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Abstract. In 1989, Tsujii, Fujioka, and Hirayama proposed a family of
multivariate public key cryptosystems, where the public key is given as
a set of multivariate rational functions of degree 4. These cryptosystems
are constructed via composition of two quadratic rational maps. In this
paper, we present the cryptanalysis of this family of cryptosystems. The
key point of our attack is to transform a problem of decomposition of two
rational maps into a problem of decomposition of two polynomial maps.
We develop a new improved 2R decomposition method and other new
techniques, which allows us to find an equivalent decomposition of the
rational maps to break the system completely. For the example suggested
for practical applications, it is very fast to derive an equivalent private
key, and it requires only a few seconds on a standard PC.

1 Introduction

Multivariate public key cryptosystems have undergone very fast development in
the last 20 years. They are considered one of the promising families of alternatives
for post-quantum cryptography, which are cryptosytems that could resist attacks
by the quantum computers of the future [1]. Though most people think that Diffie
and Fell wrote the first paper on the multivariate public key cryptosystems [3],
Tsujii, Kurosawa and etc actually did similar work at the same time [7]. Though
this family of cryptosystems is almost 20 years old, it is not so well known. It
actually included several methods rediscovered later, which is partially due to
the fact that they were written in Japanese and were published inside Japan.
Recently it is pointed out by Tsujii [6] that there is not yet any successful attack
on the degree 4 rational multivariate public key cryptosystem designed at that
time (1989)[5].

This family of multivariate public key cryptosystem is very different from
most of the known cryptosystems, namely the public key functions are rational
functions instead of polynomial functions and the total degree of the polynomials
components are of degree 4 instead of degree 2. The public key is presented as:
P (x1, .., xn)=(P1(x1, .., xn)/Pn+1(x1, .., xn), · · · , Pn(x1, .., xn)/Pn+1(x1, .., xn)),
where Pi(x1, .., xn) are degree 4 polynomials over a finite field k. We call this
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family of cryptosystems rational multivariate public key cryptosystems (RMP-
KCs).

The construction of this family of cryptosystems relies on three basic methods.
The first one is called the core transformation, which is essentially an invertible
rational map with two variables. The second one is called the sequential solution
method, which is essentially invertible rational triangular maps. This ideas was
used later in the name of tractable rational maps in [8], but the authors [8] were
not aware of the work of Tsujii’s group. The last one is the method of compo-
sition of nonlinear maps, which was also used later by Goubin and Patarin [4]
again without knowing the works of Tsujii’s group. The public key therefore has
following expression: P = L3 ◦ G ◦ L2 ◦ F ◦ L1, where ◦ stands for map compo-
sition and Li are invertible affine maps. G and F are degree two rational maps:
F = (F1/Fn+1, · · · , Fn/Fn+1; ) G = (G1/Gn+1, · · · , Gn/Gn+1), where Fi and
Gi are quadratic polynomials and F and G utilize both the core transformation
and the triangular method.

The designers of this family of cryptosystem also employed two very inter-
esting ideas to reduce the public key size, which is a key constraint with the
potential to render a multivariate public key cryptosystem application less ef-
ficient. The first idea is to use functions of a small number of variables over a
relatively large field. Since the the public key size is O(n4), using fewer variables
greatly reduces the public key size.

The second idea is to build a public key using a field k, then use an extension
field of k, say K, as the field from which the plaintext is defined. If |k|e = |K|,
then the public key size required is only 1

e as large as if K were used to define
the public key. Mathematically, the public key lies in the function ring over kn,
a subring of the function ring over Kn. Encryption and decryption occur using
the larger function ring. This idea was used later in Sflash Version-1 [10].

In 1989, the designers proposed a practical application using k of size 28, K
of size 232 and n = 5. This application encrypts blocks of 20 bytes using a 756
byte public key. This family of cryptosystems seems to be very interesting and
worthy of further exploration.

As we mentioned before, there is a related cryptosystem called 2R by Patarin,
which is very similar except that F and G are replaced by 2 quadratic polynomial
maps, but this cryptosystem is broken by a decomposition method using partial
derivatives [9]. It is clear this method cannot be directly used on RMPKCs
because of more complicated expressions for derivatives of rational functions.

Our new method begins by viewing separately the denominator and the nu-
merators of the public key as polynomial functions. We would like to decompose
these quartic polynomials into quadratic components. We will use these quadrat-
ics to reconstruct the given public key polynomials, but we first have to transform
them so that the reconstruction is done is a way that we have a complete alter-
nate private key for the cryptosystem. This alternate private key gives us the
ability to invert ciphertext just as easily as the owner of the original private key.

To see how we accomplish this, let’s refer to the polynomial expressions in the
denominator and the numerators of the public key as pi = gi◦(f1, . . . , fn+1). We
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first find S = Span { fj : 1 ≤ j ≤ n + 1 } . From S, we carefully choose a basis
that will enable us to invert the resulting rational maps when we reconstruct the
public key. After choosing this basis, it is easy to find each gi. We will have to
transform in a similar way the components of Span { gj : 1 ≤ j ≤ n + 1 }.

We would like to emphasize that our attack is not just application of known
methods. In particular, the design of these RMPKCs create two especially inter-
esting challenges for us. The first challenge is to find Span { fj : 1 ≤ j ≤ n+1 },
and it turns out that the 2R decomposition method alone can not fiund this
space by just applying the partial derivative attack directly to the quartic poly-
nomials pi. Mathematically, our new idea is to use subplanes of our function
space, and the computational means that to do this is very simple: we merely
set some of the variables equal to zero. By combining results from three or more
of such subplanes, we successfully identify Span { fj : 1 ≤ j ≤ n+1 }. This new
extension of 2R decompostion is very different from that in [2].

The second challenge comes from the use of a common denominator in both
F and G. We must identify each of these two denominators exactly (up to a
scaling factor). This step is necessary to complete the reconstruction of the
public key. To find the exact denominator of F , we capitalize on a weakness in
the design of the core transformation of G. This weakness results in a portion
(subspace) of Span { pj : 1 ≤ j ≤ n+1 } in which the polynomial elements have
the denominator of F as a factor. We find it using linear algebra techniques.
Finding the exact denominator of G comes to us automatically as we solve for
the gi’s in the equations pi = gi ◦ (f1, . . . , fn+1).

The paper is arranged as follows. In Section 2, we will present the specifics of
the cryptosystems we will attack. In Section 3, we will present the details of the
cryptanalysis of this family of cryptosystems; we will include our experimental
results and relevant information on computational complexity. In the last section,
we will summarize our learnings.

2 The RMPKC Cryptosystem

In this section, we will present the design of the rational multivariate public key
cryptosystem [5]. Let k be a finite field and kn the n-dimensional vector space
over k.

1. The public key. The public key is given as a set of rational degree 4
functions: P (x1, ...xn) = ( P1(x1,...,xn)

Pn+1(x1,...,xn) , · · · , Pn(x1,...,xn)
Pn+1(x1,...,xn) ), where each Pi is

a degree 4 polynomial over k. P is constructed as the composition of the five
maps: P = L3 ◦ G ◦ L2 ◦ F ◦ L1 = (P1/Pn+1, · · · , Pn/Pn+1). Here L1, L2, L3

are invertible, linear transformations over kn. Both F and G are quadratic
rational maps, i.e. each consists of n quadratic rational functions, kn → k.
F = (F1/Fn+1, ··, Fn/Fn+1) and G = (G1/Gn+1, ··, Gn/Gn+1), where for
1 ≤ i ≤ n + 1, Fi and Gi are quadratic polynomials in (x1, . . . , xn). The
details of the construction of F and G are provided below in the section
explaining the private key. F and G are constructed identically, with different
choices of random parameters.
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Note the denominators used in both rational maps are the same in the
two nonlinear map respectively. Gn+1 is the common denominator for G; it
enables the public key to consist of exactly n + 1 polynomials. Fn+1 is the
common denominator for F ; it enables the composition of degree 2 rational
functions to result in a degree 4 rational function, not that of higher degree.
To see how this works, we’ll introduce a division function, φ : kn+1 −→ kn

with φ(x1, . . . , xn+1) = ( x1
xn+1

, · · · , xn

xn+1
). Also let F̄ , Ḡ : kn −→ kn+1 each

be quadratic polynomials that satisfy

φ ◦ Ḡ = L3 ◦ G and φ ◦ F̄ = L2 ◦ F ◦ L1

resulting in P = φ ◦ Ḡ ◦ φ ◦ F̄ = φ ◦ (Ḡ ◦ φ) ◦ F̄ .
Now let G̃ be the homogenization of Ḡ, i.e. G̃ : kn+1 → kn+1 where

∀ 1 ≤ i ≤ n + 1, G̃i(v1, . . . , vn+1) = v2
n+1Ḡi( v1

vn+1
, · · · , vn

vn+1
) =

v2
n+1Ḡi ◦ φ(v1, . . . , vn+1).

Note that G̃ �= Ḡ◦φ, but φ◦G̃ = φ◦Ḡ◦φ. So P = φ◦G̃◦F̄ where G̃ and F̄ are
quadratic polynomials. The public key, then, contains the ordered list of n+1
quartic polynomials (P1, . . . , Pn+1) where ∀ 1 ≤ i ≤ n + 1, Pi(x1, . . . , xn) =
G̃i ◦ F̄ (x1, . . . , xn).

2. Encryption. Given a plaintext X = (X ′
1, · · · , X ′

n) ∈ kn one computes the
ciphertext Y ′ = (Y ′

1 , · · · , Y ′
n) ∈ kn as

(Y ′
1 , · · · , Y ′

n) = ( P1(X′
1,...,X′

n)
Pn+1(X′

1,...,X′
n) , · · · ,

Pn(X′
1,...,X′

n)
Pn+1(X′

1,...,X′
n) ).

3. The private key. The private key is the set of the five maps F, G, L1, L2, L3

and the key to invert the non-linear maps F and G. The map P can illus-
trated as: kn L1−→ kn F

−→ kn L2−→ kn G
−→ kn L3−→ kn.

The design principles of the quadratic rational components, F and G, are
identical, except that they use different choices for the random parameters
involved. A two-part construction is used. The first part is what the designers
call a core transformation. The second part is called the sequential part, since
inversion is accomplished sequentially. Its structure can be seen as triangular.
The core tranformation is applied only to the last two components, namely
C = (Fn−1

Fn+1
, Fn

Fn+1
), which can be viewed as a map k2 −→ k2. To construct

Fn−1, Fn, Fn+1, we first randomly choose 12 elements in k: α1, . . . , α6 and
β1, . . . , β6. C has an inverse which is given by:

C−1(yn−1, yn) = ( α1yn−1+α2yn+α3
α4yn−1+α5yn+α6

, β1yn−1+β2yn+β3
β4yn−1+β5yn+β6

).

Then Fn−1, Fn and Fn+1 are defined as follows:

∀ n − 1 ≤ i ≤ n + 1, Fi(xn−1, xn) = τi,1xn−1xn + τi,2xn−1 + τi,3xn + τi,4

where the τi,j is defined as follows:

τn−1,1 = α6β5 − α5β6 τn,1 = α6β4 − α4β6 τn+1,1 = α5β4 − α4β5

τn−1,2 = α3β5 − α5β3 τn,2 = α3β4 − α4β3 τn+1,2 = α1β4 − α4β1

τn−1,3 = α6β2 − α2β6 τn,3 = α6β1 − α1β6 τn+1,3 = α5β2 − α2β5

τn−1,4 = α3β2 − α2β3 τn,4 = α3β1 − α1β3 τn+1,4 = α1β2 − α2β1
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The rest of the components are given in a triangular form:

∀1 ≤ i ≤ n − 2, Fi(x1, . . . , xn) = ai(xi+1, . . . , xn)xi + bi((xi+1, . . . , xn),

where the ai’s are randomly chosen linear polynomials and the bi’s are ran-
domly chosen quadratic polynomials.

4. Decryption. To decrypt, we need to invert the map P , which is done as
follows: P−1(Y ′

1 , . . . , Y ′
n) = L−1

1 ◦ F−1 ◦ L−1
2 ◦ G−1 ◦ L−1

3 (Y ′
1 , . . . , Y ′

n) =
(X ′

1, . . . , X
′
n). The holder of the private key has the means to find the in-

verse of each of L3, G, L2, F, L1. Performing the calculations in order yields
(X ′

1, . . . , X
′
n). Inversion of the linear transformations is obvious.

To invert the map F is to find the solution of equation: F (x1, ..., xn) =
(y′

1, ..., y
′
n) for a given vector (y′

1, ..., y
′
n). We first use the inverse of C to

calculate (x′
n−1, x

′
n) = C−1(y′

n−1, y
′
n). Then we plug the resulting values

into the third last component function of F . This gives us the following
linear equation in xn−2:

y′
n−2 = Fn−2(xn−2,x′

n−1,x′
n)

Fn+1(x′
n−1,x′

n) = an−2(x
′
n−1,x′

n)∗xn−2+bn−2(x
′
n−1,x′

n)

τn−2,1x′
n−1x′

n+τn−2,2x′
n−1+τn−2,3x′

n+τn−2,4

yielding x′
n−2 = y′

n−2∗(τn−2,1x′
n−1x′

n+τn−2,2x′
n−1+τn−2,3x′

n+τn−2,4)−bn−2(x
′
n−1,x′

n)

an−2(x′
n−1,x′

n) .
After obtaining x′

n−2, we can plug known values into the fourth last com-
ponent function of F and derive x′

n−3. This sequential solution method
is continued to find the rest of (x′

1, . . . , x
′
n) which gives us a solution for

F (x1, ..., xn) = (y′
1, ..., y

′
n). Inversion of G is performed in the exact same

manner as F .
Note that in the inversion process, division is required in the calculation

of each of the components of (x′
1, . . . , x

′
n). In each case, the expression for the

divisor is linear in terms of known values of input variables (x′
i+1, . . . , x

′
n)

and the given values of output variables (y′
i, . . . , y

′
n). In both cases, the prob-

ability of valid division is approximately q−1
q . The probability of successfully

inverting both F and G, and thus P , therefore, is approximately
(

q−1
q

)2n.

3 Cryptanalysis of RMPKC

Our attack can be viewed as the decomposition of maps. The cryptanalysis of
RMPKC is performed as follows: given P , the composition of L3◦G◦L2 ◦F ◦L1,
generate a new set of maps L′

3, G
′, L′

2, F
′, and L′

1 such that

L3 ◦ G ◦ L2 ◦ F ◦ L1 = L′
3 ◦ G′ ◦ L′

2 ◦ F ′ ◦ L′
1,

and G′ and F ′ can be inverted in the same way as G and F , with the keys
to inversion obtained during the process. This new set of maps can be viewed
as a private key equivalent to the original one, thus can be used to defeat the
RMPKC cryptosystem.

To decompose RMPKC, we will use the partial derivative method, which
takes the composition of two homogeneous quadratic polynomial maps forming
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a homogeneous quartic map, and decomposes it into quadratic maps which, when
composed together, form the original quartic map [9]. Consider g ◦ f where g =(

(g1(x1, . . . , xm), .., gm(x1, . . . , xm)
)
, f =

(
(f1(x1, . . . , xm), .., fm(x1, . . . , xm)

)

and each of the gi’s and the fi’s are homogeneous quadratic polynomials. The
first step is to find F = Span { fi : 1 ≤ i ≤ m }, a vector space over k.

Once found, one can select linearly independent quadratics from it, say
(f ′

1, . . . , f
′
m). Then by solving a set of linear equations, one can find (g′1, . . . , g

′
m)

such that ∀ 1 ≤ i ≤ m, g′i ◦ f ′ = gi ◦ f where f ′ = (f ′
1, . . . , f

′
m).

The critical step of this process is finding F . The following definitions are
needed: D = Span { ∂

∂xj
gi ◦ f(x1, . . . , xm) : 1 ≤ i, j ≤ m };

Λ = { xjf : 1 ≤ j ≤ m, f ∈ F }; R = { θ : ∀ 1 ≤ i ≤ m, xiθ ∈ D }. When
each of the fi’s and gi’s are homogeneous quadratic polynomials, D ⊆ Λ. This
is true basically because

∂
∂xj

(gi ◦ f) = m
P

r=1

∂
∂wr

gi(f) × ∂
∂xj

fr(x1, . . . , xm)

where ∂
∂wr

gi(f) is linear in the f ’s and ∂
∂xj

f(x1, . . . , xm) is linear in the (x1, . . . ,

xm).
We calculate D and R from g ◦ f . If D = Λ, then R = F and this step is

complete. When D ⊂ Λ, R ⊂ F . Why R ⊆ F and D = Λ ⇐⇒ R = F should be
fairly easy to see.

Application of the partial derivative attack to RMPKC requires some addi-
tional work. As we saw in the explanation of the public key, we have access
to n + 1 polynomials of the form Pi = G̃i ◦ F̄ (x1, . . . , xn) where G̃i is a ho-
mogeneous quadratic polynomial and F̄ consists of non-homogeneous quadratic
polynomials. Our first step is to homogenize each of the Pi’s, which effectively
homogenizes each of the F̄i’s, yielding the following:

P̃i(x1, . . . , xn+1) = G̃i ◦ F̃ (x1, . . . , xn+1)

where each of the P̃i’s are homogeneous quartic polynomials and each of the G̃i’s
and F̃i’s are homogeneous quadratic polynomials.

Then we begin the partial derivative attack, by calculating D from G̃i ◦
F̃ (x1, . . . , xn+1). We never get D = Λ, due to the triangular structure of G and
the use of k which has characteristic 2. We are able to recover F by applying the
attack with a new method of projection of our functions to subplanes; the details
will be provided in the section that follows. After finding F , we de-homogenize
the space by setting xn+1 = 1.

The second challenge that the specifics of RMPKC present to the partial
derivative attack is the challenge to select the polynomials F ′

1, . . . , F
′
n+1 from

F|xn+1=1 in such a way that they may be easily inverted. The procedure we
use to find such F ′

1, . . . , F
′
n+1 is described below. The process results in a linear

transformation L′
1 and a quadratic rational map F ′, which inverts in the same

manner as F for the holder of the private key.
Then to continue the partial derivative attack we can find the gi’s that satisfy

Pi = gi ◦F ′; but these gi’s would not invert easily. So we define G′ = Span { gi :
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1 ≤ i ≤ n + 1 } and select polynomials from G′ which we can invert. This
process generates linear transformations L′

2 and L′
3, and quadratic rational map

G′, which inverts in the same manner as G in the private key. Then we have
P = L′

3 ◦G′ ◦L′
2 ◦F ′ ◦L′

1, an alternative private key, thus breaking the RMPKC.
We organize our attack into four phases. The sections that follow will present

an explanation in further detail of each phase.

1. Find F = Span { F̃i : 1 ≤ i ≤ n + 1 }.
2. Determine F ′ and L′

1.
3. Find G′ = Span { g′i | g′i ◦ F ′ ◦ L′

1 = Pi : 1 ≤ i ≤ n + 1 }.
4. Determine G′, L′

2, and L′
3.

3.1 Phase I: Find F = Span { F̃i : 1 ≤ i ≤ n + 1 }
We start with the public key, P = G̃ ◦ F̄ = (P1, . . . , Pn+1) and homogenize
by creating P̃ = (P̃1, . . . , P̃n+1) using ∀ 1 ≤ i ≤ n + 1, P̃i(x1, . . . , xn+1) =
x4

n+1Pi( x1
xn+1

, · · · , xn

xn+1
). This gives us P̃ = G̃◦ F̃ where F̃ = (F̃1, . . . , F̃n+1) and

∀ 1 ≤ i ≤ n + 1, F̃i(x1, . . . , xn+1) = x2
n+1F̄i( x1

xn+1
, · · · , xn

xn+1
).

To proceed we need to define Hi ∀ i ∈ { 1, 2, 3 } as the set of all homogeneous
polynomials in k[x1, . . . , xn+1] of degree i. Each Hi is a vector space over k as
well as a subset of k[x1, . . . , xn+1]. For notational simplification, we will use
context to distinguish between these uses of Hi.

We now define D, R, and Λ for G̃ ◦ F̃ . Recall we calculate D and R from P̃ .

D = Span { ∂
∂xj

G̃i ◦ F̃ (x1, . . . , xn+1) : 1 ≤ i, j ≤ n + 1 } ⊂ H3

Λ = { xjf : 1 ≤ j ≤ n + 1, f ∈ F } ⊂ H3

R = { f ∈ H2 : ∀1 ≤ i ≤ n + 1, xif ∈ D }.
Since the polynomials of G̃ and F̃ are homogeneous quadratics, we are guar-

anteed D ⊆ Λ and R ⊆ F . We also have D = Λ ⇐⇒ R = F . Because of the
structure of the original polynomials in G and the use of a field of characteristic
2, we will always find D ⊂ Λ and therefore R ⊂ F . So we use the following
definitions of Γ and γ to help explain how to see what is happening with indi-
vidual f ’s in F , why they do not find themselves in R, and how we are going to
eventually find them with our alternative approach.

Γ (f) = { θ ∈ H1 : θf ∈ D } and γ(f) = dim( Γ (f) ).

Clearly, f ∈ R ⇐⇒ γ(f) = n+1. We always get γ(f) ≤ n+1, and Min { γ(f) :
f ∈ F } describes how far away from obtaining R = F for any given application
of RMPKC. For n = 5 and n = 6, we find Min { γ(f) : f ∈ F } = n almost
every time. For n = 7 we usually get Min { γ(f) : f ∈ F } = n − 1. And for
n ≥ 8 we most likely get Min { γ(f) : f ∈ F } = n−2. Our alternative approach
works most simply for Min { γ(f) : f ∈ F } = n. We will describe this now in
detail; then briefly show how we accomplish this for Min { γ(f) : f ∈ F } < n.
We again start with the key definitions, valid ∀ 1 ≤ s ≤ n + 1; and we have
access to each Ds and Rs.
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Fs = Span { f(x1, . . . , xs−1, 0, xs+1, . . . , xn+1) : ∀ f ∈ F } .

Ds = Span { ∂
∂xj

G̃i ◦ F̃ (x1, . . . , xs−1, 0, xs+1, . . . , xn+1) : 1 ≤ i, j ≤ n + 1 } .

Λs = { xif : 1 ≤ i ≤ n + 1(i �= s), f ∈ Fs } .

Rs = { f ∈ H2 : ∀ 1 ≤ i ≤ n + 1(i �= s), xif ∈ Ds } .

Γs(f) = { θ ∈ H1 : θf ∈ Ds } , γs(f) = dim( Γs(f) ).

Now we always get Ds ⊆ Λs, Rs ⊆ Fs, and Ds = Λs ⇐⇒ Rs = Fs ⇐⇒
Min { γs(f) : f ∈ Fs } = n. Fortunately for this attack, with high probability,
γs(f) = Min { γ(f), n } . This is a crucial point. At this time, we do not have
a mathematical explanation for why it is so; our experiments confirm it with
consistent results. Once we get ∀ 1 ≤ s ≤ n + 1, Rs = Fs, finding F is easy.

Let R+
s = Rs + Span { xsxi : 1 ≤ i ≤ n + 1 } . When Rs = Fs, F ⊂ R+

s .

Furthermore, if ∀ 1 ≤ s ≤ n + 1, Rs = Fs, then F =
n+1

T

s=1
R+

s , completing the
task of finding F .

For the cases of Min { γ(f) : f ∈ F } < n, we expand our alternative
approach one or more levels further. Notice above the spaces R+

s , which are
created by setting xs = 0, finding Ds and Rs, then adding Span { xsxi : 1 ≤ i ≤
n + 1 } . For n = 7, when we have Min { γ(f) : f ∈ F } = n− 1, we use xs1 =
0 = xs2 where s1 �= s2. Following the same manner we form Ds1,s2 and Rs1,s2 .
Then we let R+

s1,s2
= Rs1,s2 + Span { xs1xi : 1 ≤ i ≤ n + 1 } + Span { xs2xi :

1 ≤ i ≤ n + 1 } . With consistency, we do get F =
T

1≤s1,s2≤n+1
s1 �=s2

R+
s1,s2

.

For n ≥ 8, when we have Min { γ(f) : f ∈ F } = n − 2, we use xs1 = 0 =
xs2 = 0 = xs3 where s1 �= s2 �= s3 �= s1. Following the same manner we form
Ds1,s2,s3 and Rs1,s2,s3 . Then we let R+

s1,s2,s3
= Rs1,s2,s3 + Span { xs1xi : 1 ≤

i ≤ n + 1 } + Span { xs2xi : 1 ≤ i ≤ n + 1 } + Span { xs3xi : 1 ≤ i ≤ n + 1 } .

Again we consistently get F =
T

1≤s1,s2,s3≤n+1
s1 �=s2 �=s3 �=s1

R+
s1,s2,s3

.

3.2 Phase II: Choose F′ and L′
1

In this phase we will determine the quadratic polynomials of F ′ = ( F ′
1

F ′
n+1

, · · · ,

F ′
n

F ′
n+1

) and the linear transformation, L′
1 such that

Span { F ′
i ◦ L′

1 : 1 ≤ i ≤ n + 1 } = Span { Fi ◦ L1 : 1 ≤ i ≤ n + 1 } ,

and F ′ can be easily inverted just like F .
However, we do need one additional condition on our new map, namely we

must have F ′
n+1 ◦L′

1 = λFn+1 ◦L1 for some λ ∈ k. This is necessary in order to
find the proper G′, which will be determined later, to be chosen so that it too
can be inverted in the same manner as G.

Our first step is to determine a core transformation in F ′. From the defi-
nition in Section 2, we can see that there is a subspace spanned by two lin-
early independent linear functions in F , which actually lies in the space spanned
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by Fn−1, Fn, Fn+1. Therefore F ′ also contains a subspace that is contained in
Span { θ′n−1, θ

′
n, 1 } for some θ′n−1, θ

′
n ∈ H1. This space can be found easily, and

it is clear that we have Span { θ′n−1, θ
′
n } = Span { L1,n−1, L1,n } ,where L1,n−1

and L1,n are the last two components of the linear transformation L1. Next we
find the three-dimensional subspace of F which forms the core transformation,
i.e. let R = F ∩ Span { θ′n−1

2
, θ′n

2
, θ′n−1θ

′
n, θ′n−1, θ

′
n, 1 }.

By construction, we know not only that ∃ R1, R2, R3 ∈ R such that R =
Span { R1, R2, R3 } and R3 ∈ Span { θn−1

2, θn
2, θn−1θn, 1 } and R1, R2 ∈

Span { θ′n−1, θ
′
n, 1 } , but also that ∃ θn−1, θn ∈ Span { θ′n−1, θ

′
n } where

R1, R2 ∈ Span { θn−1, θn, 1 } and R3 ∈ Span { θn−1θn, 1 } . Furthermore, R3

can be chosen so that R3 = θ′n−1
2+aθ′n−1θ

′
n+bθ′n

2+c. We can find appropriately
θn−1 = θ′n−1 + sθ′n and θn = θ′n−1 + tθ′n by finding the right values for s and t.

We solve for s and t by equating the quadratic terms of our chosen R3, i.e.
θ′n−1

2 + aθ′n−1θ
′
n + bθ′n

2 = (θ′n−1 + sθ′n)(θ′n−1 + tθ′n). So s + t = a and st = b.
Thus s(a − s) = b, i.e. s2 − as + b = 0. In characteristic 2, this last equation is
actually linear and can be solved for s.

This choice of θi allows us to calculate an inversion function for the core trans-
formation (described below), just like the inversion function of F . Coincidently,
either θn−1 = λ1L1,n−1 and θn = λ2L1,n for some λ1, λ2 ∈ k or θn−1 = λ1L1,n

and θn = λ2L1,n−1 for some λ1, λ2 ∈ k; but we don’t care which nor do we use
this result directly.

To get F ′
n+1 ◦L′

1 = λFn+1 ◦L1 for some λ ∈ k, we choose fn+1 ∈ R such that
fn+1|ρ for some nonzero ρ ∈ P = Span { Pi : 1 ≤ i ≤ n + 1 }. This works to
identify fn+1 = λFn+1 ◦ L1 for some λ ∈ k because the quadratic polynomials
of G become homogeneous when composed with the rational functions in F ,
making the linear subspace of the polynomials of G become a subspace divisible
by Fn+1 ◦ L1 (the denominator) when composed with L2 ◦ F ◦ L1.

We randomly choose fn−1, fn ∈ R such that R = Span { fi : n − 1 ≤ i ≤
n + 1 }. We then determine f1, . . . , fn−2 and θ1, . . . , θn−2 sequentially, by first
choosing fn−2 and θn−2, then working our way to f1 and θ1. Our procedure is
as follows:

∀ i = (n − 2, n − 3, · · · , 2) find θi /∈ Span { θi+1, . . . , θn } and fi ∈ F such
that fi ∈ Span { θjθk : i≤j≤k≤n+1

k �=i } + Span { θj : i ≤ j ≤ n + 1 } + 1.
The last components, f1 and θ1, can be chosen randomly as long as Span { fi :

1 ≤ i ≤ n+1 } = F and Span { θi : 1 ≤ i ≤ n+1 } = Span { xi : 1 ≤ i ≤ n }.
θ1, . . . , θn are the components of L′

1. It is easy to calculate F1, . . . , Fn+1 such
that ∀ 1 ≤ i ≤ n + 1, fi = Fi ◦ L′

1.
Now that we have determined L1 and F ′, we can find the inversion func-

tion parameters ( α′
1, . . . , α

′
6, β

′
1, . . . , β

′
6 ) for the core transformation of F ′ by

considering

xn−1 =
α′

1
F ′

n−1(xn−1,xn)

F ′
n+1(xn−1,xn)

+α′
2

F ′
n(xn−1,xn)

F ′
n+1(xn−1,xn)

+α′
3

α′
4

F ′
n−1(xn−1,xn)

F ′
n+1(xn−1,xn)

+α′
5

F ′
n(xn−1,xn)

F ′
n+1(xn−1,xn)

+α′
6

=

α′
1F ′

n−1(xn−1,xn) +α′
2F ′

n(xn−1,xn) +α′
3F ′

n+1(xn−1,xn)

α′
4F ′

n−1(xn−1,xn) +α′
5F ′

n(xn−1,xn) +α′
6F ′

n+1(xn−1,xn)
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or equivalently

xn−1

(
α′

4F
′
n−1(xn−1, xn) + α′

5F
′
n(xn−1, xn) + α′

6F
′
n+1(xn−1, xn)

)
=

α′
1F

′
n−1(xn−1, xn) + α′

2F
′
n(xn−1, xn) + α′

3F
′
n+1(xn−1, xn)

We equate the coefficients of the terms (1, xn−1, xn, (xn−1)2, xn−1xn, and
(xn−1)2xn) and simultaneously solve for the α′

1, . . . , α
′
6. In the same manner

we find β′
1, . . . , β

′
6 by starting with

xn =
β′
1

F ′
n−1(xn−1,xn)

F ′
n+1(xn−1,xn)

+β′
2

F ′
n(xn−1,xn)

F ′
n+1(xn−1,xn)

+β′
3

β′
4

F ′
n−1(xn−1,xn)

F ′
n+1(xn−1,xn)

+β′
5

F ′
n(xn−1,xn)

F ′
n+1(xn−1,xn)

+β′
6

=

β′
1F ′

n−1(xn−1,xn) +β′
2F ′

n(xn−1,xn) +β′
3F ′

n+1(xn−1,xn)

β′
4F ′

n−1(xn−1,xn) +β′
5F ′

n(xn−1,xn) +β′
6F ′

n+1(xn−1,xn)

Phase III: Find G′ ∀ 1 ≤ i ≤ n + 1, find linear combinations of { (F ′
j ◦

L′
1)(F

′
r ◦ L′

1) : 1 ≤ j ≤ r ≤ n + 1 } which are equal to Pi. The coefficients of
these combinations are the coefficients of the homogeneous polynomials Ḡ′

i.
Let G′ = Span { Ḡ′

i : 1 ≤ i ≤ n + 1 }.

3.3 Phase IV: Choose G′, L′
2 and L′

3

In this phase we will determine the quadratic polynomials of G′ =

⎛

⎜
⎝

G′
1/G′

n+1
...

G′
n/G′

n+1

⎞

⎟
⎠;

and the linear transformations, L′
2 and L′

3 such that ∀ 1 ≤ i ≤ n + 1, Pi =
(L′

3)i ◦ G′ ◦ L′
2 ◦ F ′ ◦ L′

1, and G′ can be easily inverted just like G.
Our first step is to determine a core transformation in G′. We easily find two

linearly independent linear vectors in G′, φ′
n−1 and φ′

n. Let U=Span { φ′
n−1, φ

′
n }.

That makes U = Span { L2,n−1, L2,n }. Next we find the three-dimensional
subspace of G′ which forms the core transformation, i.e.

let V = G′ ∩ Span { φ′
n−1

2
, φ′

n
2
, φ′

n−1φ
′
n, φ′

n−1, φ
′
n, 1 }.

Now we find φn−1 and φn in U such that ∀ g ∈ V , g ∈ Span { φn−1φn, φn−1,
φn, 1 }. This choice of φ’s allows us to calculate an inversion function for the
core transformation, just like the inversion function of G. Coincidently, either
φn−1 = λ1L2,n−1 and φn = λ2L2,n for some λ1, λ2 ∈ k or φn−1 = λ1L2,n and
φn = λ2L2,n−1 for some λ1, λ2 ∈ k; but we don’t care which nor do we use this
result directly.

Up to this point, our work with G′ has been identical to the work with
F ′. The method to determine G′

n+1 is the first place where we differ. G′
n+1

will be the quadratic polynomial in two variables such that G′
n+1(φn−1, φn) =

Ḡ′
n+1(x1, . . . , xn, 1).
Now we randomly choose gn−1, gn ∈ V such that V = Span { gi : n− 1 ≤ i ≤

n + 1 }. We then determine g1, . . . , gn−2 and φ1, . . . , φn−2 sequentially, by first
choosing gn−2 and φn−2, then working our way to g1 and φ1. Our procedure is
as follows:
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∀ i = (n − 2, n − 3, · · · , 2) find φi /∈ Span { φi+1, . . . , φn } and gi ∈ G′ such
that gi ∈ Span { φjφk : i≤j≤k≤n+1

k �=i } + Span { φj : i ≤ j ≤ n + 1 } + 1.
The last components, g1 and φ1, can be chosen randomly as long as Span { gi :

1 ≤ i ≤ n+1 } = G′ and Span { φi : 1 ≤ i ≤ n+1 } = Span { xi : 1 ≤ i ≤ n }.
φ1, . . . , φn are the components of L′

2. And again we must differ in our approach
to G′ from the approach to F ′. At this point, we have for 1 ≤ i ≤ n, Ḡi is a
linear combination of { gj : 1 ≤ j ≤ n + 1 }. We need to have ∀1 ≤ i ≤ n, Ḡi is
a linear combination of only { gj : 1 ≤ j ≤ n }, (excluding gn+1).

To explain how we do this is best done using (n + 1) x (n + 1) matrices. Let
χ be the matrix of the linear transformation (kn+1 −→ kn+1 ) such that
⎛

⎝ χ

⎞

⎠

⎛

⎜
⎝

g1 ◦ L′
2

...
gn+1 ◦ L′

2

⎞

⎟
⎠=

⎛

⎜
⎝

Ḡ′
1
...

Ḡ′
n+1

⎞

⎟
⎠. χ is in the form

⎛

⎜
⎜
⎜
⎝

∗ · · · ∗ ∗
...

. . .
...

...
∗ · · · ∗ ∗
0 · · · 0 ∗

⎞

⎟
⎟
⎟
⎠

but

⎛

⎜
⎜
⎜
⎝

∗ · · · ∗ 0
...

. . .
...

...
∗ · · · ∗ 0
0 · · · 0 ∗

⎞

⎟
⎟
⎟
⎠

is the form which we need.
So we find an invertible upper triangular matrix π and an invertible matrix

ν of the desired form such that νχ = π. The zero entries of π provide linear
equations to solve for the entries of ν with coefficients from χ, which are known.

Now we have χ = ν−1π. So let G′ =

⎛

⎜
⎝

G′
1/G′

n+1
...

G′
n/G′

n+1

⎞

⎟
⎠ where

⎛

⎜
⎝

G′
1
...

G′
n+1

⎞

⎟
⎠ = π

⎛

⎜
⎝

g1

...
gn+1

⎞

⎟
⎠;

and let L′
3 = ν−1.

Thus

⎛

⎜
⎝

Ḡ′
1
...

Ḡ′
n+1

⎞

⎟
⎠ = χ

⎛

⎜
⎝

g1 ◦ L′
2

...
gn+1 ◦ L′

2

⎞

⎟
⎠ = ν−1π

⎛

⎜
⎝

g1 ◦ L′
2

...
gn+1 ◦ L′

2

⎞

⎟
⎠ = L′

3

⎛

⎜
⎝

G′
1 ◦ L′

2
...

G′
n+1 ◦ L′

2

⎞

⎟
⎠.

Furthermore, P = L′
3 ◦ G′ ◦ L′

2 ◦ F ′ ◦ L′
1 and our decomposition is complete.

We can find the inversion function parameters ( δ′1, . . . , δ
′
6, γ

′
1, . . . , γ

′
6 ) for the

core transformation of G′ in the exact same manner that we found α′
1, . . . , α

′
6

and β′
1, . . . , β

′
6 for F ′.

In summary, we have created an alternate CQRM cryptosystem using L′
1, F

′,
L′

2, G
′, and L′

3 such that L′
3 ◦G′ ◦L′

2 ◦F ′ ◦L′
1 = L3 ◦G◦L2 ◦F ◦L1 and both G′

and F ′ are invertible, just like G and F ; so cryptanalysis of CQRM is complete.

3.4 Experimental Results and Computational Complexity

The proposal for RMPKC in 1989 suggested an implementation with k of size 28

and n = 5. Our attack programmed in Magma completes cryptanalysis consis-
tently in less than six seconds running on a personal computer with a Pentium
4 1.5 GHz processor and 256 MB of RAM. We ran several experiments at higher
values of n and for larger fields k.

Increasing the size of the field increases the run time of the program linearly.
The larger values of n cause a much greater run time and manifest the critical
elements of both the public key size of the cryptosystem and the computational



Cryptanalysis of Rational Multivariate Public Key Cryptosystems 135

complexity of our cryptanalysis. Since the public key is a set of n + 1 quartic
polynomials, its size is of order O(n4).

The following table indicates the public key size, median total run time, and
median percent of total run time for each of the four steps, for various values of
n as indicated. We used |k| = 216, which seems to be reasonable. A k of size 232

would be quite reasonable as well.

Public Total Run Step 1 Step 2 Step 3 Step 4
n Key Time Find F Define L′

1& F ′ Find G′ Define L′
2, G

′ & L′
3

(kBytes) (sec) (%) (%) (%) (%)
5 1.5 10.8 11 78 8 3
6 2.9 40.0 9 80 8 2
10 22.0 1949 15 76 8 1
14 91.8 33654 10 80 9 1

Step 2 clearly comprises the bulk of the run time. Finding of the exact denom-
inator of F takes almost all of this time, requiring 1

24 (16n6 + 131n5 + 440n4 +
595n3 + 419n2 + 114n) operations. However, step 1 has computational complex-
ity of O(n7) and step 3 has computational complexity of O(n9) so eventually at
higher values for n step 3 will comprise the bulk of the run time.

Remark. The steps above shows our attack is not a simple application of any
one existing attack method, let alone, just the Minrank attack alone. The key
is that we need first to accomplish a polynomial map decomposition and then
recover a subtle rational map decomposition equivalent to the original one, which
requires much more than the Minrank method. One more important point is
the direct algebraic attack, namely from the public key, we can derive a set of
polynomial equations once we are given the ciphertext, but these are degree
4 equations not degree 2 equations, whose computation complexity, as we
all know, is much higher than the case of degree 2 equations. This is further
complicated by the fact that we are working on the field of size of 232, where
the field equations can not be used. This is confirmed by our experiments, for
example, Magma F4 implementation failed to solve even the cases n = 5 on an
ordinary PC, which was proposed more than 20 years ago.

4 Conclusion

We develop a new improved 2R decomposition method to break the family of
rational multivariate public key cryptosystems proposed by Tsujii, Fujioka, and
Hirayama in 1989. We show that it is polynomial time to break this family of
cryptosystems in terms of the number of variables, the critical parameter of
the system. We demonstrate in experiments that our method is very efficient
and we can break the scheme originally suggested for practical applications in
a few seconds on a standard PC. The main contribution is that we develop new
techniques to improve the original 2R decomposition such that it can be used
successfully to attack a special family of rational maps. Although we defeat the
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cryptosystems, we still believe that this family of cryptosystems contains some
very interesting ideas that may be utilized effectively.
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