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Abstract

TTM (Tame Transformation Method) is a type of multi-
variate public key cryptosystem. In 2007, the inventor of
TTM proposed two new instances of TTM to resist the ex-
isting attacks, in particular, the Nie et al attack. The two
instances are claimed to achieve a security of 2109 against
Nie et al attack. Through computation, we found that the
instance II satisfied First Order Linearization Equations.
After finding all linearization equations, we can perform a
ciphertext-only attack to break it.

1. Introduction

Due to quantum computer attack by Shor [1], traditional
PKC, such as RSA and ElGamal, would be insecure in the
future. There is a need to search for alternatives which are
based on other classes of problems. Multivariate public key
cryptosystem (MPKC) is a promising alternative.

The general form of MPKC is as follows. Let k be a
finite field, n and m be two integers. Let L1 and L2 be ran-
domly chosen invertible affine maps on kn and km, respec-
tively. φ is a non-linear map from kn to km called central
map of MPKC, which can be easily inverted. Let

Y = (y1, · · · , ym)
= F (x1, · · · , xn)
= L2 ◦ φ ◦ L1(x1, · · · , xn),

where F is a map from kn to km. The expression of F
is the public key of MPKC, which is a set of multivariate
polynomials. The secret key consists of L1 and L2.

TTM (Tame Transformation Method) is a type of trian-
gular MPKC, proposed by T. T. Moh originally in 1999 [2].
Maybe it is one of the fast cryptosystem of MPKC due to
its specific structure. Its design idea comes from algebraic
geometry, and its central map is the so-called tame transfor-
mation which is a core concept in algebraic geometry and is
closely related to the famous Jacobian conjecture.

TTM has gone through several cycles of attack and de-
fense. There are many instances of TTM proposed these
year[2][3][4], but all instances of TTM are insecure, refer
to [5], [6], [7]. In 2006, we broke an instance[4] proposed
in 2004 by the inventors of TTM[7]. We found that there
exist second order linearization equations (SOLEs) satisfied
by the cipher, and utilizing this defect, we found a method
to ”unlock” the lock polynomials, and then we proposed a
ciphertext-only attack on the instance, i.e., we can recover
the corresponding plaintext for any given ciphertext.

In 2007, the inventor of TTM proposed two instances of
TTM[8] to resist our attack. In this paper, the author of
TTM did not give the detail of decryption process. This
means we do not know how the lock polynomials were de-
signed.

Through theoretical analysis on the central maps of the
instances II in [8], we find the cipher of this instance satisfy
first order linearization equations (FOLES) of form

n−1∑
i=0

aix̄i +
n−1∑
i=0

m−1∑
j=0

bij x̄iFj +
m−1∑
j=0

cjFj + d = 0,

while for the previous version of TTM, only second order
linearization equations can be used in the beginning stage
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of the attack. This means this instance do not achieve a bet-
ter design than the previous version. First order lineariza-
tion equation attack method[9] can be traced back to Patarin
in 1995 who defeated the original Matsemoto-Imai scheme
[10]. We can find all linearizations equations in 244

F28 -
computations which is precomputation for any given public
key. Then for a given valid ciphertext, via three elimina-
tions, we can find the corresponding plaintext in 226 opera-
tions. Our experiments confirmed this point. Note that our
attack is a ciphertext-only attack.

The paper is organized as follows. In Section 2 we in-
troduce the instance II in reference [8]. Then we give the
details of our attack on this instance in Section 3. Finally in
Section 4, we conclude the paper.

2. TTM Cryptosystems

Let K be a small finite field with 28 elements, n and m
are two integers. Generally, TTM systems are constructed
by four maps φ1, φ2, φ3, and φ4. Their composition F =
φ4 ◦ φ3 ◦ φ2 ◦ φ1 : K

n → K
m is designed to be a set of

quadratic polynomials, which is taken as the public key in
a TTM system, and the linear maps φ1 and φ4 are taken as
the corresponding secret key.

Here the encryption map F : K
n → K

m is a composi-
tion of the four maps, namely F = φ4 ◦ φ3 ◦ φ2 ◦ φ1:

F : K
n φ1−→ K

n φ2−→ K
m φ3−→ K

m φ4−→ K
m.

φ1 and φ4 are invertible affine linear maps, φ2 is a tame
quadratic transformation, and φ3 is a high degree map using
lock polynomials.

We use x̄0, · · · , x̄n−1 and ȳ0, · · · , ȳm−1 to denote plain-
text and ciphertext components, respectively. The input
and output components of the central map are denoted by
x0, · · · , xn−1 and y0, · · · , ym−1. That is,

(x0, · · · , xn−1) = φ1(x̄0, · · · , x̄n−1),
(y0, · · · , ym−1) = φ3 ◦ φ2(x0, · · · , xn−1),
(ȳ0, · · · , ȳm−1) = φ4(y0, · · · , ym−1).

As usual in many multivariate systems, φ1 and φ4 are
taken as the private key, while the polynomial expression
of the map (ȳ0, · · · , ȳm−1) = F (x̄0, ..., x̄n−1) is the public
key. To encrypt a plaintext (x̄0, ..., x̄n−1) is to evaluate F
at it.

The paper [8] did not provide the detail of the decryption
process and the construction of lock polynomials. Only the
expressions of the composed map φ3 ◦ φ2 are given, please
see [8] or Appendix A in the present paper.

For the instance I of the two new instances of TTM, n =
103 and m = 210; while for the second, n = 112 and
m = 215 [8]. Our work focus on instance II.

3. Cryptanalysis of Instance II

For a given valid ciphertext Ȳ ′ = (ȳ′
0, ȳ

′
1, · · · , ȳ′

214),
our goal is finding its corresponding plaintext X̄ ′ =
(x̄′

0, · · · , x̄′
111), namely, we want solve the following sys-

tem of equations:



F0(x̄0, · · · , x̄111) = ȳ′
0;

F1(x̄0, · · · , x̄111) = ȳ′
1;

...
F214(x̄0, · · · , x̄111) = ȳ′

214.

(1)

The main idea of our attack is to find linearization equa-
tions and use them to do eliminations on equation system
(1).

3.1. Finding Linearization Equations

First, we show algebraically why this instance satisfies
first order linearization equations.

By the central map of instance II, we have



y100 = x95x89 + x91x93 + x100;
y102 = x90x95 + x91x94 + x102;
y103 = x92x94 + x90x96 + x103;
y104 = x92x93 + x89x96 + x104.

(2)

From them we can derive



x96y100 = x96x95x89 + x96x91x93 + x96x100;
x92y102 = x92x90x95 + x92x91x94 + x92x102;
x91y103 = x91x92x94 + x91x90x96 + x91x103;
x95y104 = x95x92x93 + x95x89x96 + x95x104.

(3)

Adding the four above equations, we get

x96x100 + x92x102 + x91x103 + x95x104

= x96y100 + x92y102 + x91y103 + x95x104

+(x90 + x93)(x91x96 + x92x95).
(4)

Since

y1 + x1 = x96x100 + x92x102 + x91x103 + x95x104,

and
y213 = x91x96 + x92x95,

equation (4) can be changed into

y1 + x1 = x96y100 + x92y102 + x91y103

+x95x104 + (x90 + x93)y213.
(5)

This equation is a first order linearization equation.
Since F is derived from the central map by compos-

ing from the inner and outer sides by invertible affine lin-
ear maps φ1 and φ4, i.e., xi = φ1,i(x̄0, · · · , x̄111) and
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yj = φ−1
4,j(F0, · · · , F214), each of the FOLEs on xi and

yi can be changed into an identical equation of the form:

111∑
i=0

aix̄i +
111∑
i=0

214∑
j=0

bijxiFj +
214∑
j=0

cjFj + d = 0, (6)

which is satisfied by any (x̄0, · · · , x̄111) ∈ K
112.

To continue our attack, we must find all first
order linearization equations satisfied by the ci-
pher. To find all FOLEs is to find a basis of
K-linear space spanned by all unknown vector
(a0, . . . , a111, b0,0, . . . , b111,214, c0, . . . , c214, d). Let
D be the dimension of this linear space.

The number of unknown coefficients ai, bij , cj , and d in
equation (6) is equal to

112 + 112 × 215 + 215 + 1 = 24408.

To find all FOLEs, we randomly select slightly more than
24408, say 24500, plaintexts (x0, · · · , x111) and substitute
them in (6) to get a system of 24500 linear equations in
24008 unknowns, and then solve it. Its computational com-
plexity (by a native Gaussian elimination) is less than 244.

We performed our experiment on a DELL PowerEdge
7250, a minicomputer with 4 Itanium2 CPU and 32GB ECC
fully buffered DIMM memory. The operating system we
used was 64-bit Windows Server 2003. We programmed
the attack using VC++. In our experiment, we used four
threads to deal with Gaussian elimination.

Our experiments showed that about 53 hours (2 days and
5 hours) were required for this Gaussian elimination phase
(concretely, 53 hours and 7 minutes for one of 10 public
keys). Our experiments show that D = 242, namely, we
find 242 linearly independent linearization equations.

The work above depends only on any given public key,
and it can be solved once for all cryptanalysis under that
public key.

3.2. Eliminations

Now we have derived all SOLEs. Then given a valid
ciphertext, we can do elimination on the system (1).

Substituting (F0, · · · , F214) = (ȳ′
0, · · · , ȳ′

214) into every
FOLEs, we can obtain a set of linear equations in plaintext
variables. Solving this system, we can represent l variables
of x0, · · · , x111 by linear combinations of other 112−l. Our
experiments show l = 86. Hence, we derive a new equation
system of following form:




F̂0(x̄u1 , · · · , x̄u26) = ȳ′
0;

F̂1(x̄u1 , · · · , x̄u26) = ȳ′
1;

...
F̂214(x̄u1 , · · · , x̄u26) = y′

214.

(7)

where x̄u1 , · · · , x̄u26 are remainder variables.
Our computer experiments find, for these new quadratic

polynomials F̂j(x̄u1 , · · · , x̄u26) (0 ≤ j ≤ 214), there still
exist identical equations of the form

103−l∑
i=0

âix̄ui
+

210∑
j=0

b̂jF̂j + d̂ = 0, (8)

which are satisfied by all (x̄u1 , · · · , x̄u26) ∈ K26 and the
coefficients (b̂0, · · · , b̂214) �= (0, · · · , 0).

We can use the same method as before to do elimination
on system (7). Our experiments show we can eliminate 22
variable in this step. So we get a system of equations with
4 variables and 215 equations. This system of equations
can be solved easily. After getting the values of last four
variables, we substitute them into the affine expressions to
get the corresponding plaintext.

The computational complexity of these steps is less then
226, in our experiment, it is less than one minute.

For any given valid ciphertext, our experiments success-
fully find the corresponding plaintext.

4. Conclusion

Using first order linearization equations, we broke the
instance II of two new instances of TTM public key cryp-
tosystem recently proposed by Prof. T. T. Moh in the paper
[8]. We have done experiments to confirm our attack of
finding the corresponding plaintext for any given valid ci-
phertext. This instance does not achieve better design than
the previous instance of TTM in 2004.
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Appendix A: Description of Central Map

The expressions of (y0, · · · , y214) = φ3 ◦
φ2(x0, · · · , x111) are listed as follows. Due to page
limitation, we only give a part of expressions which
produce linearization equations. The more details refer
to [8]. In these expressions in the original paper [8], the
expression of y108 is missed. So, in our experiments, we
set y108 = f(x0, · · · , x107) + x108, where f is a randomly
chosen quadratic polynomial.

y0 = x1x4 + x2x3 + x0;
y1 = x96x100 + x92x102 + x91x103 + x95x104 + x1;
y2 = x80x85 + x76x86 + x75x87 + x79x88 + x2;
y3 = x64x69 + x60x70 + x59x71 + x63x72 + x1x2 + x3;
y4 = x48x53 + x44x54 + x43x55 + x47x56 + x1x3 + x2x3 + x4;

.

.

.
y52 = x41x46 + x42x45 + x49 + x52;
y53 = x41x47 + x43x45 + x53;
y54 = x42x47 + x43x46 + x54;
y55 = x44x46 + x42x48 + x55;
y56 = x44x45 + x41x48 + x56;

.

.

.
y68 = x57x62 + x58x61 + x65 + x68;
y69 = x57x63 + x59x61 + x69;
y70 = x58x63 + x59x62 + x70;
y71 = x60x62 + x58x64 + x71;
y72 = x60x61 + x57x64 + x72;

.

.

.
y84 = x73x78 + x74x77 + x81 + x84;
y85 = x73x79 + x75x77 + x85;
y86 = x74x79 + x75x78 + x86;
y87 = x76x78 + x74x80 + x87;
y88 = x76x77 + x73x80 + x88;

.

.

.
y100 = x95x89 + x91x93 + x100;
y101 = x89x94 + x90x93 + x97 + x101;
y102 = x90x95 + x91x94 + x102;
y103 = x92x94 + x90x96 + x103;
y104 = x92x93 + x89x96 + x104;

.

.

.
y175 = x54x56 + x53x55;
y176 = x54x50 + x49x55 + x48;
y177 = x53x50 + x49x56 + x44;
y178 = x51x56 + x53x52 + x43;
y179 = x51x50 + x49x52 + x42 + x45;
y180 = x44x47 + x43x48;
y181 = x51x55 + x54x52 + x47;
y182 = x57x70 + x58x69 + x59x65 + x60x67 + x111 + x110 + x109
+x4x110 + x108x111 + x3x109;
y183 = x61x71 + x62x72 + x63x66 + x64x68;
y184 = x61x70 + x69x62 + x65x63 + x64x67;
y185 = x57x71 + x58x72 + x59x66 + x60x68;
y186 = x70x72 + x69x71;
y187 = x70x66 + x65x71 + x64;
y188 = x69x66 + x65x72 + x60;
y189 = x72x67 + x69x68 + x59;
y190 = x67x66 + x65x68 + x58 + x61;
y191 = x60x63 + x59x64;
y192 = x67x71 + x70x68 + x63;
y193 = x73x86 + x74x85 + x75x81 + x76x83 + x111 + x110 + x109
+x4x110 + x108x111 + x3x109;
y194 = x77x87 + x78x88 + x79x82 + x80x84;
y195 = x77x86 + x78x85 + x79x81 + x80x83;
y196 = x73x87 + x74x88 + x75x82 + x76x84;
y197 = x86x88 + x85x87;
y198 = x86x82 + x81x87 + x80;
y199 = x85x82 + x81x88 + x76;
y200 = x83x88 + x85x84 + x75;
y201 = x83x82 + x81x84 + x74 + x77;
y202 = x76x79 + x75x80;
y203 = x83x87 + x86x84 + x79;
y204 = x89x102 + x90x100 + x91x97 + x92x99 + x111 + x110 + x109
+x4x110 + x108x111 + x3x109;
y205 = x93x103 + x94x104 + x95x98 + x96x101;
y206 = x93x102 + x94x100 + x95x97 + x96x99;
y207 = x89x103 + x90x104 + x91x98 + x92x101;
y208 = x102x104 + x100x103;
y209 = x102x98 + x97x103 + x96;
y210 = x100x98 + x97x104 + x92;
y211 = x99x104 + x100x101 + x91;
y212 = x99x98 + x97x101 + x90 + x93;
y213 = x92x95 + x91x96;
y214 = x99x103 + x102x101 + x95;
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