
Int. J. Inf. Secur. (2006) 5(4): 231–240
DOI 10.1007/s10207-006-0003-9

REGULAR CONTRIBUTION

Jintai Ding · Dieter Schmidt · Zhijun Yin

Cryptanalysis of the new TTS scheme in CHES 2004

Published online: 4 April 2006
c© Springer-Verlag 2006

Abstract We combine the method of searching for an in-
variant subspace of the unbalanced Oil and Vinegar signa-
ture scheme and the Minrank method to defeat the new TTS
signature scheme, which was suggested for low-cost smart
card applications at CHES 2004. We show that the attack
complexity is less than 250.
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1 Introduction

The subject we deal with is the new TTS authentication sys-
tem presented at CHES 2004. This new system belongs to
the family of TTS multivariate signature schemes [23]. The
main achievement of our work is to show how the combina-
tion of several different attack methods can be used to defeat
the new TTS system, and more generally how combining
known attacks on multivariate schemes can be a powerful
tool.

In the last few years, new methods have been invented to
construct multivariate cryptosystems, which use multivariate
functions instead of functions of a single variable. The secu-
rity of this type of cryptosystems is based on the fact that
solving modular polynomial equations with many variables
is an NP-complete problem [10].

In 2003, Sflash [18], a multivariate signature scheme was
selected by NESSIE, the New European Schemes for Sig-
natures, Integrity, and Encryption project within the Infor-
mation Society Technologies (IST) Programme of the Eu-
ropean Commission, as one of the security standards for
low-cost smart-card applications. Sflash is a variant of the
Matsumoto–Imai encryption cryptosystem [14], and is de-
rived from it by applying the minus method, which was orig-
inally suggested by Shamir [20]. The minus method amounts
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to taking out (minus) a few components of a given multi-
variate map. After Patarin defeated the original Matsumoto–
Imai encryption cryptosystem [16], several variants and ex-
tensions of the Matsumoto–Imai cryptosystem [5, 6, 17, 19],
including Sflash, were constructed.

Another interesting family of cryptosystems is the TTM
system [15]. The basic idea of this construction in some way
originated from the famous Jacobian Conjecture in mathe-
matics. For the TTM construction, the key building block are
the nonlinear invertible de Jonquières maps J (z1, . . . , zm)
over an m dimensional vector space on a field k, which maps
an element X = (z1, . . . , zm) in km according to:

J (z1, . . . , zm)=(z1 + g1(z2, . . . , zm),

z2 + g2(z3, . . . , zm), . . . , zm−1 + gm−1(zm), zm)

where the gi are polynomial functions. The de Jonquières
maps belong to the family of so-called tame transformations
from algebraic geometry.

Although the inventor of TTM argued that the system
is very secure against all known standard attacks, Courtois
and Goubin [11] claimed that they could defeat the TTM
schemes. The inventor of TTM refuted this claim in [1],
and presented a new implementation scheme to support their
case. In [7] another method was found to defeat the origi-
nal TTM schemes in [15] and all other schemes suggested
in [3]. Later Ding and Schmidt [8, 9] also defeated the
new schemes in [1], and pointed out that all existing TTM
schemes share a common defect that makes them insecure.
Thus, at this moment all variants of TTM remain insecure.

The original TTM schemes were intended for the pur-
pose of public key encryption. Attempts were made to ap-
ply a similar but simpler idea for signatures, the result be-
ing called the TTS (tamed transformation signature) scheme.
It is essentially the result of an application of the minus
method in [20] to a tame transformation. A few systems
were suggested by Chen and his collaborators in [2, 22] and
the security and efficiency of these systems were claimed to
rival that of Sflash. The inventors of the first TTS schemes
later admitted in [23] that they had been careless about their
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security claims, and they showed that all schemes in [22]
could be defeated easily. New schemes were suggested in
[23] and again were claimed to have the security and effi-
ciency rivaling those of Sflash. One scheme in particular was
carefully studied in terms of its practical implementation on
low cost smart-card, and was presented at CHES 2004 [24].
They concluded that the system is indeed very efficient.

In this paper, we will present an attack method that de-
feats the new TTS scheme studied in [24] with a complexity
of less than 250 computations in a finite field of size 28. Our
attack method is a combination of the method suggested in
[12] used to attack the unbalanced Oil and Vinegar scheme,
with the Minrank attack. The attack is successful, despite the
claim of the authors in [23, 24] that the new scheme is totally
secure from the Minrank attack.

This paper contains three main sections in addition to
the introduction. In Sect. 2 we will introduce the original
TTS schemes, give a brief cryptanalysis, and then review
the new TTS signature schemes. In Sect. 3 we will present
the cryptanalysis of the new TTS scheme, which was given
in [24]. We will present our conclusions in the last section.

2 TTS and the new TTS schemes

2.1 The original TTS scheme and its cryptanalysis

The original TTS scheme [2, 22] combines Shamir’s idea of
Minus [20] with the basic idea of TTM. This combination
was first implicitly pointed out in [11], where it was called a
Triangular–Minus system.

For the case of such a TTS scheme [2, 22], the
public key T̄ is made of m quadratic polynomials
in n variables over a finite field, T̄ (x1, . . . , xn) =
(y1(x1, . . . , xn), . . . , ym(x1, . . . , xn)), where m < n. The
m polynomials yi , are made public for verifying the authen-
ticity of the signature. We will limit our discussion to finite
fields with characteristic 2, since this was used in all TTS
schemes, although their construction would work for finite
fields with odd characteristics.

The map T̄ from kn to km is derived as T̄ = L̄1◦J−◦ L̄2,
where ◦ denotes the composition of maps, L̄1 is an invert-
ible affine linear map on a space of dimension m, L̄2 is an
invertible affine linear map on a space of dimension n and
L̄1, L̄2 are randomly chosen. The map

J
−(z1, . . . , zn) = (zn−m+1 + gn−m+1(z1, . . . , zn−m),

zn−m+2 + gn−m+2(z1, . . . , zn−m+1), . . . , zn + gn(z1,

. . . , zn−1)) = (ȳ1(z1, . . . , zn−m+1), . . . , ȳm(z1, . . . , zn)),

which is derived from the upper-triangular de Jonquières
map

J(z1, . . . , zn) = (z1, z2 + g2(z1), . . . ,

zn−m+1 + gn−m+1(z1, . . . , zn−m),

zn−m+2 + gn−m+2(z1, . . . , zn−m+1), . . . ,

zn + gn(z1, . . . , zn−1))

by removing the first n−m components (the minus method).
One can see that T̄ = L̄1 ◦ U−1 ◦ U ◦ J− ◦ L̄2, where U is a
randomly chosen lower-triangular invertible linear transfor-
mation from km to km such that

U (z1, . . . , zm)

=
⎛
⎝a11z1,

2∑
j=1

a2 j z j , . . . ,

i∑
j=1

ai j z j , . . . ,

m∑
j=1

amj z j

⎞
⎠ ,

where each a j j �= 0 for j = 1, . . . , m. Then we have

U ◦ J
−(z1, . . . , zan)

=
⎛
⎝a11 ȳ1(z1, . . . , zn−m+1),

2∑
j=1

a2 j ȳ j (z1, . . . , zn−m+ j ),

. . . ,

i∑
j=1

ai j ȳ j (z1, . . . , zn−m+ j ),

. . . ,

m∑
j=1

amj ȳ j (z1, . . . , zn−m+ j )

⎞
⎠

= (w̄1(z1, . . . , zn−m+1), . . . , w̄m(z1, . . . , zn)).

Therefore U ◦J− is an equivalent choice for J−. In this case,
we can associate the standard bilinear form to the quadratic
part of w̄i . The ranks of those bilinear forms will be in
ascending order, although not necessarily strictly ascend-
ing. This means that any such scheme cannot work, as the
Minrank method [11] can be used due to this property of
the ranks. This is a much more efficient attack method than
the one of [23], where an idea suggested in [4] was used. The
conclusion is that no matter what parameters one chooses,
the old TTS systems as given in [2, 22] are insecure.

2.2 The new TTS scheme

The authors admitted in [23] that their previous construc-
tions led to insecure schemes. They also suggested some
new schemes and made claims about their security and their
efficiency. The fundamental problem of their constructions
seems to be that they are very much concerned about the ef-
ficiency in order to beat Sflash, so that their constructions
are given in terms of specific formulas, rather than follow-
ing from basic general principles. This is why our attack
method relies on the specific form of these formulas, and
not on some general structure.

The paper [23] suggests four families of formulas and
one of them is carefully studied for its practical implemen-
tations on low cost smart-cards. It was presented at CHES-
2004. In this paper, we will attack this family, which appears
on page 373 of [24] and is called there TTS(20,28).

According to the claim in [23, 24] the system is secure
with at least a complexity of 280 (a minimum security re-
quirement by NESSIE). This specific construction depends
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on a map f (x0, x1, . . . , x27) = ( f1, . . . , f20) from kn = k28

to km = k20, where k is a finite field of size 28. The map is
given in the Appendix. The public key for the new TTS sys-
tem is F and given by

F = L1 ◦ f ◦ L2.

L1 is an invertible affine linear transformation over
k20. L2 is an invertible affine linear transformation
over k28. These two transformations make up the secret
key.

In order to sign a document P = (p1, . . . , p20), which
is an element of k20, one needs to find a solution of the
equation

F(x0, . . . , x27) = P. (2.1)

The reason that one can find a solution is due to the triangu-
lar type structure of the fi .

From the formulas, it is clear that the constructed fi can
be divided into three groups.

(I) = { fi | i = 1, . . . , 9}, (II) = { fi | i = 10, 11},
(III) = { fi | i = 12, . . . , 20}.
First, we notice that the quadratic part of Group (I) elements
are all in the form of

∑
i=1,...,7; j=8,...,16

ai j xi x j , (2.2)

and if we form any linear combination of those elements,
the rank of the associated quadratic form stays at 14. Sec-
ond, the Group (II) elements come from a de Jonquières
construction and if we add Group (I) elements to the Group
(II) elements, the rank of the corresponding bilinear form
increases, but the rank cannot exceed 16. Third, we notice
that the quadratic parts of Group (III) elements are all in
the form of

∑
i=1,...,18; j=19,...,27

ai j xi x j +
∑

i, j=8,...,18

bi j xi x j +
∑

j=19,...,27

c j x0x j ,

(2.3)

and if we add any Group (III) elements to any linear com-
bination of Group (I) and (II) elements, the rank of the cor-
responding bilinear form also increases and a random lin-
ear combination of all fi would produce a non-degenerate
quadratic form.

In order to sign a document P one needs to solve the
equation

f ◦ L2(x0, . . . , x27) = L−1
1 (P).

One first solves f (x0, . . . , x27) = L−1
1 (P), and then applies

L−1
2 .

To solve any equation in the form of f (x0, . . . , x27) =
( p̄1, . . . , p̄20), because of (2.2), one first randomly fixes
the values of x1, . . . , x7. This allows the polynomials from

Group (I) to produce nine linear equations, whose solution
gives the values of x8, . . . , x16. Then we plug the values
of x1, . . . , x16 into Group (II) and Group (III). Due to the
de Jonquières type triangular structure, f10 produces first
one linear equation, which gives the value of x17. Then one
once more plugs the value of x17 into f11, which gives a
linear equation to find the value of x18. Then we substitute
the values of x17, x18 into Group (III), and randomly choose
a value of x0. This, due to (2.3), produces again nine linear
equations, whose solution gives us the values of
x19, . . . , x27. Then one can apply L−1

2 to find a solu-
tion, which produces a signature vector.

To forge a signature, we need to know how to find a (not
THE) solution for the equation F(x0, . . . , x27) = P .

3 Cryptanalysis of the new TTS scheme

Our attack method is a combination of searching for invari-
ant subspaces [12], of Minrank [11] and of other general
methods for bilinear forms.

Let L2(x0, . . . , x27) = (L2,0(x1, . . . , x27), . . . , L2,27

(x1, . . . , x27)). Let F̃ = f ◦ L2, and F̃(x0, x1, . . . , x27) =
(F̃1, . . . , F̃20).

Similar we define ˜(I) = {F̃i | i = 1, . . . , 9}, (ĨI) =
{F̃i | i = 10, 11}, and the third part (ĨII) = {F̃i | i =
12, . . . , 20}. They have properties similar to those described
in (2.2) and (2.3) for Groups (I), (II) and (III).

First we know that for l = 1, . . . , 9,

F̃l =
∑

i=1,...,7; j=8,...,16

ali j L2,i L2, j . (3.1)

Therefore, if we could find the space of the linear com-
binations of the linear parts (no constant term) of L2,i ,
i = 1, . . . , 7, then we could do a linear substitution using
any linear equation, whose linear part is defined by elements
from this space. The solution is not unique, as can be seen
in [13, 21], but for our purpose it suffices to work with a ba-
sis for the subspace. According to algebraic geometry, sub-
stitution of a linear equation is equivalent to the evaluation
on a linear variety. Here the substitution by linear equations
is equivalent to substituting all the L2,i , i = 1, . . . , 7, by
constants.

Fi and F̃i are just linear combinations of each other
with additional constant terms due to the invertibility of L1.
Through a search for linear equations by linear combina-
tion, we could find nine linear independent equations, whose
solution gives the values of L2, j , j = 8, . . . , 16. Then
due to the de Jonquières structure of Group (II), through
substitution, the whole system will be reduced to solv-
ing a set of equations coming from linear combinations of
Group (ĨII) with all values of L2, j , j = 1, . . . , 18 given.
This can be handled easily and it is the final step of our
attack.
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Our attack strategy actually is first to find the linear span
of (Ĩ) then to find the linear span of both ˜(I) and (ĨI), and
then the linear span of the linear part of L2,i , j = 1, . . . , 7,
in order to break the system.

3.1 Step 1: The unbalanced Oil and Vinegar attack

In preparation for Proposition 1 below we define the follow-
ing set of variables.

– Let S be the set of all variables {x0, . . . , x27}.
– Let O = {x1, x3, x5, x7, x19, . . . , x27} be the set of the

so called Oil variables. The Vinegar variables make up
the set V = S − O .

– Let X = (x0, x1, . . . , x27) = ∑27
i=0 xi Ei , where Ei =

(0, 0, 0, . . . , 1, 0, . . . 0) is the vector whose component
at position i + 1 is 1 and the rest are zero.

– Let Ō denote the space of the span of the vectors corre-
sponding to the Oil variables, namely

Ō = Span(E1, E3, E5, E7, E19, . . . , E27),

– Let V̄ denote the space of the span of the vectors corre-
sponding to the Vinegar variables, namely

V̄ = Span(E0, E2, E4, E6, E8, . . . , E18).

Here we must be very careful about the difference
between the variables and the corresponding space.
The variables are just the coordinates of a vector in
terms of the standard basis. They are functions from
kn to k, which actually are elements in the dual space
of kn . Therefore, these two are the dual of each
other.

– Let L1(x1, . . . , x20) = (x1, . . . , x20) × A1 + (α1, . . . ,
α20) where A1 is an m × m invertible matrix. Let
L0

1(x1, . . . , x20) = (x1, . . . , x20) × A1 = (L0
1,1, . . . ,

L0
1,20), be the linear part of L1.

– Let L2(x0, . . . , x27) = (x0, . . . , x27)× A2+(a0, a1, . . . ,
a27), where A2 is a n × n invertible matrix. Let
L0

2(x0, . . . , x27) = (x0, . . . , x27) × A2, and L0
2,i is the

linear part of L2,i . We can also see that for any fixed i ,

L2,i = xi ◦ L2(x0, . . . , x27), (3.2)

namely L2,i can be derived as a composition of xi by L2
from the right.

– Let Õ = L0
2(Ō) be the image of Ō under L0

2.
– Let f 0

i denote the quadratic part of polynomial fi .
– Let f 0(x0, . . . , x27) = ( f 0

1, . . . , f 0
20).

– Let F0
i denote the quadratic part of polynomial Fi .

– Let F0(x0, . . . , x27) = (F0
1, . . . , F0

20), so that F0 =
L0

1 ◦ f 0 ◦ L0
2.

For each quadratic polynomial f 0
l = ∑

i≥ j ( fl)i j xi x j ,
we can use the standard method to associate an n × n sym-
metric matrix ml to it such that (ml)i i = 0 and (ml)i j =
(ml) j i = ( fl)i j , if i > j . For each ml , we can associate
a bilinear form as 〈X, X ′〉l = Xml(X ′)t and its quadratic
form 〈X, X〉l = Xml Xt . Here X ′ = (x ′

0, . . . , x ′
27). (Re-

mark: When a field with odd characteristic is used the defi-
nition of these matrices has to be modified accordingly.)

Similarly for each quadratic polynomial F0
l = ∑

i≥ j
(Fl)i j xi x j , we can associate an n × n symmetric matrix Ml .
For each Ml , we can also associate a bilinear form
as 〈X, X ′〉l = X Ml(X ′)t and its quadratic form 〈X, X〉l =
X Ml Xt .

Then we have that, for any fixed l,

Ml =
20∑

i=1

(A1)il
(

A2mi At
2

)
, (3.3)

where (A1)il are entries of the matrix A1.
Our first observation is that

Proposition 1

f 0
l(x0, . . . , x27) =

∑
i∈O, j∈V

αi, j,l xi x j +
∑

i, j∈V

βi, j,l xi x j ,

(3.4)

for any fixed l.

Let o = |O| and v = |V |. In terms of this description,
these polynomials are just some unbalanced Oil and Vinegar
polynomials [12] and all the matrices ml can be rewritten in
the corresponding form if we choose a coordinate system
as

X̄ = (x1, x3, x5, x7, x19, . . . , x27, x0,

x2, x4, x6, x8, x9, . . . , x18).

Here we choose the basis of the oil space as the first o com-
ponents and the basis of the vinegar space as the last v com-
ponents, and we have that 〈X, X〉i = X̄ m̄i X̄ t ,

m̄i =
(

0 bi

bt
i di

)
, (3.5)

where bi is an o × v matrix and di is a symmetric v × v
matrix. This follows directly from (3.4).

Let Z be the 28 × 28 permutation matrix such that X =
X̄ × Z .

Because those polynomials are unbalanced Oil and Vine-
gar polynomials, we can apply the attack method in [12] to
find the hidden Oil space Õ . According to [12], the compu-
tation complexity is roughly (28)v−o−1o4 < 223.

Now, let us assume that we have found Õ . Then we can
choose a new coordinate system such that the first o compo-
nents are from Õ and rewrite the matrix Mi .
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In terms of matrix notation, we can find an invertible n ×
n matrix A3 such that

A3 Mi At
3 = M̄i =

(
0 Bi

Bt
i Di

)
, (3.6)

which follows from (3.5) and (3.4).
Let L3(x0, . . . , x27) = (x0, . . . , x27) × A3. Then we

know that the subspace Ō is invariant under the linear trans-
formation L0

2 ◦ L3 or equivalently

A32 = A3 × A2 = Z−1 ×
(

Q1 0
R Q2

)
= Z−1 × Q. (3.7)

Remark 1 One important thing that we must be careful with
is that A32 preserves the oil space, however in terms of coor-
dinate system it actually preserves the vinegar coordinates,
which is exactly due to the dual relationship mentioned at
the beginning of this section.

Proposition 2 Let Q be as defined above in (3.7). Then
(1) the space spanned by Ei , i = 0, . . . , 12, is invariant
under the action of Q from the right;
(2) the space spanned by xi , i = 13, . . . , 27, is the
same as the space spanned by xi ◦ Q(x0, . . . , x27), where
Q(x0, . . . , x27) = X × Q.

This is to say that

Span
{

L0
2,i (x0, . . . , x27), i ∈ V

}

= Span{L−
3,i (x0, . . . , x27), i = 13, . . . , 27},

where

(L−
3,0(x0, . . . , x27), . . . , L−

3,27(x0, . . . , x27))

= (x0, . . . , x27) × A−1
3 Z−1.

This can be seen easily from

A2 = A−1
3 Z−1 ×

(
Q1 0

R Q2

)
= A−1

3 Z−1 Q.

This allows us to find the space spanned by the image of the

linear parts of the vinegar variables composed from the right
by L2.

This finishes the first step of our attack, which is a simple
application of the attack method for the unbalanced Oil and
Vinegar scheme.

3.2 Step 2: The Minrank attack

Any bilinear form 〈, 〉i on kn × kn can be restricted to the
subspace Ō × kn and has then the form

〈Xo, X ′〉i = X̄o(ms)i (X̄ ′)t = Xomi (X̄ ′)t = f s
i (3.8)

where

Xo = (0, x1, 0, x3, 0, x5, 0, x7, 0, . . . , 0, x19, . . . , x27),

X̄ ′ = (x ′
1, x ′

3, x ′
5, x ′

7, x ′
19,

. . . , x ′
27, x ′

0, x ′
2, x ′

4, x ′
6, x ′

8, x ′
9, . . . , x ′

18)

X̄o = (x1, x3, x5, x7, x19, . . . , x27).

and

(ms)i = (0 bi ), (3.9)

where 0 denotes an o × o matrix and bi an o × v matrix.
This implies that if we restrict the bilinear from 〈, 〉i to

the space Õ ×kn , then the associated matrix (Ms)i under the
coordinate system defined by A3 should be exactly

(
0 Bi

)
,

and

Bi =
∑

j=1,...,20

(A1) j i
(
Q1b j Qt

2

)
, (3.10)

because

(
Q1 0

R Q2

)
×

(
0 b j

bt
j d j

)
×

(
Q1 0

R Q2

)t

=
(

0 Q1b j Qt
2

Q2bt
j Qt

1 Q2bt
j Rt + Rb j Qt

2 + Q2d j Qt
2

)

Now let us look at all the bi . Our key observation is that

f s
10 = x1x ′

6 p17,1 + x5x ′
2 p17,2 + x3x ′

4 p17,3,

f s
11 = x7x ′

2 p18,1 + x3x ′
6 p18,2 + x5x ′

4 p17,3.

We find that the rank of the corresponding matrices
(ms)i or to say bi is exactly 3 for i = 10, 11, since the bilin-
ear form is restricted to a product of two different subspaces.
The rank of the other matrices are all higher. One can also
see clearly that in the space of all possible linear combina-
tions of bi , these two matrices and their constant multiples
are the only matrices of the lowest rank 3.

In this case, we can use the Minrank method to search
for both b10 and b11 in Q1b10 Qt

2, Q1b11 Qt
2 through linear

combinations of Bi , because A1 is invertible. We have a total
of 20 matrices of size 13 × 15 and the Minrank is 3. From
the complexity analysis in [11], we know to find one of them
takes no more than a complexity of (28)2×3 = 248.
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Now, let us assume that we have found two rank 3 ma-
trices Hi , i = 10, 11, and that

Hi =
20∑
j=1

hi j B j . (3.11)

Because of the uniqueness of the space of linear combi-
nations of matrices B j , we have that

20∑
j=1

h10, j F0
j = β1 F̃0

11,

20∑
j=1

h11, j F0
j = β2 F̃0

10

(3.12)

or

20∑
j=1

h10, j F0
j = β1 F̃0

10,

20∑
j=1

h11, j F0
j = β2 F̃0

11.

(3.13)

where β1 β2 are non-zero constants in k and
(
F̃0

1, . . . , F̃0
20

) = f 0 ◦ L0
2, f 0 = (

f 0
1, . . . , f 0

20
)
.

The quadratic polynomials f 0
i are linearly independent,

the linear and constant terms are, therefore, determined by
the quadratic terms. This means that we could find constant
multiples of both F̃10, F̃11 by applying formula (3.12) or
(3.13), namely

20∑
j=1

h10, j Fj = β1 F̃11,

20∑
j=1

h11, j Fj = β2 F̃10 (3.14)

or

20∑
j=1

h10, j Fj = β1 F̃10,

20∑
j=1

h11, j Fj = β2 F̃11. (3.15)

Here (F̃1, . . . , F̃20) = F ◦ L2, and F̃10, F̃11 are essen-
tially f10, f11 but with a substitution of variables.

3.3 Step 3: The search for the null subspace

Now let us take a careful look at both f 0
11, f 0

10 in terms of
their related bilinear forms. Through computation, we know
that both m11, m10 are of rank 14 and therefore the corre-
sponding bilinear form is of rank 14 and the null spaces
N11, N10 (the space of vectors perpendicular to the whole
space) for both bilinear forms have dimension 14. We can
see and show by calculation that

N10 = Span(E0, E7, E8, E17, E18, E19, . . . , E27)

N11 = Span(E0, E1, E8, E9, E18, E19, . . . , E27)

We observe that

N10 ∩ N11 ∩ Ō = Span(E19, . . . , E27) = Ō1

Because of (3.11), we know that the null spaces of the
bilinear form associated to Mi , i = 10, 11 should give us
exactly L0

2(Ni ) = Ñi , i = 10, 11. Here Ñi denotes the null
space for the bilinear form defined by Mi . This can be done
by solving a set of n linear equations with n variables:

X × Mi = 0.

This means that we can find

Õ1 = L0
2(Ō1)

= Ñ10 ∩ Ñ11 ∩ Õ = Span
(
L0

2(x19), . . . , L0
2(x27)

)
.

Now, let us assume that we have found Õ1, then we can
choose a new coordinate system such that the first o1 com-
ponents are from Õ1, where o1 is the dimension of Õ1 and
rewrite the matrix Mi .

In terms of matrix notation, we can find an invertible n ×
n matrix A4 such that

A4 Mi At
4 = M̃i =

(
0 B̃i

B̃t
i D̃i

)
. (3.16)

This follows from the specific formulas of fi , where there is
no xi x j term if 19 ≤ i, j ≤ 27. The size of the matrix 0 is
o1 × o1.

Let L4(x0, . . . , x27) = (x0, . . . , x27) × A4. Then we
know that the subspace Ō1 is invariant under the linear trans-
formation L0

2 ◦ L4

3.4 Step 4: The search for the subspace of the linear span
of both ˜(I) and (ĨI)

In terms of the coordinate system X̃ = (x19, . . . , x27,
x0, x1, . . . , x18), mi will become a different matrix m̃i . We
observe that

m̃i =
(

0 0
0 Ui

)
, (3.17)

for i = 1, . . . , 11 and Ui is of the size 19 × 19 = (n − o1)×
(n − o1). This is due to the fact that the polynomials in the
Groups (I) and (II) contain no xi x j for i ∈ {19, . . . , 27} and
j ∈ {0, . . . , 18}.

This implies that in the coordinate system defined by A4,
we can find a set of 19 linearly independent matrices M̂ j

which are linear combinations of M̃i such that

M̂ j =
19∑

i=1

γi j M̃i =
(

0 0
0 Û j

)
. (3.18)

This set of matrices can be found easily by solving a small
set of linear equations.
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From the formula (3.17) as for the case of (3.12), (3.13),
we know that

Span

{
19∑

i=1

γi j Fi | , i = 1, . . . , 11

}

= Span{F̃i | i = 1, . . . , 11} (3.19)

We will denote this space G̃12.

3.5 Step 5: The search for the subspace of the linear span
of the elements in Group (Ĩ)

Let us denote this space of the linear span of the elements in
Group ˜(I) by G̃1.

We know that

(1) G̃1 is a subspace of G̃12, whose dimension is
dim(G̃12) − 2;

(2) if we take any polynomial in G̃12 not in G̃1 it has the
property that the quadratic form corresponding to the
quadratic part of this polynomial is of rank 18 (bigger
than 14). On the other hand for any elements inside G̃1
the corresponding rank is exactly 14.

This means that we can find a basis of G̃1 by choos-
ing three polynomials q1, q2 and q3 from any basis of G̃12
and search for all q1 + u1q2 + u2q3 whose corresponding
quadratic form is of rank 14, where u1, u2 ∈ k. This will
definitely produce one element in G̃1 because a dimension
3 subspace must non-trivially intersect a dimension 9 sub-
space in a space of total dimension 11. Using this procedure
on the corresponding matrices of the bilinear form for the
polynomials by looking for matrix of rank 14, we can find a
basis of G̃1 by at most searching 10 times. The complexity
of this step is less than (28)2 × 183 × 10/6 < 230.

3.6 Step 6: Reformulation of G̃1

Let G12 = Span{ fi | i = 1, . . . , 11} and G1 =
Span{ fi | i = 1, . . . , 9}. Let Ni denote the null space for
each bilinear form 〈, 〉i . Then we observe and prove by cal-
culation that

N̄ =
⋂

i=1,...,9

Ni = Span(E0, E17, E18, E19, . . . , E27).

This implies that we could find a basis of the space, which
consists of a basis of the subspace of the intersection of all
the null spaces of the bilinear forms defined by the quadratic
parts of the polynomials in G̃1. This gives us a matrix A5
such that

A5 B At
5 =

(
0 b̃i

b̃t
i d̃i

)
,

where B is any symmetric matrix of the bilinear form corre-
sponding to the quadratic part of any polynomial in G̃1.

This implies that we can define a linear transformation
L5 as

L5(x0, . . . , x27) = (x0, . . . , x27) × A5,

for any F̃i in G̃1, and we have

F̃i ◦ L5(x0, . . . , x27) =
16∑

i≥ j=1

α̃i, j xi x j +
16∑

i=1

α̃i xi + α̃.

Therefore, by composing with L5, all the polynomials in G̃1
become a set of polynomials with only 16 variables. We will
call this new set of polynomials G̃L1.

From the above procedure and by solving a set of linear
equations, we find an affine linear transformation L6 on k16

such that the space G̃L1 is derived from composition of the
elements in G1 from the right by L6.

Now we treat all elements in G1 and G̃L1 as a polyno-
mial of only 16 variables and ignore the other variables.

Again we associate the quadratic part of each G1 with a
bilinear form and we can see that all those forms are exactly
of rank 14. Let us pick randomly nine linearly independent
polynomials F̂i from G̃L1 Let 〈, 〉s

i denote the bilinear form
corresponding to the quadratic part of F̂i over k16. Let N s

i
denote the null space for each bilinear form 〈, 〉s

i .
Through observation and computation simulations, we

find

Span
(
N s

i , i = 1, . . . , 9
) = Span

(
Es

i , i = 8, . . . , 16
)
.

Using the same argument from Remark 1, we can find
the image of the space spanned by the the image of
L6,i (x1, . . . , x16), i = 1, 2, 3, 4, 5, 6, 7, where

L6(x1, . . . , x16)

= (L6,1(x1, . . . , x16), . . . , L6,16(x1, . . . , x16)).

So we find the image of the linear parts of the seven variables
{x1, . . . , x7} composed by L6.

Again following the same argument of Remark 1, by
combining L5 and L6, for any basis of the space spanned
by L6,i (x1, . . . , x16), i = 1, 2, 3, 4, 5, 6, 7, if we compose
each by L−1

5 from the right, they give us a basis of the im-
age space of the span of the linear parts of seven variables
{x1, . . . , x7} composed by L2. We will denote a basis we
find for this space by ki (x0, . . . , x27), i = 1, . . . , 7.

3.7 Step 7: Completing the attack

Assume we have a message P to be signed. We first ran-
domly choose ri and solve the equation k1(x0, . . . , x27) = ri
by Gaussian elimination and substitute the final results into
the polynomial equations coming form a basis of G̃1 found
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in Step 5. From the point of algebraic geometry, this is equiv-
alent to giving specific values to x1, . . . , x7 for fi . This
should produce nine linearly independent equations, which
we again solve by Gaussian elimination. This is equivalent
to finishing the polynomials from Group (I).

Then again we substitute it into the remaining two
polynomial equations from G̃12, whose linear combination
would produce one linear equation, and then we substitute
again, the remaining equations should produce another lin-
ear equation. This finishes the polynomials from Group (II).

When we substitute again, we will only have nine nonlin-
ear equations left from (2.1). They are all coming from lin-
ear combinations of polynomials from Group (III), but with
all x1, . . . , x18 replaced by given values and the variables
x0, x19, . . . , x27 have undergone an invertible affine linear
transformation.

Let us choose a random set of values vi and choose x1 =
v1, . . . , x18 = v18 and let

f e
i (x0, x19, . . . , x27) = fi (x0, v1, . . . , v18, x19, . . . , x27),

for i = 12, . . . , 20. Let

f e(x0, x19, . . . , x27) = ( f e
12(x0, x19, . . . , x27),

. . . , f e
20(x0, x19, . . . , x27)).

Let

Fe(x0, x19, . . . , x27) = Le
1 ◦ f e ◦ Le

2(x0, x19, . . . , x27),

where Le
1 and Le

2 are invertible affine linear transformations.
Our problem now is actually to solve a set of equations in
the form: Fe(x0, x19, . . . , x27) = Pe, where Pe belongs to
k9.

To do so, the only thing we need to know is how to find
the image of the linear part of x0 under the composition from
the right by Le

2, which is a linear combination of other vari-
ables. The observation is that all quadratic parts of the f e

i is
in the form x0 × x j with no other quadratic terms, and the
corresponding quadratic form has rank 2.

Let f e
a and f e

b be two linearly independent elements in
the space spanned by f e

i .
Let N e

a and N e
b denote the null space for each bilinear

form derived from the quadratic part of f e
a and f e

b
Through computer simulations and direct proof, we have

Span
(
N e

a , N e
b

) = Span
(
Ee

i , i = 1, . . . , 9
)
,

where Ee
i = (0, 0, . . . , 1, . . . , 0) is the standard basis in k10.

Using the same argument from Remark 1, this im-
plies we could find the image of the space spanned by
Le

2(x0, . . . , x27), where

Le
2(x0, x19, . . . , x27)

= (
Le

2,0(x0, x19, . . . , x27), . . . , Le
2,9(x0, x19, . . . , x27)

)
.

This is done by finding the corresponding dimension two
space of the invariant variables for both f e

a and f e
b as de-

scribed in Remark 1. The intersection of the two spaces has

exactly dimension one and it is proportional to the linear part
of Le

2,0(x0, . . . , x27).

Then we choose a random value for Le
2,0(x0, . . . , x27)

and we substitute it into the nonlinear equations, which is
equivalent to the case of giving x0 a specific value in addi-
tion to x1, . . . , x27 to all the fi . This will produce again 9
linear independent equations. Then we collect all the linear
independent equations whose solution will give a forgery of
a signature.

For each of the seven steps we gave the computational
complexity, except for those steps, where only simple sys-
tems of linear equations have to be solved, which can be
done easily. The complexity of our procedure is mainly de-
termined by Step 2. All other steps have a much lower com-
plexity, and we conclude therefore, that the complexity of
the entire attack is less than 250.

4 Conclusion

We combined a few different methods to break the TTS
scheme of [24]. One can see that we go through a very com-
plicated procedure, but computationally it is not difficult.
The reason for this is that this new family of schemes uses
specialized sparse polynomials. This introduced a chain of
weaknesses. Each weakness can then be attacked with a dif-
ferent tool.

We believe that our attack can be made to work
against all other TTS schemes, which were published in the
February 2004 version of [23]. Of course, one can immedi-
ately suggest new formulas, as was done in the revised ver-
sion of [23], which our method as given cannot defeat. But
we think, one must be extremely careful when using specific
sparse polynomials.

Appendix

The map f in terms of the formula on page 373 in [24] uses randomly
chosen none zero elements pi, j from the field k and is given as:

f (x0, . . . , x27) = ( f1(x0, . . . , x27), . . . , f20(x0, . . . , x27)),

f1 = x8 + x1x8 p8,1 + x2x9 p8,2 + x3x10 p8,3

+x4x11 p8,4 + x5x12 p8,5 + x6x13 p8,6 + x7x14 p8,7,

f2 = x9 + x1x9 p9,1 + x2x10 p9,2 + x3x11 p9,3

+x4x12 p9,4 + x5x13 p9,5 + x6x14 p9,6 + x7x15 p9,7,

f3 = x10 + x1x10 p10,1 + x2x11 p10,2 + x3x12 p10,3

+x4x13 p10,4 + x5x14 p10,5 + x6x15 p10,6

+x7x16 p10,7,

f4 = x11 + x1x11 p11,1 + x2x12 p11,2 + x3x13 p11,3

+x4x14 p11,4 + x5x15 p11,5 + x6x16 p11,6

+x7x8 p11,7,

f5 = x12 + x1x12 p12,1 + x2x13 p12,2 + x3x14 p12,3

+x4x15 p12,4 + x5x16 p12,5

+x6x8 p12,6 + x7x9 p12,7,
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f6 = x13 + x1x13 p13,1 + x2x14 p13,2 + x3x15 p13,3

+x4x16 p13,4 + x5x8 p13,5

+x6x9 p13,6 + x7x10 p13,7,

f7 = x14 + x1x14 p14,1 + x2x15 p14,2 + x3x16 p14,3

+x4x8 p14,4 + x5x9 p14,5

+x6x10 p14,6 + x7x11 p14,7,

f8 = x15 + x1x15 p15,1 + x2x16 p15,2 + x3x8 p15,3

+x4x9 p15,4 + x5x10 p15,5

+x6x11 p15,6 + x7x12 p15,7,

f9 = x16 + x1x16 p16,1 + x2x8 p16,2 + x3x9 p16,3

+x4x10 p16,4 + x5x11 p16,5

+x6x12 p16,6 + x7x13 p16,7,

f10 = x17 + x1x6 p17,1 + x2x5 p17,2 + x3x4 p17,3

+x9x16 p17,4 +
x10x15 p17,5 + x11x14 p17,6 + x12x13 p17,7,

f11 = x18 + x2x7 p18,1 + x3x6 p18,2 + x4x5 p18,3

+x10x17 p18,4 + x11x16 p18,5

+x12x15 p18,6 + x13x14 p18,7,

f12 = x19 + x8x10 p19,0 + x0x19 p19,1 + x18x20 p19,2

+x17x21 p19,3 + x16x22 p19,4

+x15x23 p19,5 + x14x24 p19,6 + x13x25 p19,7

+x12x26 p19,8 + x11x27 p19,9,

f13 = x20 + x9x11 p20,0 + x2x19 p20,1 + x0x20 p20,2

+x18x21 p20,3 + x17x22 p20,4

+x16x23 p20,5 + x15x24 p20,6 + x14x25 p20,7

+x13x26 p20,8 + x12x27 p20,9,

f14 = x21 + x10x12 p21,0 + x4x19 p21,1 + x2x20 p21,2

+x0x21 p21,3 + x18x22 p21,4 + x17x23 p21,5

+x16x24 p21,6 + x15x25 p21,7 + x14x26 p21,8

+x13x27 p21,9,

f15 = x22 + x11x13 p22,0 + x6x19 p22,1 + x4x20 p22,2

+x2x21 p22,3 + x0x22 p22,4 + x18x23 p22,5

+x17x24 p22,6 + x16x25 p22,7 + x15x26 p22,8

+x14x27 p22,9,

f16 = x23 + x12x14 p23,0 + x8x19 p23,1 + x6x20 p23,2

+x4x21 p23,3 + x2x22 p23,4 + x0x23 p23,5

+x18x24 p23,6 + x17x25 p23,7 + x16x26 p23,8

+x15x27 p23,9,

f17 = x24 + x13x15 p24,0 + x10x19 p24,1 + x8x20 p24,2

+x6x21 p24,3 + x4x22 p24,4 + x2x23 p24,5 + x0x24 p24,6

+x18x25 p24,7 + x17x26 p24,8 + x16x27 p24,9,

f18 = x25 + x14x16 p25,0 + x12x19 p25,1 + x10x20 p25,2

+x8x21 p25,3 + x6x22 p25,4 + x4x23 p25,5 + x2x24 p25,6

+x0x25 p25,7 + x18x26 p25,8 + x17x27 p25,9,

f19 = x26 + x15x17 p26,0 + x14x19 p26,1 + x12x20 p26,2

+x10x21 p26,3 + x8x22 p26,4 + x6x23 p26,5 + x4x24 p26,6

+x2x25 p26,7 + x0x26 p26,8 + x18x27 p26,9,

f20 = x27 + x16x18 p27,0 + x16x19 p27,1 + x14x20 p27,2

+x12x21 p27,3 + x10x22 p27,4 + x8x23 p27,5 + x6x24 p27,6

+x4x25 p27,7 + x2x26 p27,8 + x0x27 p27,9,
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