
New Differential-Algebraic Attacks and
Reparametrization of Rainbow

Jintai Ding1, Bo-Yin Yang2, Chia-Hsin Owen Chen2, Ming-Shing Chen2,
and Chen-Mou Cheng3

1 Dept. of Mathematical Sciences, University of Cincinnati, USA
ding@math.uc.edu

2 IIS, Academia Sinica, Taiwan
{byyang,owenhsin,mschen}@iis.sinica.edu.tw

3 Dept. of Elec. Eng., Nat’l Taiwan University, Taiwan
ccheng@cc.ee.ntu.edu.tw

Abstract. A recently proposed class of multivariate Public-Key Cryp-
tosystems, the Rainbow-Like Digital Signature Schemes, in which succes-
sive sets of central variables are obtained from previous ones by solving
linear equations, seem to lead to efficient schemes (TTS, TRMS, and
Rainbow) that perform well on systems of low computational resources.
Recently SFLASH (C∗−) was broken by Dubois, Fouque, Shamir, and
Stern via a differential attack. In this paper, we exhibit similar algebraic
and diffential attacks, that will reduce published Rainbow-like schemes
below their security levels. We will also discuss how parameters for Rain-
bow and TTS schemes should be chosen for practical applications.

Keywords: rank, differential attack, algebraic attack, oil-and-vinegar.

Note:Up-to-date version will be available at eprint.iacr.org/2008/108

1 Outline

Multivariate Public-Key Cryptosystems (MPKCs, or trapdoor MQ schemes) are
cryptosystems for which the public key is a set of polynomials P = (p1, . . . , pm)
in variables x = (x1, . . . , xn) where all variables and coefficients are in K =
GF(q). In practice this is always accomplished via

P : w = (w1, . . . , wn) ∈ K
n S�→ x = MSw+cS

Q�→ y T�→ z = MT y+cT = (z1, . . . , zm) ∈ K
m

In any given scheme, the central map Q belongs to a certain class of quadratic
maps whose inverse can be computed relatively easily. The maps S, T are affine.
The polynomials giving yi in x are called the central polynomials, and the xj

are called the central variables.
In 1999, the Unbalanced Oil-and-Vinegar multivariate structure is proposed

by Patarin et al [16]. Lately the Rainbow class of signatures [7,25,20], based on

S.M. Bellovin et al. (Eds.): ACNS 2008, LNCS 5037, pp. 242–257, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

eprint.iacr.org/2008/108

New Differential-Algebraic Attacks and Reparametrization of Rainbow 243

repeated applications of the Unbalanced Oil-and-Vinegar principle, shows some
promise on systems of low computational resources.

Given that the well-known C∗− class of signature schemes including SFLASH
was broken by differential attacks [8], we examine similar attacks on Rainbow,
with the following conclusions:

– Differentials improve on the High-Rank attacks on Rainbow-like systems.
– Differentials also helps with randomized brute-force searches for S and T .
– We can assess how Rainbow-like schemes needs to be amended in view of

recent developments.
– The results are in line with experiments run on small scale systems.

In Sec. 2 we recap Rainbow-like multivariates and what is known about the secu-
rity of MPKC before the appearance of Rainbow in Sec. 3. In Sec. 4, we describe
the new differential attack, which is related to the high-rank attack, and in Sec. 5
we present new paramters for Rainbow construction, we tabulate what we know
about the security of Rainbow-like schemes, in particular, the security against
the two new recent attacks specially targeted against the Rainbow schemes, and
we design schemes with new parameters for practical applications. Finally, in
Sec. 6, we present the conclusion.

2 Rainbow-Like Multivariate Signatures

We characterize a Rainbow type PKC with u stages:

– The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.
For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂ S1 ⊂
· · · ⊂ Su+1 = S.

– Denote by ol := vl+1 − vl and Ol := Sl+1 \ Sl (i.e., vl < k ≤ vl+1 if k ∈ Ol)
for l = 1 · · ·u. The central map Q : x = (x1, . . . , xn) �→ y = (yv1+1, . . . , yn),
where each yi := qi(x) is a quadratic polynomial in x of the following form

qk =
∑

i<j≤vl

α
(k)
ij xixj +

∑

i≤vl<j<vl+1

α
(k)
ij xixj +

∑

i<vl+1

β
(k)
i xi, if vl < k ≤ vl+1.

In every qk, k ∈ Ol, there is no cross-term xixj where both i and j are in
Ol at all. So given all the yi with vl < i ≤ vl+1, and all the xj with j ≤ vl,
we can compute xvl+1, . . . , xvl+1 .

– To expedite computations, some coefficients αijk ’s may be fixed (e.g., set to
zero), chosen at random (and included in the private key), or be interrelated
in a predetermined manner.

– To invert Q, determine (usu. at random) x1, . . . xv1 , i.e., all xk, k ∈ S1. From
the components of y that corresponds to the polynomials qv1+1, . . . qv2 , we
obtain a set of o1 equations in the variables xk, (k ∈ O1). We may repeat
the process to find all remaining variables.

244 J. Ding et al.

In this form, we can see that Rainbow can only be a signature scheme. We
can see a good example of what can go wrong in [15] if we try to construct an
encryption scheme, where the initial vinegar variables is determined through an
initial block of equations.

Example 1. enTTS(20,28) of [25] has structure (8, 9, 1, 1, 9) and this central map:

yi = xi +
∑7

j=1 pijxjx8+(i+j mod 9), i = 8 · · · 16;
y17 = x17 + p17,1x1x6 + p17,2x2x5 + p17,3x3x4

+p17,4x9x16 + p17,5x10x15 + p17,6x11x14 + p17,7x12x13; (1)
y18 = x18 + p18,1x2x7 + p18,2x3x6 + p18,3x4x5

+p18,4x10x17 + p18,5x11x16 + p18,6x12x15 + p18,7x13x14;

yi = xi + pi,0xi−11xi−9 +
∑i−1

j=19 pi,j−18 x2(i−j)−(i mod 2) xj + pi,i−18x0xi

+
∑27

j=i+1 pi,j−18 xi−j+19 xj , i = 19 · · ·27.

If x0, . . . , x7 is decided, one can solve first for x8, . . . , x16, then x17, x18, then
x19, . . . , x27. Note: x0 does not appear until the last block, which will be significant
later.

Example 2. The proposed Rainbow scheme in [7] is an essentially generic stage-
wise UOV construction with layers (6, 6, 5, 5, 11). The first six central equations is
a generic UOV construction with six vinegar (x1, . . . x6) and six oil (x7, . . . , x12)
variables; the next five has 12 vinegars and 5 oils (x13, . . . , x17); the next five
has 17 vinegars and 5 oils (x18, . . . , x22), and the last 11 has 22 vinegars and 11
oils (x23, . . . , x33).

Rainbow schemes where most of the crossterm coefficients α
(k)
ij are zero are said

to be TTS instances. TTS schemes have a relatively small private key and even
better efficiency, but may be exposed to additional risks. Regardless, the same
techniques that we shall describe below are security concerns for all schemes of
the rainbow type including TTS, TRMS, and Rainbow [25,20, 7].

3 The Security of Multivariates and Prior Attacks

The name of the class came from the “Multivariate Quadratics” problem:

Problem MQ: Solve the system p1 = p2 = · · · = pm = 0, where each pi is a
quadratic polynomial in x = (x1, . . . , xn) and coefficients and variables are
in K = GF(q).

Generic MQ is NP-hard [12], and consensus pegs it as a difficult problem to
solve even probabilistically. However, to use MQ as the underlying hard problem
in a PKC, one need a trapdoor built into the public map P . So the security of
the cryptosystem also depends on the following:

Problem EIP: (Extended Isomorphism of Polynomials) Given a class of cen-
tral maps C and a map P expressible as P = T ◦ Q ◦ S, where Q ∈ C, and
S, T are affine, make such a decomposition.

New Differential-Algebraic Attacks and Reparametrization of Rainbow 245

There are two interesting twists here:

– If Q is constant, this is known as the IP problem. J.-C. Faugère showed that
in some cases simple IP is not NP-hard at Eurocrypt 2006 [11].

– The EIP problem where C is the set of homogeneous quadratic maps is
easy [13]. Equivalently, if Q is homogeneous (e.g., as in SFLASH=C∗−) we
can set cS = cT = 0.

If Q fundamentally involves a map in a field L = K
k that is of a size signif-

icantly bigger than K, we call the scheme “big field” or “dual field”. This order
includes derivatives of Matsumoto-Imai (C∗) and Hidden Field Equations. Oth-
erwise we call the scheme a “true multivariate” (sometimes “single field”). This
includes the Unbalanced Oil-and-Vinegar and stagewise triangular structures.

One of the biggest concerns of multivariate cryptography is the lack of prov-
able security results. Today security in MPKC is still very much ad hoc. Proposed
schemes are evaluated against known attacks security estimates obtained for var-
ious parameters. The designers then tries to juggle the system parameters so as
to have some requisite security level under every known attack.

With that, we list the standard attacks known for MPKCs today:

1. Rank (or Low Rank, MinRank) attack, which finds a central equation with
least rank [25].

Clow rank ≈
[
qr�m/n�m(n2/2 − m2/6)/μ

]
m.

Here as below, the unit m is a multiplications in K, and r is that lowest
rank (“MinRank”, [14]). μ is the number of linear combinations of central
equations [25] at that minimal rank.

2. Dual Rank (or High Rank) attack [5, 14], which finds a variable appearing
the fewest number of times in a central equation cross-term. If this least
number is s, [25] gives

Chigh rank ≈
[
qsn3/6

]
m.

3. Oil-and-Vinegar Separation [22, 16, 17], which finds an Oil subspace that is
sufficiently large (estimates as corrected in [25]).

CUOV ≈
[
qn−2o−1o4 + (some residual term bounded by o3qm−o/3)

]
m.

o is the max. oil set size, i.e., there is a set of o central variables which are
never multiplied together in the central equations, and no more.

4. Trying for a direct solution (i.e., going for the MQ as opposed to the EIP or
“structural” problem). Best known methods are the Lazard-Faugère family
of solvers (the Gröbner Bases methods F4-F5 or XL) whose complexities
[6, 9, 10, 24] are very hard to evaluate; some recent asymptotic formulas can
be found in [1, 2, 24].

246 J. Ding et al.

4 New Differential Attacks

One key point of our new attack is to use the differentials (first used, as far as
we know, with MPKC in [18] and recently to break SFLASH [8]).

Given the public key of a MPKC, which we denote as P(x), a set of quadratic
polynomials, its differential DP(x) is defined as

DP(x) = P(x + c) − P(x) − P(c),

a set of linear functions in x.
The key is to use the hidden structures in the differential to attack the cryp-

tosystem. The observation is that the differential can be used to improve the
old high-rank attack when there are too many variables that don’t appear in
the final block of equations (for yi, where i ∈ Ou). First, we will reformulate an
existing attack in terms of the differentials.

Let Hi be the symmetric matrix corresponding to the quadratic part of zi(w).
Without loss of generality, we may let the fewest number of appearances of all
variables in the cross-terms of the central equations be the last variable xn

appearing s times.

Algorithm 0 (High or Dual Rank Attack). as described by Goubin-Courtois
and Yang-Chen [14,25]:

1. Compute the differential P(x+c)−P(x)−P(c) and take its j-th component
(which is bilinear in x and c) as cT Hjx. Hk is representing the quadratic
crossterms in the k-th polynomial of the public key. Note that the Hi are
always symmetric and if charK = 2, and xT Hix = 0.

2. Form an arbitrary linear combination H =
∑

i αiHi. Find V = kerH.
3. When dim V = 1, set (

∑
j λjHj)V = {0} and check if the solution set V̂ of

the (λi) form a subspace dimension m − s. Note: Since a matrix in Kn×n

can have at most n different eigenvalues, less than n/q of the time we would
need to do this.

4. With probability q−s we have V = U = {x : x1 = · · · = xvu = 0}.

As each trial run consists of running an elimination and some testing, we can
realistically do this with ∼

(
sn2 + n3

6

)
qs field multiplications, by taking linear

combinations from only (s+1) of the matrices Hi and hope not to get too unlucky.
An upper bound is

[
mn2 + n3

6 + n
q (m3/3 + mn2)

]
qs.

The above formulation of the high rank attack is designed to defeat “plus”-
modified Triangular systems. We first present some notations before describing
how we can improve this attack further:

Let Pl be the linear space of quadratic polynomials spanned by polynomials
of the form

∑

i∈Ol,j∈Sl

αi,jxixj +
∑

i,j∈Sl

αi,jxixj +
∑

i∈Sl+1

βixi + η

New Differential-Algebraic Attacks and Reparametrization of Rainbow 247

We can see that these are Oil and Vinegar type of polynomials such that xi,
i ∈ Ol are the Oil variables and xi, i ∈ Sl are the Vinegar variables. We call xi,
i ∈ Ol an l-th layer Oil variable and xi, i ∈ Sl an l-th layer Vinegar variable.
We call any polynomial in Pl an l-th layer Oil and Vinegar polynomial. Clearly
we have Pi ⊂ Pj for i < j. Let Wi be the space of linear functions of variables
x1, ..., xvi . Then we have

W1 ⊂ P1 ⊂ W2 ⊂ P2 · · · ⊂ Wu ⊂ Pu ⊂ Wu+1.

Now we present the new attack:

Algorithm 1. The Improved High-Rank Attack using differentials:

1. Pick random c, c′ ∈ K
n, compute P(w+c)−P(w)−P(c), and we will denote

its components as (t1, t2, . . . , tm). Similarly we compute (t′1, t
′
2, . . . , t

′
m) =

P(w + c′) − P(w) − P(c′), then

U = span(t1, t2, . . . , tm) ∩ span(t′1, t
′
2, . . . , t

′
m).

2. Guess at a linear form f ∈ U ; find coefficients ai and a′
i such that f =∑

aiti =
∑

a′
it
′
i.

3. Use ai and a′
i as the guessed αi in the High Rank Attack (Algorithm 0) above.

Proposition 1. The expected complexity of Algorithm 1 is ∼ qd · (cubic-time
elimination) where (the last block of equations is the ones whose solutions gives
Ou)

d ≤ s − [# vars appearing in crossterms only in the last block]. (2)

Proof. Let
F = (F1, . . . , Fm) = Q ◦ S

be the mapping from x �→ z. Let

F (x + b) − F (x) − F (b) := G = (G1, G2, . . . , Gn),

where b = (b1, b2, . . . bi, . . . , bn) is randomly chosen. Pick another b′ and form

H = (H1, . . . , Hn) = F (x + b′) − F (x) − F (b′),

then

1. if i ∈ Oj , then Gi, Hi ∈ Wj+1;
2. W j+1 := span{Gi}i∈Oj ⊂ Wj+1, and similarly Ŵj+1 := span{Hi}i∈Oj ⊂

Wj+1;
3. W 2 ⊂ ... ⊂ Wu+1 and Ŵ2 ⊂ ... ⊂ Ŵu+1.

Clearly (Ŵu

⋂
Wu) ⊂ (Ŵu+1

⋂
Wu+1), and we observe that: if the dimensions of

the two subspaces differ by d, then we can break the system with ∝ qd·(one guess)
computations.

248 J. Ding et al.

How so? Because the relationship between P and F , is the same as that
between the w-space and x-space, i.e., the linear transformation S. So there is
a 1-in-qd chance that both

∑
aizi and

∑
a′

izi correspond to a linear form in
Wu. The odds are now decided by q−d instead of q−s. In a Rainbow-like system,
s = ou = n − vu. For Alg. 1 to be worthwhile, we must show that d ≤ s.

In fact, it is not so hard to describe how to determine d. Wu+1 and Ŵu+1 are
two m-dimensional subspaces in the n-dimensional vector space Wu+1. Most of
the time they intersect in a 2m − n dimensional subspace, hence

dim Wu = dim Ŵu = m − ou

which equals the number of variables appearing in cross-terms in equa-
tions not of the final block, which is equivalent to Eq. 2.

Example 3. Consider enTTS(20,28) as in Eq. 1. Here dim(Wu+1
⋃

Ŵu+1) =
20 + 20 − 28 = 12, while dim(Wu

⋃
Ŵu) = 11 + 11 − 17 = 5. Therefore we

need only ∼ 256 instead of 272 guesses, which is a speed increase of 216× over
Algorithm 0. Since each guess takes about 28 time units (standard is to use
time of a 3DES block encryption, between 26 to 28 multiplications), this gives
complexity 264 instead of 280, too weak to be “strong” crypto.

What went wrong? Generically dimWu = n − ou and the intersection is of
dimension 2(m − ou) − (n − ou) = 2m − n − ou, making d = (2m − n) − (2m −
n − ou) = ou = s. The lesson: watch out for variable not in the final oil set that
does not occur prior to the last block of equations. In enTTS(20,28), x0 and x18
did not appear in any earlier equations than the final block.

4.1 Experimentation with Mini-versions

We experimented in smaller fields with three different schemes: Rainbow (6,6,5,5,
11), the enTTS(20,28) scheme above, and its miniaturized sister version enTTS
(16,22) [structure (6,7,1,1,7)].

Table 1. Timing (sec) on 16 of 3GHz P4 machines guessing in parallel

q

The results are fairly constant over many tests [except the enTTS(20,28) test
which we only ran a few times]. Clearly, not having all vinegar variables of
the last segment appearing previously in cross-terms is a big minus. Rainbow
(6,6,5,5,11) does not have the same problem and Algorithm 1 is no improvement
of the High Rank Attack against it.

New Differential-Algebraic Attacks and Reparametrization of Rainbow 249

5 New Rainbow Parameters for Practical Applications

For practical applications, we will propose the following Rainbow Structures.

1. (20, 10, 4, 10), where the public key has 44 variables and 24 polynomials.
2. (18, 12, 12), where the public key has 42 variables and 24 polynomials.
3. (20, 14, 14), where the public key has 48 variables and 28 polynomials.

We will first formalize a twist on the regular Rainbow construction, which
is somewhat more general. In the previous constructions, in each new layer,
previously appeared variables will only be Vinegar variables, the new variables
appearing only as Oil variables. We can also consider adding new Vinegar vari-
ables as we add Oil variables. This also implies that in the signing process, we
guess at the new vinegar variables as they appear, while in the previous Rainbow
construction, we only guess the Vinegar variables in the first layer once. In this
case, we can also write for each layer two parameters, (v′i, oi), where the v′i counts
the new vinegar variables we introduce. In this layer, we will have vi +v′i Vinegar
variables (where vi counts the number of all previous appearing variables) and
oi the number of Oil variables.

If all the v′i are zero, this is precisely the original Rainbow construction. We
might call this new construction the extended Oil-Vinegar construction. From
the viewpoint of the attacker we can see this as a specialization of the Rainbow
construction, since the new vinegar variables might as well have been part of
the initial block of vinegar variables, but simply never have been used before.
However, it is different in an operative sense, in that if we use the new vinegar
variables properly, we could always find a signature, as implicitly used in TTS
constructions earlier.

So, in this language, we would propose scheme:((15,10), (4, 4),(1, 10)),((17, 12),
(1, 12)), and ((19, 14), (1, 14)).

For these new schemes, we could also choose to use the generic sparse polyno-
mials or special sparse polynomials as in the case of TTS [25]. For generic sparse
polynomials, we think it is a good idea to choose 3Li terms for each layer, where
Li is the sum of number of Oil and vinegar variables in each layer.

For these new schemes, we need to take into two new recent special attacks
against Rainbow.

5.1 The Reconciliation Attack

In the following attack we attempt to find a sequence of change of basis that let
us invert the public map. In this sense it can be considered an improved brute
force attack.

Suppose we have an oil-and-vinegar structure, then the quadratic part of each
component qi in the central map from x to y, when expressed as a symmetric
matrix, looks like

250 J. Ding et al.

Mi :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

First, no matter what MT is, it won’t change the basic shape, so we let T be
the identity map for the moment. What can S be like? Suppose we pick MS as
totally random, most often (see below) it decompose to

MS :=
[
∗v×v ∗v×o

∗o×v ∗o×o

]
=

[
1v×v ∗v×o

0o×v 1o×o

] [
∗v×v 0v×o

∗o×v ∗o×o

]
(4)

where 1 means identity matrix, 0 means just zeros and ∗ means random or
anything. In fact, this decomposition always hold unless the lower-right o × o

submatrix is singular. It should be clear that the
[
∗v×v 0v×o

∗o×v ∗o×o

]
portion of MS , as

a coordinate change leaves the Mi’s with the same shape. That is, if we can find

the correct
[
1v×v ∗v×o

0o×v 1o×o

]
portion and perform the basis change in reverse, we will

again make the resulting public map into the same form (all zeroes on the lower
right) and be easily inverted. Hence, no more security at all. More about this
phenomenon (“equivalent keys”) in MPKCs can be seen in, say, [23].

Let this essential portion of MS that we wish to recreate be P , that is, the
linear transformation w �→ x = Pw will create all zeroes on the lower right. We
can decompose this P into a product of P := Pv+1Pv+2 · · · Pn, where each of the
matrices look like

Pn = 1n +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 a1
0 · · · 0 a2
...

. . .
...

...
0 · · · 0 av

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; Pn−1 = 1n +

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 a′
1 0

0 · · · 0 a′
2 0

...
. . .

...
...

...
0 · · · 0 a′

v 0
0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

; · · ·

Indeed, the multiplication is actually commutative among the various Pi’s. Sup-
pose, then, that we start with the differential matrices Hi and simultaneously
transform them to make their lower-right corner a square of 0’s using exactly
such Pi’s.

Algorithm 2 (UOV Reconciliation). The following gives the Reconciliation
Attack against a UOV scheme with o oil and v = n − o vinegar variables (which
has the smaller indices):

New Differential-Algebraic Attacks and Reparametrization of Rainbow 251

1. Perform basis change wi := w′
i − λiw

′
n for i = 1 · · · v, wi = w′

i for i =
v + 1 · · ·n. Evaluate z in w′.

2. Let all coefficients of (w′
n)2 be zero and solve for the λi. We may use any

method such as F4/F5 or FXL. There will be m equations in v unknowns.
3. Repeat the process to find Pn−1. Now we set w′

i := w′′
i −λiw

′′
n−1 for i = 1 · · · v,

and set every (w′′
n−1)2 and w′′

nw′′
n−1 term to zero (i.e., more equations in the

system) after making the substitution. This time there are 2m equations in
v unknowns.

4. Continue similarly to find Pn−2, . . . , Pv+1 with more and more equations.

Given what we know about system-solving today, we can expect the complexity
to be determined in solving the initial system. Hence, if v < m, solving m
equations in v variables will be easier than m equations in n equations, and we
achieve a simplification.

Proposition 2. The Reconciliation Attack works with probability ≈
(
1 − 1

q−1

)
.

Proof (Sketch). Provided that lower-right o×o submatrix of MS is non-singular,
we can see that the construction of Pn will eliminate the quadratic term in the
last variable. Pn−1 will eliminate all quadratic terms in the last two variables,
and so on, and each sequential construction will not disturb the structure built
by the prior transformations. The number of nonsingular k × k matrices in over
GF(q) is (qk − 1)(qk − q)(qk − q2) · · · (qk − qk−1), because the first row has 1
possibility to be zero, the second row q possibilities to be a multiple of the first,
the third row q2 possibilities to be dependent on the first two, etc., so the chance
that the above attack works is roughly

(
1 − 1

q

) (
1 − 1

q2

)
· · ·

(
1 − 1

qk

)
> 1 −

(
1
q

+
1
q2 + · · · + 1

qk

)
> 1 − 1

q − 1
.

Here we will use formulas from [26] for all our estimates as shown below.

Example 4. We attack enTTS(20,28) as in Eq. 1. Originally we must solve a 20-
equation, 20-variable (we can guess 8 out of the original 28) MQ system. With
vu = 19, the rate-determining step of the Reconciliation Attack is a 20-equation,
19-variable system. This is easier by a factor of exactly 28 if we are using FXL
or FF4 [24, 1], since we will guess exactly one fewer variable.

Since we expect a direct attack on enTTS(20,28) to have ∼ 272 complexity,
Alg. 2 should take ∼ 264. The construction process and odds as given above
have been tested and verified on miniature versions (cf. [25]) of TTS schemes
such as enTTS(16,22) as well as other Rainbow-like instances.

Example 5. TRMS [20] can be reduced to 264 via the same attack (a faster attack
given below) because it has rainbow layer parameters of (8, 6, 2, 3, 9), with a last
block of the same size as TTS.

Example 6. We implemented enTTS(16,22) over GF(128), the initial system has
16 equations and 22 − 7 = 15 variables. We ran FXL with Wiedemann solver

252 J. Ding et al.

(as in [26]) with one fixed variable on an assembly of machines with 128 total
P4 cores at 3.0GHz, each guessing 1 value out of 128. Here D = 8 [24], and the
number of monomials is T = 319770, with a total of 73799040 terms which took
only 288MB of storage at every core. Solving a system known to have a solution
should take around 3(T 2n(n + 3)/2) ≈ 245 multiplications, which at about 16
cycles a multiplication about 2.0 × 104 seconds, but we discovered that there is
guesswork in generating a system, so we dare not run more than one value on a
given CPU.

In practice we were not so unlucky and were able to solve 15 variables in 16
equations in GF(128) in what was in fact closer about 3 days, probably due to
non-optimal programming. After that, solving the remaining systems is a piece
of cake [real CPU time estimated at less than two hours], and we can then
decompose an enTTS(16,22) instance.

Example 7. We now attack the proposed Rainbow instance in [7]. Since vu =
22 < m = 26, solving this one is significantly easier: using FF5 [24], the expected
time use is 256 (3DES blocks) instead of 281. F5 is not generally available but
we should be able to achieve ∼ 264 cycles using FXL on a large SMP system.

We can easily see that we must be very careful choosing our parameters for
security against one attack may expose it to another. Our selected parameters
are all tuned against this particular attack and this attack is no better or worse
than direct attack, which have complexity of solving 24, and 28 equations in as
many variables over GF(256), or roughly 283 and 298 respectively.

But this is just a unbalanced oil and vinegar attack. The more efficiently imple-
mented systems are Rainbow and have multiple layers. If we look at the Rainbow
construction, it looks more like

That is, only the last o equations looks like Eq. 3, the initial m − o equations
actually have non-zero entries in the upperleft submatrix — which actually looks
like a UOV matrix itself, i.e., has a block of zeros on the lower right. We don’t
bother with that detail. Can we exploit this property? Yes we can.

At this point, we should no longer consider T as the identity. Let us think
about what the matrix MT does in Rainbow. At the moment that we distill the
Pn portion out, m − o of the new Mi’s should show a zero last column. However
we don’t; MT mixes the Mi’s together so that they in fact don’t – we will see
most of the time only the lower right entry as zero. But if we take any o + 1 of
those last columns, there will be a non-trivial linear dependency. We can verify

Mi :=

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(i)
11 · · · α

(i)
1v 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv 0 · · · 0

0 · · · 0 0 · · · 0
...

. . .
...

...
. . .

...
0 · · · 0 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, if i ≤ m−o;

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α
(i)
11 · · · α

(i)
1v α

(i)
1,v+1, · · · α

(i)
1n

...
. . .

...
...

. . .
...

α
(i)
v1 · · · α

(i)
vv α

(i)
v,v+1, · · · α

(i)
vn

α
(i)
v+1,1, · · · α

(i)
v+1,v, 0 · · · 0

...
. . .

...
...

. . .
...

α
(i)
n1 · · · α

(i)
nv 0 · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, otherwise.

(5)

New Differential-Algebraic Attacks and Reparametrization of Rainbow 253

that by setting one of those columns as the linear combination as the other o,
the resulting equations are still quadratic!

Algorithm 3 (Rainbow Band Separation). Reconciliation may be extended
for a Rainbow scheme where the final stage has o oil and v = n − o vinegar
variables (which has the smaller indices):

1. Perform basis change wi := w′
i − λiw

′
n for i = 1 · · · v, wi = w′

i for i =
v + 1 · · ·n. Evaluate z in w′.

2. Find m equations by setting all coefficients of (w′
n)2 to be zero; there are v

variables in the λi’s.
3. Set all cross-terms involving w′

n in z1 − σ
(1)
1 zv+1 − σ

(1)
2 zv+2 − · · · − σ

(1)
o zm

to be zero and find n−1 more equations. Note that (w′
n)2 terms are assumed

gone already, so we can no longer get a useful equation.
4. Solve m + n − 1 quadratic equations in o + v = n unknowns. We may use

any method (e.g., F4 or XL).
5. Repeat the process to find Pn−1. Now set w′

i := w′′
i − λiw

′′
n−1 for i = 1 · · · v,

and set every (w′′
n−1)

2 and w′′
nw′′

n−1 term to zero after making the substitu-
tion. Also set z2 − σ

(2)
1 zv+1 − σ

(2)
2 zv+2 − · · · − σ

(2)
o zm to have a zero second-

to-last column. This time there are 2m + n − 2 equations in n unknowns.
6. Continue in the same vein to find Pn−2, . . . , Pv+1.

The idea was mentioned by Mr. Yu-Hua Hu to one of the authors in a con-
versation, for which we are indebted. And this attack explains why the current
parameter set suggested looks like that in Sec. 5.

Example 8. We run the attack on an instance of enTTS(16, 22) [25] which has the
shape (6, 7, 1, 1, 7). The algebraic portion of the attack results in a system with
22 variables and 37 equations. This with XL at degree DXL = 6 can be solved
using 400MB (actually 415,919,856 bytes) of memory and 123,257 seconds on a
16-core, 2.2GHz Opteron machine with a total of 1,877,572 seconds of K8-CPU
time. The number of multiplications is about 247, or ∼ 16 cycles a multiplication.

On a single core, a K8 machine running XL-Wiedemann can average one multi-
plication in GF(28) in about 9 cycles. The slowdown comes from the communi-
cations requirement between cores.

Example 9. The attack on an instance of enTTS(20, 28) [25] should result in a
system with 22 variables and 37 equations. This with XL at degree DXL = 7
should be solvable in 15GB of main memory and about 256 multiplications. This
is under the design complexity of 272.

We are also testing the prowess of other system-solving methods like Magma’s F4.

5.2 Interlinked/Accumulating Kernels and MinRank

As noted in [25] and recapped in Sec. 3, if μ combinations of central equations
stays at the minrank, a Rank attack often speed up μ-fold, and which is termed
interlinking or accumulation of kernels.

254 J. Ding et al.

Recently Billet and Gilbert [4] cryptanalyzed the Rainbow instance of [7] in ∼
264 3DES unit times (they stated 271, but GF(256)-multiplications is a very small
unit; NESSIE for example counted 3DES units) using the same principle. While
we exhibit a faster attack on that rainbow instance above, the same extended
accumulating-kernel minrank attack is more widely applicable:

Proposition 3 (Billet-Gilbert). Kernels of the initial block of equations in
a rainbow-like multivariate always accumulate such that any vector in x-space
with the initial vinegar components all vanishing has at least a 1/q probability of
being found by the MinRank attack.

Example 10. We can cryptanalyze enTTS(20,28) [25] in 264 via the accumulating
kernels attack.

In fact, this pitfall is sometimes easy to overlook:

Proposition 4. We can cryptanalyze TRMS from [20] in ∼ 262 via the accu-
mulating kernels attack.

Proof. The central map has this piece with ∗3 meaning multiplication in GF(224):
⎛

⎝
y17
y18
y19

⎞

⎠ =

⎛

⎝
x17
x18
x19

⎞

⎠ ∗3

⎛

⎝
x8

x9 + x11 + x12
x13 + x15 + x16

⎞

⎠ +

⎛

⎝
c29x4x16
c30x5x10
c31x15x16

⎞

⎠ +

⎛

⎝
c32x9
c33x10
c34x11

⎞

⎠ .

Each of these equations are only of rank 8 (the minrank) in GF(256), and the y17
and y19 form a pair of equations that has q = 256 interlinked kernels. Evaluating
as in Sec. 3 gives ≈ 262.

In our schemes, the attack has complexity roughly q to the number of equa-
tions in the first block times change, which comes out to about 285, 2100, 2118.

5.3 The Challenge

From all the above, we can see that we need to be very careful in our design of
the parameter for Rainbow like schemes.

Proposition 5. To build a scheme with design security C over the base field
GF(q), we let � be the smallest integer such that q�+1 � C, then:

– The initial segment must contain � − 1 or more vinegar variables. The final
segment must contain � − 1 or more equations and exactly as many as there
are total vinegar variables.

– There should be enough equations to avoid direct solution via a Lazard-
Faugère solver.
Current estimate [24] is that 20 underdetermined equations in GF(28) achieves
272; 24 equations achieves 282; each extra equation roughly gives a factor � 22.5

to the complexity [24].

New Differential-Algebraic Attacks and Reparametrization of Rainbow 255

We conclude that all three Rainbow like schemes we propose below have security
levels above 280 elementary operations. The best attack is with Algorithm 3, and
the expected complexity in GF(28) multiplications is 284, 287, 280 respectively.

1. Rainbow (20,10,4,10), in the extended form ((15, 10), (4, 4), (1, 10))
2. Rainbow (18,12,12), in the extended form ((17, 12), (1, 12))
3. Rainbow (20,14,14), in the extended form ((19, 14), (1, 14)).

Of course, without using the extended form, the security level would not be any
lower, the extended form merely guarantees the existence of a signature always.

We hasten to add that the form given above is not much slower in signing
than the previous TTS. In preliminary runs, a single signature for (20,10,4,10)
version averages to about 157μs, still way faster than any competitor.

6 Conclusion

In this paper, we present a new differential attack and a new Rainbow construc-
tions. We design new schemes for practical applications.

With these constructions, we note that the design security of the system would
still go up exponentially as the length of the hash in both generic (rainbow) and
sparse (TTS) variants. Perhaps, we might even say that the kinks of this ap-
proach is being ironed out, and multivariate cryptographers are finally beginning
to understand Rainbow-like Multivariate Signatures.

Another development that affects Rainbow-like schemes is the fact that SHA-1
is being phased out in the wake of recent results [21]. This means that hashes and
hence signatures might become longer in a hurry. ECC is affected in much the
same way, because 163- or 191-bit ECC may be obsoleted when everyone switches
to SHA-2 (no one really wants to use a truncated hash if it can be helped). Even
such state-of-the-art work as [3] would force the slightly uncomfortable SHA-
224. With multivariate signature schemes, an additional problem is the large
(and sometimes redundant, cf. [23]) keys. One might look toward other base
fields such as GF(16) to help with the key size problem, but this would also pose
new challenges in optimization. Another way is to look for a safe TTS (built on
the similar layer structures as specified above), now that hash sizes has gotten
longer. Though the new attacks are found on Rainbow schemes, these attacks
can be easily prevented by adjusting the parameter. All in all, we think that
multivariates including Rainbow-like schemes still deserve a good look as the
age of quantum computers approaches.

Acknowledgements

JD and BY are grateful to the Humboldt and Taft Foundations, and the Taiwan
Information Security Center [National Science Council Project NSC 96-2219-E-
011-008 / NSC 96-2219-E-001-001] without whose valuable support much of this
work would not have been possible. BY would also like to thank NSC for partial
sponsorship on Project NSC 96-2623-7-001-005-D.

256 J. Ding et al.

Comments and correspondence: Please address to BY at by@moscito.org.

References

1. Bardet, M., Faugère, J.-C., Salvy, B.: On the complexity of Gröbner basis compu-
tation of semi-regular overdetermined algebraic equations. In: Proceedings of the
International Conference on Polynomial System Solving, pp. 71–74 (2004); Previ-
ously INRIA report RR-5049

2. Bardet, M., Faugère, J.-C., Salvy, B., Yang, B.-Y.: Asymptotic expansion of the
degree of regularity for semi-regular systems of equations. In: Gianni, P. (ed.)
MEGA 2005, Sardinia (Italy) (2005)

3. Bernstein, D.J.: Curve25519: New diffie-hellman speed records. In: Yung, M.,
Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 207–
228. Springer, Heidelberg (2006)

4. Billet, O., Gilbert, H.: Cryptanalysis of rainbow. In: De Prisco, R., Yung, M. (eds.)
SCN 2006. LNCS, vol. 4116, pp. 336–347. Springer, Heidelberg (2006)

5. Coppersmith, D., Stern, J., Vaudenay, S.: The security of the birational permuta-
tion signature schemes. Journal of Cryptology 10, 207–221 (1997)

6. Courtois, N.T., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000);
Extended Version: http://www.minrank.org/xlfull.pdf

7. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 164–175. Springer, Heidelberg (2005)

8. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of sflash.
In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12. Springer, Heidel-
berg (2007)

9. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 61–88 (1999)

10. Faugère, J.-C.: A new efficient algorithm for computing Gröbner bases without
reduction to zero (F5). In: International Symposium on Symbolic and Algebraic
Computation — ISSAC 2002, pp. 75–83. ACM Press, New York (2002)

11. Faugère, J.-C., Perret, L.: Polynomial equivalence problems: Algorithmic and the-
oretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer, Heidelberg (2006)

12. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the The-
ory of NP-Completeness. W.H. Freeman and Company (1979) ISBN 0-7167-1044-7
or 0-7167-1045-5

13. Geiselmann, W., Steinwandt, R., Beth, T.: Attacking the affine parts of SFlash.
In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 355–
359. Springer, Heidelberg (2001); Extended version http://eprint.iacr.org/
2003/220/

14. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000)

15. Joux, A., Kunz-Jacques, S., Muller, F., Ricordel, P.-M.: Cryptanalysis of the
tractable rational map cryptosystem. In: PKC [19], pp. 258–274.

http://www.minrank.org/xlfull.pdf
http://eprint.iacr.org/
2003/220/

New Differential-Algebraic Attacks and Reparametrization of Rainbow 257

16. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

17. Kipnis, A., Shamir, A.: Cryptanalysis of the oil and vinegar signature scheme.
In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 257–266. Springer,
Heidelberg (1998)

18. Patarin, J., Goubin, L.: Trapdoor one-way permutations and multivariate polyno-
mials. In: Han, Y., Quing, S. (eds.) ICICS 1997. LNCS, vol. 1334, pp. 356–368.
Springer, Heidelberg (1997); Extended Version http://citeseer.nj.nec.com/
patarin97trapdoor.html

19. Vaudenay, S. (ed.): PKC 2005. LNCS, vol. 3386. Springer, Heidelberg (2005)
20. L.-C. Wang, Y.-H. Hu, F. Lai, C.y. Chou, and B.-Y. Yang. Tractable rational map

signature. In PKC [19], pp. 244–257. ISBN 3-540-24454-9
21. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.)

CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)
22. Wolf, C., Braeken, A., Preneel, B.: Efficient cryptanalysis of RSE(2)PKC and

RSSE(2)PKC. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp.
294–309. Springer, Heidelberg (2005); Extended version http://eprint.iacr.org/
2004/237

23. Wolf, C., Preneel, B.: Superfluous keys in Multivariate Quadratic asymmetric
systems. In: PKC [19], pp. 275–287; Extended version http://eprint.iacr.org/
2004/361/

24. Yang, B.-Y., Chen, J.-M.: All in the XL family: Theory and practice. In: Park, C.-
s., Chee, S. (eds.) ICISC 2004. LNCS, vol. 3506, pp. 67–86. Springer, Heidelberg
(2005)

25. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryp-
tosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

26. Yang, B.-Y., Chen, O.C.-H., Bernstein, D.J., Chen, J.-M.: Analysis of QUAD. In:
Biryukov, A. (ed.) FSE 2007. LNCS, vol. 4593, pp. 290–307. Springer, Heidelberg
(2007)

http://citeseer.nj.nec.com/
patarin97trapdoor.html
http://eprint.iacr.org/
2004/237
http://eprint.iacr.org/
2004/361/

	New Differential-Algebraic Attacks and Reparametrization of Rainbow
	Outline
	Rainbow-Like Multivariate Signatures
	The Security of Multivariates and Prior Attacks
	New Differential Attacks
	Experimentation with Mini-versions

	New Rainbow Parameters for Practical Applications
	The Reconciliation Attack
	Interlinked/Accumulating Kernels and MinRank
	The Challenge

	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

