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Abstract. We propose a new basic trapdoor �IC (�-Invertible Cycles)
of the mixed field type for Multivariate Quadratic public key cryptosys-
tems. This is the first new basic trapdoor since the invention of Un-
balanced Oil and Vinegar in 1997. �IC can be considered an extended
form of the well-known Matsumoto-Imai Scheme A (also MIA or C∗),
and share some features of stagewise triangular systems. However �IC
has very distinctive properties of its own. In practice, �IC is much faster
than MIA, and can even match the speed of single-field MQ schemes.
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1 Introducing MQ Public Key Cryptosystems

�
x = (x1, . . . , xn)

�
private: S

x′

�
private: P ′

y′

�
private: T

output y ∈ F
m �

public:
(p1, . . . , pm)

We work over a finite field F of q elements (the base
field). P ′ ∈ MQ(Fn, Fm) is a system of m quadratic
polynomials in n variables in F, called the central map
and its components central polynomials. Composition
with the affine maps S, T masks the structure of P ′

and gives the public map:

P = (p1, . . . , pm) := T ◦ P ′ ◦ S (1)

We usually write, for 1 ≤ i ≤ m, 1 ≤ j ≤ k ≤ n,

pi(x1, . . . , xn) :=
P

1≤j≤k≤n γi,j,kxjxk+
Pn

j=1 βi,jxj+αi

where αi is usually normalized to zero. The Public key
comprise the mn(n + 3)/2 coefficients γijk, βij ∈ F.

Fig. 1. Illustration of Terminology and Notation for a modern MQ-trapdoor

Multivariate Quadratic (MQ) public-key cryptography first appeared in the
English literature in the mid ’80s [FD85, IM85] as alternatives to traditional
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PKCs. A common excuse given to study them is “for ecological diversity”, in-
evitably mentioning Quantum Computers that will easily break factoring and
discrete-log-based PKCs (Shor’s algorithm [Sho97]). However, we hope to show
that there is independent interest in studying MQ PKCs below.

To construct a PKC, we need to be able to invert P ′ efficiently. A simple
method to build P ′ for consequent inversion is a basic trapdoor, which can
be combined or modified slightly to create variants. Using the terminology of
[WP05b], we have a handful of systemic ways to create new central maps, which
we call “Modifiers”, from the following four previously known basic trapdoors:

Mixed-Field (or “Big Field”): Operates over an extension field E = F
k.

MIA: Matsumoto-Imai Scheme A or C∗ ([IM85], Imai-Matsumoto).
HFE: Hidden Field Equations ([Pat96], Patarin), a generalization of MIA.

Single-Field (or “True”): Works on the individual components of x′ and y′.
UOV: Unbalanced Oil and Vinegar ([Pat97, KPG99], Patarin et al).
STS: Stepwise Triangular System (lectures in Japanese from ’85 – [TKI+86],

Tsujii; in English, [Sha93]). Generalized later to its present form [GC00,
WBP04].

Some primitives are composite, e.g., Medium Field Encryption (triangular stages
[WYHL06]) or enTTS/TRMS/Rainbow [DS05b, WHL+05, YC05] (UOV stages).

Outline. In the next section, we introduce our new trapdoor and discuss its ba-
sic properties. In particular, we show that certain instances can be inverted very
quickly. Section 3 give cryptanalytic properties of this basic trapdoor and enu-
merates possible attacks. Section 4 discusses counter-measures to these attacks,
i.e., modifiers. We give the practical instances in Section 5. These we verify to
withstand known attacks. The main text of the paper concludes with Section 6.

2 �-Invertible Cycles (�IC)

In this section, we will introduce a new basic way to construct central maps
for MQ public key cryptography that does not fit into the above taxonomy
and hence can be considered a new basic trapdoor with properties in between
that of MIA and STS. It runs much faster than MIA, and hence has practical
value especially in resource-limited environments (e.g. smart cards). Due to its
structure, we call it “�-Invertible Cycles” (�IC). We will motivate this name later.

2.1 Basic Trapdoor

A Cremona Transformation is a map on the projective plane that is quadratic in
the homogeneous coordinates [Ful89]. A standard example is the map (A1, A2, A3)
→ (A2A3, A3A1, A1A2) which easily checks to be well-defined. The map is
uniquely and efficiently invertible when A1A2A3 �= 0.

We extend this idea below to any integral cycle length � ≥ 2; we illustrate
with the case � = 3 since (unfortunately) the case � = 2 is a bit more technical.
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Fig. 2. Graphical Representation of 3-Invertible Cycles

Note that we write N for the non-negative integers, i.e., we have N := Z
+∪{0}.

To express properly the successor in {1, . . . , �} we define

μ : {1, . . . , �} → {1, . . . , �} : μ(i) :=
{

1 for i = �
i + 1 otherwise (2)

Definition 1. Fix an integer � ≥ 2 as the length of the cycle. Let F be the base
field with q := |F| elements and E :=GF(qk) its kth-degree extension for some
k ∈ Z

+. Computations in E are modulo the irreducible polynomial π(t) ∈ F[t].
We denote Q := |E| = qk and have m = n = �k for the number of variables and
equations over the ground field F, respectively. In addition, let S, T ∈ Aff−1(Fn)
be two invertible affine mappings and the vector Λ := (λ1, . . . , λ�) ∈ {0, . . . , k −
1}�. We now have the following mapping:

P : E
� → E

� : (A1, . . . , A�) → (Aqλ1

1 A2, . . . , A
qλ�−1

�−1 A�, A
qλ�

� A1) (3)

Identifying the corresponding coefficients in the vector spaces F
n and E

�, we get
a canonical bijection

φ : F
n → E

� : (x1, . . . , xn) → (x′
1 + x′

2t + . . . x′
ktk−1, . . . , x′

n−k+1 + x′
n−k+2t + x′

ntk−1)
(4)

and its inverse φ−1. The public key is computed as the composition

P : F
n → F

m : P := T ◦ φ−1 ◦ P ◦ φ ◦ S . (5)

We then call such a Multivariate Quadratic public key system of the �IC-type.

The name “invertible cycle” is due to that the variables A1, . . . , A� can be drawn
in the form of a cycle (cf. Fig. 2 for � = 3). The variables A1,A2,A3 are the
nodes while each edge stands for a product Aqλi

i Aμ(i) with i = 1, 2, 3.
Note that the use of the canonical bijection φ is similar for the Matsumoto-

Imai Scheme A (MIA) and Hidden Field Equations (HFE). However, we have
� = 1 here, and also a different form of the central mapping P ∈ E[X ]. In the
sequel, we denote the output of P by B1, . . . , B�, where

B1 := Aqλ1

1 A2, . . . , B�−1 := Aqλ�−1

�−1 A�, B� := Aqλ�

� A1
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Remark 1. The mapping Aqλi

i is linear over the ground field F. Hence, the central
equation P can be expressed as quadratic polynomials over F.

Remark 2. Replacing Aqλi

i Aμ(i) by Aqλi

i Aqκi

μ(i) for 1 ≤ i ≤ � and some κi ∈ N

does not increase the security of �IC: we can always reduce the second expres-
sion to Aqλi−κi (mod k)

i Aμ(i) by using Frobenius transformations. In a nutshell,
we exploit that Frobenius transformations are invertible linear mappings over
the vector spaces F

n and F
k, respectively, and can hence be “absorbed” into the

mappings S, T ∈ Aff−1(Fn). For Multivariate Quadratic systems, this idea has
been introduced under the name Frobenius sustainers [WP05a].

2.2 Singularities

To use �IC in as an encryption or as a signature scheme, we need to invert the
central map P , i.e., we need to find a solution (A1, . . . , A�) ∈ E

� for given input
(B1, . . . , B�) ∈ E

�. Unfortunately, this is not possible in all cases; due to its form
�IC has the following singularities:

{ (A1, . . . , A�) ∈ E
� | A1 = 0 ∨ . . . ∨ A� = 0}

Having Q := |E| and exploiting that Q in comparison with � is usually “big”
for practical and secure schemes we can approximate the probability that a
singularity occurs by (

�∑
i=1

(Q − 1)�−1

)
/Q� ≈ �

Q

In the Matsumoto-Imai Scheme A, we do not have this problem as MIA forms
a bijection. In comparison, Hidden Field Equations does not allow to compute
an inverse in about 40% of all cases for a practical choice of parameters [Pat96,
CGP01, WP04]. Our new trapdoor �IC is hence between these two extreme cases.
Practical values for Q will be discussed in Sec. 5.

2.3 Inversion

As we have as many free variables Ai as conditions Bi for 1 ≤ i ≤ �, we may
expect one solution on average when inverting P . Alas, this is not always true,
as shown by the obvious counterexample:

(B1, B2) := P (A1, A2) := (A1A2, A2A1) ∈ E
2.

So some instances of �IC that cannot be inverted usefully. For practical use, we
construct below a sequence of specific �IC instances which allows easy inversion.

Lemma 1. For a fixed � ≥ 2, let our �IC central map P : (A1, . . . , A�) �→
(B1, . . . , B�) be

B1 :=
{

A1A2 for � odd and
Aq

1A2 for � even , Bi := AiAμ(i) for 2 ≤ i ≤ � .
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Then the inverse image of (B1 . . . B�), where Bi ∈ E
∗ := E\{0}, ∀i is given by

A1 :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
�(�−1)/2

i=0 B2i+1
�(�−1)/2

i=1 B2i

for � odd and

q−1

√
��/2−1

i=0 B2i+1
��/2

i=1 B2i

for � even

Ai :=
Bi

Aμ(i)
for i = 2, . . . , �.

Proof. Case � = 3: We have B1 := A1A2, B2 := A2A3, B3 := A3A1. Simple
computations yield A1 :=

√
B1B3/B2, A3 := B3/A1, A2 := B2/A3.

Case � odd, � > 3: We use induction to extend the result from � = 3 to all odd
� > 3. Therefore we observe that the structure of the central mapping P
allows us to write equations of the form Ai = Aμ(μ(i))

Bi

Bi+1
for 1 < i < � by

eliminating the variable Aμ(i). Hence, the fraction Bi

Bi+1
can be inserted in

the inversion formula for A1 in the case (� − 2).
Case � even: The proof for this case is analogous. We start our induction

with � = 2 and have B1 := Aq
1A2, B2 := A2A1 and its inverse A1 :=

q−1
√

B1/B2, A2 := B2/A1.

Bijectivity. For � odd or F of characteristic 2, the above mapping is a bijection
in (E∗)�. For � even, the situation is more difficult as (q − 1) | (qa − 1) for any
a ∈ Z

+, and we loose bijectivity for any q > 2. However, for q = 2, we obtain a
bijection. Moreover, inversion now only costs two divisions in the extension field
E and we need not solve any nontrivial equations.

Special instances. When � = 2 we say it is a Binary Invertible Cycle (2IC) and
when � = 3 a Delta Invertible Cycle (3IC) (see Fig. 2).

3 Cryptanalytic Properties of �IC

We herein discuss some basic cryptanalytic properties of the new trapdoor. This
serves a dual purpose: We find an easy cryptanalysis for �IC in its basic form.
Simultaneously, we effectively put �IC through the same screening process as
other MQ trapdoors, particularly Matsumoto Imai Scheme A. This points us
toward ways to build practical, more resilient �IC-based schemes.

One attack is left to a later section because we only heard of it succeeding,
and do not even have any details.

3.1 Patarin Relations

We start with an extension of the Patarin relations used to cryptanalyse MIA
[Pat95]. This was used by Fouque, Granboulan, and Stern to cryptanalyse the
internally perturbed MIA encryption scheme (PMI/MIAi) [FGS05]. As is more
customarily employed against symmetric cryptosystems, we examine this multi-
variate differential :

P (A1, . . . , A�) − P (A1 − δ1, . . . , A� − δ�) + P (δ1, . . . , δ�)

= (Aqλ1

1 δ2 + A2δ
qλ1

1 , . . . , Aqλ�

� δ1 + A1δ
qλ�

� )
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We observe that the above equations are linear in the unknowns Ai ∈ E for any
given values δi ∈ E and 1 ≤ i ≤ �. Now we simply pick δi at random and compute
many differentials of the public key. Soon we recover enough linear relations to
invert the public map. This effectively finds an equivalent private key. It may be
estimated that the number of linearization equations for F = GF(2) is 4�, which
we do not have space to describe here.

This resembles MIA and HFE in that the Patarin attack is very efficient
against the former, and an extended version of the attack defeats the latter if
bijective central maps are used [Pat95, Pat96].

3.2 Rank Attacks

In a rank attack, the quadratic parts central and public polynomials of a given
Multivariate Quadratic public key system are written as symmetric matri-
ces. We try to recover the private key by finding linear combinations of the
public matrices with certain specific ranks. Their initial cryptographical use
was by Coppersmith-Stern-Vaudenay to break Birational Permutations [CSV93].
Goubin and Courtois [GC00] have the most straightforward exposition of rank
attacks. Later extensions and analysis can be seen in [WBP04, YC05].

There are two distinct types: In one the cryptanalyst randomly tries to hit
kernel vectors of a linear combination of the public matrices with the lowest
rank R. The running time is proportional to qR�m/n�. In the other random linear
combinations are taken, hoping to locate a precipitous fall in rank. This takes
time ∝ qu, where u counts the central equations whose coefficients must vanish.

For �IC, we want to write matrices in blocks corresponding to pairs of variables
in the larger field E. Express central matrices as H1, . . . , H� ∈ E

�×� and their
E-blocks as ηi,j,k ∈ E for 1 ≤ i, j, k ≤ �.

ηi,j,k :=

⎧⎨
⎩

Mλi if i = j, k = μ(i),
MT

λi
if i = k, j = μ(i),

0 otherwise,

where Mr is the matrix in F
k×k that correspond to the Frobenius map A �→ Aqr

.
Note that these matrices are symmetric. In the case of 3IC, i.e., � = 3, they
effectively specialize to

H1 :=

⎛
⎝0 1 0

1 0 0
0 0 0

⎞
⎠ , H2 :=

⎛
⎝0 0 0

0 0 1
0 1 0

⎞
⎠ , H3 :=

⎛
⎝0 0 1

0 0 0
1 0 0

⎞
⎠ .

All these matrices have essentially rank 2 over the extension field E. For the
actual attack, we would need to transfer M ∈ E

�×� to F
n×n. However the overall

attack complexity is not affected by this change of vector space. Just as in other
schemes using extension fields (e.g. cf. Medium Field Encryption [WYHL06]),
when performed in F we have a rank of 2k for all these matrices. We may see
that the running time of the both the above algorithms are Q2 = q2k times some
polynomial factor in n and m, which is cubic in the practical range.
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Note that there are instances in which one or the other rank attack simply
fails to work. One example is the case of 2IC, i.e., for � = 2. Here rank attacks
will not apply as any nontrivial linear combination of the private polynomials
(matrices) has the maximum rank n = 2k. The above discussion of rank attacks
are in line with results of tests on �IC and modified �IC schemes with blocks of
24 and 32 bits (which are admittedly very small).

3.3 Gröbner Basis Computations

Another important type of attack are Gröbner attacks as in the cryptanalysis
of HFE [FJ03]. The most powerful algorithms known are of the Faugère-Lazard
type. These essentially run eliminations on an extended Macaulay matrix, and
include F4/F5 and what is known as XL [CKPS00, Fau99, Fau02] plus variations.

We know from the cryptanalysis of MIA and HFE that their easy algebraic
structure leads to a low running time of the corresponding Gröbner bases al-
gorithm. Due to the very easy structure of �IC, we expect a similar behaviour
here. This is in line small scale experiments using Magma [MAG], so we must
disrupt the regular structure. In general, when the structure of the system is
sufficiently perturbed, the behavior is as in generic systems studied by Bardet,
Faugère et al [BFS04, BFSY05, YC04b, YC04a]. E.g., we tested 3IC– systems
with MAGMA v2.12-8 on a 2GB machine using E = (GF(256))4 or (GF(256))5.
If we removed at least least two components, the resulting system resolved in
exactly the amount of time as a generic one (including segfaulting on 13-variable
systems). With only one component removed, it resolved nearly instantly.

3.4 Separation of Oil and Vinegar

In the original 3IC, we see that variables corresponding to the components of
A1 are only multiplied with those of A2 and A3. This makes for a UOV type
of attack [KPG99] which has a complexity roughly proportional to n4qd, where
d is the difference between the size of the oil and vinegar sets. We can proceed
similarly for other choices of �. We see that the UOV attack has time complexity
∼ Q for odd � and very small complexity for even �. Since the minus modifier
does not change the complexity of the UOV attack, 3IC– as a signature scheme
is ok if we use large enough Q. The plus modifier disrupts the UOV attack so
the 2ICi+ that we will investigate later is not susceptible.

3.5 Further Attacks

There is a special attack from Felke [Fel04] to defeat the technique called “branch-
ing” as used in the original C∗. We have investigated this matter and concluded
that the attacks against branching do not apply against �IC.

A different class from XL are algorithms from [CGMT02] which deal with
the case n � m. As we usually have m = n, or n ≈ m for the embedding
modification (cf Sec. 4.3), these algorithms are not applicable to our setting.
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4 Modified Versions

Due to the effectiveness of the attacks considered above, we need to apply mod-
ifiers [WP05b, Sec. 4] to the basic trapdoor to obtain secure schemes. This is
the same situation as for MIA and HFE. To the best of our knowledge every
published attack against a system of this type is covered by this paper.

4.1 �-Invertible Cycles Minus (�IC-)

The first modification is the so-called “minus” modification. Here, Let R be the
projection from F

n �→ F
m that simply discards the final parameters. r := n − m

as “reduction parameter”. The public key is now P := R ◦ T ◦φ−1 ◦P ◦φ ◦S . In
contrast to (5), we have inserted the reduction R after the affine transformation
T . When inverting �IC, we assign random values to these missing r coordinates
over F. Hence, we have qr possible inputs for each message y ∈ F

m.
As for MIA and HFE, the minus modifier increases the complexity of the

Patarin attack (Sec. 3.1) by a factor of qr, since instead of one possible solution,
the attacker is now faced with an r-dimensional vector space over F of possi-
ble solutions. To our current knowledge, picking the right one requires brute
force and hence at least qr operations. In addition, the attack complexity of the
Faugère-Joux attack [FJ03] also increases by at least qr.

Like with MIA, we cannot use �IC- for encryption, only for signature schemes:
as there are r equations missing, the legitimate user must work equally hard
to recover the correct solution x ∈ F

n. As our security assumption is that qr

computations are not possible, we reached a contradiction if we assume that
the legitimate user can obtain the message x while the attacker cannot. As for
Stepwise-Triangular, rank attacks are unaffected by the minus modification.

4.2 �-Invertible Cycles Internally Perturbed Plus (�ICi+)

The generic plus modifier adds a ∈ Z
+ random equations in n input variables

each to the private key. This is applicable to encryption only, as the extra equa-
tions (without trapdoor) slow down signature generation by qa — it takes that
many tries to find one output of the �IC mapping P to meet those conditions.

Patarin relations and Gröbner attacks are not affected by the plus modifi-
cation. However, it is still useful to build an encryption scheme. In the case of
MIA because the “plus” helps to overcome some attacks against the internally
perturbated modification. Here, it also prevents a UOV attack.

Internal perturbation has been introduced for MIA and HFE as PMI (“Per-
turbated Matsumoto-Imai”) and ipHFE respectively [Din04, DS05a]. We can
also call them MIAi and HFEi. As PMI/MIAi has been broken in [FGS05], a
new variant PMI+/MIAi+ has been proposed [DG06]. Due to space limitations
we do not go into details, but we believe PMI+ unaffected by the attack from
[FGS05]. Hence, combining the two modifications internal perturbation and plus
allows the construction of an efficient encryption scheme. However, the central
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mapping P ′ and all its components need to have full rank. In our setting, this
means that we cannot use any other cycle length but � = 2, i.e., 2IC.

After talking about the impact of the internal perturbation modification, we
now properly introduce it: Let w ∈ Z

+ for w < n be the perturbation dimension,
P i ∈R MQ(Fw, Fn) a uniformly randomly chosen system in w input variables
and n equations, and Si ∈ Aff−1(Fn, Fw) the so-called “perturbation space”. Note
that the perturbation space has the same input variables x1, . . . , xn as the affine
transformation S ∈ Aff−1(Fn). However, it has only dimension w. Hence we can
write (z′1, . . . , z

′
w) := Si(x1, . . . , xn) for the perturbation variables z′1, . . . , z

′
w. As

for the plus modification, we denote with P∗ := φ−1 ◦ P ◦ φ the �IC mapping
over the ground field F.

The public key for �ICi is now composed as

P := T ◦ [(P∗ ◦ S) + (P i ◦ Si)] ,

i.e., we add the perturbation polynomials to the original �IC-polynomials. To
invert this modified trapdoor, i.e., to compute x ∈ F

n for given y ∈ F
m, we need

to guess correctly the values of the perturbation variables (z′1, . . . , z
′
w) ∈ F

w —
which translates to a workload proportional to qw. As the number of equations
and the number of variables matches, we expect one solution on average for any
given input y ∈ F

m. However, when used as an encryption scheme, there is at
least one valid output x ∈ F

n. We know that the i modifier by itself is not
secure, and it must be combined with the + modifier as shown by the Fouque-
Granboulan-Stern differential attack [FGS05].

4.3 �-Invertible Cycles Embedded (�IC↗) Without Singularities

Here we introduce the new modifier embedding (↗), motivated by the practical
need to avoid singularities in trapdoors of the �IC-type.

With the minus modification, singularities are of no concern: they are too
few and we can always change the input in the missing equations to obtain a
possible signature. However, when �IC is used in the context of an encryption
scheme, its singularities pose a problem as they lead to decryption failures. The
modification described in this section can also be used in other schemes which
suffer from a decryption failure such as [WYHL06]. In fact, it is a new generic
modifier and can be used in any Multivariate Quadratic construction.

For our new embedding modifier we embedding the following translation from
F

k−1 → F
k that takes (x1, . . . , xk−1) to (x1, . . . , xk−1, 1). In effect, we have

eliminated the zero-point from the vector space F
k. As we used the canonical

bijection φ between the vector space F
k and the extension field E, the zero of

E cannot be reached anymore for any given input (x1, . . . , xk−1) ∈ F. The price
we pay are fewer input variables, i.e., we now obtain an overdetermined system
of polynomials. We can do the same to all � variables A1, . . . , A� ∈ E. Calling
the corresponding transformation ν : F

n → F
n−� and setting k := (n − �)/� for

k ∈ N we obtain the following construction for the public key

P = T ◦ φ−1 ◦ P ◦ ν ◦ S . (6)
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To do signing, the “inverse” transformation ν−1 : (y1, . . . , yk−1, 1) → (y1, . . . , yk−1)
needs to be inserted between the affine transformation T and the �IC mapping P .
To the same effect, we could have used the construction of (6). However, this would
have slowed down signature generation by a factor of q� as we have � additional
equations over F to satisfy for any given input B1, . . . , B� ∈ E.

5 Practical Instances

We use the previous section to develop practical instances of �IC. Main purpose
is to see how variations on �IC scales up for different security levels.

5.1 Signature

To obtain a secure signature scheme, we use �IC–, in particular 3IC–, as this
seems the most suitable modification for our purpose. In particular, the secu-
rity of the minus modification is well understood; we are therefore able to give
instances of �IC– for several security levels. Different choice of parameters are
possible, 3IC– with q = 256 seems most suitable(cf. Sec. 3), and still allows
efficient implementation on 8-bit microprocessors which are still dominant in
low-end smart cards. We summarize optimal choices in Table 1. Preliminary
tests show that �IC- is orders of magnitude faster than MIA-; further data will
be posted if we can avoid the differential attack on �IC-.

Table 1. �IC- over GF(256) with Different Security Levels for Signing

Claimed Input Output Parameters Attack Complexity Key Size [kBytes]
Security [bits] [bits] n m � k r Gröbner Rank/UOV Public Private

280 160 240 30 20 3 10 20 280 285 9.92 1.86
296 192 288 36 24 3 12 24 296 2104 16.8 2.59

2128 256 384 48 32 3 16 32 2130 2137 39.20 4.70

5.2 More on Differential Attacks

[FGS05] was a differential attack in the classical sense – take differentials and try
to find a distinguisher. It was announced at the rump session of Asiacrypt 2006
that SFLASH (MIA-) was finally broken on the extension of such an attack. This
is so far an unpublished attack, because the details are very sketchy. However,
due to the extreme similarity between MIA and �IC, if SFLASH (MIA-) cannot
be patched, �IC- will likely suffer the same fate, so now we do not recommend
�IC- unless this can be circumvented.

5.3 Encryption

We base our proposed encryption scheme on 2ICi+↗, i.e., 2-Invertible Cycles
with internal perturbation, added equations, and embedding (to avoid decryption
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errors). With this choice of scheme, we suggest the following parameters: q =
2, n = 132, m = 146, � = 2, k = 67, w = 6, a = 12. This leads to a public
key of 160.2 kBytes and a private key of 5.7 kBytes, respectively. The claimed
security level is 280. Our choice of parameters is based on [DG06]. Due to space
limitations in this paper we do not repeat their arguments but point to [DG06].
However, we want to stress that at present, our understanding of the security
of the internal perturbation modification is limited although there some results
on Gröbner bases in [DGS+05]. This means in particular that we do not have
precise security estimations for higher security levels.

5.4 Implementation and Speed

A good overview on implementing finite field operations can be found in [LD00].
Computing direct division in finite fields is given in [FW02]. Counting operations
for the inversion formula in Lemma 1 over E =GF(qk), we see that we need �
divisions, (� − 2) multiplications, and one root. Note that the operations do not
take place in a big field GF(qn) but in a much smaller extension field GF(qk). It
is difficult to give a closed formula for the speed of basic arithmetic operations as
they largely depend on the model used, e.g., hardware vs. software, operations
on bits vs. operations on processor words. Nevertheless, when counting our costs
in operations in the ground field F, we can roughly say that we have O(a2)
for squaring/multiplying and O(a3) for division/exponentiation. Here we have
l ∈ Z

+ the extension degree of the corresponding field E = GF(qa) over the
ground field F = GF(q). We have to keep this in mind when comparing �IC with
the other two mixed field schemes MIA and HFE.

Comparison with MIA and HFE. Inverting the mixed field scheme MIA costs
one exponentiation with large exponent [CGP02]. In a nutshell, this translates to
n squaring operations and 1/2n multiplications in GF(qn). Therefore, we obtain
an overall workload of O(n3). Tricks to speed this operation up can be found in
[ACDG03]. In the case of HFE, the situation is even worse as we need to execute
a complete root finding algorithm to invert the central mapping [CGP01]. Its
running time is estimated to be in O(n3d2 + n2d3) for d the total degree of the
central mapping [Pat96]. In practice, we have d = 129, . . . , 257.

We can summarize our results for the three maps MIA, HFE, and �IC as
follows: the first needs O(n3) operations in the ground field F for n the extension
degree as it needs to compute Y h for given Y ∈ GF(qn) and h ∈ Z

+, i.e.,
an exponentiation. The second needs to solve a univariate polynomial equation
P (X) = Y for P being a polynomial of fixed degree d ∈ Z

+. The corresponding
running time is about O(n3d2 + n2d3) operations in the ground field F. Finally,
�IC needs O(�k3 + �k2) operations over the ground field F.

A choice for MIA is SFLASHv2 with q = 128, n = 37 [CGP02]. For HFE, we
have q = 2, n = 103 in Quartz [CGP01]. Choices for �IC are given in Sec. 5.3
and Table 1, respectively. Both trapdoors have a claimed security level of 280

3DES computations as required in NESSIE [NES]. Note that Quartz uses the
underlying trapdoor four times to achieve very short signatures of 128 bit. This
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special construction is called a “Chained Patarin Construction” (CPC). We sum-
marize our comparison in Table 2. Preliminary runs to sign with m = 24, n = 36
matches the speed enTTS [YC05] which means it is much faster than SFLASH.

Further Speed up. �IC is amenable to parallelizing on multiple arithmetic units.

�IC i+ implementations. We compare simple runs of �IC i+ on a 10MHz 8052
simulator with q = 2, n = 134, m = 146, � = 2, k = 67, w = 6, a = 12 (public key
160.2 kBytes, private key 5.7 kBytes), and per transmission time 1.4 seconds.
Our PMI+ program has n = 84, m = 96, q = 2, and a transmission time of 2.5
seconds per block. �IC i+ is clearly quite a bit faster.

6 Conclusions

In this article, we have constructed a new basic Multivariate Quadratic trapdoor
called �-invertible cycles (�IC). It is the first time since nearly a decade that a
basic trapdoor has been found. The main motivation for this new trapdoor is
speed: instead of computing operations in the big finite field E = GF(qn) for
q := |F| and n the number of variables, we compute in the much smaller extension
field E = GF(qk) for n = �k for some cycle length �. Typical choices of � are 2
and 3. Depending on the architecture, finite field arithmetic costs up to O(n3).
Hence, decreasing the size of the extension field E results in a significant speed-
up in practice. In particular, our implementation is expected to outperform the
previously fastest trapdoor Matsumoto-Imai Scheme A (MIA). In addition, we
have formally introduced the new embedding modifier (↗). It is motivated by
the practical need to achieve �IC-type schemes without decryption failure. Apart
from �IC, constructions like [WYHL06] suffer from this problem.

Table 2 shows the different complexities, parameters and public key sizes for
trapdoors of the mixed field types with a claimed security level of 280. Unfor-
tunately, we do not have exact estimations on their inherent complexity but
asymptotic ones. Nevertheless, we see that �IC for a similar security level is ex-
pected to perform significantly better than the two other basic trapdoors HFE
(using parameters from Quartz) and MIA (parameters from SFLASHv2). Apart
from this, we have shown that �IC can be used both in signature schemes of
various security levels as well as in an encryption scheme. We want to stress

Table 2. Mixed Field Trapdoors with Claimed Security Level 280

Complexity to Key Size [kBytes]
Trapdoor Invert Trapdoor Parameters Public Private

HFE (Quartz) O(n3d2 + n2d3) q = 2, n = 103, d = 129 71 3
MIA (Sflash) O(n3) q = 128 n = 37 15.4 2.45

�IC, � = 3 O(�k3 + �k2) q = 256, k = 10 9.92 1.86
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here that trapdoors from the single field class, i.e., Unbalanced Oil and Vine-
gar (UOV) and Stepwise-Triangular Schemes (STS) do not allow constructions
leading to encryption schemes.

So as an overall conclusion, we have presented a new trapdoor which is both
interesting from a theoretical point of view and also has advantages over previ-
ously known schemes. At present we have to leave it as an open question exactly
which forms of �IC than these given in Lemma 1 allow efficient inversion.

We stress that it is still an original sin that no list of possible attacks can be
exhaustive. Multivariate Quadratic schemes are still in need of some provable
security results. But we hope to have shown that the variety available in the
genre keeps it in play and interesting.
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