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Abstract

This paper presents a time-area efficient hardware ar-
chitecture for the multivariate signature scheme Rainbow.
As a part of this architecture, a high-performance hard-
ware optimized variant of the well-known Gaussian elimi-
nation over GF(2l) and its efficient implementation are pre-
sented. The resulting signature generation core of Rainbow
requires 63,593 gate equivalents and signs a message in just
804 clock cycles at 67 MHz using AMI 0.35µm CMOS tech-
nology. Thus, Rainbow provides significant performance
improvements compared to RSA and ECDSA.

1 Introduction

Multivariate Public-Key Cryptosystems (MPKCs) are
cryptosystems for which the public key is a set of polynomi-
als P (X) = (p1, . . . , pm) in variables X = (x1, . . . , xn)
where all variables and coefficients are in a finite field
GF(q). The security assumption of these cryptosystems re-
lies on the NP-completeness of solving a set of multivari-
able quadratic MQ polynomial equations. Unlike the tra-
ditional cryptosystems such as the RSA and ECC, multi-
variate schemes are not yet shown vulnerable to the future
quantum computer attacks.

Rainbow signature schemes [1] represent a family of
multivariate signature schemes, which have great potential
in terms of its efficiency and its application in ubiquitous
computing devices. These schemes are based on the Un-
balanced Oil-and-Vinegar multivariate structure [2], and the
Rainbow class repeatedly applies of the Unbalanced Oil-
and-Vinegar principle. Though there are a number of known

attacks on the Rainbow family, they are not fundamental in
the sense that all of them can be easily prevented by slightly
adjusting the parameters suggested.

The paper at hand presents the first special-purpose hard-
ware implementation of Rainbow. As a part of this core,
we have also designed and implemented G-SMITH, a par-
allel hardware architecture for the specific case of Gaus-
sian elimination over GF(2l), which is a generalization of
the SMITH architecture [3]. We propose an area-time effi-
cient VLSI architecture for Rainbow signature generation.
The time-area product of our implementation of Rainbow
is 25 times better than that of en-TTS [4], making our ar-
chitecture the most efficient one for a multivariate signature
scheme. We also compared our system with the well-known
RSA and ECDSA implementations and Rainbow’s metric is
superior to these schemes. Hence our experiments indicate
that there is a lot of potential for deploying MQ schemes
in practical applications. Our architecture consumes a total
logic space of 63,593 GE and signs a message in just 804
cycles at 67 MHz using AMI 0.35µm CMOS technology.

2 The Rainbow Signature Scheme

The key mathematical technique used by Rainbow is a
multi-layer oil-vinegar system, which is a quadratic sys-
tem of equations involving two types of variables (oil and
vinegar), where there are no quadratic terms in the equa-
tions involving a combination of oil variables only. With
the knowledge of values for the vinegar variables, one can
see that such a system will reduce to a set of linear equations
in oil variables that can be easily solved. The signing pro-
tocol of Rainbow uses multiple such oil-vinegar construc-
tions where each system uses the result of the previous one
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for its vinegar variable values. The private key essentially
contains the coefficients for the equations in these construc-
tions. We can visualize each construction as a layer and
hence Rainbow is formed by multiple layers. The verifi-
cation algorithm is a simple substitution of the signature
for the variable values in the system of quadratic equations
(whose coefficients are contained in the public key). If we
obtain the message as the right-hand side, then the signature
is considered valid.

Details on Signature Generation: For parameters n
and v1, let GF(q)n−v1 be the message space and GF(q)n

the signature space of Rainbow. Let L1 : GF(q)n−v1 →
GF(q)n−v1 and L2 : GF(q)n → GF(q)n be two invert-
ible affine linear maps. Furthermore, let F : GF(q)n →
GF(q)n−v1 be a function given by a system of n − v1 oil-
vinegar polynomials (details are provided later on). The
triple (L1, L2, F ) constitutes the private key of the signa-
ture scheme which is kept secret and used to sign a mes-
sage. The composition F̃ := L1 ◦ F ◦ L2 is the public key
which is used to verify a signature.

In order to generate the signature Z = (z1, . . . , zn)
∈ GF(q)n of a given message Y = (yv1+1, . . . , yn) ∈
GF(q)n−v1 we need to solve the equation

L1 ◦ F ◦ L2(Z) = Y (1)

for Z. To this end, we first apply L−1
1 on Y resulting in

Y ′ = L−1
1 (Y ) (i.e., we perform a vector addition followed

by matrix-vector multiplication). The next step is to solve
the central map equation

F (X) = Y ′, (2)

for X = (x1, . . . , xn) ∈ GF(q)n. This step is described
below in more detail. To obtain the final signature Z we
simply apply L−1

2 on the solution X .
The central map F of the Rainbow signature scheme

consists of n − v1 quadratic oil-vinegar polynomials over
GF(q) split into u − 1 layers as follows: Let parameters
v1, . . . , vu+1 satisfying 0 < v1 < v2 < . . . < vu+1 = n
be given (vinegar splitting). Then Layer l ∈ {1, . . . , u− 1}
is defined by the polynomials p′vl+1, . . . , p

′
vl+1

, where each
such polynomial p′k (vl + 1 ≤ k ≤ vl+1) is of the form

p′
k =

∑
i<j≤vl

α
(k)
ij xixj +

∑
i≤vl<j<vl+1

α
(k)
ij xixj +

∑
i<vl+1

β
(k)
i xi .

(3)
The vinegar variables of the polynomials p′k at layer l
are the variables x1, . . . , xvl

and the oil variables are
xvl+1, . . . , xvl+1 . Note that by evaluating all vinegar vari-
ables in p′k with elements from GF(q), we obtain a linear
polynomial. To solve Equation (2), i.e., solving the system
of polynomial equations

p′k(x1, . . . , xn) = y′
k, for v1 + 1 ≤ k ≤ n

Table 1. Rainbow Parameter Values
Parameter Rainbow1 Rainbow2

Ground Field GF(28) GF(28)
Message size 24 bytes 28 bytes
Signature size 42 bytes 48 bytes

Number of layers 2 2
Vinegar Splitting 18, 30, 42 20, 34, 48

given Y ′ = (yv1+1, . . . , yn) we proceed from layer to layer
as follows: We start at Layer 1 by assigning random val-
ues to the corresponding vinegar variables, i.e., x1, . . . , xv1 .
The first v2−v1 polynomial equations reduce to linear equa-
tions in the oil variables xv1+1, . . . , xv2 , cf. (3). By solving
this linear sub-system of dimension v2 − v1 × v2 − v1 using
Gaussian elimination, we obtain values for xv1+1, . . . , xv2 .
Thus, we are able to solve the second system of v3 − v2

linear equations. Continuing this process, we try to iter-
atively solve the above system of polynomial equations. If
the corresponding LSE is not (uniquely) solvable at a partic-
ular layer (this has a very low probability for our parameter
choices), the process is restarted (new random values for the
vinegar variables at the first layer are chosen).

Design Parameters: A judicious choice of parameter
values need to be made for MQ-based constructions to en-
sure a desired level of security [1], [5], [6], [7]. Two ver-
sions of Rainbow are proposed in Table 1, namely Rain-
bow1 and Rainbow2. Rainbow1 is claimed to provide a
security level of 282. Here F consists of n − v1 = 24 poly-
nomials in n = 42 variables split into u − 1 = 2 layers
using the vinegar splitting parameters v1 = 18, v2 = 30
and v3 = 42. Rainbow2 is claimed to provide a security
level of 290.

3 Architecture Overview

The overall Rainbow system can be split into three parts.
The input/key generation circuitry part will take care of get-
ting the message and generating the needed random num-
bers for the private key. After this step is complete, the in-
put circuitry shall communicate to the signature generation
core part and the signing process will begin. The signature
generation core shall also update the input circuitry with
its current state, so that it can determine the number of key
bytes to be sent to the core. In a particular state of the signa-
ture generation step, if certain key ports are unused, the in-
put circuitry shall pad zeroes appropriately for these ports.
The output circuitry part shall handle the task of sending
the generated signature to the outer world. The design of
the input and output blocks is dependent of the bandwidth
and the pin constraints of the chip. Since we believe that
input-output circuitry can be efficiently implemented, we
shall henceforth be concerned only about the design of the
signature generation core. The basic operations of signa-
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ture generation are setting up the linear system of equations
and solving them using Gaussian elimination. Setting up
the LSE involves matrix-vector multiplication, vector addi-
tion and computation of the bilinear form. Among all these
aforementioned operations, the most computationally inten-
sive one is Gaussian elimination over GF(2l). In the next
section, we present G-SMITH, a parallel hardware architec-
ture for fast Gaussian elimination over GF(2l). We adapted
G-SMITH for the case of Rainbow and designed the data-
path architecture. The Rainbow core (shown in Figure 1)
is sub-divided into two logical parts: the datapath and the
control logic. The control logic sequences the operations
and the datapath executes them. The datapath can be fur-
ther split into two parts, namely the LSE setup and the LSE
solving stages. The G-SMITH hardware is used for solv-
ing LSEs. It is reused to perform matrix-vector multipli-
cation, vector-addition and the computation of the bilinear
form during the time when it does not perform LSE solv-
ing. These operations are needed for computing the L−1

1

and L−1
2 mapping and the setting-up of linear equations.

4 Solving LSEs using G-SMITH

In order to obtain a high-performance signature genera-
tion architecture for Rainbow, the development of a fast par-
allel hardware architecture for the Gaussian elimination step
is required. In [3] the authors propose an efficient architec-
ture implementing Gauss-Jordan elimination over GF(2).
In this paper we extend the results to GF(2l).

Proposed Hardware Algorithm: The main idea for
our hardware-based Gauss-Jordan elimination is to perform
normalization operations (multiplying the inverse of the
pivot element with all other elements of the pivot row) and
the elimination operations (adding multiples of the normal-
ized pivot row to the other rows) all in parallel. Gaussian
elimination over GF(2l) transforms to Algorithm 1 which

Algorithm 1 Hardware-based Gauss-Jordan over GF(2l)
Require: Regular matrix A ∈ GF(2l)n×n

1: for each column k = 1 : n do
2: while a11 = 0 do
3: A := shiftup(n − k + 1, A);
4: �a1 := normalize(�a1)
5: A := eliminate(A);

works as described in the following.
Let �ai denote the i-th row vector of A. In the k-th itera-

tion a pivot element is obtained by shifting1

shiftup : {1, . . . , n} × GF(2l)n×n → GF(2l)n×n

(i, (�a1, . . . ,�an)T ) �→ (�a2, . . . ,�ai,�a1,�ai+1, . . .�an)T

1In the actual hardware implementation we keep track of the used rows
by means of a used-flag instead of using a counter.

GF(2l)-Add

GF(2l )-Mul

l-Bit-Reg

MUX

ai1

a1j out1
out2

in1 in2

lock row

lock lower row

pivot found

Figure 2. A basic mesh cell storing aij .

until a11 is a non-zero element. After a pivot element has
been found in the k-th iteration, we normalize the first row:

normalize : GF(2l)n → GF(2l)n

(ai1, ai2, . . . , ain) �→ (1, ai2 · a−1
11 , . . . , ain · a−1

11 )

Then we add the first row �a1 multiplied by ai1 to all other
rows �ai where i �= 1 and ai1 �= 0 to eliminate these ele-
ments. In addition, we do a cyclic shift-up of all rows and a
cyclic shift-left of all columns. By doing the cyclic shift-up
operations after an elimination, rows already used for elim-
ination are “collected” at the bottom of the matrix, which
ensures that these rows are not involved in the pivoting step
anymore (elimination, cyclic shift-up and cyclic shift-left):

eliminate : GF(2l)n×n → GF(2l)n×n




1 a12 ... a1n
a21 a22 ... a2n

...
...

...
an1 an2 ... ann


 �→




a22⊕(a12a21) ... a2n⊕(a1na21) 0

...
...

...
an2⊕(a12an1) ... ann⊕(a1nan1) 0

a12 ... a1n 1




shiftup, normalize, and eliminate can be computed
within a single clock cycle in hardware. We always have
n applications of normalize/eliminate. Additionally, an
expected number of n2−l applications of shiftup need to
be executed if the matrix elements are uniformly distributed
over GF(2l), as in our case. Thus, for n = 12 and l = 8
executing the algorithm requires about 12.05 clock cycles.

Functional Description: In order to implement Algo-
rithm 1 in hardware, we use a mesh structure (rectangular
cell array): the whole device consists of four different types
of memory cells, which realize the three basic operations of
the algorithm. The design at hand comprises a parallel im-
plementation of the operations where the output of a zero-
tester applied to the pivot element is used as multiplexing
signal for the appropriate result.

Mesh Cells and Their Interconnections: Our mesh ar-
chitecture consists of four types of cells: the cell in the up-
per left corner of the mesh structure is called the pivot cell,
the cells in the first row resp. first column unlike the pivot
cell are called the pivot row resp. pivot column cells, all
other cells are called basic cells. Here we describe the more
complex basic cells only.
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Figure 1. Rainbow Signature Generation Core

The design and interconnections of a basic cell are de-
picted in Figure 2. Each cell stores one element aij ∈
GF(2l) of the matrix in its l-bit register and contains one
adder and one multiplier to implement the eliminate-
operation. It has local connections to its 4 direct neigh-
bors and some global connections. Considering Figure 2 we
distinguish between two types of connections, namely data
connections (thick lines) which are l-bit busses for exchang-
ing elements from GF(2l) between the cells and 1-bit con-
trol signal connections (thin lines). As to the local connec-
tions, a cell has a data and a control connection (out1 and
lock row) to its upper neighbor, a data and a control con-
nection (in1 and lock lower row) to its lower neigh-
bor, and only data connections (out2 resp. in2) to its up-
per left and lower right neighbor in the mesh. Note that a
cell receives inputs only from its lower direct neighbors and
sends output only to its upper direct neighbors. The mesh
is wrapped around in the sense that the lower neighbours of
cells in the last row are the respective cells of the first row.
Furthermore, a cell is connected to a global network: the
global network comprises a control signal (pivot found)
from the pivot cell, a data signal (ai1) from the first cell of
the respective row (a pivot column cell) and a data signal
(a1j) from the first cell of the respective column (a pivot
row cell) the considered cell belongs to. Moreover, the
used-flag for the actual row is provided by the global con-
trol signal lock row. Besides the adder and the multiplier
that are used to implement the eliminate-operation, a ba-
sic cell also contains a multiplexer (MUX). By means of
this MUX which receives the signals pivot found and
lock lower row as input we control which data is input
to the register depending on the operation that is currently
executed. Whether this data is actually stored in the register
is controlled by the signals pivot found and lock row.

In the pivot cell we do not need any multiplier or adder
but an inverter and a zero tester. The pivot row cells are
equipped with a multiplier but no adder. They receive the
output of the inverter of the pivot cell. The output of the
multiplier of such a cell is connected to all basic cells of
the respective column j and provides the global data signal
a1j . A pivot column cell contains neither an adder nor a
multiplier. Its register is connected to all basic cells of the

respective row i and provides the global data signal ai1.
Hardware Complexity of G-SMITH over GF(2l):

The G-SMITH architecture for solving systems of linear
equations over GF(2l) is basically comprised of the follow-
ing elements: n(n + 1) l-bit registers, one GF(2l)-inverter
for computing a−1

11 , n GF(2l)-multipliers for normalizing
the first row, and n(n − 1) GF(2l)-multipliers and adders
for the elimination step.

Adaptions for Multivariate Signing: The G-SMITH
architecture is used for solving the linear system of equa-
tions. The maximum value taken by the difference between
the vinegar variables in any two subsequent layers deter-
mines the size of G-SMITH. Some modifications are re-
quired in order to enable the reuse of G-SMITH during op-
erations other than Gaussian elimination. A Gsel signal
was added to all cells, in order to choose between Gaus-
sian elimination and other operations. Most of the adders
and multipliers are reused for vector addition, matrix-vector
multiplication and computation of bilinear form. It should
be noted that despite the area overhead due to the addition of
multiplexers, the reuse of G-SMITH cells helps to perform
the LSE generation process in parallel, thereby drastically
reducing the computation time.

5 Rainbow Datapath

The detailed datapath of Rainbow is depicted in Fig-
ure 3. The thick lines are data lines. The control signals
for all the blocks come from the main control logic. The
gsmith out bus is de-multiplexed to gsmith out1 and
gsmith out2 buses, using a control signal k0 (depend-
ing on the layer). This is not shown in the figure. The cells
in G-SMITH that have a left slash are re-used by the Vec-
tor Multiply Add unit and the ones with the right slash are
reused by the Bilinear Form unit.

Datapath Hardware Cost: The area required by the
overall architecture is measured in terms of gate equiva-
lents (GE). The strategy for estimating the total hardware
cost is as follows: we have re-used the multipliers, adders
and registers from G-SMITH for other parts of the signa-
ture generation process. As a result, we have added sev-
eral 8-bit 2:1 muxes to enable re-use. First, we estimated
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Figure 3. Rainbow detailed datapath

the number of such muxes added to the design. This count
was calculated to be around 821 and 968 for Rainbow1 and
Rainbow2 respectively. Then, we estimated the additional
hardware, apart from G-SMITH in the datapath. Finally, we
summed up all these to get the overall GE. The total GE for
the Rainbow1 and Rainbow2 were estimated to be 66874.25
and 85272.45 respectively.

Running Time: Since one element of the resultant vec-
tor is calculated in a single cycle from the matrix-vector
multiplier unit, the total number of cycles required for
the linear transformations L−1

1 and L−1
2 is 2n − v1 + 4.

The number of cycles required to setup the linear equa-

tions over u − 1 layers can be estimated using the formula∑u−1
i=1 (vi+1 − vi) · (vi + 6). So, the total number of cycles

for Rainbow1 is estimated to be ≈ 814 cycles.

6 Implementation

This section explains the methodology used to imple-
ment the Rainbow datapath and the control logic finite state
machine. We also provide the ASIC implementation details
and results for our design2.

2For the purpose of functional simulation and verification, we used the
Synopsys Scirocco Virtual Simulator environment version X-2005.06. The
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Atomic blocks: The basic building blocks for the archi-
tecture are the GF(28) adder, multiplier and inverter. There
are three popular bases of representation of GF(28) data
from hardware point of view namely, standard base (SB),
normal base (NB) and dual base (DB). We have chosen the
standard base representation, since it does not involve any
overhead in conversion. Area-efficient arithmetic architec-
tures for the standard base multiplier and inverter were pro-
posed in [8, 9]. We have used these blocks for our atomic
operations in the algorithm.

G-SMITH: We implemented the G-SMITH datapath
and controller which was presented in Section 4. The ar-
chitecture was programmed in VHDL and is kept generic
for easily changing the matrix dimensions. The area for
the cryptographically interesting matrix size (n = 12) is
42366.33 GE. The initial timing reports indicate that the
system can be clocked upto a maximum frequency of 93
MHz.

Rainbow: The total number of clock cycles required for
signature generation with Rainbow (including L−1

1 , F−1

and L−1
2 ) is 804. The core was synthesized and the area

was measured to be 63592.88 GE. Timing reports show that
the core can be clocked upto a maximum frequency of 67
MHz. This would translate to a signature generation time
of 0.012 ms.

7 Comparison

For the benchmarks the well-established RSA (with a
1024-bit modulus) and elliptic curves (binary fields of about
160 bits3) signature algorithms are taken as well as the en-
TTS scheme. The performance of these implementations
is very close to the best known ones. The comparison re-
sults are given in Table 2. Although different process tech-
nologies and tools were used to implement these schemes,
our comparision is fair since it is done at the architectural
level, where area is measured in gate equivalents and time
is calculated using the reported frequency. The performance
metric of our Rainbow implementation is significantly bet-
ter than that of the considered RSA, ECDSA and en-TTS
implementations.
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