, P Verifier, V
P ’s private key: f1, f2 P ’s public key:
g1, g2 ∈R Lg (f1(α), f2(α))α∈S

For α ∈ S,
compute the commitment:
(g1(α), g2(α))

(g1(α),g2(α))α∈S−−−−−−−−−−−→
Randomly select c0

c0←−−−−−−−−−−−−
Hash(g1(α), g2(α), c0) Hash(g1(α), g2(α), c0)
→ c1, c2, c3, c4 ∈ Lc → c1, c2, c3, c4 ∈ Lc

Compute:
h = c1f1g1 + c2f1g2

+c3f2g1 + c4f2g2
h−−−−−−−−−−−−→

Verify:
h ∈ Lh and for α ∈ S,

h(α) = c1(α)f1(α)g1(α) + c2(α)f1(α)g2(α)
+c3(α)f2(α)g1(α) + c4(α)f2(α)g2(α)

Fig. 1. PASS authentication scheme

Prover, P Verifier, V
P ’s private key: f1, f2 P ’s public key:
g1, g2 ∈R Lg (f1(α), f2(α))α∈S

For α ∈ S, compute
(g1(α), g2(α)) and
Hash(g1(α), g2(α), M)
→ c1, c2, c3, c4 ∈ Lc

Compute:
h = c1f1g1 + c2f1g2

+c3f2g1 + c4f2g2

(g1(α),g2(α))α∈S ,h,M−−−−−−−−−−−−−−→ Hash(g1(α), g2(α), M)
→ c1, c2, c3, c4 ∈ Lc

Verify:
h ∈ Lh and for α ∈ S,

h(α) = c1(α)f1(α)g1(α) + c2(α)f1(α)g2(α)
+c3(α)f2(α)g1(α) + c4(α)f2(α)g2(α)

Fig. 2. PASS signature scheme

phase and only one set of values of (g1(α))α∈S required for the verifier V . There-
fore, it can further reduce the computational complexity and communication
requirements. In CHES ’00 [4], based on PASS II, the same authors presented a
scheme which is called as MiniPASS and described how it can be implemented
in highly constrained devices.
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Prover, P Verifier, V
P ’s private key: f P ’s public key:
g1, g2 ∈R Lg (f(α))α∈S

For α ∈ S, compute:
g1(α) and then,
Hash(g1(α), M)
→ c1, c2 ∈ Lc,
where c1(α) �= 0,
for 2 ≤ α ≤ q − 2 and α /∈ S.
Compute:
h = (f + c1g1 + c2g2)g2

(g1(α))α∈S,h,M−−−−−−−−−−−−−−→ Hash(g1(α), M)
→ c1, c2 ∈ Lc

where c1(α) �= 0
for 2 ≤ α ≤ q − 2 and α /∈ S

Verify:
h ∈ Lh and for α ∈ S,

(f(α) + c1(α)g1(α))2 + 4c2(α)h(α)
quadratic residue mod q

Fig. 3. PASS II signature scheme

Table 2. Comparison of PASS and PASS II signature scheme

Description Original PASS [2] PASS II [5]

Creating key
pair

Two private polynomials f1 and f2

with the corresponding public val-
ues (f1(α), f2(α))α∈S.

Only one private polynomials f
with the corresponding public val-
ues (f(α))α∈S.

Generating
commitment
polynomials

Two commitment polynomials
(g1, g2). Both (g1(α), g2(α)) have
be sent to the verifier.

Two commitment polynomials
(g1, g2). But only g1(α) is required
to be sent to the verifier.

Computing h h = c1f1g1+c2f1g2+c3f2g1+c4f2g2 h = (f + c1g1 + c2g2)g2

Verification
process

Check h ∈ Lh and the values of
h(α) for α ∈ S

Check h ∈ Lh and (f(α) +
c1(α)g1(α))2 + 4c2(α)h(α) =
quadratic residue mod q, for α ∈ S.

Parameter
settings

df = dg ≈ q
3
, dc = 1, γ = 2.2 df ≈ q

3
, dg ≈ q

6
, dc = 2, γ = 1.8.

Security
level†

With q = 769, PASS is more se-
cure than RSA 1024; With q =
1153, PASS is more secure than
RSA 2048.

With q = 769, PASS II is more
secure than RSA 512; With q =
929, PASS is more secure than RSA
1024.

† : as claimed by the original inventers in [2] and [5].

The PASS II signature scheme is described in Fig. 3. We omit the PASS II
authentication scheme because it can be constructed in a similar way as PASS
authentication scheme.
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We conclude this section by providing the comparison between the original
PASS and PASS II schemes in Table 2. (Note that this comparison could be
applied directly to the authentication schemes as well.)

3 Two Attacks Due to Wu et al.

In [6], Wu et al. proposed two attacks on the PASS system. For ease of explana-
tion and also lack of better names, we simply denote the first attack proposed
in Section 3 of [6] as Attack 1 and the second attack proposed in Section 4 of [6]
as Attack 2, respectively.

3.1 Wu et al.’s Attack 1

Wu et al. discovered that in order to break PASS which amounts to satisfying
the expression:

h(α) = c1(α)f1(α)g1(α) + c2(α)f1(α)g2(α) +
+c3(α)f2(α)g1(α) + c4(α)f2(α)g2(α)

for α ∈ S in the verification process, is not required to find short polynomials
(f ′

1, f
′
2) satisfying the condition in Eq. (1). However, they claimed that as long

as g1(α) = g2(α) = 0 for certain α ∈ S, then f ′
1(α) and f ′

2(α) can be of any
values for other values of α. They proved that there are at most p non-zero
elements in Z/Zq satisfying g(α) �= 0. Note that p is a divisor of N and the
coefficients of polynomial g from {−1, 0, +1} are with period p. Based on this,
Wu et al. came out with Attack 1 where an attacker can forge the authenti-
cation transcript/signature independent of the sizes of N and t. An attacker,
with such small amount of computation, can fool B into thinking he is a legiti-
mate counterpart A, even without A’s private key and previous communicated
transcripts.

Observations on Attack 1. Here, we correct a typo in the expression in the
proof of Theorem 1 [6], where a polynomial g with period p (obviously, p must
be one of the factor of N) should be denoted as:

g(X) = (g0 + g1X + g2X
2 + · · · + gp−1X

p−1)(1 + Xp + X2p + · · · + XN−p),

but not as:

g(X) = (g0 + g1X + g2X
2 + · · · + gp−1X

p−1)(1 + Xp + X2p + · · · + XN/p).

We further remark that, in [6], in order to countermeasure Attack 1, Wu
et al. suggested N to be chosen as a prime or with no small factor. However,
PASS only works in the special case where αN = 1 mod q in ring R. This
is to ensure homomorphism mapping. More precisely, N must be a divisor of
(q − 1) and according to the fact of Fermat’s Little Theorem [2], for all non-
zero element, we can well define the homomorphic mapping from R to Z/qZ as:
g(X) → g(α(q−1)/N ). Hence, N has to be determined carefully.
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3.2 Wu et al.’s Attack 2

Wu et al. proposed Attack 2 by exploiting the fact that the space of Lc, |Lc| is
small (as dc = 1). Attack 2 on the PASS signature scheme is described as:

1. Randomly select r1, r2 ∈ R such that r1c, r2c ∈ Lc for c ∈ Lc.
2. For α ∈ S, compute the two sets (β1, β2) with no zero element, such that

β1 = f1(α) + r1(α)f2(α) and β2 = f1(α) + r2(α)f2(α). Note that βi =
{βi1, βi2, · · · , βit} where i = {1, 2}.

3. Compute two polynomial (f ′
1, f

′
2) such that f ′

1(α) = β1 and f ′
2(α) = β2.

4. Arbitrarily choose h1, h2 ∈ R and compute the polynomials (g1, g2) which
satisfy h1(α) = f ′

1(α)g1(α) and h2(α) = f ′
2(α)g2(α) for α ∈ S. Note that

(g1, g2) are not required to be short polynomial and fulfill dg requirement.
Wu et al. showed that these two polynomials can be computed easily in
Theorem 3 of [6].

5. Hash(g1(α), g2(α), M) and obtain c1, c2, c3, c4 ∈ Lc.
6. Check whether c3 = r1c1 and c4 = r2c2. If yes, set h′ = c1h1 + c2h2 and

obtain a valid signature of message M . Otherwise, repeat the attack by going
back to Step 3.

Obviously, the obtained h′ is equivalent to h. Attack 2 will succeed with
probability 1

|Lc|2 . More precisely, with the proposed parameters in [2]: N = 768
and dc = 1, the PASS can only achieve the security level of 38.3 bits. Therefore,
the PASS is not secure.

4 Our Attacks on PASS II and MiniPASS

In this section, we extend the Wu et al.’s attacks on PASS II and MiniPASS. We
prove that they face the same problem as PASS. Namely, both with the proposed
parameters cannot achieve 80-bit standard security requirement. Hence, PASS
II and MiniPASS are insecure and not sound.

4.1 Extended Attack 1

Our first extended attack on PASS II works as follows:

1. Calculate the desired polynomials g2 by setting appropriate period p.
2. Determine S1 ⊂ S such that for α ∈ S1, g2(α) = 0. Then, fix S2 = S − S1,

such that for α ∈ S2, g2(α) �= 0.
3. Compute the polynomial f ′, such that f ′(α) = f(α) for α ∈ S2. For α ∈ S1,

due to Step 2, h(α) is always equal to zero regardless of the values of f ′(α).
4. With the three short obtained polynomials (g1, g2, f

′), where g1 can be set
arbitrarily, a valid forged authentication transcript satisfying h ∈ Lh and for
α ∈ S, (f(α) + c1(α)g1(α))2 + 4c2(α)h(α) = quadratic residue (mod q), can
be produced.
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The Step 3 above, in determining the polynomial f ′ such that f ′(α) = f(α)
for α ∈ S2, is the most costly one. On average, the computation complexity is
about q|S2|, where |S2| is the space of S2 . However, due to the careful selection
of g2 (e.g., with the period p = 6), |S2| is quite small (e.g., |S2| ≈ p

2 ), thus
computing f ′ turn to be an easy task. In particular, for |S2| = 3, even with
brute-force to randomly search the coefficients of f ′, we only require around
q|S2| = 7693 = 228.8 trials to forge a valid authentication transcripts/signature
in PASS II with the proposed parameters, q = 769 in [5]. Therefore, PASS II
can only provide 28.8-bit security level under this attack. Note that PASS II is
much more vulnerable under our extended attack as compared to Attack 1 on
PASS, because only one private polynomial f ′ needs to be determined.

4.2 Extended Attack 2

In [5], Hoffstein and Silverman have increased the space for Lc by setting dc =
2. (In the original PASS, dc = 1.) This is mainly due to only two challenge
polynomials (c1, c2) are involved in this improved scheme, but not to counter
against Attack 2. They claimed that with the proposed parameters, N = 768,
then |Lc| = 236. Hence, the space of challenge should be the space of pairs (c1, c2)
of elements of |Lc|2 and equal to 272. However, in this subsection, we show that
it is not true.

In the PASS II scheme, the authentication transcript/signature is expressed
as:

h = (f + c1g1 + c2g2)g2

= fg2 + (c1g1 + c2g2)g2

= fg2 + c1(g1 + rg2)g2

= h1 + c1h2

where c2 = rc1, h1 = fg2 and h2 = (g1 + rg2)g2.
Our second extended attack on the PASS II signature scheme works as fol-

lows:

1. Select r ∈R R such that rc ∈ Lc for c ∈ Lc (for simplicity, set r = 1).
2. Arbitrarily choose h2, g2 ∈R R. Then, for α ∈ S, compute the polynomial g1

satisfying h2(α) = (g1(α) + r(α)g2(α))g2(α). Note that g1 is not required to
be short and fulfill dg requirement .

3. Hash(g1(α), M) and obtain c1, c2 ∈ Lc.
4. Check whether c2 = rc1. If yes, compute the polynomials h1, which is not

required to be short, satisfying h1(α) = f(α)g2(α) and set h = h1 + c1h2,
then generate a valid signature of message M which is (g1(α), h)α∈S . Oth-
erwise, repeat the attack by going back to Step 2.

Surprisingly, we found out that our proposed extended attack on PASS II
works even more efficient than the original Attack 2 on PASS, in terms of number
of steps and computational complexity. In particular, there is no need to compute
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the two sets (β1, β2) and the two polynomial (f ′
1, f

′
2) as in the case of PASS, but

only compute one polynomial g1 that satisfies h2(α) = (g1(α)+r(α)g2(α))g2(α).
Furthermore, Attack 2 has to be improved in order to work on PASS for the case
where the two sets (β1, β2) contain zero element. This will affect the success rate
of this attack.

However, in our attack, the attacker just need to check whether c2 = rc1 for
every single trial. The success rate will be 1

|Lc| , but not 1
|Lc|2 as claimed in [5].

More precisely, with the suggested parameters in [5], viz. N = 768 and dc = 2,
the space of Lc, |Lc| = N !

(N−2dc)!(dc!)2
= 236.3. Therefore, PASS II can only offer

the security level of 36-bit, and is insecure and not sound.

SUMMARY: Even with proper parameter settings − on choosing good N − the
PASS and PASS II schemes are still vulnerable under Attack 2. This is mainly
due to the decomposition property of h.

5 Structure Analysis

One of the original intention of our work is to find ways to improve the PASS
cryptosystem and try to make it work, because we think that the basic concept
behind the construction of the PASS, which is based on the hard problems
of partial evaluation of constrained polynomials over polynomial rings, is still
sound. To do so, we start from further understanding why and how the PASS
systems are broken from the viewpoint of the structure of cryptosystems.

The key point of the Attack 2 is that it successfully transforms the difficult
problem of finding the private keys (f1, f2) given f1(α) andf2(α) for α ∈ S to
another easier task − finding (g1, g2) − which does not anymore have to be short
polynomials (binary or trinary polynomials with many zero coefficients) and
fulfill certain requirements on the degree. For example, as stated in [4], by using
Discrete Fourier Transform (DFT) method, every coefficients of a polynomial
G can be determined providing all the values of G via the well-known formula
of DFT. In this case, the Attack 2 shows the system’s security is not really
based on the hard problems of partial evaluation of constrained polynomials
over polynomial rings, but rather something else. If one looks deeper, one should
realize that the story does not just stop here. The real reason behind is that g1

and g2 are actually provided by the prover, which therefore allows the attacker
to choose the g1 and g2. Namely in a PASS authentication system, a prover
actually participates in the process in setting up the challenge. This is
very much like leaking partially the secret automatically to the attacker. Such a
weakness is the real cause why Attack 2 worked from the structure point of view.
Therefore, this, we believe, is a fundamental structure flaw from the point view
of designing a secure cryptosystem, because it gives an attacker automatically
an edge in attacking the system from the very beginning. This teaches us a good
lesson in designing authentication schemes, namely one should not allow a prover
to participate in setting up the challenge.
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6 Concluding Remarks

In this paper, we have comprehensively analyzed the security of PASS II and
MiniPASS. We have proposed two extended attacks due to Wu et al. [6] and
showed how they work on PASS II and MiniPASS in detail. We have further
pointed out the main reason for PASS and its variant are broken is due to some
flaws in the structure design of the cryptosystems. However, the concept behind
the construction of the PASS, based on the hard problems of partial evaluation
of constrained polynomials over polynomial rings, is correct and secure.

At the very beginning, we had some suggestions to improve the system. For
example: (1) to ensure that the verifier always knows the prover’s commitments
prior to receiving any new signature, so that the attacker is unable to control
the polynomials (g1, g2) and perform Attack 2; (2) to modify the expression of
h so that it won’t face the decomposition problems. However, we realize these
suggestions do not fundamentally eliminate the flaw of the system. As of now,
we have not been able to come up with any good solution, which, we believe, is
a very interesting and challenging question.

Acknowledgement

We would like to thank anonymous referees for their constructive and detailed
comments that have greatly improved this paper.

References

1. J. Hoffstein, N. Graham, J. Pipher, J. Silverman and W. Whyte. NTRUSign: Digital
Signatures Using the NTRU Lattice. In Proceeding of CT-RSA ’03, LNCS, vol. 2612,
Springer-Verlag, pp.122-140, 2003.

2. J. Hoffstein, D. Lieman, J. Silverman. Polynomial Rings and Efficient Public Key
Authentication. In Proceeding of CrypTEC ’99, City University of Hong Kong Press,
pp. 7-19, 1999.

3. J. Hoffstein, J. Pipher and J. Silverman. NTRU: A Ring-Based Public Key Cryp-
tosystem. In Proceeding of ANTS III, LNCS, vol. 1423, Springer-Verlag, pp. 267-288,
1998.

4. J. Hoffstein and J. Silverman. MiniPASS: Authentication and Digital Signatures in
a Constrained Environment. In Proceeding of CHES ’00, LNCS, vol. 1965, Springer-
Verlag, pp. 328-339, 2000.

5. J. Hoffstein and J. Silverman. Polynomial Rings and Efficient Public Key Authen-
tication II. Available at www.ntru.com.

6. Hongjun Wu, Feng Bao, Dingfeng Ye, Robert Deng. Cryptanalysis of Polynomial
Authentication and Signature Scheme. In Proceeding of ACISP ’00, LNCS, vol. 1841.
Springer-Verlag, pp. 278-288, 2000.


	Introduction
	An Overview of PASS and PASS II
	Preliminary and Notations
	 PASS 
	PASS II and MiniPASS

	Two Attacks Due to Wu et al.
	Wu et al.'s Attack 1
	Wu et al.'s Attack 2

	Our Attacks on PASS II and MiniPASS
	Extended Attack 1
	Extended Attack 2

	Structure Analysis
	Concluding Remarks


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




