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Abstract. We explore ideas for speeding up HFE-based signature
schemes. In particular, we propose an HFEv− system with odd char-
acteristic and a secret map of degree 2. Changing the characteristic of
the system has a profound effect, which we attempt to explain and also
demonstrate through experiment. We discuss known attacks which could
possibly topple such systems, especially algebraic attacks. After testing
the resilience of these schemes against F4, we suggest parameters that
yield acceptable security levels.
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1 Introduction

Multivariate public-key cryptosystems (MPKCs) stand among the systems
thought to have the potential to resist quantum computer attacks [4]. This is
because their main security assumption is based on the problem of solving a
system of multivariate polynomial equations, a problem which is still as hard for
a quantum computer to solve as a conventional computer [12,22].

The area of multivariate public-key cryptography essentially began in 1988
with an encryption scheme proposed by Matsumoto and Imai [17]. This system
has since been broken [19], but has inspired many new encryption and signature
schemes. One of these is HFE (Hidden Field Equations), proposed in 1996 by
Patarin [20].

An HFE scheme could still be secure, but the parameters required would
make it so inefficient as to be practically unusable. Many variants of HFE have
been proposed and analyzed, in particular one called HFEv−, a signature scheme
which combines HFE with another system called Oil-Vinegar and also uses the
“−” construction. More about HFEv− in Sect. 2.2. A recent proposal is Quartz,
a signature scheme with HFEv− at its core. Quartz-7m, with slightly differ-
ent parameter choices, is believed secure. These schemes have enticingly short
signatures.
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However, the problem with HFE-based signature schemes is that until now,
they were quite slow. In this paper, we study how some simple but very surprising
changes to existing ideas can yield a system with much faster signing and key
generation at the same security levels as other HFE-based signature schemes. In
particular, we set out to make an HFEv− system with similarly short signatures
and greater efficiency in the form of fast signing times.

This paper is organized as follows. In Sect. 2, we discuss relevant background
on HFE and Quartz systems. In Sect. 3, we introduce the new variant Square-
Vinegar, providing a theoretical overview along with explicit constructions and
experimental data. In Sect. 4, known attacks are addressed and more experi-
mental results presented. Additional data can be found in the appendix.

2 Hidden Field Equations and Quartz

2.1 The Basic HFE Scheme

Let k be a finite field of size q and K a degree n extension field of k. In the original
design, the characteristic of k is 2. K can be seen as an n-dimensional vector
space over k and therefore we can identify K and kn by the usual isomorphism
ϕ : K → kn and its inverse. HFE makes use of an internal secret map F : K → K
defined by

F (X) =
∑

0≤i<j<n

qi+qj≤D

aijX
qi+qj

+
∑

0≤i<n

qi≤D

biX
qi

+ c , (1)

where the coefficients aij , bi, c are randomly chosen from K and D is a fixed
positive integer. A map of this form is often referred to as an HFE map.

By composing F with ϕ and its inverse we obtain the set of n quadratic
multivariate polynomials F̃ = ϕ ◦ F ◦ ϕ−1 : kn → kn. Then we hide the
structure of this map by means of two invertible affine linear transformations
S, T : kn → kn. The public key is the set of quadratic multivariate polynomials
(g1, g2, . . . , gn) = T ◦ F̃ ◦S. The private key consists of the map F and the affine
linear transformations S and T .

In such a scheme the most delicate matter is the choice of the total degree
D of F . D cannot be too large since decryption (or signing) involves solving
the equation F (X) = Y ′ for a given Y ′ ∈ K using the Berlekamp algorithm, a
process whose complexity is determined by D. However this total degree cannot
be too small either to avoid algebraic attacks, like the one developed by Kipnis
and Shamir [15] and the Gröbner Bases (GB) Attack [9].

2.2 HFE Variants

There are several variations of this construction intended to enhance the security
of HFE, among which we find the HFE− [23] and HFEv [20] signature schemes.

HFE− is the signature scheme obtained from HFE in which we omit r of
the polynomials g1, g2, . . . , gn from the public key. The intent of doing this is to
eliminate the possibility of certain attacks, in particular algebraic and Kipnis-
Shamir attacks, provided the number r is not too small.
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HFEv is a combination of HFE and the Unbalanced Oil & Vinegar scheme
[14,21]. The main idea of HFEv is to add a small number v of new variables,
referred to as the vinegar variables, to HFE. This makes the system somehow
more complicated and changes the structure of the private map. In this case we
replace the map F with a more complicated map G : K × kv → K.

We can combine HFE− and HFEv to obtain the so called HFEv− signature
scheme. In this scheme, r polynomials are kept secret and v additional variables
are introduced.

Quartz is an HFEv− signature scheme with a special choice of the parameters,
which are k = F2, n = 103, D = 129, r = 3 and v = 4 [24,25]. These parameters
of Quartz have been chosen in order to produce very short signatures: only 128
bits. This makes Quartz specially suitable for very specific applications in which
short signatures are required, like RFID. Quartz was proposed to NESSIE [18],
but it was rejected perhaps due to the fact that its parameters were not chosen
conservatively enough. In 2003 Faugère and Joux stated in [9] that the published
version of Quartz could be broken using Gröbner bases with slightly fewer than
280 computations.

At present time two modified versions of Quartz are thought to be secure,
based on the estimations of [9] on Quartz. The first one, called Quartz-513d, has
parameters k = F2, n = 103, D = 513, r = 3 and v = 4. The second version,
Quartz-7m, has parameters k = F2, n = 103, D = 129, r = 7 and v = 0. In
these versions the high degree D makes the signing process very slow. In fact
Quartz-513d was considered impractical for this reason, even as it was proposed.

3 The Square-Vinegar Scheme

We now propose a way to build a fast and highly secure short signature cryp-
tosystem, using the ideas of the HFEv− signature scheme and the new idea of
using finite fields of odd characteristic. With a new choice of parameters we gain
computational efficiency without risking the security of the signature scheme.
From now on we call these Square-Vinegar schemes. Signatures are still short,
which is very convenient to implement in small devices.

3.1 Overview of the New Idea

The set up is basically the same as in the HFEv− signature scheme. As mentioned
above, we replace the map F with the more complicated map G : K × kv → K
defined by

G (X, Xv) =
∑

0≤i<j<n

qi+qj≤D

aijX
qi+qj

+
∑

0≤i<n

qi≤D

βi (Xv)Xqi

+ γ (Xv) , (2)

where the coefficients aij are randomly chosen from K, γ : kv → K is a randomly
chosen quadratic map, βi : kv → K are randomly chosen affine linear maps, and
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Xv = (x′
1, . . . , x

′
v) represents the new vinegar variables. More precisely the maps

βi and γ are of the form

βi(Xv) =
∑

1≤j≤v

ξi,j · x′
j + νi ,

γ(Xv) =
∑

1≤j<l≤v

ηj,l · x′
jx

′
l +

∑

1≤j≤v

σj · x′
j + τ ,

where ξi,j , νi, ηj,l, σj and τ are randomly chosen from K. As in HFE, we
compose G with ϕ and its inverse we obtain the set of n quadratic multi-
variate polynomials. Then we compose with two invertible affine linear trans-
formations T : kn → kn and S : kn+v → kn+v, obtaining the polynomials
(g1, g2, . . . , gn) = T ◦ ϕ−1 ◦ G ◦ ϕ ◦ S. Finally, we remove the last r of these
polynomials. The public key is the set of quadratic multivariate polynomials
(g1, g2, . . . , gn−r) : kn+v → kn−r. The private key consists of the map G and the
affine linear transformations S and T .

While the setup is the same, we make some significant changes. First of all,
we will use a field k of odd characteristic. The benefits of working in an odd
characteristic are discussed in [5] and will be summarized below in Sect. 4. After
making this change, we studied the effect of changing of D and v in order to find
the most efficient values. The motivation was that by using the proper number
of vinegar variables, we could use a smaller degree D and hence considerably
speed up the signing process with the same security level.

With this in mind, we conducted experiments to determine new secure values
for D and v. Much to our surprise, in all of our experiments we found that
D = 2 is sufficiently secure when the field is of odd characteristic, as we will
see in Sect. 4. This makes the signature scheme much faster, as we will see in
Sect. 3.2.

3.2 The Signing Process

Although HFE is perfectly suitable for encryption and digital signatures, the
map F defined by (1) is usually not a surjection. However, in the case of Square-
Vinegar schemes, for every different set of vinegar variables we usually obtain a
totally different quadratic polynomial in X , which increases the probability of
finding a signature for a given document. Actually, in our experiments we were
always able to find a signature.

To sign a given document (ỹ1, . . . , ỹn−r) ∈ kn−r, we start by randomly choos-
ing r elements ỹn−r+1, . . . , ỹn ∈ k to complete a vector in kn. Next, we randomly
choose values (w1, . . . , wv) ∈ kv for the vinegar variables Xv, and then solve for
X the equation

G (X, (w1, . . . , wv)) = ϕ−1(T−1(ỹ1, . . . , ỹn−r, ỹn−r+1, . . . , ỹn)) . (3)

If this equation has no solutions, a new choice of vinegar variables is made
yielding a new equation to be solved. We continue in this manner until we find
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Table 1. Number of tries to sign a document

q D n v r Average number of trials to sign

2 129 103 4 3 1.74

2 2 103 4 3 2.26

13 2 27 3 0 1.85

13 2 28 3 1 1.80

13 2 36 4 3 1.88

31 2 31 4 3 2.09

Table 2. Signing times for some HFEv− systems

q D n v r Number of documents tried Average time to sign

2 129 103 4 3 100 2.646 s

2 2 103 4 3 100 0.166 s

13 2 27 3 0 100 0.024 s

13 2 28 3 1 100 0.026 s

13 2 36 4 3 100 0.034 s

31 2 31 4 3 100 0.041 s

a choice of vinegar variables whose associated equation in X has a solution. The
probability of finding a suitable selection of vinegar variables in a few trials is
high. We could confirm this fact with our computer experiments, as evidenced
in Table 1 below. We used MAGMA 2.14, the latest version, on a Dell Computer
with Windows XP which has an Intel(R) Pentium(R) D CPU 3.00 GHz processor
with 2.00 GB of memory installed, to run the computer experiments.

In each case 100 different random documents were signed. We observed that,
on average, two tries would be enough to find a solution for that equation.
Now suppose that X̃ is a solution of (3), then a signature for the document
(ỹ1, . . . , ỹn−r) – actually for the whole vector (ỹ1, . . . , ỹn) – is given by

S−1(ϕ(X̃), w1, . . . , wv) ∈ kn+v .

As mentioned above, with our experiments we found that D = 2 suffices as
the degree of the secret map G; we will see more about this in Sect. 4. This is
undoubtedly a novel and surprising discovery since in the previous versions of
HFE and its modifications – all of which are characteristic two – D was always
conservatively chosen, usually D > 128. These high values of D made the process
of signing very slow since solving a univariate equation of such a large degree,
even with the fastest algorithms, is not necessarily a fast procedure. On the
other hand, when D = 2, once the vinegar values have been set, (3) becomes
simply a quadratic equation over the field K. Berlekamp’s Algorithm can solve
a univariate quadratic equation rather quickly, and MAGMA’s implementation
automatically uses the Berlekamp-Zassenhaus algorithm when appropriate [2].
See Table 2 for signing times for several choices of parameters. Note that signing
for the q = 31 case shown is 65 times faster than using Quartz parameters.
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Another important consequence of the use of D = 2 is that generation of the
public key for this signature scheme is more efficient. We attribute this to the
large number of multiplications that are needed over the field K for D > 128.
Some results are summarized in Table 3 below.

Table 3. Public key generation times for some HFEv− systems

q D n v r Number of trials Average time

2 129 103 4 3 100 58.066 s

13 2 27 3 0 100 0.780 s

13 2 28 3 1 100 0.830 s

13 2 36 4 3 100 2.019 s

31 2 31 4 3 100 1.271 s

4 Security Analysis

In this section we will consider known attacks against MPKCs (Gröbner Basis,
Kipnis-Shamir, and Vinegar attacks) and discuss their effectiveness against our
new scheme. This will lead us to suggest parameter values for a viable Square-
Vinegar system.

Before considering the aforementioned attacks in detail, let us mention some
minor attacks. First, there do not yet seem to be any attacks against MPKCs
utilizing knowledge of plaintext-ciphertext (or document-signature) pairs. Sec-
ondly, the recent attack on SFlash [8] does not apply here because that attack
used hidden symmetry and invariants of the SFlash public key to overcome the
omission of certain polynomials from the public key, but our public key does not
have such hidden invariants or symmetry due the presence of the vinegar vari-
ables. Also, the attacks used against perturbed systems such as IPHFE, [6,7], do
not seem directly applicable, especially considering the differences between even
and odd characteristic and internal and external perturbation.

4.1 Gröbner Basis Attack

First let us recall what we mean by a Gröbner Basis Attack. Suppose that
someone, who does not know the private key, wants to forge a signature for
a given document (ỹ1, . . . , ỹn−r) ∈ kn−r. This attacker has access only to the
public key (g1, g2, . . . , gn−r) : kn+v → kn−r. In order to find a valid signature
for the given document, the attacker has to solve the system of equations

g1(x1, . . . , xn, x′
1, . . . , x

′
v) − ỹ1 = 0

g2(x1, . . . , xn, x′
1, . . . , x

′
v) − ỹ2 = 0

... (4)
gn−r(x1, . . . , xn, x′

1, . . . , x
′
v) − ỹn−r = 0.
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Solving these equations directly, without the use of the internal structure of
the system, is known as the algebraic attack. Currently the most efficient al-
gebraic attacks are the Gröbner basis algorithms F4 [10] and F5 [11]. Another
algorithm called XL has also been widely discussed but F4 is seen to be more ef-
ficient [1], so we focused our energy on studying algebraic attacks via F4. Among
the best implementations of these algorithms is the F4 function of MAGMA [2],
which represents the state of the art in polynomial solving technology.

In [9], algebraic attacks were used to break HFE. The results in that paper
seem to indicate that for any q, an HFE system with small D can be broken in
such a way. However, this is not the case and their claims only hold up when
working over characteristic 2.

Since the system (4) is underdetermined, we expect to find many solutions for
it. In order to forge a signature for the given document, it suffices to find only one
such solution. So we can guess values for some of the variables yielding a system
with the same number of equations but fewer variables, as was done in [3]. This
speeds up the attack significantly. Therefore we randomly guessed v + r of the
variables and then used the Gröbner basis attack to solve the resulting system
of n − r equations with n − r variables, which is faster to solve than (4).

Based on recent observations about MPKCs over odd characteristic [5], we
believe that the choices q = 13 or q = 31 provide a strong defense against an
algebraic attack via Gröbner bases. The key point in the case of odd character-
istic is that the field equations xq

i − xi for i = 1, 2, . . . , n + v, appear to be less
useful to an attacker due to their higher degree. In particular, the efficiency of
the Gröbner basis attack seems to rely on small characteristic. It is stated in [5]
that this stems from the fact that characteristic 2 field equations x2

i − xi = 0
help to keep the degrees of the polynomials used in the Gröbner basis algorithm
low whereas, for example, x13

i − xi = 0 or x31
i − xi = 0 are much less useful

equations in that regard.
Extensive experiments were run to test this idea on the same computer that

was used for the signing experiments. For different sets of the parameters (q, D,
n, v and r), we generated HFEv− systems and used F4 to solve the system of
equations in (4) for different random documents.

We sought the lowest value of D for which F4 took an acceptably long time.
By extrapolating the data we could then determine what values of n and r should
be used and see if such values were practical. It turns out that D = 2 suffices
and we did not have to test higher values of D. Notice also that the choice of
odd characteristic is important since for even characteristic X �→ X2 over K is
just a linear map, which cannot be used as a secret internal map.

Further examination of the data showed that with respect to v the attack time
hit a plateau at some point, and further increasing v did not appear to increase
resistance to the Gröbner basis attack. This behavior can be seen on Fig. 4 in
the Appendix section. By extrapolating the data we think that for our choices
of D, q, r and n the plateau should occur before v = 4, thus we think the choice
of v = 4 is optimal in this sense.



24 J. Baena, C. Clough, and J. Ding

Fig. 1. Running time and required memory under GB Attack for q = 31, v = 4, r = 3
and D = 2. No field equations are used in the attack.

Fig. 2. Running time and required memory under GB attack for q = 31, v = 4, r = 3
and D = 2. Including the field equations in the attack.

As mentioned above, for our choice of q – 13 or 31 – the field equations
are somehow useless during the Gröbner basis attack. To confirm this, we ran
extensive experiments considering this situation, i.e., including and excluding
the field equations from the attack. On Figs. 1 and 2 we can see that, in either
case, the running time and the required memory under the Gröbner bases attack
are exponential in n (similar graphs for q = 13 can be seen on Figs. 5 and 6 in
the Appendix section).

We can observe that when we include the field equations, the memory used
grows much faster than when we do not include them in the attack. This agrees
with what we explained above and this is why we say that the field equations
are useless for the GB attack. Actually, the field equations not only require more
memory but also they slow down the attack for large values of q, for instance
q = 31. The extrapolations made to suggest parameters in Sect. 4.4 take into
account both cases, including and excluding the field equations.

Another important feature that we observed when we excluded the field equa-
tions is that, for fixed n, v and r, we did not get any significant change in the
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Fig. 3. Running time under GB attack for n = 9, v = 4, r = 0 and D = 2, for several
values of q. No field equations are used in the attack.

Table 4. Time comparison of some Square-Vinegar systems and random equations
under GB attack. q = 31, d = 2, v = 4, and r = 3.

n Our scheme Random equations

7 0.002 s 0.002 s

8 0.005 s 0.005 s

9 0.022 s 0.022 s

10 0.114 s 0.113 s

11 0.741 s 0.738 s

12 4.921 s 4.755 s

13 37.002 s 37.996 s

14 268.410 s 272.201 s

time required by the GB attack to forge a signature for large values of q, as seen
in Fig. 3. This also justifies the choices of q = 13 and q = 31, since increasing q
will not augment the security of the system.

We also constructed random polynomial equations of the same dimensions
(same q, n, v and r) and found that the time needed to solve such random
equations using Gröbner bases is essentially the same as is needed to break
Square-Vinegar with our choices of parameters. Table 4 shows these times for
different n.

As observed on the graphs, we could only obtain data for n up to 14, due to
memory limitations (any request above 1.2 GB would be immediately rejected
by the computer that we used). However, even among the data that we were able
to collect, we observed that as n increases, the maximum degree of polynomial
used by F4 also increases. Larger scale experiments are being conducted to study
systematically how fast this degree increases as n increases; these results will be
presented in a future paper.
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From the information gathered with our experiments it appears that under our
choices of parameters, F4 is no more efficient in solving the public key equations
(4) of a Square-Vinegar scheme than a system of random equations.

4.2 Kipnis-Shamir Attack

Kipnis and Shamir developed an attack against HFE [15]. Their original claims
were questioned in [13], where it was shown that the Kipnis-Shamir attack was
less effective than originally thought and some arguments were made as to why
this should be so.

The original attack on HFE was translated to an attack on HFEv in [6]. The
resulting attack had a high complexity estimate even though the original, more
generous complexity estimates for the HFE attack were used in the computation.
Considering [13] and the fact that we are omitting r polynomials from the public
key, it seems that a Kipnis-Shamir style attack should not work against Square-
Vinegar.

4.3 Vinegar Attack

Since Square-Vinegar utilizes vinegar variables, a priori there is a possibility that
it is vulnerable to an attack similar to the one that felled the original Oil-Vinegar
scheme.

In the original Oil-Vinegar scheme, the core map kn → kn had a specific shape:
each component was a polynomial in which the “oil” variables appeared only
linearly, and thus had a quadratic form with a large block of zeros [14,21]. Upon
inspection of the attack, we realize that it exploits this property of the quadratic
forms [16]. In the Square-Vinegar construction, there are no variables which
appear only linearly. The map G ensures that x1, . . . , xn appear quadratically,
and the choice of γ ensures that x′

1, . . . , x
′
v appear quadratically.

Once a specific K is fixed (in other words, once a specific irreducible poly-
nomial is chosen to define the extension over k), certain blocks of the quadratic
forms of ϕ ◦ G ◦ ϕ−1 are predetermined, but nonzero and not even likely to be
sparse. It appears that an attacker would have to find a matrix that simultane-
ously converts the quadratic forms of all public key polynomials to the prescribed
forms. At present time there does not seem to be any method to solve such a
problem.

4.4 Parameter Suggestions

Based on the analysis and results obtained throughout Sects. 3 and 4 we are able
to suggest new sets of parameters for HFEv−, which we call Square-Vinegar-31
and Square-Vinegar-13. Descriptions are as follows:

Square-Vinegar-31

– q = 31, D = 2, n = 31, v = 4 and r = 3.
– Size of the public key: 12 Kbytes.
– Length of the signature: 175 bits.
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– Time needed to sign a message1: 0.041 seconds on average.
– Time to verify a signature1: less than 1 ms.
– Best known attack: more than 280 computations.

Square-Vinegar-13

– q = 13, D = 2, n = 36, v = 4 and r = 3.
– Size of the public key: 14 Kbytes.
– Length of the signature: 160 bits.
– Time needed to sign a message1: 0.034 seconds on average.
– Time to verify a signature1: less than 1 ms.
– Best known attack: more than 280 computations.

We would also like to propose parameters as toy challenges. The first challenge
is q = 13, n = 27, v = 3 and r = 0. The second challenge is q = 13, n = 28,
v = 3 and r = 1. We expect that with these parameter choices, an attack may
be practically possible.

5 Conclusion

In this paper we analyzed a new HFEv− system that seems to have great po-
tential. We showed that with relatively short signatures, Square-Vinegar can be
used to sign documents very fast. This was accomplished by working in an odd
characteristic and using a low-degree polynomial where previously a very high
degree was required. We performed computer experiments to test the security of
Square-Vinegar. We used algebraic attacks against smaller-scale systems to de-
termine proper q, D, n, r, and v values for plausible schemes. We also examined
other MPKC attacks and gave reasons why Square-Vinegar should be resistant
to them.

In the future we would like to have a better understanding of the apparent
benefit of odd characteristic. We will also, as mentioned above, study the re-
lationship between n and the polynomials used in GB attacks. In addition, we
will further study the effectiveness of attacks similar to those against perturbed
systems.
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Appendix: Some Additional Graphs

Fig. 4. Running time under GB attack for n = 13, r = 3 and D = 2, for several values
of v. No field equations are used in the attack.

Fig. 5. Running time and required memory under GB attack for q = 13, v = 4, r = 3
and D = 2. No field equations are used in the attack.

http://citeseer.nj.nec.com/patarin97trapdoor.html
http://www.cryptosystem.net/quartz/


30 J. Baena, C. Clough, and J. Ding

Fig. 6. Running time and required remory under GB attack for q = 13, v = 4, r = 3
and D = 2. Including the field equations in the attack.
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