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Abstract. In this paper, we show the claims in the original Kipnis-
Shamir attack on the HFE cryptosystems and the improved attack by
Courtois that the complexity of the attacks is polynomial in terms of the
number of variables are invalid. We present computer experiments and
a theoretical argument using basic algebraic geometry to explain why it
is so. Furthermore we show that even with the help of the powerful new
Gröbner basis algorithm like F4, the Kipnis-Shamir attack still should
be exponential but not polynomial. This again is supported by our the-
oretical argument.
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basis, multivariate public key cryptosystem.

1 Introduction

The family of multivariate public key cryptosystems [19,5] is considered as one
of the main candidates that have the potential to resist the future quantum
computer attacks. One of the major research topics in this area is the HFE fam-
ily of cryptosystems. The HFE encryption systems were presented by Jacques
Patarin at Eurocrypt’96 [15], where the fundamental idea is very similar to that
of Matsumoto and Imai [14], namely one first builds some polynomial system on
a large field and then transforms it into a polynomial system over a vector space
of a much smaller field. The first attack on HFE was presented by Kipnis and
Shamir [12], where they lifted the public key back to the large field and attacked
the system via a so-called MinRank problem [3]. This attack was further im-
proved by Courtois [2] using different methods to solve the associated MinRank
problem. The conclusion of these attacks is that to find the secret key and break
the HFE cryptosystem is not exponential but polynomial in terms of the number
of variables n once one fixes the key parameter D of HFE (or more precisely,
log(D)). Later it was shown that if one uses new Gröbner basis methods to at-
tack the HFE directly, it should be again not exponential but polynomial [9,11],
in particular, Faugère broke one of the challenges set by Patarin. The overall
conclusion seems to be that the HFE family itself is over.
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However, there are still HFE variants, which we consider viable for practical
applications [16,6], and resistant to the Gröbner basis attacks. The possibility
of extension of Kipnis-Shamir attack seems to be quite appealing as in the case
of the attack on HFEv in [6]. Therefore it seems to be a good idea to do a com-
plete study of the original Kipnis, Shamir, and Courtois work including complete
computer experiments to verify the claims and to derive a good estimate on the
complexity in terms of practical attacks. To our surprise, our experiments show
that the claims made by Kipnis, Shamir, and Courtois are actually invalid in
the sense that the timing is far beyond what is expected. This made us to think
what happened and we presented a theoretical explanation why this happens
using some basic theoretical tools in algebraic geometry. Furthermore, we apply
the new Gröbner basis method of Faugère by using the Magma implementations
to this problem. Though the performance is clearly much better than the pre-
vious methods, it still confirms that the original Kipnis-Shamir attack is not
polynomial rather it should be exponential.

The paper is arranged as follows. First we will briefly describe the original
Kipnis-Shamir attack and the improvement of Courtois. Then in the next section,
we will show that through experiments, the complexity of the attacks of Kipnis-
Shamir are not as claimed. We present a theoretical argument why the claims
of Kipnis, Shamir, and Courtois are not valid. In the next section, we will show
via computer experiments using the Magma implementation of the new Gröbner
basis F4 that if we use the new Gröbner basis algorithm to improve the attack,
the timing should be exponential and not polynomial. Then we will present our
conclusion.

2 Kipnis-Shamir Attack on the HFE Scheme

2.1 The HFE Scheme

The HFE encryption scheme uses two finite fields. We denote the small field with
q elements as F, and K as its extension field of degree n over F. A recommended
choice for HFE is q = 2 and n = 128. Given a basis of K over F, we can identity
K with an n-dimensional vector space over F by ϕ : K → Fn and its inverse
ϕ−1. The design of HFE is based on a univariate polynomial P (x) over K of the
form

P (x) =
r−1∑

i=0

r−1∑

j=0

pijx
qi+qj

, (1)

where the coefficients pij are randomly chosen from K and r is much smaller
than n so that the degree of P (x) is less than some fixed parameter D. (Here
for simplification reason we consider only the case of P (x) being a homogeneous
polynomial.) The limitation on the degree D of P (x) is required to make it
possible to invert P (x) efficiently at decryption.

Let
G(x) = ϕ−1 ◦ T ◦ ϕ ◦ P ◦ ϕ−1 ◦ S ◦ ϕ(x), (2)
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where T and S are two randomly chosen invertible linear transformations on
Fn, and they are part of the private key of the HFE scheme together with
polynomial P (x). The public key is ϕ ◦ G ◦ ϕ−1, which are n homogeneous
quadratic polynomials in n variables on F.

2.2 Kipnis-Shamir Attack

The attack of Kipnis and Shamir on HFE scheme in [12] is done over the big
field K. They proved that the linear transformations S and T when lifted to the
big field K have the form

S(x) =
n−1∑

i=0

six
qi

, T−1(x) =
n−1∑

i=0

tix
qi

, (3)

where si, ti ∈ K. It simplifies the expression of public key polynomial G(x) to
G(x) = T (P (S(x))) using the univariate polynomial form over the big field,
which also gives the expression T−1(G(x)) = P (S(x)). They rewrote the public
key polynomial as a matrix form:

G(x) =
n−1∑

i=0

n−1∑

j=0

gijx
qi+qj

= xGxt, (4)

where G = [gij ] is a matrix over K, and x = (xq0
, xq1

, · · · , xqn−1
) is the vector

over K, and xt is its transpose, and this implies that

T−1(G(x)) =
n−1∑

k=0

tk

n−1∑

i=0

n−1∑

j=0

(gi−k,j−k)qk

xqi+qj

, (5)

and
P (S(x)) = xWPW txt, (6)

where we use the same notation P to denote a matrix [pij ], W is a specified
matrix with its (i, j)-entry Wij = sqi

j−i. (Here and henceforth the subscripts are
computed modulo n.)

Let G∗k be the matrix derived from G by raising all entries of G to the qk-th
power and cyclically rotating all rows and columns of G forwards by k steps.
Then T−1(G(x)) = xG′xt, where

G
′
=

n−1∑

k=0

tkG∗k = WPW t. (7)

It is not hard to show that both ranks of matrices P and WPW t do not exceed
r, where r � n and are roughly log(D). Kipnis and Shamir found that if one
made a correct choice for the values of t0, t1, · · · , tn−1, then the rank of G

′
would

not be more than r; otherwise for a random choice of values the expected rank
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would be close to n. The difference between the correct and random choices is
clear, and below is a specific method to recovering (t0, t1, · · · , tn−1). Surely here
in terms of explicit form of the matrix, we need to use the symmetric form of
the matrix and in the case of characteristic 2, the diagonal entries shall all be 0.

The matrix G can be easily obtained from the public key of the HFE scheme,
then all G∗k can be computed. Take t0, t1, · · · , tn−1 as n variables. The matrix G

′

can be represented by G∗k and (t0, t1, · · · , tn−1). Since its rank does not exceed r,
its left kernel, defined as {x : xG′ = 0}, is an (at least) n − r dimensional vector
subspace, and there are n − r independent n-dimensional vectors x̃1, · · · , x̃n−r

such that in the kernel. Assigning random values for these vectors in their first
n−r entries and taking new variables for each of the remaining r entries, one adds
r(n − r) new variables. Each x̃iG

′
= 0 brings n scalar equations over K, a total

of (n − r)n equations can be obtained in n + r(n − r) variables (t0, t1, · · · , tn−1
and r(n − r) new variables).

These equations are quadratic and form an over-defined system of about n2

equations in about rn variables where r � n. In their attack Kipnis and Shamir
propose to solve it by relinearization technique. Surely, if they had solved this
over-defined system and derived the values of t0, t1, · · · , tn−1, it was easy to
recover T−1 and T , and there is also a specific way to recover S by solving linear
over-defined equations over F. Therefore the crucial point of the attack is to
recover the transformations T−1 and T . The later developed XL algorithm is an
improved algorithm over the relinearization method.

Later Courtois pointed out that the point of the attack of Kipnis and Shamir
can be viewed as a MinRank problem and he proposed some further improvement
on how to find T using some of known methods for the MinRank problem.

3 Can Kipnis-Shamir Attack and Courtois’ MinRank
Attack Really Work?

Now we would like to do a careful analysis in theory under what condition that
the Kipnis-Shamir attack will work.

3.1 Another Look at the Kipnis-Shamir Attack

If we look at the relinearization method, we know immediately that in order for
it to work, the equations must satisfy the condition that the solution is actually
unique because we expect to find the solution via solving a set of nondegenrate
linear equations.

Originally, the part T of the private key of HFE scheme is fixed and its
corresponding form, of which the coefficients are (t0, t1, · · · , tn−1), in the big
field is unique too. Unfortunately, we have equivalent keys.

First, the solutions to our problem is not unique, because if (a0, a1, · · · , an−1)
is a solution for (t0, t1, · · · , tn−1), then u(a0, a1, · · · , an−1) is still a solution for
any constant u. This problem can be easily solved by fixing one variable, say
t0, to be 1. Furthermore, if r is even, we need to fix two variables, because
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any symmetric matrix over characteristic 2 with 0 diagonal entries of odd size
is degenerate. This implies if r is even, if (a0, a1, · · · , an−1) is a solution, then
u(a0, a1, · · · , an−1) + v(aq

n−1, a
q
0, · · · , a

q
n−2) is also a solution.

Then we realize that this is not enough. If (a0, a1, · · · , an−1) is a solution of
(t0, t1, · · · , tn−1), it is easy to see that (aq

n−1, a
q
0, · · · , a

q
n−2) is also a solution,

and furthermore (aqi

n−i, a
qi

n−i+1, · · · , a
qi

n−i−1) is also a solution for any i from 2 to
n − 1. This is due to the fact that we only use the condition that the rank of
G

′
can not exceed r in Kipnis-Shamir attack not how it looks like, and the fact

that raising the q-th powering of the entries of a matrix and rotating its rows
and columns accordingly do not change the rank.

This can also be stated as follows.

Proposition 1. Let the notation G, T, P, S, G
′
, G∗k, and W be as defined

before; Let (a0, a1, · · · , an−1) be a solution of (t0, t1, · · · , tn−1), and the rank of

matrix G
′

=
n−1∑
k=0

akG∗k does not exceed r. Given (αl
0, α

l
1, · · · , αl

n−1) = (aql

n−l,

aql

n−l+1, · · · , a
ql

n−l−1), the rank of matrix G
′l =

n−1∑
k=0

αl
kG∗k does not exceed r as

well, and G
′l and G

′
are actually of the same rank.

Proof. From Section 2.2, we raise the both sides of equations (5) and (6) to ql-th
powering, and for each 0 ≤ l ≤ n − 1, we have

(T−1(G(x)))ql

=
n−1∑

k=0

aql

k

n−1∑

i=0

n−1∑

j=0

(gi−l−k,j−l−k)qk+l

xqi+qj

, (8)

and
(P (S(x)))ql

= xW
′
P (l)W

′txt, (9)

where P (l) is derived from P by P
(l)
ij = P ql

i−l,j−l, W
′

is generated from W with

that W
′

ij = W ql

i−l,j−l. Therefore, the rank of matrix W
′
P (l)W

′t cannot exceed
r as P (l) contains at most r nonzero rows. Equations (5) and (6) are identical,
hence (8) and (9) are identical too. Then we have

G
′l =

n−1∑

k=0

aql

k G∗(k+l) = W
′
P (l)W

′t. (10)

Substitute k by k + l, we get that

G
′l =

n−1∑

k=0

aql

k−lG
∗k =

n−1∑

k=0

αl
kG∗k. (11)

Obviously, the rank of G
′l is the same as that of P (l) and does not exceed r, and

(aql

n−l, a
ql

n−l+1, · · · , a
ql

n−l−1) is a solution. �
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The above proposition states that each solution (a0, a1, · · · , an−1) for (t0,
t1, · · · , tn−1) is accompaniedbyn−1 additional solutions (aql

n−l, a
ql

n−l+1, · · · , a
ql

n−l−1),
1 ≤ l ≤ n − 1. These solutions are usually different. More precisely, we have the
following.

Proposition 2. Let T be a randomly chosen linear transformation over Fn,
and (a0, a1, · · · , an−1) be a solution corresponding to T . Set (αl

0, α
l
1, · · · , αl

n−1) =

(aql

n−l, a
ql

n−l+1, · · · , a
ql

n−l−1), 0 ≤ l ≤ n − 1. Then

Prob(αj
i = αk

i : j �= k, 0 ≤ i, j, k ≤ n − 1) ≤ O(n2q−n).

Proof. Since T is a randomly chosen linear transformation over Fn, (a0,
a1, · · · , an−1) is a random vector with entries chosen from K = GF (qn) . By
the birthday paradox, we have

Prob(ai = aql

j : j �= i, 0 ≤ i, j, l ≤ n − 1) ≤ 1 − (1 − nq−n)n. (12)

Since
1 − (1 − nq−n)n ≤ O(n2q−n), (13)

we have
Prob(αj

i = αk
i : j �= k, 0 ≤ i, j, k ≤ n − 1)

= Prob(ai = aql

j : j �= i, 0 ≤ i, j, l ≤ n − 1)
≤ O(n2q−n)

(14)

�

This means even if we fix one variable like t0 to be 1 or two variables if r is even,
we still expect that there should be at least n different solutions. Therefore, we
can conclude that mostly each variable of the over-defined (n − r)n quadratic
equations system in n+r(n−r) variables from Kipnis-Shamir attack has at least
about n different solutions. This reminds us the case of the famous challenges of
cyclic equations [22].

It is now clear that for this kind of equation system we can not find the
solutions by relinearization technique [12]. Then one may ask how about the
XL algorithm [13], which is the improved relinearization algorithm. We will
argue that for this kind of equation system we can not find the solutions by XL
algorithm easily as well.

The key point is the observation that to any system of multivariate polynomial
equations, if one variable has d different solutions, we should not be able to
solve this system directly by the XL algorithm with the maximum degree of this
variable arisen in terms lower than d.

Proposition 3. Let P0(x0, · · · , xn−1) = 0, · · ·, Pm−1(x0, · · · , xn−1) = 0 be any
set of m multivariate polynomial equations in n variables over K; for each xi, 0 ≤
i ≤ n−1, if xi has d different solutions β0, · · · , βd−1 in K, we can not determine
the values of xi directly from the equations generated by the XL algorithm with
the maximum degree of this variable arisen in terms lower than d.
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Proof. We can prove it by contradiction. Suppose we get the exact d values of
xi by the equations generated by the XL algorithm with the maximum degree
of this variable arisen and noted as d

′
, and d

′
< d. To get the exact values of xi,

the last step of the XL algorithm is linearization to get a univariate polynomial
equation just with one variable xi. While, we all know that the degree of univari-
ate polynomial equation must be at most d

′
and lower than d. The contradiction

is that we can not get d different values β0, · · · , βd−1 of xi by solving a univariate
polynomial equation with the degree lower than d. �

The first proposition in this section shows that each variable of the quadratic
equations system generated by Kipnis-Shamir attack has at least n solutions; the
second proposition in this section supposes that for each variable, we expect to
have n different solutions in general; and this proposition shows that if we want
to get the solutions of (t0, t1, · · · , tn−1) by XL algorithm, we must raise the degree
of monomials at least to n in the solving process. This is quite different from
what Kipnis and Shamir claimed which should be log(D), which has nothing to
do with n. This means the complexity of the attack should be more than what
was claimed.

The statements above can be reexplained in terminology of algebraic geome-
try. Let V be the algebraic variety of the quadratic equations derived from the
Kipnis-Shamir attack, and σ be the action of first q-th powering every component
of an n-dimensional vector and then cyclically rotating all components right by
one. Then V is invariant under the action of the order n cyclic group generated
by σ. This variety must contain at least n distinct points (Proposition 2), and
the univariate polynomial over K representing the variety is then of degree n.

We will confirm this with our computer experiment. Furthermore, in our ex-
periment, we have given a toy example that even if we raise the degree of mono-
mials by the XL algorithm to n or even larger than n, we still can not find the
solutions.

3.2 What about Courtois’ MinRank Attack?

Courtois tried to improve the Kipnis-Shamir attack for basic HFE [2]. From
the matrix G

′
above, instead of by relinearization, he proposed to solve it by

MinRank attack directly [3]. Taken (t0, t1, · · · , tn−1) as variables, he suggested
that we could derive a set of equations from the fact that every (r + 1) × (r +
1) submatrix of G

′
has determinant 0. Therefore, there are

(
n

r+1

)2 equations
with about

(
n

r+1

)
monomials, and it is expected that there are more than

(
n

r+1

)

equations linearly independent so that this equation system can be solved by
Gaussian reduction.

However, (t0, t1, · · · , tn−1) has at least about n solutions because this Min-
Rank attack does also use the fact that the rank of G

′
can not exceed r as in

Kipnis-Shamir attack, and in the equations of MinRank attack, the degree of
monomials is not larger than r + 1. For r + 1 � n, we can not solve this system
by Gaussian reduction from Proposition 3, and we need to go up to degree n to
find the solutions.
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4 Computer Experiments

We have programmed some experiments of Kipnis-Shamir attack and MinRank
attack by Magma V2.11 on a Pentium IV 2.9GHz PC with 512M memory. Our
experiments works on the simplest case, where r is 2. From the theoretical ar-
gument above, we can fix the variable t0 = 1 ∈ K to decrease the number of
solutions, and also we can fix one new variable to 1 when we simulate Kipnis-
Shamir attack because r = 2 is even. Surely, we also have the experiments
without fixing any variable, and they behave essentially in the same way.

4.1 Experiment on Kipnis-Shamir Attack

We choose q = 2, n ∈ {5, 6, · · · , 12}, r = 2, so F = GF (2) and K = GF (2n);
choose P (x) = ax3 and two random invertible linear transformations T and S,
where a �= 0 is randomly chosen from K. Following the description in Section 2.2,
we derive the quadratic equation system and then try to solve it. In [12] Kipnis
and Shamir intended to solve this system by the relinearization technique, while
we just use the XL algorithm to simulate it. For each n, select the degree of the
parameter [20] needed for the XL algorithm to be D = 4 and record the result
of experiments in Table 1.

Table 1. Experiment of Kipnis-Shamir Attack with r = 2, D = 4, and n ∈
{5, 6, · · · , 12}

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12
equations n(n − r) 15 24 35 48 63 80 99 120
variables r(n − r) + n − 2 9 12 15 18 21 24 27 30
monomials of degree ≤ D 715 1820 3876 7315 12650 20475 31465 46376
monomials not emergence 105 280 621 1211 2150 3555 5560 8316
number of XL monomials 610 1540 3255 6104 13995 16920 25905 38060
number of XL equations 825 2184 4760 9120 10500 26000 40194 59520
rank of the matrix 556 1408 2983 5605 9658 15586 23893 35143

As the same for each n ∈ {5, 6, 7, 8}, select the parameter D = 5 and record
the experimental result in Table 2.

Table 2. Experiment of Kipnis-Shamir Attack with r = 2, D = 5, and n ∈ {5, 6, 7, 8}

n = 5 n = 6 n = 7 n = 8
equations n(n − r) 15 24 35 48
variables r(n − r) + n − 2 9 12 15 18
monomials of degree ≤ D 2002 6188 15504 33649
monomials not emergence 182 588 1539 3465
number of XL monomials 1820 5600 13965 30184
number of XL equations 3300 10920 28560 63840
rank of the matrix 1738 5363 13403 29020
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In both tables, line 4 is the number of the monomials of degree ≤ D in
r(n − r) + n − 2 variables. For not all these monomials would appear in the
equations in the XL computation, line 5 is the number of these not emerging in
the equations; line 6 is the difference of line 4 and line 5, and it is the number of
the monomials of those equations; line 7 is the number of equations. For the data
of line 7 is larger than that of line 6, we try to solve this system by Gaussian
reduction as linearization technique. However, it does not work even though the
XL equations are much more than the XL monomials. Then we get the rank of
matrix recorded in line 8, which is formed by that each equation as a row and
each monomial as a column. In both tables, each number of line 8 is smaller
than what is needed to solve the equations, and we are unable to recover the
variables t0, t1, · · · , tn−1.

4.2 Toy Example of How the XL Algorithm Terminates

In Section 4.1, we have showed that when D = 4 or 5 and n ∈ {5, 6, · · · , 12},
XL can not terminate because we can not solve the equations system directly by
Gaussian reduction. Therefore, here we fix n = 5 and keep all other parameters
as before, except that D ∈ {4, 5, 6, 7}. Well, n(n−r)=15 equations and r(n−r)+
n − 2 = 9 variables of the generated quadratic equation system are invariable as
n and r fixed. The result of experiment is recorded in Table 3.

Table 3. Experiment of Increasing D for Solving Equations by XL

D = 4 D = 5 D = 6 D = 7
monomials of degree ≤ D 715 2002 5005 11440
monomials not emergence 105 182 294 450
number of monomials 610 1820 4711 10990
number of equations 825 3300 10725 30030
rank of the matrix 556 1738 4595 10834
difference of lines 4 and 6 54 82 116 156

From this table, we find that the difference between the number of monomials
and rank of the matrix is increasing by the growth of D. We can not solve the
original equation system when increasing the parameter D of XL algorithm only
by a few degrees.

4.3 Experiment of MinRank Attack

Similarly as the previous subsection, we choose q = 2, n ∈ {5, 6, · · · , 10}; choose
two kinds of public key polynomials: r = 2 and P (x) = ax3, and r = 3 and
P (x) = ax3 + bx5 + cx6, where a, b, and c are random elements chosen from K,
respectively; choose two random invertible linear transformations T and S.

When P (x) = ax3. Here we can fix two variables. There are
(

n
r+1

)2 equations
with

(
n−1

3

)
+ (n − 2)(n − 1) + (n − 1) monomials in n − 2 variables. We try



408 X. Jiang, J. Ding, and L. Hu

Table 4. Simulation of MinRank Attack of r = 2 and P (x) = ax3

n = 5 n = 6 n = 7 n = 8 n = 9 n = 10
monomials of degree ≤ r + 1 20 35 56 84 120 165
rank of the matrix 15 29 49 76 111 155
difference of above two lines 5 6 7 8 9 10

Table 5. Experiment of MinRank Attack of r = 3 and P (x) = ax3 + bx5 + cx6

n = 6 n = 7 n = 8 n = 9
monomials of degree ≤ r + 1 126 210 330 495
rank of the matrix 90 161 266 414
difference of above two lines 36 49 64 81

to solve the equation system by Gaussian reduction, and we also find that it is
impossible to be solved. Then we record the rank of the matrix, which is formed
as above, in Table 4.

When P (x) = ax3 + bx5 + cx6. Here r = 3, so we can fix one variable, and
we choose n ∈ {6, 7, 8, 9}. As the same as before, we can not solve this equation
system of

(
n

r+1

)2 equations with
(
n
4

)
+ n

(
n−1

2

)
+ n(n − 1) +

(
n
2

)
+ n monomials

in n − 1 variables. Then we record the rank of the matrix generated from the
equation system in Table 5.

We can observe from Tables 4 and 5 that the difference between the number
of monomials of degree r + 1 and the rank of the matrix is equal to or larger
than n and very regular. Therefore, we can conclude that MinRank attack is
unsuccessful to recover the secret t0, t1, · · · , tn−1.

4.4 Experiment of Solving Equations by F4

From [18], it is true that XL acts as a redundant version of the F4 algorithm.
Currently it is commonly recognized that the new Gröbner basis algorithm F4
[7] and F5 [8] are the most powerful tools to solve polynomial equations [17,21].
Because F4 is the only one which is publicly available, which is implemented
in Magma, to further understand the quadratic equation system generated by
the Kipnis-Shamir attack, we should use the Magma implementation of the new
Gröbner basis F4 to test if finding the solutions are indeed still polynomial.

Because of our degree argument, we do not expect Magma to run up to degree
n and therefore we expect the complexity to grow up very fast. This time, we
run the experiments by Magma V2.13 on a 2.6GHz AMD 64 computer in TU
Darmstadt.

In the same way as above, we choose q = 2 and r = 2. We fix two variables
to reduce the number of solutions and then we use Magma to try to find the
Gröbner basis of this system. The experiments as expected produce the full
triangular Gröbner basis is in lex order, and we get precisely n solutions from
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Table 6. Experiment of Solving Equations by F4

n = 10 n = 11 n = 12 n = 13 n = 14 n = 15 n = 16 n = 17 n = 18
time (seconds) 0.1 0.16 0.3 0.51 0.9 1.5 2.5 4 6.7
memory (megabit) 8.2 9.1 10 11.4 12.6 15 17 22 32.3

n = 19 n = 20 n = 21 n = 22 n = 23 n = 24 n = 25 n = 26 n = 27
time (seconds) 10.8 16.3 32.7 50.5 63 91.7 121.5 171.4 218
memory (megabit) 36 48 58 85 75.9 122 145 136.4 203

the Gröbner basis. Meanwhile, our program also verifies that they are indeed
the solutions. Therefore, it supports our theoretical argument.

Table 6 below gives the running time and required memory of each n specif-
ically. In Figure 1, we use logarithmic coordinate and take n as X-coordinate
and running time and required memory as Y-coordinate respectively. It clearly
shows the growing tendency when increasing n. Though the timing and memory
data is smaller than what we expected, but for computing Gröbner basis when
increasing the degree n, the timing, we still conclude, should be exponential and
not polynomial. The reason that the timing and the memory is far less than
what we expect is that the degree of the final Gröbner basis is indeed n. Also
we want to emphasize that our result is just the simplest and the easiest case of
the HFE family.

Fig. 1. Running Time and Required Memory

Fig. 2. Running Time and Required Memory Between Different q and r
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We did some more experiments by increasing r to 3 or choosing different small
field F as q = 3, 5, 11, and the result is compared by Figure 2. It shows that in
this situation the equations are much more difficult to solve. This means that
this set of systems of highly over-defined equations have much more structures
that we still do not understand and much more theoretical and experimental
work are still needed to understand fully the complexity behavior.

5 Conclusion

We revisited the original Kipnis-Shamir attack on the HFE cryptosystems. We
show in theory and experiments that the original Kipnis-Shamir attack on the
HFE cryptosystems and the improved attack by Courtois can not work as effi-
ciently as claimed. Furthermore, we showed that even by the new Gröbner basis
algorithm F4, the complexity of the attack should be exponential and not poly-
nomial, though the performance of F4 is clearly far better than the XL algorithm
and more work is still needed to understand what is really going on. The key
point of our theoretical argument is based on the simple idea that when solv-
ing a polynomial equation system, the degree parameter of the XL or similar
algorithm is lower bounded by the number of solutions.
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