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Abstract. SMS4 is a 128-bit block cipher used in the WAPI standard
for providing data confidentiality in wireless networks. In this paper we
investigate and explain the origin of the S-Box employed by the cipher,
show that an embedded cipher similar to BES can be obtained for SMS4
and demonstrate the fragility of the cipher design by giving variants that
exhibit 264 weak keys.

We also show attacks on reduced round versions of the cipher. The
best practical attack we found is an integral attack that works on 10
rounds out of 32 rounds with a complexity of 218 operations; it can be
extended to 13 rounds using round key guesses, resulting in a complexity
of 2114 operations and a data complexity of 216 chosen pairs.
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1 Introduction

The Wired Authentication and Privacy Infrastructure (WAPI) standard is an
alternative to the security mechanisms for wireless networks that are specified
in IEEE 802.11i. It has been submitted to the International Standards Orga-
nization (ISO) by the Chinese Standards Association (SAC). Although it was
subsequently rejected by the ISO in favour of IEEE 802.11i, WAPI still is offi-
cially mandated for securing wireless networks within China.

For protecting data packets, the WAPI standard references a 128-bit block
cipher called SMS4 which initially was kept secret. In January 2006, the spec-
ification of this block cipher however was declassified and published [6]. Other
than a differential power attack [11] in a Chinese journal, no analysis of this
cipher has appeared in the open literature.

This document sheds light on the design of this block cipher and present a
preliminary analysis of its strength against cryptanalytic attacks.
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In Section 2 we give a description of the SMS4 cipher. In Section 3 we show
how the SMS4 S-Box can be derived algebraically and how an embedding of
SMS4 similar to the Big Encryption System (BES) can be obtained. Section
4 describes an practical integral attack on a 10-round version of SMS4 that
can be extended to a theoretical attack on 13 rounds. Our results in Section
5 demonstrate the fragility of SMS4; we show that modifications of the round
constants can lead to a large subspace of weak keys. Finally, in Section 6 we
conclude this paper and summarize our findings.

1.1 Notation

In the following, we agree on the conventions used throughout the rest of this
paper.

Since all operations of the cipher are defined on either 8-bit, 32-bit or 128-bit
quantities, we shall use the following terminology: 8-bit values will simply be
called bytes, 32-bit values words and 128-bit values will be called blocks. Word
and block values shall be considered to be in big-endian order, i.e. the most-
significant bit is in the leftmost position when writing the value as a bitstring.

Let w <<< r denote a cyclic shift of the word w by r positions to the left.
Sometimes we will need to write down blocks or words in which certain bytes
are unknown. In these cases the symbol � shall denote bytes with unknown
values.

To concatenate multiple byte values into a word and multiple word values
into a block, we define a vector of bytes or words to be equivalent to a word
respectively block value. To access individual bit ranges of a value w we shall
use the notation w[i...j] to extract bits i to j, e.g. for w ∈ Z232 the expression
w[7...0] denotes the lowestmost byte of the word value w.

2 Description of the SMS4 Block Cipher

In this section we will give a top-down description of the SMS4 block cipher.
SMS4 is a 32 round unbalanced Feistel network; both the block and the key

size are 128 bits. Following the terminology of [10], the cipher is a homogeneous,
complete, source-heavy (96:32) UFN with 8 cycles.

Let the internal state be denoted by S = (S1, S2, S3, S4) where Si ∈ GF (2)32.
The round keys of the cipher shall be denoted by Ki ∈ GF (2)32.

Define the linear diffusion function λ as

λ : GF (2)32 → GF (2)32

x �→ x ⊕ (x<<<2) ⊕ (x<<<10) ⊕ (x<<<18) ⊕ (x<<<24)

and the brick-layer function γ applying an 8-bit S-Box to the input 4 times in
parallel as:

γ : GF (2)32 → GF (2)32

x �→ (ρ(x[31...24]), ρ(x[23...16]), ρ(x[15...8]), ρ(x[7...0]))
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The F -function then simply is the composition of these two functions

F : GF (2)32 × GF (2)32 → GF (2)32

(X, Ki) → λ(γ(X ⊕ Ki))

and the round function R that maps Si to Si+1 under the round key Ki as:

R : GF (2)128 × GF (2)32 → GF (2)128

(S1, S2, S3, S4, Ki) �→ (S2, S3, S4, S1 ⊕ F (S2 ⊕ S2 ⊕ S3, Ki))

The key schedule. of the cipher operates in a manner similar to the encryption
function. In total, 32 round key words ki are generated from a 128-bit cipher
key. For the key schedule a function F ′ is used that is almost identical to the
round function; the only thing changed is the linear transform. Instead of λ, the
following mapping λ′ is used:

λ′ : GF (2)32 → GF (2)32

x �→ x ⊕ (x<<<13) ⊕ (x<<<23)

In order to obtain the round keys, the cipher key K is first masked with a
so-called system parameter

T = 0xA3B1BAC656AA3350677D9197B27022DC

as follows:

k−4 = K[127..96] ⊕ T[127..96]

k−3 = K[95..64] ⊕ T[95..64]

k−2 = K[63..32] ⊕ T[63..32]

k−1 = K[31..0] ⊕ T[31..0]

The reasoning behind the masking of the cipher key is not explained in the
design document. The round key of the i-th round is computed as follows:

ki = ki−4 ⊕ λ′(γ(ki−3 ⊕ ki−2 ⊕ ki−1 ⊕ κi))

where κi are key constants. The key constants κi are of the form

κi = ((28 · i), (28 · i + 7), (28 · i + 14), (28 · i + 21))

where each component of the above vector is a byte, the operators · and + denote
the multiplication respectively addition in Z256.
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Fig. 1. One round of the SMS4 Unbalanced Feistel Network

3 Algebraic Structure of SMS4

In the SMS4 specification [6], the origin of the S-box is not explained. All the
reader is left with is a table with 256 entries. However, we had a hunch that the
designers of the cipher had chosen an S-Box design similar to Rijndael; namely
that they used an inversion-based mapping. We were confirmed when we looked
at the difference distribution table and the linear charateristics of the SMS4
S-Box. These fit our assumption.

3.1 The SMS4 S-Box

We initially assumed the S-Box to be either of the form

S(x) = I(x) · A + C, (1)

or of the form
S(x) = I(x · A + C)

where I is the patched inversion over GF (28). The matrix A ∈ GL(8, 2), the
vector C ∈ GF (2)8 and the irreducible polynomial defining the finite field are
all undetermined. Experimentally we found that for none of the 30 irreducible
polynomials of degree 8, the above expression could be fulfilled for all values
of the SMS4 S-Box. However, for a simple permutation of the output bits, we
obtained a significant amount of coincident entries between an assumed S-Box
of the structure of equation 3.1 and the actual SMS4 S-Box.

The, next idea was to test S-Boxes of the form

S(x) = I(x · A1 + C1) · A2 + C2, (2)

with A1, A2A ∈ GL(8, 2) and C1, C2 ∈ GF (2)8. An exhaustive search for A1 and
C1 is impractical, because the total number of the 8 × 8 invertible matrixes is

N =
7∏

i=0

(28 − 2i) ≈ 5.348 × 1018 ≈ 262.
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Because the affine matrix in the algebraic expression of the S-Box in AES is
a cyclic matrix, we decided to restrict ourselves to cyclic matrices for A1 and
A2. Cyclic matrices are determined by their first row. Since there are 255 non-
zero binary cyclic 8 × 8 matrices, we get a total complexity of less than 28 ×
28 × 28 × 30 < 229, which is practical. In fact, a cyclic matrix with first row
(a0, a1, · · · , an−1) is a invertible matrix if and only if the polynomial a0 + a1x +
· · ·+ an−1x

n−1 and xn − 1 are relatively prime. If n = 8, this condition is equal
to a0 + a1 + · · · + an−1 �= 0. Thus there exist only 27 invertible cyclic 8 × 8
matrices, causing the search complexity to decrease to less than 227.

Our experiments finally validated the structure of equation 2. We successfully
obtained a tuple (A1, A2, C1, C2) for which all elements of the S-Box all satisfy
equation 2. The irreducible polynomial is

f(x) = x8 + x7 + x6 + x5 + x4 + x2 + 1,

the cyclic matrices in the algebraic expression are

A1 = A2 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 1 0 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and the row vectors are

C1 = C2 = (1, 1, 0, 0, 1, 0, 1, 1).

The results presented can also be obtained with less computational effort
by using the Affine Equivalence Algorithm for S-Boxes described in [2]. This
algorithm in turn is based on the To and Fro algorithm for the isomorphism of
polynomials [8].

3.2 Embedding SMS4

Similar to the embedding defined by Murphy and Robshaw for AES–128 [7], we
can embed SMS4 into a more elegant and structured cipher ESMS4 in which all
operations are performed over the finite field GF (28). In this section we will show
how this can be done. First note that the description we give is probabilistic,
since we do not allow the inversion of the value 0 to occur. The overall number
of S-Boxes in the cipher and key schedule is 256, henceforth the probability that
an arbitrary plaintext can be encrypted under an arbitrary key without causing
a zero inversion can be approximated by

(
255
256

)256 ≈ 1/e ≈ 36.7%.



Analysis of the SMS4 Block Cipher 163

First of all, let F denote the field ESMS4 will be defined over:

F = GF (28) =
GF (2)[x]

x8 + x7 + x6 + x5 + x4 + x2 + 1
= GF (2)(θ)

The state space, the key space and the message space of ESMS4 then are F 128,
the round key space is F 32. In accordance with [7] we define a vector conjugate
mapping φ that maps an element a ∈ F to an 8-tuple a ∈ F 8

φ(a) =
(
a20

, a21
, a22

, a23
, a24

, a25
, a26

, a27
)

and analogously maps a vector A ∈ Fn to A′ ∈ F 8n. The inverse of φ, Im(φ)
shall be called extraction mapping. For a GF (2)-linear function L operating
on a byte b := (b8, b7, b6, b5, b4, b3, b2, b1) we obtain a F -linear function L that
performs the equivalent operation on the vector φ(b) by first computing the
coefficients β1, . . . , β8 of the the linearized polynomial

L(b) =
8∑

k=1

βka2k−1

and then computing the matrix ML = (αi,j) with αi,j = β2i−1

1+((j−i) mod 8). The
function L then is defined as L : F 8 → F 8, v → ML ·v. We call ML the linearized
polynomial matrix form of L.

The S-Box layer. From Section 3.1 we know that the S-Box of SMS4 can be
decomposed into the form A◦ I ◦A, with A an affine-linear function over GF (2).
Analogously, for ESMS4, the S-Box operation can be performed by A ◦ I ◦ A,
with A being an affine-linear transform over F and I being the componentwise
inversion of elements on a vector v ∈ F 8. The linear part of A can be expressed
by multiplication of the linearized polynomial matrix form MA ∈ F 8×8 of the
linear part of A, whilst the constant can simply be embedded using φ. We define
C̃ = (φ(C1), φ(C1), φ(C1), φ(C1)) and Ã = Diag4(MA).

The linear transform λ. Let P ∈ GF (2)32×32 be the permutation matrix
such that for v ∈ GF (2)32, the product P · v corresponds to a cyclic shift of
elements of v by one position to the left. This matrix can be decomposed into
the following form

P =

⎛

⎜⎜⎝

M1 0 0 M2

M2 M1 0 0
0 M2 M1 0
0 0 M2 M1

⎞

⎟⎟⎠ , M1, M2 ∈ GF (2)8×8

By computing the linearized polynomial matrix forms for M1, M2

M̃1 = L(M1), M̃2 = L(M2)
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we obtain the following matrix that performs the equivalent action on a 32-tuple
of elements representing 4 bytes of the state:

P =

⎛

⎜⎜⎜⎝

M̃1 0 0 M̃2

M̃2 M̃1 0 0
0 M̃2 M̃1 0
0 0 M̃2 M̃1

⎞

⎟⎟⎟⎠ , M̃1, M̃2 ∈ F 8×8

Then the transformation λ is equivalent to the multiplication from the left
with the matrix

Λ1 = P 0 + P 2 + P 10 + P 18 + P 24

whilst for λ′ the corresponding matrix is

Λ2 = P 0 + P 13 + P 24.

The round function. The F-function function of the cipher ESMS4 can be
expressed as:

F̃ : F 32 × F 32 → F 32,

(X̃, K̃) �→ Λ1 ·
(
Ã · I

(
Ã ·

(
X̃ + K̃

)
+ C̃

)
+ C̃

)

The key schedule. The key generation function of ESMS4 is defined in the
same way as the F-function except for replacing Λ1 by Λ2.

The existence of the embedding stems from the fact that SMS4 uses only
GF (2)-linear operations and an inversion over GF (28). Since the number of S-
Boxes per cipher round is only a quarter of that of BES–128, we expect ESMS4
to be more amenable to experimenting with algebraic attacks without resorting
to scaling down the field or block size.

4 A Reduced-Round Attack Using Integrals

Integral cryptanalysis is a powerful cryptanalytic method that was first used to
break a reduced version of SQUARE [3], a predecessor of Rijndael. In following
we will use the notation of [5]. We will use [A1, A2, A3, A4] to denote a block and
(a1, a2, a3, a4) to denote a word.

Our attack is based on the following difference pairs for the round function of
SMS4:

[Δ, 0, 0, 0] → [0, 0, 0, Δ] [0, 0, Δ, Δ] → [0, Δ, Δ, 0]
[0, Δ, Δ, 0] → [Δ, Δ, 0, 0] [0, Δ, 0, Δ] → [Δ, 0, Δ, 0]

All these difference pairs are of probability one.
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Table 1. Propagation of the 8 round integral

round no. (r) Sr,1 Sr,2 Sr,3 Sr,4

0 (C,C,C,A) (C,C,C,A) (C,C,C,A) (C,C,C,C)

1 (C,C,C,A) (C,C,C,A) (C,C,C,C) (C,C,C,A)

2 (C,C,C,A) (C,C,C,C) (C,C,C,A) (C,C,C,A)

3 (C,C,C,C) (C,C,C,A) (C,C,C,A) (C,C,C,A)

4 (C,C,C,A) (C,C,C,A) (C,C,C,A) (A,A,A,A)

5 (C,C,C,A) (C,C,C,A) (A,A,A,A) (S,S,S,S)

6 (S,S,S,S) (�,�,�,�)

7 (S,S,S,S) (�,�,�,�)

8 (S,S,S,S) (�,�,�,�)

Let P = [P1, P2, P3, P4] be a plaintext. Then the following collection of 256
plaintexts will allow us to attack the 9th round key of SMS4:

[P1 ⊕ δ, P2 ⊕ δ, P3 ⊕ δ, P4],

where δ ranges from 0 to 255.
A trace of this integral through the cipher is depicted in Table 1. Each letter C

denotes a distinct constant byte value whilst the letter A ranges over all possible
byte values. In our case, the letter S means that the sum of all bytes after the
γ function is zero. This integral will allow us to determine four key bytes of the
last round key.

Moreover, since

γ(S8,2 ⊕ S8,3 ⊕ S8,4 ⊕ Ki) = λ−1(S8,1 ⊕ S9,4),

each key byte can be found independently.
Following the ideas of [4], this attack can be extended by an additional round

at the beginning using the following integral:

Δ (C, C, C, A) (C, C, C, A) (C, C, C, A)

where Δ = λ(0, 0, 0, Ã) ⊕ (C, C, C, C); with Ã independently ranging over all
byte values. Using a structure of 216 plaintexts allows us to parallelly determine
all bytes of the the 10th round key. We have implemented and experimentally
verified this attack.

The attack can be extended without increasing the data complexity by guess-
ing additional round keys. A theoretical attack on 13 rounds is thus possible with
a complexity of about 2114 cipher operations. Generic attacks on Feistel networks
with the structure of SMS4 (96:32 UFN) work on a significantly smaller number
of rounds, namely up to 7 rounds [9,10].

5 Weak Keys for Modified Round Key Constants

In this section we show that for slightly modified round key constants in the key
schedule, the cipher will exhibit a class of 264 weak keys. For all of these keys, the
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cipher exhibits an invariant property over an arbitrary number of rounds. This
invariance can be used to effectively distinguish the encryption function from
a random permutation. Once the use of a weak key is detected, the key search
space for an attacker of course shrinks from 2128 to 264. The property shows an
unexpected fragility of the cipher design and in our opinion casts serious doubt
on its strength.

Definition 1. Let a ∈ GF (2)2n. If a = b||b for an element b ∈ GF (2)n, then
we say that the element a has a 1/2-repetition property; alternatively a may be
called 1/2-repeated.

Theorem 1. Let (s1, . . . , sk) ∈ Z
k be a vector of shift offsets. Any 2n-bit func-

tion g : GF (2)2n → GF (2)2n of the form

x �→
k⊕

i=1

(x<<<si)

preserves the 1/2-repetition property.

Proof. Obviously the invariance condition is preserved under addition if it holds
for all elements of the sum. By induction the invariance condition for n-bit cyclic
shifts can be derived for 1-bit shits. �

Modifying all round key constants κi to be 1/2-repeated, we obtain 264 cipher
keys for which all round keys possess the 1/2-repetition property; note that
due to the masking of the cipher key with the system parameter in the key
generation the 264 actual cipher keys are not 1/2-repeated though. Both the
round key function and the round function preserve the invariance for these
keys. From this follows that for plaintexs in which each word is 1/2-repeated, we
obtain ciphertexts that also are 1/2-repeated. Henceforth, these cipher variants
are insecure.

6 Conclusions

We have given a detailed analysis of SMS4. Its design seems to be clearly in-
fluenced by Rijndael, although the UFN structure makes for a much simpler
implementation. We decomposed the S-Box into two affine linear transforms
and an inversion and have given an embedding to the cipher similar to BES. An
practical attack on 10 rounds of SMS4 has been demonstrated and the fragility
of the key schedule has been exposed. We think that our results are only a first
step in the cryptanalysis of SMS4 and that further improvements can be made.
Especially the point of algebraic cryptanalysis – for which this cipher is an ex-
cellent target – has not been addressed in this paper. This will be discussed in
a future paper.
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Appendix A: The SMS4 S-Box

Below you find the entries of the SMS4 S-Box in hexadecimal notation. For
example, for an input of 0xef the corresponding output can be read off in the
row labelled with the value e and the column labelled with f: 0x84.

http://www.oscca.gov.cn/UpFile/, 21016423197990.pdf
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0 1 2 3 4 5 6 7 8 9 a b c d e f

0 d6 90 e9 fe cc e1 3d b7 16 b6 14 c2 28 fb 2c 05
1 2b 67 9a 76 2a be 04 c3 aa 44 13 26 49 86 06 99
2 9c 42 50 f4 91 ef 98 7a 33 54 0b 43 ed cf ac 62
3 e4 b3 1c a9 c9 08 e8 95 80 df 94 fa 75 8f 3f a6
4 47 07 a7 fc f3 73 17 ba 83 59 3c 19 e6 85 4f a8
5 68 6b 81 b2 71 64 da 8b f8 eb 0f 4b 70 56 9d 35
6 1e 24 0e 5e 63 58 d1 a2 25 22 7c 3b 01 21 78 87
7 d4 00 46 57 9f d3 27 52 4c 36 02 e7 a0 c4 c8 9e
8 ea bf 8a d2 40 c7 38 b5 a3 f7 f2 ce f9 61 15 a1
9 e0 ae 5d a4 9b 34 1a 55 ad 93 32 30 f5 8c b1 e3
a 1d f6 e2 2e 82 66 ca 60 c0 29 23 ab 0d 53 4e 6f
b d5 db 37 45 de fd 8e 2f 03 ff 6a 72 6d 6c 5b 51
c 8d 1b af 92 bb dd bc 7f 11 d9 5c 41 1f 10 5a d8
d 0a c1 31 88 a5 cd 7b bd 2d 74 d0 12 b8 e5 b4 b0
e 89 69 97 4a 0c 96 77 7e 65 b9 f1 09 c5 6e c6 84
f 18 f0 7d ec 3a dc 4d 20 79 ee 5f 3e d7 cb 39 48

Appendix B: Equivalent Forms of the S-Box

Just as for the Rijndael S-Box [1], different equivalent representations of the
SMS4 S-Box can be obtained. The S-Box constructed by equation 2 in Section
3.1 is a composition of two affine transformations and a mapping I in the vector
space. I is a mapping in the vector space obtained from an inversion mapping in
GF (28), it is related to the chosen basis of the finite field. The basis defining I in
equation 2 is a polynomial basis {β7, · · · , β, 1} (β is a root of the polynomial),
which is defined by the irreducible polynomial x8 + x7 + x6 + x5 + x4 + x2 + 1.

Below we study the equivalent forms of algebraic expression of the S-Box,
namely we find other algebraic expressions when the inversion mapping of the
finite field is represented in different bases. We do not limit ourselves to polyno-
mial bases, we consider general bases of finite fields.

If {αn−1, · · · , α1, α0} and {βn−1, · · · , β1, β0} are two bases of GF (2n) over
GF (2), there must be a n × n invertible matrix M that satisfies the equation
below ⎛

⎜⎝
αn−1

...
α0

⎞

⎟⎠ = M

⎛

⎜⎝
βn−1

...
β0

⎞

⎟⎠ .

M is a transformation matrix from the basis {βn−1, · · · , β1, β0} to the basis
{αn−1, · · · , α1, α0}.
Lemma 1. Let I1, I2 : GF (2)n → GF (2)n be mappings corresponding to I un-
der the basis {αn−1, · · · , α1, α0} and {βn−1, · · · , β1, β0} respectively. Then

I1(x) = I2(x · M) · M−1
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Proof. For any x ∈ GF (2n), if the denotation of x under two bases are

x = (xn−1, · · · , x0)

⎛

⎜⎝
αn−1

...
α0

⎞

⎟⎠ = (yn−1, · · · , y0)

⎛

⎜⎝
βn−1

...
β0

⎞

⎟⎠ ,

then
(xn−1, · · · , x0) · M = (yn−1, · · · , y0). (3)

While

I1(xn−1, · · · , x0)

⎛

⎜⎝
αn−1

...
α0

⎞

⎟⎠ = I(x) = I2(yn−1, · · · , y0)

⎛

⎜⎝
βn−1

...
β0

⎞

⎟⎠ ,

namely that

I1(xn−1, · · · , x0) · M

⎛

⎜⎝
βn−1

...
β0

⎞

⎟⎠ = I2(yn−1, · · · , y0)

⎛

⎜⎝
βn−1

...
β0

⎞

⎟⎠ ,

so
I1(xn−1, · · · , x0) · M = I2(yn−1, · · · , y0).

Substituting equation 3 into the formula above, we obtain

I1(xn−1, · · · , x0) · M = I2((xn−1, · · · , x0) · M),

namely for any x ∈ GF (2)n,

I1(x) = I2(x · M) · M−1

Corollary 1. Select {β7, · · · , β1, β0} as the polynomial basis defined by the ir-
reducible polynomial x8 + x7 + x6 + x5 + x4 + x2 + 1. Let {α7, · · · , α1, α0} be
another polynomial basis of GF (28) and M be the transformation matrix from
{β7, · · · , β1, β0} to {α7, · · · , α1, α0}. Then under the basis {α7, · · · , α1, α0}, the
algebraic expression of the SMS4 S-Box is

S(x) = I1(xA1M + C1M)M−1A2 + C2. (4)

For convenience, A1, A2 of the equation 2 are called generator matrices of the
S-Box. According to Corollary 1, under the basis {αn−1, · · · , α0} the generator
matrices of the S-Box are A1M and M−1A2.

There are 30 irreducible polynomials of degree 8 over GF (2). Every irreducible
polynomial can define 8 different bases. Therefore there are 30 × 8 = 240 alge-
braic expressions of the S-Box with different generator matrices. If we do not
limit ourselves to polynomial bases, the generator matrix A1M in the algebraic
expression of the S-Box can be any invertible matrix (correspondingly, M−1A2

is another matrix).
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Next we will prove that if we limit ourselves to cyclic matrices for A1, A2

under a polynomial basis, the basis must be the one mentioned in the previous
section. In this sense the algebraic expression presented in 3.1 is the simplemost
form that can be obtained.

Proposition 1. If restrict A1, A2 to be cyclic matrices, the algebraic expression
of the S-Box (A1, A2, C1, C2) presented in Section 3.1 is uniquely defined.

Proof. According to Corollary 1, for the other tuple

S(x) = I1(x · AT
1 · M + C1 · M) · M−1 · AT

2 + C2. (5)

holds. Assume that (AT
1 ·M) and (M−1 ·AT

2 ) are cyclic matrices, while A1, A2 are
cyclic matrices as well. Then MT and M must also be cyclic matrixes, namely
we get

⎛

⎜⎝
αn−1

...
1

⎞

⎟⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0 c1 c2 c3 c4 c5 c6 c7

c7 c0 c1 c2 c3 c4 c5 c6

c6 c7 c0 c1 c2 c3 c4 c5

c5 c6 c7 c0 c1 c2 c3 c4

c4 c5 c6 c7 c0 c1 c2 c3

c3 c4 c5 c6 c7 c0 c1 c2

c2 c3 c4 c5 c6 c7 c0 c1

c1 c2 c3 c4 c5 c6 c7 c0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎝
βn−1

...
1

⎞

⎟⎠

We then can get a system of linear equations,
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 = c0 + c1β + · · · + c7β
7

α = c0β + · · · + c6β
7 + c7

...
α7 = c0β

7 + c1 + · · · + c6β
5 + c7β

6

which can be transformed into:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α − β = c7(1 − β8)
α(α − β) = c6(1 − β8)
...
α6(α − β) = c1(1 − β8)

From this follows that

α =
c6

c7
=

c5

c6
=

c4

c5
=

c3

c4
=

c2

c3
=

c1

c2
.

Since we know that (α7, · · · , α, 1)T is a polynomial basis, it is impossible for α to
satisfy the above form. Hence our initial assumption is wrong. From this follows
that for generator matrices limited to cyclic matrices, the generator tuple of the
SMS4 S-Box is unique.
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