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Abstract. In this paper, we study how the algebraic attack on the HFE
multivariate public key cryptosystem works if we build an HFE cryp-
tosystem on a finite field whose characteristic is not two. Using some
very basic algebraic geometry we argue that when the characteristic is
not two the algebraic attack should not be polynomial in the range of the
parameters which are used in practical applications. We further support
our claims with extensive experiments using the Magma implementation
of F4, which is currently the best publicly available implementation of
the Gröbner basis algorithm. We present a new variant of the HFE cryp-
tosystems, where we project the public key of HFE to a space of one
dimension lower. This protects the system from the Kipnis-Shamir at-
tack and makes the decryption process avoid multiple candidates for the
plaintext. We propose an example for a practical application on GF(11)
and suggest a test challenge on GF(7).
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1 Introduction

The family of multivariate public key cryptosystems [16,4] is considered as one
of the main candidates that have the potential to resist the future quantum
computer attacks. MPKC’s security relies on the fact that the direct attack,
which we call the algebraic attack, needs to solve a set of multivariate quadratic
equations, which is in general NP-hard [8].

A major research topic in this area is the family of HFE cryptosystems. The
HFE encryption systems were presented by Jacques Patarin at Eurocrypt’96 [15].
The fundamental idea is very similar to that of Matsumoto and Imai [13]. One
selects a polynomial in a large field and then transforms it into a polynomial
system over a vector space of a much smaller field. The first attack on HFE
was presented by Kipnis and Shamir [11]. They lifted the public key back into
the large field and attacked the system via a so-called MinRank [3] method.
This attack was further improved by Courtois [2] using different ideas to solve
the associated MinRank problem. The theoretical conclusion of these attacks is
that, if one fixes the key parameter D of HFE (or more precisely log(D)) then the
secret key can be found not in exponential but in polynomial time as the number
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n of variables increase. However these attacks were not fully substantiated by
computer experiments.

Later on a direct attack on HFE with the new Gröbner basis methods like F4

or F5 did not show an exponential but a polynomial behavior [7,9]. Additionally,
Faugère broke one of the challenges set by Patarin. This was later confirmed by
Allen Steel with his Magma implementation of F4 [12], whose performance is
even better than the one used by Faugère. The overall conclusion seems to be
that the HFE family of cryptosystems is not secure.

However, if we look more carefully at all current algebraic attacks, we see that
all of them only deal with the case, where the finite field is exactly GF(2). A key
point of these attacks is that the so called field equations

x2
i − xi = 0, i = 1, . . . , n

are used in the attack of the systems. If these field equations are not utilized,
or more precisely could not be utilized efficiently, then the complexity of the
algebraic attacks could be totally different. We first use some basic tools of
algebraic geometry, including the idea of the so called solution at infinity [14],
to argue that indeed the algebraic attacks should not work if the field equations
are not fully utilized. We then support our claim by doing extensive experiments
using the F4 implementation in Magma, which is the best implementation that
is publicly available.

The paper is arranged as follows. First we will briefly describe the HFE cryp-
tosystem and the algebraic attacks. We then present a theoretical argument
why the algebraic attack complexity will change if we do not utilize the field
equations. In the next section we will show via computer experiments using the
Magma implementation of the new Gröbner basis F4 that the timing of the al-
gebraic attack on simple cases of HFE should not be polynomial but should be
exponential if we work on a field whose characteristic is not two. We will then
present our challenge and give our conclusions.

2 The HFE Scheme

The HFE encryption scheme utilizes two finite fields. We denote the small field
with q elements as F, and K as the extension field of degree n over F. Patarin
recommended that the choice for HFE should be q = 2 and n = 128. Given a
basis of K over F, we can identify K with an n-dimensional vector space over F
by ϕ : K → Fn and its inverse ϕ−1. The design of HFE is based on a univariate
polynomial P (X) over K of the form

P (X) =
r−1∑

i=0

r−1∑

j=i

pijX
qi+qj

+
r1∑

i=0

piX
qi

+ p, (1)

where the coefficients pij , pi, p are randomly chosen from K and r, r1 are small
such that the degree of P (X) is less than some fixed parameter D. The limitation
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on the degree D of P (X) is required so that it is possible to find the roots of P (X)
efficiently during the decryption, for example by using Berlekamp’s algorithm.

Let

P̄ (x1, . . . , xn) = T ◦ ϕ ◦ P ◦ ϕ−1 ◦ S(x1, . . . , xn) (2)
= (P̄1(x1, . . . , xn), . . . , P̄n(x1, . . . , xn)), (3)

where T and S are two randomly chosen invertible affine transformations on Fn.
The private key of the HFE scheme is formed by P (X), S and T . The public
key P̄ (x1, . . . , xn) consists of

{P̄1(x1, . . . , xn), . . . , P̄n(x1, . . . , xn)},

which are n quadratic polynomials in the n variables in F.

3 The Algebraic Attack

Let us assume that someone uses the HFE cryptosystem for encryption of a
message or plaintext (x′

1, . . . , x
′
n). What he or she does is to compute

(y′
1, . . . , y

′
n) = P̄ (x′

1, . . . , x
′
n),

the ciphertext, and sends it to the owner of the public key.
In order to attack HFE or any multivariate public key cryptosystem, an at-

tacker has already the public key P̄ and he or she also has access to the ciphertext
(y′

1, . . . , y
′
n). This means that if the attacker can solve the equation

P̄ (x1, . . . , xn) = (y′
1, . . . , y

′
n),

the solution will give the attacker the plaintext (x′
1, . . . , x

′
n) and he or she breaks

the cryptosystem. Solving the set of equations above directly is called the alge-
braic attack.

The Gröbner basis method [1] is the classical method of solving multivariate
polynomial equations. However, it is very slow in general. Recently major im-
provements have been made by Faugère [5,6] with his F4 and F5 algorithms. We
will not give the details of the algorithms and refer the reader to the references
instead.

Let us assume that we need to solve the set of equations

f1(x1, . . . , xn) = · · · = fn(x1, . . . , xn) = 0,

over any field. When the solutions of this set of equations has dimension 0, or
more precisely, when the system has only finitely many solutions (including the
solutions over the extension field of the field we work on), the Gröbner basis
algorithm finds a set of polynomials of the form

{g1(x1, . . . , xn), g2(x2, . . . , xn), g3(x3, . . . , xn), . . . , gn(xn)}
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such that the set of polynomials gi and the set of polynomials fi generate exactly
the same ideal in the polynomial ring. Then one can find the solution by solving
first the equation

gn(xn) = 0,

to find the value of xn. One can now plug the value of xn into

gn−1(xn−1, xn) = 0

to find the value of xn−1, and so on until all xi are found.
In order for this process to work correctly, the Gröbner basis must be com-

puted with respect to a special ordering, mostly called lex-order. Henceforth we
mean ”Gröbner basis in lex order” when we speak of Gröbner basis, because we
want it to have the elimination property for actually solving the system.

Faugère and Joux showed that in the process of finding the Gröbner basis
the degree of the polynomials that the Gröbner basis algorithm will generate
should not be higher than log(D). This makes the algorithm complexity to be
polynomial once one fixes D, since log(D) is very small due to the considerations
for decryption.

4 The Algebraic Attack Revisited

Now we would like to do a careful analysis what role the field equations play in
the algebraic attacks of HFE. In the case of q = 2, the field equations, which are
also quadratic, are easily used in the computations of the Gröbner basis. But if
we work in a bigger field, say GF(11), then the field equations

x11
i − xi = 0, i = 1, . . . , n

are of degree 11. The field equations can only be utilized in the computation of
the Gröbner basis if the degree of a polynomial is at least 11. This means that
even dealing with a relatively small number of variables, like 32, the number
of monomials of a degree 11 polynomial is already (32+11)!

11!32! , which is roughly
232. With our current memory capacity, if n is more than 64, the Gröbner basis
algorithm can not really use the field equations, even if we try to add them to
the set of equations we want to solve.

Before we go on further, we would like to make the following remark to clear
the concepts that often cause confusions. Given a polynomial f(x1, . . . , xn) over
F, we have two different ways to look at it: One way is to look at it as an element
in the polynomial ring F[x1, . . . , xn], or we can look at it as an element in the
function ring

F[x1, . . . , xn]/ < xq
1 − x1, . . . , x

q
n − xn > .

In the second case we identify xq
i with xi.

Let f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0 be a set of n multivariate
polynomial equations in n variables over F. If we only want the solutions in F,
we actually need to solve the set of equations

f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0, xq
1 − x1 = 0, . . . , xq

n − xn = 0.



Algebraic Attack on HFE Revisited 219

In this case, we need to find the Gröbner basis for the ideal generated by the set
of polynomials

f1(x1, . . . , xn), . . . , fn(x1, . . . , xn), xq
1 − x1, . . . , x

q
n − xn

in the ring F[x1, . . . , xn]. So we generally work on the ring F[x1, . . . , xn], and if
we want to work in the function ring we include the field equations.

Let us consider the case in which we do not take the field equations into
account. Our key observation is that for any system of multivariate polynomial
equations, if there are d different values for each variable (including the values
in the extension field, or its algebraic closure), we should not be able to solve
this system directly via the Gröbner basis algorithm with a maximum degree of
this variable lower than d.

Proposition 1. Let f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0 be a set of n
multivariate polynomial equations in n variables over F; for each xi, 1 ≤ i ≤ n, if
xi has d different solutions β1, . . . , βd (including the ones in the algebraic closure
of F), the maximum degree of the corresponding Gröbner basis – in particular
gn(xn) – must have a degree higher or equal to d.

Proof. We can prove it easily by contradiction. Suppose we get exactly d values
for xn by the equations generated by the fi. If the degree of gn(xn) is d′ with
d′ < d, then we will have only d′ values for xn. This is impossible.

Similarly we have

Proposition 2. Let f1(x1, . . . , xn) = 0, . . . , fn(x1, . . . , xn) = 0, xq
1 − x1 =

0, . . . , xq
n − xn = 0 be the set of 2n multivariate polynomial equations in n

variables over F; for each xi, 1 ≤ i ≤ n, if xi has d different solutions β1, . . . , βd

in F, the maximum degree of the corresponding Gröbner basis – in particular
gn(xn) – must have a degree higher or equal to d.

Proof. We can prove it as in the proposition above.

So if we include the field equations, then we are indeed looking for solutions in
the original field. If we do not include the field equations, we are actually looking
for the solutions in the algebraic closure of the original field.

From the analysis above, we can also see that the minimum degrees a Gröbner
basis (in lex order) needs to deal with in these two cases are very different, one
is determined by the number of solutions in the original field and another one is
determined by the extension field or algebraic closure.

Now let us move back to our case, the HFE cryptosystems. First, we know
that T has no impact on the number of solutions, and it is also clear that S also
has no impact on the number of solutions, because it is just a change of basis.
Therefore the number of solutions of the public equations is determined by the
number of solutions of the equations in the form of

P (X) − P ′ = 0
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over the big field K. Also because S is a random transformation, we have, in
general, a high probability that for each variable all solutions will not have the
same value.

In the case that we include the field equations, then we are looking for solutions
of the following equations

P (X) − P ′ = 0,

Xqn − X = 0.

From the argument of Faugère and Joux that the degree of the algebraic
attack using the new Gröbner basis is less or equal to log(D), we can actually
make the following conjecture:

Conjecture. The number of solutions to the public equation in the case of q = 2
for HFE in the field F is less or equal to log(D).

This easily follows from the argument above with the assumption of Faugère
and Joux’s claims. We also note here that in their argument about the complex-
ity, they implicitly used the field equations, namely the equation:

Xqn − X = 0.

We also have that

Theorem 1. If we do not include the field equation, the overall Gröbner basis
algorithm (including algorithms like FGLM for switching the term ordering) has
to deal with polynomials whose degree is at least equal to the number of solutions
of the equation

P (X) − P ′ = 0

in the algebraic closure of K.

From the theory of the functions over a finite field, we know that given any
polynomial, we have a high probability that it is irreducible and therefore has
the number of solutions, which is the same as its degree. But our case clearly
is different in the sense that we know already it has at least one solution in the
field K. From the general theory we estimate that the number of solutions of
the equation

P (X) − P ′ = 0

in the algebraic closure of K should not be less than half of D statistically
speaking. We will confirm this from experiments in section 5.1.

This implies that the minimum degree that a Gröbner basis needs to handle is
at least D/2, and if D is 112+11 = 132, we simply can not calculate the Gröbner
basis because we can not store a polynomials with 32 variables of degree 66.

This also implies that the field equations in the case of q = 2 play a critical role
in determining the algebraic attack complexity on HFE. However, as the char-
acteristic increases it becomes much more difficult to utilize the field equations.
Therefore, from the theoretical arguments given above, we expect (or more pre-
cisely we speculate) that for an HFE cryptosystem over GF(11) and with degree
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D = 132, the algebraic attack should not be polynomial but rather exponential
in the parameters we consider practical, that is for the range n ≤ 128. We do
not have precise theoretical arguments to prove such a statement, but we will
try to confirm this speculation with our computer experiments.

We also would like to note here that Faugère and Joux’s argument, stating that
the degree of the polynomials which the Gröbner basis algorithm will generate
should not be higher than log(D), relies very much on using the field equations
of characteristic two. Their argument will definitely fail if it is not the case
of characteristic two. This can be shown by a very complicated combinatorial
argument. Giving a detailed analysis is beyond the scope of this paper and we
will present it in a separate paper.

5 Computer Experiments

Our experiments are split up in two parts. The first one is on the number of
solutions in the algebraic closure and the second one is on the amount of time
and memory it takes F4 to calculate a Gröbner basis for different HFE systems.
All experiments have been done on a computer at the Technical University of
Darmstadt, Germany. The computer is a SunFire-280R which has an UltraSparc
1.2 GHz processor with 5120 MB of memory installed. The operating system is
SunOS 5.8 (also called Solaris 8).

5.1 Experiment on the Number of Solutions

In order to verify the claim that the number of solutions of P (X) − P ′ = 0
in terms of X is generically at least D/2 we ran an experiment: First, we set
up an HFE system and its hidden field polynomial P (X). We then encrypted a
random plaintext X ′ by finding P ′ = P (X ′). Afterwards the program calculated
P (X)−P ′ and factored this polynomial. We did 800 test cases, 400 using n = 17
and 400 using n = 19. Not a single factorization contained a factor with a
multiplicity higher than one, which means that the number of solutions in all
800 tests was exactly D which is trivially bigger than D/2.

5.2 Experiment of Solving Equations by F4

Currently it is commonly accepted that the new Gröbner basis algorithm F4 [5]
and F5 [6] are the most powerful tools to solve polynomial equations. Because F4

is the only one which is publicly available, we used the Magma implementation of
F4 in order to see what the complexity of the algebraic attacks are indeed like.

We first generated the public key equations and then used Magma to try
to find the Gröbner basis of this system. The experiments, as expected, pro-
duced the full triangular Gröbner basis in lex order. Our program then found
all solutions and verified that indeed they included the correct solution. All ex-
periments were done without using the field equations as this slows things down
(see Fig. 6).
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Fig. 1. Timings and memory usage for HFE systems over GF(3)

Fig. 2. Timings and memory usage for HFE systems over GF(5)

Fig. 3. Timings and memory usage for HFE systems over GF(7)

Tables below show the running time and the required memory of each n. In
both figures we take n as the X-coordinate and show the running time (on the
left, in seconds) and the required memory (on the right, in MB) as the logarithmic
Y-coordinate. It clearly shows the exponential growing tendency with increasing
n. The timing, we conclude, should be exponential and not polynomial. A more
detailed overview over timings and memory usage can be found in the appendix.
Much more theoretical and experimental work is still needed to fully understand
the whole behavior.
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Fig. 4. Timings and memory usage for HFE systems over GF(11)

Fig. 5. Timings and memory usage for HFE systems over GF(13)

Fig. 6. Timings for HFE over GF(11) with and without field equations “x11
i − xi”

Currently it is not completely clear to us what the Magma F4 implementation
does when it comes to bigger characteristics. For GF(11), the implementation
produced Gröbner bases, whose degree is higher than expected.

In order to see that the field equations do not help but even slow down the
calculations, if they are not used properly, we re-ran the tests for GF(11) after
putting in the field equations. The result also looks like expected, see Fig. 6.
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6 New HFE Cryptosystems for Encryption

From the analysis above, we conclude that with a proper choice of parameters on
the right field, we can build an HFE cryptosystem that could resist the algebraic
attacks. But we also know that for any HFE cryptosystem, one must consider
the Kipnis-Shamir attack. The recent work [10] actually shows that this attack
does not work as efficiently as claimed. With this, we conclude one can build a
reasonably secure HFE cryptosystem.

However, here we would like to propose a new type of HFE variant, which we
call the projected HFE cryptosystem or PHFE.

Let P̄ (x1, . . . , xn) be the public key of HFE, then we randomly choose a linear
equation

a1x1 + · · · + anxn + a = 0. (4)

We will pick a nonzero element among the ai’s, which we assume here to be an.
Then we substitute xn ( or xi ) in P̄ by the function

− a1

an
x1 − · · · − an−1

an
xn−1 − a

an
,

which results in a new function:

P̂ (x1, . . . , xn−1) = P̄ (x1, . . . , xn−1,− a1

an
x1 − · · · − an−1

an
xn−1 − a

an
).

This will be the public key of PHFE. In this case, we have n polynomials and
n− 1 variables. The linear equation above also becomes part of the private key.
The encryption process will be just as before. Decryption only varies in one
point: once we have derived a few possible candidates for the plaintext, we will
choose only the specific one, which satisfies the equation (4).

The new public key P̂ can be seen as a projection of the old public key function
P̄ . This projection map will serve two purposes:

1. It will destroy the hidden field structure of the old public key P̄ , such that
the Kipnis-Shamir attack becomes useless, which is self-evident.

2. It will make the map more likely to be bijective so that the problem of
multiple decryption choices becomes very unlikely.

This idea of projection was mentioned previously in several places, but it was
never considered to be of any use because it does not help in terms of resisting
the algebraic attacks.

Now we will take a look at the choices of a proper field F. From our argu-
mentation it seems, as if the system’s security grows with the size of the ground
field F, but this does not work in all cases. By choosing F to have characteris-
tic 2 and therefore cardinality 2m, one can easily transform the public key into
polynomials over GF(2). The only difference is an increment in the number of
equations and the number of variables m. Then the algebraic attack still works
as before when the degree of the polynomial P (X) is not big enough. Therefore,
we propose not to use a field of characteristic two.
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For practical applications, we suggest that we should use GF(11) to build a
PHFE system. We suggest D to be 112+11 = 132 and n = 89, which should have
the security level of at least 280 triple DES from our estimation by computational
experiments. In comparison with the HFE challenge broken by Faugère, in terms
of memory, the public key of this new cryptosystem is about 5 times the size. In
terms of the most costly part of the computation, namely the decryption process,
the new system takes about twice the time to decrypt. All in all, the new system
is comparable to the HFE challenge broken by Faugère.

To make the subject more interesting, we propose a test challenge, which,
we speculate, might be within the reach of a practical attack with the most
powerful computers of today. For the challenge we choose the field to be GF(7)
with D = 72 + 7 = 56 and n = 67. The point is that if the claims about the
algebraic attack on HFE with characteristic 2 is also valid here then one should
be able to break our challenge.

7 Conclusion

We revisited the algebraic attack on the HFE cryptosystems. We showed that
the algebraic attack on the HFE cryptosystems using the new Gröbner basis
algorithm behaves differently, if it can not utilize the field equation to the full
extent and the algebraic attack then can not work as efficiently as in the case
of GF(2). Furthermore, we have shown via the new Gröbner basis algorithm
F4, that the complexity of the attack should be exponential and not polynomial
when the characteristic of the field is not two. The key point of our theoretical
argument is based on the simple idea that when solving a polynomial equation
system, the degree parameter of the Gröbner basis algorithm is bounded from
below by the number of solutions.

We also proposed a new variant of the HFE cryptosystems. The public key
of HFE is projected to a space of one dimension lower. It serves the purpose to
protect it form the Kipnis-Shamir attack and to avoid multiple candidates for
the correct plaintext in the decryption process. We suggested an example for a
practical application on GF(11), which we expect to be at the security level of
280 triple DES, and a test challenge on GF(7) for practical attacks.
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A Tables for GF(11) and GF(2)

timings GF(11) GF(2)

n = 5 0,01 0,01
n = 6 0,02 0,01
n = 7 0,07 0,01
n = 8 0,25 0,01
n = 9 1,13 0,01
n = 10 4,74 0,01
n = 11 25,87 0,02
n = 12 147,03 0,03
n = 13 799,96 0,04
n = 14 2722,40 0,13
n = 15 13744,27 0,17
n = 16 >84600 0,25
n = 17 0,32
n = 18 0,44
n = 19 0,61
n = 20 0,81
n = 21 1,05
n = 22 1,35
n = 23 1,94
n = 24 2,41
n = 25 3,03
n = 30 9,41
n = 40 70,98
n = 50 376,39
n = 60 1519,22
n = 60 1519,22
n = 70 4962,35

memory usage GF(11) GF(2)

n = 5 0,76 0,67
n = 6 0,76 0,67
n = 7 0,95 0,67
n = 8 1,03 0,65
n = 9 1,06 0,72
n = 10 1,47 0,71
n = 11 2,88 0,74
n = 12 5,89 0,86
n = 13 14,23 0,93
n = 14 34,15 1,18
n = 15 105,76 1,35
n = 16 1,24
n = 17 2,55
n = 18 2,98
n = 19 1,72
n = 20 1,98
n = 21 2,21
n = 22 2,38
n = 23 2,52
n = 24 3,07
n = 25 3,45
n = 30 5,98
n = 40 16,20
n = 50 30,74
n = 60 59,57
n = 70 140,20
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