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Abstract This paper summarizes most of the main developments in the cryptanaly-
sis of multivariate cryptosystems and discuss some problems that remain open.
A strong emphasis is put on the symbolic computation tools that have been used
to achieve these advances.

1 Introduction

The most widely deployed public key cryptosystem nowadays is without any doubt
the RSA cryptosystem. Its security is somewhat related to the fact that no reasonably
fast algorithm for the factorization of large integers is known up to now. Due to fast
developments in the field of integer factorization, a secure public key cryptosystem
relying on the assumption that factoring integers is a hard problem must use integers
N = pq where p and q are prime numbers of size at least 1024 bits and preferably
2048 bits. This implies heavy computations during the encryption process, which
makes it inefficient and costly. Moreover, a new threat has recently appeared that
would break the RSA cryptosystem: quantum computers. Under the assumption that
quantum computers can be built, Shor (1997) discovered an algorithm that could
factor an integer in polynomial time in terms of its size in bits, thus rendering the
RSA cryptosystem useless. Shor’s algorithm can also break essentially all number
theoretic based public key cryptosystem as well as the elliptic curve cryptosystems
or the Diffie–Hellman key exchange. There have been great efforts dedicated to the
construction of quantum computers and although nobody has built such computers
able to attack the RSA or the discrete logarithm based cryptosystems, definitely
there is a need for other efficient and secure cryptosystems.

There are currently a few families of cryptosystems that could potentially resist
future quantum computers: these are the cryptosystems based on error-correcting
codes (McEliece 1978; Niederreiter 1986), the public key cryptosystems based on
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lattices (Regev 2006; Nguyen and Stern 2001), and the multivariate public key cryp-
tosystems.

The class of multivariate cryptosystems is a special class of schemes whose se-
curity is related to the hardness of solving sets of multivariate equations. The obvi-
ous way of solving them is to compute a Gröbner basis (Buchberger 1965, 1970,
1985, 1998, 2006). Solving sets of multivariate equations is a well known hard
problem that is not only hard on the average but already for sets of equations that
are practical to evaluate, like for instance a hundred of randomly chosen quadratic
equations in a hundred of unknowns defined over the binary field (Bardet 2004;
Fraenkel and Yesha 1980). For obvious efficiency reasons, the multivariate polyno-
mials that constitute the system are generally chosen to be quadratic polynomials
defined over a small finite field—that is ranging from F2 to F28 —though there exist
rare exceptions (Billet and Gilbert 2003; Wang et al. 2006).

In the particular case of symmetric cryptographic primitives, it is often possible
to randomly draw the multivariate polynomials with carefully selected parameters
in order to obtain a security reduction to a generic instance of the underlying NP-
hard problem: this is for instance the case for the stream-cipher QUAD proposed
in Berbain et al. (2006), Berbain and Gilbert (2007), but also for the hash function
MQ-HASH proposed in Billet et al. (2007). However in the case of asymmetric mul-
tivariate schemes, the designer has to embed a trapdoor in order to enable the owner
of the secret key to solve the system of equation derived from the public key and
the cipher text or the message to be signed. The side effect of embedding such a
trapdoor in the public set of polynomials is that there is usually no reduction to a
generic instance of the underlying hard problem anymore, since the corresponding
systems are not randomly chosen. The security of the scheme has to be assessed by
other means, usually by conducting experiments with the best system solvers or by
mounting a specially crafted algebraic attack that exploits the underlying algebraic
structure.

The current proposals for multivariate asymmetric cryptosystems might be clas-
sified into three main categories, some of which combine features from several cate-
gories: Matsumoto-Imai like schemes, Oil and Vinegar like schemes, stepwise trian-
gular schemes, and an additional fourth category called Polly Cracker schemes. In
this survey however, we focus on the first three categories; the reader can find more
information on Polly Cracker schemes in Fellows and Koblitz (1994), Caboara et al.
(2008) and especially in Levy-dit-Vehel et al. (2009). All of the schemes from the
first three categories rely on the hardness of system solving, but some of them ad-
ditionally rely on other hard problems such as finding rational mappings between
polynomial maps or finding a linear combination of small rank of a given set of
matrices.

2 Inversion Attacks

Although there exist several multivariate authentication schemes, we hereafter focus
on multivariate asymmetric encryption schemes and multivariate signature schemes.
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We tried to unify the notations as much as possible with the problem of system solv-
ing in mind: We denote the base field by K, and use x and y to respectively denote
the input and the output of a public key function. The input of the public key be-
ing an element of the vector space K

n, we sometimes make use of the standard
underlying coordinate system and write x = (x1, . . . , xn). Finally, we denote a mul-
tivariate public key by a polynomial mapping from the vector space K

n to the vector
space K

m:

f : K
n −→ K

m,

x = (x1, . . . , xn) �−→ y = (p1(x), . . . , pm(x)),
(1)

where p1, . . . , pm are multivariate polynomials defined over K[x1, . . . , xn]. In the
case of encryption schemes, x and y respectively denote the plain text and the cipher
text. In the case of signature schemes, x and y respectively denote the signature and
the hashed value to be signed.

This part describes several attacks against the underlying system solving problem
of several multivariate cryptosystems, that is, it reports successful methods to invert
the public key of some asymmetric cryptosystems. We first review the linearization
attack of Patarin (1995) against Matsumoto–Imai scheme A, and then describe dif-
ferent attacks against a generalisation of it named Hidden Field Equations (HFE),
that was proposed in Patarin (1996).

2.1 Matsumoto–Imai Scheme A and Its Variations

Starting from 1983, Matsumoto and Imai proposed a series of public key cryptosys-
tems relying on the hardness of system solving. In Imai and Matsumoto (1985),
they proposed a scheme “based on obscure representation of polynomials” often
called C∗ and hereafter called Matsumoto–Imai scheme A. This scheme uses expo-
nentiation over an extension E of degree n of a base finite field K of size q . (We
denote by ϕ the canonical embedding of K

n into E and x = ϕ(x).) The exponent is
chosen of the form 1 + qθ and prime to qn − 1 so as to allow efficient inversion.
This exponentiation is then concealed by two change of variables S and T of K

n.
The public key is therefore given by the n-tuple (p1, . . . , pn) of polynomials in
n unknowns x1, . . . , xn defined over K via:

K
n −→ K

n,

x = (x1, . . . , xn) �−→ (
p1(x), . . . , pn(x)

) = T ◦ ϕ−1((ϕ ◦ S(x))1+qθ )
.

(2)

One key fact allowing an efficient representation of the public key as the n-tuple of
polynomials (p1, . . . , pn) is that the mapping x �→ xq (which is often also called the
Frobenius endomorphism) is a K-linear mapping and thus elevating to the power
of 1 + qθ is K-quadratic. Another mandatory property is the ability for the owner
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of the secret key to efficiently compute a solution to the system:

⎧
⎪⎨

⎪⎩

p1(x1, . . . , xn) = y1,
...

pn(x1, . . . , xn) = yn,

(3)

for every n-tuple y = (y1, . . . , yn), which should ideally correspond to the ability of
performing decryption or signature. In order to solve (3), the secret key owner uses
his knowledge of the secret linear mappings S and T and of an exponent e such that
e(1 + qθ ) ≡ 1 (mod qn − 1) to invert each component of the public map in turn,
which amounts to the following computation: x = S−1 ◦ ϕ−1((ϕ ◦ T −1(y))e). The
name “obscure representation” comes from the assumption that the input and output
coordinate systems are unknown to anyone but the secret key owner. Hence, the
security of the cryptosystem not only relies on the hardness of solving (3), but also
on the hardness of recovering any pair of mappings S0 and T0 such that: ∀x ∈ K

n,
T0 ◦ ϕ−1((ϕ ◦ S0(x))1+qθ

) = T ◦ ϕ−1((ϕ ◦ S(x))1+qθ
). A more general version of

this problem of crucial importance to the security of multivariate public schemes is
discussed later on in this paper.

This construction can obviously be extended to accommodate several other inter-
nal transformations instead of the original exponentiation. However, there must be
an efficient way to invert this internal transformation, and the public key should have
an efficient representation. With these constraints in mind, Patarin (1996) proposed
to use an internal transformation of type:

f : E −→ E, x �−→
∑

1≤i≤j≤n

qi+qj ≤D

ai,j xqi+qj +
∑

1≤k≤n

qk≤D

bkxqk + c. (4)

This internal transformation f of E has the special property that its overall degree is
bounded by some reasonable constant D: this trick enables the owner of the secret
key to solve the equation f (x) = y in the unknown x for any value y of E, since there
exist algorithms polynomial in D and n for this task (von zur Gathen and Shoup
1992; Knuth 1997). The resulting cryptosystem is called Hidden Field Equations
(HFE).

Another generalization of the Matsumoto–Imai scheme A is the use of a projec-
tion instead of a bijection for the change of coordinates T , and the public key then
becomes a mapping from K

n to K
m with m < n. This can be seen as a modifica-

tion of the original scheme where some of the polynomials in the public key have
been removed. Patarin et al. (1998a, 2000) applied this idea to the Matsumoto–Imai
scheme A to create the SFLASH signature scheme, and proposed a very similar
variation around the HFE cryptosystem (Patarin 1996). We however note that this
construction is mainly of interest in the setting of signature schemes since the public
key mapping is not a bijection anymore.

Finally, we note that the secret changes of coordinate system can be taken as
linear mappings or affine mappings. However, as shown by Geiselmann et al. (2001),
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the constant parts of the secret affine mappings can often be deduced by an attacker
(i.e. with the knowledge of the public key alone) and sometimes even leaks some
information about the secret mappings themselves.

2.2 Direct Inversion Attacks

The essence of public key encryption (resp. signature) schemes is to give public ac-
cess to a mechanism allowing the computation of a cipher text y from a plain text x

(resp. verifying a signature x from a hashed value y). In the special case of multi-
variate schemes, we have seen in the previous section that this mechanism is a poly-
nomial mapping having a low degree in the input variables because of efficiency rea-
sons. This mapping p constitutes the public key and an attacker can directly search
for a value x verifying p(x) = y in order to decrypt y or to forge a signature x. Such
attacks consist in solving a system of polynomial equations of low degree (quadratic
in the case of Matsumoto–Imai and HFE), and there have been several algorithms
designed to solve this task. The most famous are Buchberger’s algorithm (Buch-
berger 1965, 1970, 1985, 1998, 2006; Mora 2009), Faugère’s algorithms F4 and F5
(Faugére 1999, 2002), and basic algorithms such as the linearization tool XL sug-
gested in Courtois et al. (2000) which is a particular case of F4 (Ars et al. 2004).
The rationale behind the design of multivariate asymmetric cryptosystems is that the
complexity of solving systems of randomly generated quadratic multivariate equa-
tions defined over a finite field is exponential in the number of unknowns on the
average. At the same time, the trapdoor introduced in the public key of asymmet-
ric multivariate cryptosystems makes the resulting system of equations specific and
sometimes distinguishable from randomly generated ones.

The set of equations derived from the public key of Matsumoto–Imai scheme A
instances can be solved by computing Gröbner bases: Dobbertin reported to have
successfully solved such systems with Gebauer and Möller’s version of Buch-
berger’s algorithm while working at the BSI.1 However, the first public cryptanalysis
of Matsumoto–Imai scheme A was published by Patarin (1995): it is very instructive
in that it explains why solving the system of equation through the computation of a
Gröbner basis is possible. The key remark is that there exist bilinear equations relat-
ing the input and the output of the system. Indeed, recall that the internal transforma-
tion maps any element x of the extension field E to y = x1+qθ

, so that y xq2θ = x yqθ
.

This last bilinear equation still holds between the input and output variables x and y

since they are K-linear transformations of ϕ−1(x) and ϕ−1(y) respectively, so that
the following holds for some set of coefficients ai,j , bi , and cj :

∑

1≤i,j≤n

ai,j yixj +
∑

1≤i≤n

biyi +
∑

1≤j≤n

cj xj + d = 0. (5)

1Bundesamt für Sicherheit in der Informationstechnik which is the German Federal Office for
Information Security.
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Recall that yi = pi(x). A common way to represent the set Iδ of polynomials of
degree δ that belongs to the ideal generated by (p1, . . . , pn) is to construct a matrix
whose columns are indexed by the monomials of Iδ and whose lines are obtained
by multiplying each pi with every possible monomial u such that deg(upi) = δ.
This matrix is called a Macaulay matrix of degree δ, see Macaulay (1916). In the
case of Matsumoto–Imai scheme A, we see that the Macaulay matrix of degree 3
already contains the polynomials from (5)—remember that the yi are polynomials
of degree 2 in the xi—and this explains why a direct Gröbner basis computation
is efficient against this cryptosystem. The attack described by Patarin reads as fol-
lows Patarin (1995), Koblitz (1999): although the bilinear equations (5) are a priori
unknown to the attacker, they can be easily interpolated by generating matching
plain text/cipher text pairs from the public key. After that, finding an x correspond-
ing to a given y is easy: just replace y in the interpolated equations (5) and solve the
resulting linear system in x.

A number of multivariate cryptosystems are actually susceptible to attacks rely-
ing on low degree relations between input variables and output variables. This is for
instance the case with the weak proposal (Wang et al. 2006) where a cryptanaly-
sis directly stems from the above remarks (Ding et al. 2007a). Variants of another
proposal called Tame Transformation Method (TTM) and published in Moh (1999)
were also shown to be susceptible in Ding and Schmidt (2003, 2004).

A much less obvious behavior is exhibited by the HFE cryptosystem described
above. Here again, the attacker can take advantage of the specific structure of the
internal transformation to invert the public key with Gröbner basis methods effi-
ciently. A simple counting argument briefly sketched in Faugère and Joux (2003)
shows that the biggest Macaulay matrix constructed during a Gröbner basis compu-
tation with F4 has a much lower degree than that of a randomly drawn system of
the same size. To see why, first remember that the internal transformation of HFE
defined over E of characteristic 2 has a degree bounded by D. Let us denote the
public key of HFE by g. Then consider a constant H such that D ≤ H < 2n, and the
number of pairs of integers (di, k) for which di is a sum of at most w−2 powers of 2
such that ϕ(x)di (ϕ ◦g(x))2k

has its degree bounded by H . It can be shown that there
exists a value of H such that the number of monomials appearing in the set of equa-
tions generated this way is lower than the number of equations. Since x �→ x2k

is a
K-linear mapping, the number w exactly corresponds to the degree of the biggest
Macaulay matrix constructed during the Gröbner basis computation. This degree is
smaller than the one encountered in the Gröbner basis computation for a randomly
chosen system of equivalent size. This theoretical explanation is supported by var-
ious experiments. Indeed, with his own optimized implementation of F5, Faugère
solved the HFE challenge posted on Courtois’ web page (Patarin 1998). This chal-
lenge is an HFE public key with 80 equations in 80 unknowns defined over F2
corresponding to an internal transformation of total degree 96. It was first solved
by Faugère in about 52 hours on an HP workstation with an alpha EV68 processor
running at 1000 MHz and 233 bytes of memory, and later on by Steel with Magma
in about 22 hours on a 750 MHz Sunfire v880 using about 234 bytes of memory.
As suggested by the above explanation, the degree of the biggest Macaulay matrix
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encountered was especially low and always bounded by w. And indeed, the data
from Faugère and Joux (2003) obtained from several runs on various HFE parame-
ters confirmed the fact that this value w is way too small for the cryptosystem to be
secure:

5 ≤ D ≤ 12 → w = 4, 128 ≤ D ≤ 1280 → w = 6,

16 ≤ D ≤ 96 → w = 5, 1536 ≤ D ≤ 4096 → w = 7.

An interesting fact is that these values are independent of the number n of un-
knowns, at least for n < 160, which corresponds to public keys of practical sizes.

Along with the first challenge that was originally broken by Faugère, a second
challenge was proposed that is still not broken. It consists in an HFE public key with
36 variables defined over the finite field F24 of which four quadratic polynomials
have been removed.

One might wonder if it is not possible to escape Gröbner basis attacks by tweak-
ing the internal transformation so that its degree is not bounded anymore. Obvi-
ously, since the internal transformation has to be invertible by the legitimate user,
this means that something must be relaxed somewhere. There has been some pro-
posals along those lines in Ding et al. (2007b), Wang et al. (2006), all of which have
been broken (Fouque et al. 2008a; Ding et al. 2007a). While these proposals were
very specific, one might consider a broadest class that encompass such schemes and
that we call Intermediate Field Systems: it comprises the schemes that have as inter-
nal transformation a set of multivariate polynomials in a small number of variables
and defined over an intermediate extension field L. Such an internal transformation
might be inverted through the computation of Gröbner bases. In Billet et al. (2008),
this class of schemes has been analyzed from the point of view of Gröbner basis
attacks and it has been shown that the security achieved is asymptotically the same
as that of the HFE cryptosystem.

2.3 MinRank

We just reviewed attacks against Matsumoto–Imai like cryptosystems aiming at di-
rectly solving the system arising from the public key. These “direct inversion” at-
tacks do not try to recover a hidden specific structure implied by the presence of
a trapdoor, though they rely on the existence of low degree relations between the
value of the polynomials and their input variables. We describe here another family
of attacks that first recover the hidden structure so that the attacker is in a position
similar to that of the secret key’s owner. More precisely, we focus on multivariate
asymmetric cryptosystems whose public key consist of quadratic polynomials hav-
ing rank peculiarities, like Fell and Diffie (1985), Shamir (1993), Moh (1999). The
general structure of such cryptosystems is based on the family of triangular (or “de
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Jonquière”) mappings x �→ y = J (x) defined as
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

y1 = x1,

y2 = x2 + p2(x1),

y3 = x3 + p3(x1, x2),
...

yn = xn + pn(x1, x2, . . . , xn−1),

(6)

where the pi are polynomial mappings, and for efficiency reasons usually restricted
to quadratic polynomial mappings. It can be easily checked that inverting such an
application is easy since it amounts to incrementally solve linear equations in a sin-
gle variable. The first cryptanalysis against such cryptosystems is given by Copper-
smith et al. (1997) and uses the rank in order to break the bi-rational permutations
scheme proposed by Shamir (1993).

Before describing the underlying rank problem, we recall basic properties of
multivariate quadratic polynomials. The first fact is that every quadratic form p

has a canonical form that can be computed in polynomial time, that is there exists
a change of coordinates S : (x1, . . . , xn) �→ (z1, . . . , zm) which can be efficiently
found so that m ≤ n is minimal and there exists another quadratic form p̃ such that
for all x, p(x) = p̃(S(x)). This minimal m is called the rank of p. The other fact is
that a unique symmetric matrix of size n can be associated to any quadratic form in
n unknowns the usual way: entry (i, j) of the matrix is half the coefficient of mono-
mial xixj in the quadratic form and the diagonal coefficients are the ones of the
monomials x2

i . There are some difficulties in the case of a field of characteristic two
that can be resolved by defining both entry (i, j) and entry (j, i) as the coefficient
of monomial xixj in the quadratic form when i 
= j and by defining entry (i, i) to
be zero. Then, the rank of the symmetric matrix is equal to the rank of the quadratic
form.

Thus, in the process of cancelling the effect of the linear mixing of the polynomi-
als in the triangular form (aimed at hiding this specific structure), or alternatively in
the process of recovering an equivalent version of the secret change of coordinates,
the following problem naturally arises:

Definition 1 (Minimun Rank) Given a set {A1, . . . ,Am} of n × n matrices defined
over a finite field K and an integer r < n, find a non-trivial linear combination
over K of rank less than or equal to r .

The complexity of the general MinRank problem over various fields has been
studied by Buss et al. (1999), where it has been shown to be NP-complete when r

varies with n. However, for a fixed r , there are polynomial algorithms to solve this
problem. Several of them are described in Goubin (2003). One of it was devised
and used in Goubin and Courtois (2000) by Goubin and Courtois to break the TTM
scheme proposed in Moh (1999), and was later on extended in Billet and Gilbert
(2006) by Billet and Gilbert to take advantage of particular settings. The exhaustive
search was also extended in a similar way in Yang and Chen (2005). Most of these
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algorithms merely use linear system solving combined with some form of exhaus-
tive search.

Another point of view has been given by the authors of Coppersmith et al. (1993):
the solutions of a MinRank instance with a set of m matrices of size n × n are also
the solutions of the system encoding the fact that every sub-matrix of size (r +
1) × (r + 1) of the sought linear combination has determinant zero. The overall
complexity2 of solving such a system of equations is O

( 1
(r+1)!m

ω(r+1)
)

provided
there are enough equations to apply the linearization technique. Hence, this strategy
works well if the rank is small and enough linearly independent equations can be
derived.

An attack against HFE suggested by Kipnis and Shamir (1999) uses matrices over
the extension field E of degree n over K of size q , and can be reduced to solving a
huge system of equations. We briefly describe now this attack aiming at recovering
HFE’s private key. First of all, notice that the equation relating the public key and
the private key can be rewritten as: t−1 ◦ g = f ◦ s, where s and t are the secret
one-to-one linear mappings defined over E, f is a K-quadratic mapping defined
over E, and g is the public mapping resulting from their composition. Since any
linear mapping can be written in the form of x �→ ∑

1≤i≤n αix
qi

, the homogeneous
component of degree two of the public mapping can be described as:

g(2)(x) =
∑

1≤i,j≤n

γi,j x
qi+qj

.

Hence, a symmetric matrix G can be associated to g such that tXGX = g(2)(x)

where X = (xq, . . . , xqn
). (Again, some care has to be taken in the case of char-

acteristic 2.) If s(x) = ∑
1≤i≤n six

qi
and t−1(x) = ∑

1≤i≤n tix
qi

, then the au-

thors of Kipnis and Shamir (1999) show that G̃ = tWFW where F is the sym-
metric matrix associated to f as described above, W is defined by Wi,j = s

qj

i−j ,
G

�k

i,j = Gi+k,j+k with indices taken modulo n, and G̃ = ∑
1≤k≤n tkG

�k . The au-
thors of Kipnis and Shamir (1999) then tried to solve a huge system of equations
derived from this property, the complexity of which remained unclear. However,
the equation G̃ = tWFW can be re-interpreted from a rank point of view when re-
membering that F has rank r = logq D—because the degree of f has been bounded
by D so as to allow efficient inversion of f . This remark was formulated by Courtois
in Courtois (2001) who showed that the problem of recovering the right tk basically
amounts to solve a MinRank problem with r about logq D given the set of ma-
trices G�k that are directly derived from the public key and suggested to use the
sub-matrices strategy to solve it, the complexity of which would be:

1

(α logq n)! exp
[
O

(
ωα(logq n)2)], (7)

2Where the constant ω depends on the method for solving linear systems; for instance ω is
about 2.807 when using Strassen’s algorithm.
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if enough linearly independent equations can be derived, since D = O(nα) for
some α ≥ 1. An interesting point is that the resulting complexity estimate is slightly
better than the one given in Granboulan et al. (2006) and gives an even stronger
result: HFE’s secret key can be recovered in quasi-polynomial time. However, the
authors of Jiang et al. (2007) expressed some doubts about the ability to solve the
MinRank problem by these means: they indeed proved that the algebraic system
constructed as explained above has a lot of solutions, which shows that the com-
plexity estimate (7) is too optimistic.

Obviously, being able to solve systems of equations arising from MinRank prob-
lems more efficiently than via linearization attacks would advance the state of the
art in the cryptanalysis of many multivariate cryptosystems, such as schemes from
the TTM family (Moh 1999; Yang and Chen 2005), Rainbow (Ding and Schmidt
2005a), or even HFEv (Ding and Schmidt 2005b). A new approach has just been
proposed for special MinRank instances (Faugère and Perret 2008a).

2.4 Unbalanced Oil and Vinegar

The Oil and Vinegar signature scheme has been designed by Patarin and was first
exposed in Patarin (1997). This design with a radically different trapdoor might
have been inspired to Patarin by the linearization attack against Matsumoto–Imai
like cryptosystems. In Oil and Vinegar schemes indeed, the secret transformation is
made of o multivariate quadratic polynomials whose homogeneous part of degree
two have the following specific form:

∑

1≤i≤o
1≤j≤v

ai,j xiyj +
∑

1≤i,j≤v

bi,j yiyj . (8)

That is, two sets of variables O = {xi}1≤i≤o and V = {yj }1≤j≤v are used, but only
monomials from {zy}(z,y)∈(O∪V )×V are allowed to appear in the polynomials. It is
easy to find a pre-image for a tuple of o such polynomials: after random values
have been assigned to the variables from V , only a linear system in the variables
from O remains. Finding a pre-image is then reduced to solving a linear system in
these o variables. (Assuming these systems are uniformly distributed in the set of
randomly drawn systems and there are o polynomials defined over a finite field of
size q , the probability that such a system is invertible is given by (1 − 1

q
) · · · (1 −

1
qo ).) Hence, after a few trials with others randoms choices for the variables from V ,
a pre-image of the original system will be found.) This is why variables from O

and V are respectively called oil and vinegar variables: assigning values to vinegar
variables makes oil variables appear. As usual, this specific structure of the secret
polynomials is hidden by a change of coordinates.

The balanced version of this Oil and Vinegar scheme, that is with o = v, was
broken by Kipnis and Shamir (1998). The security of the unbalanced case as ex-
posed by Kipnis et al. (1999) is still not well understood, although it is definitely
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not secure when the number of vinegar variables is much bigger than the number of
oil variables. A system of m randomly chosen multivariate quadratic equations in
n unknowns can be easily solved when n ≥ m2, see Kipnis et al. (1999). Kipnis and
Shamir (1998) also show that the attack against the balanced case, which is heav-
ily relying on the fact that o = v, can actually be used in the case where v is only
slightly bigger than o with the help of exhaustive search—the overall complexity
then becomes O(o4qv−o−1). The experiments from Braeken et al. (2005) show that
if direct Gröbner basis attacks can be efficient against the balanced Oil and Vinegar
scheme, it is of exponential complexity in the unbalanced case. Faugère and Perret
(2008b) also showed than it is possible to attack some set of parameters by comput-
ing Gröbner basis of several modified versions of the original system. It is however
possible to select the parameters of the system so as to escape this signature forgery
attack.

Several other asymmetric multivariate schemes are closely related to the Oil and
Vinegar construction like for instance the signatures schemes Rainbow (Ding and
Schmidt 2005a) and TTS (Yang et al. 2004). It is not difficult to see that the balanced
and unbalanced Oil and Vinegar constructions are broken as soon as an attacker is
able to recover an isomorphic version of the secret oil vector space. Up to now, no
such structural attack is known against the unbalanced schemes.

2.5 Defense Mechanisms

In the previous paragraph, we reviewed several attacks using system solving tech-
niques against asymmetric multivariate cryptosystems. Several extensions have con-
sequently been proposed to slow down these attacks by making inefficient the sys-
tem solving algorithms. We now briefly describe the most widespread of these and
discuss their effects. These experiments might be classified into two families: the re-
moval of some information in the published mappings and the addition of randomly
chosen quadratic polynomials.

2.5.1 Removing Equations

The idea of discarding some of the polynomials from the public key was originally
introduced by Shamir (1993). Patarin later suggested to use it to strengthen HFE in
the context of signature and called the resulting scheme HFE−−. Patarin et al. (2000)
designed a signature scheme by applying this idea to the original Matsumoto–Imai
scheme A that they submitted to the NESSIE project. It seems that the effect of
the removal of polynomials from the public key is quite efficient against the system
solving threat: the second challenge on HFE is still unbroken and the NESSIE pro-
posal SFLASH withstood all system solving attacks. Yet this is not enough for these
schemes to be secure and an attack taking advantage of the underlying monomial
structure of SFLASH has recently been found by Dubois et al. (2007a). This at-
tack uses the associated bilinear form to regenerate the missing polynomials, and



274 O. Billet, J. Ding

thus allows for the application of the attack originally found by Patarin against
Matsumoto–Imai scheme A. The applicability of analogous techniques to HFE−−
remains an open question. Furthermore, a rigorous analysis of the impact of remov-
ing equations from the public key of such schemes on the system solving techniques
is still an open problem.

2.5.2 Perturbations

Another strategy devised to thwart system solving techniques is to perturb the pub-
lic key by mixing additional randomly chosen multivariate quadratic polynomials to
the public key. This strategy is quite natural since the problem of solving randomly
chosen systems of multivariate quadratic equations is a hard problem. Let us denote
by g = (g1, . . . , gn) the n-tuple of polynomials corresponding to the original public
key and g̃ = (g1 + q1, . . . , gn + qn) the public key after the introduction of m ran-
domly chosen polynomials ρ1, . . . , ρm. The introduction of the random polynomials
should obviously not disallow the legitimate user to invert the resulting public key.
To this end, it is limited in one of the two following ways: either m = n and there
exists some linear mapping λ : K

n → K
r of rank r such that

qi(x1, . . . , xn) = ρi ◦ λ(x1, . . . , xn), 1 ≤ i ≤ n,

or m = r and there is a linear mapping λ : K
r → K

n of rank r such that
(
q1(x1, . . . , xn), . . . , qn(x1, . . . , xn)

) = λ
(
ρ1(x1, . . . , xn), . . . , ρr(x1, . . . , xn)

)
.

In the first type of perturbation, called internal perturbation, the random polynomi-
als ρi only depend on a small number r of variables. Then given some cipher text c

and knowing the polynomials ρi , it is enough for the legitimate user to compute the
value z = ρ(w) for all the possible inputs w and try to invert the original public
key g on the corresponding value c + z. In the second type of perturbation, often
denoted by ‘+’, the random polynomials depend on all the variables x1, . . . , xn but
there are only r of them and so their value can be guessed as well by the legitimate
user.

The second strategy has been proposed by Patarin et al. (1998a) while the first
one was later on suggested by Ding and Gower (2005). Once again, the effect of
these perturbations against system solving techniques is not well understood and
waits for a rigorous analysis. However, it is interesting to see that the proposal
of Ding and Gower (2005) was again defeated by Fouque et al. (2005) by analyzing
a distinguisher based on the kernel of the differential of the public key and extended
their attack to the perturbed HFE in Dubois et al. (2007b).

3 Structural Attacks

In the previous part, we have reviewed several direct inversion attacks against var-
ious multivariate asymmetric cryptosystems. We now describe algebraic attacks
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against the trapdoor’s structure of some of these cryptosystems. The two basic
mechanisms we focus on are the problem of finding isomorphisms between two
sets of polynomials, and the problem of polynomials decomposition. The first prob-
lem is related to the problem of recovering the key of UOV cryptosystems and
Matsumoto–Imai like cryptosystems such as HFE and SFLASH. This problem is
also related to the study of substitution and permutation networks in symmetric
cryptography (Biryukov et al. 2003). The second problem is a natural problem aris-
ing in multivariate cryptography. It has been used to design an interesting public
encryption scheme (Patarin and Goubin 1997) mixing techniques from symmetric
cryptography and multivariate polynomials to turn it into an asymmetric scheme.

3.1 Isomorphism of Polynomials

There is a natural equivalence class on the set of tuples of multivariate polynomials
in n variables. For two m-tuples f = (f1, . . . , fm) and g = (g1, . . . , gm) of multi-
variate polynomials in n variables we say that f and g are equivalent if and only
if there exists an invertible change of coordinates S such that f (x) = g ◦ S(x).
This equivalence relation in the special case m = 1 and with f1 and g1 multivari-
ate quadratic polynomials exactly corresponds to the classification of multivariate
quadratic forms, which has been completed by Dickson (1971); the problem of
isomorphism between polynomials of degree d is studied in Thierauf (2000). The
equivalence can be further generalized as follows: two m-tuples f and g are IP-
equivalent if and only if there exist two invertible changes of coordinates S and T

such that T ◦ f (x) = g ◦ S(x). This second equivalence relation has been formally
introduced by Patarin (1996) in cryptography and further studied by Patarin et al.
(1998b). (However, Matsumoto and Imai already made the implicit assumption that
this problem is hard when they designed their scheme A.) Thus, the computational
problem associated to deciding the IP-equivalence can be stated as follows:

Definition 2 (IP Problem) Given f and g, two m-tuples of multivariate polynomials
in n variables, find two invertible linear mappings S ∈ GLn(K) and T ∈ GLm(K)

such that:

g(x1, . . . , xn) = T ◦ f ◦ S(x1, . . . , xn). (9)

One might wonder why not keep the map f secret and only publish g. The rea-
son is that in multivariate asymmetric cryptosystems, the existence of a trapdoor
considerably reduces the number of possible mappings f . For instance, only a few
monomial can be used as the internal transformation in Matsumoto–Imai scheme A.
It is therefore safer to assume that map f is also publicly known.

It has been proved in Patarin et al. (1998b) that deciding IP-equivalence is
not NP-complete. It was also shown in the same paper that deciding another
equivalence—which has been called MP-equivalence for it does not require the lin-
ear mappings S and T to be invertible—is NP-hard. Finally, the authors of Patarin
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et al. (1998b) reduced the problem of deciding graphs isomorphism to the problem
of deciding for two m-tuples of quadratic multivariate polynomials f and g the ex-
istence of a linear mapping S (not necessarily invertible) such that g(x) = f ◦ S(x).
The problem of deciding graphs isomorphism is a well known problem in complex-
ity theory and it is used to define a whole complexity class which is thought to be
disjoint both from P and NP-complete although this has not yet been proven. How-
ever, while most practical instances of the graph isomorphism problem are easy to
solve, most practical instances of IP seem to be difficult to solve.

Thus, the IP-equivalence seems to be a good candidate to be used as a hard prob-
lem in cryptology. We already mentioned that the security of Matsumoto–Imai like
cryptosystems rely on this problem, but other types of cryptosystems can be built
based on the hardness of the IP problem like for instance the authentication scheme
proposed by Patarin (1996), or the traitor tracing scheme proposed by Billet and
Gilbert (2003). The IP problem is also of interest in symmetric cryptography where
it was studied as a means to derive equivalent descriptions of block ciphers, and as a
way of describing big S-boxes by substitution and permutation networks with much
smaller S-boxes in order to ease their analysis (Biryukov et al. 2003).

There have been several algorithms designed to solve the IP problem, most of
which are described in Patarin et al. (1998b), Biryukov et al. (2003), Perret (2005),
Faugère and Perret (2006a). The best algorithm from Patarin et al. (1998b) to solve
instances of the IP problem is based on a “to and fro” algorithm and has a com-
plexity of nO(1)q

n
2 both in time and memory; However, this algorithm only work

for (almost) one-to-one mappings and the above mentioned complexity relates to
the case of quadratic polynomials. In the case of non bijective mappings, another
algorithm proposed in Patarin et al. (1998b) has polynomial complexity in memory
and nO(1)qn in time. The algorithm designed by Biryukov et al. (2003) share some
features with the “to and fro” strategy and basically has the same time complexity.
Biryukov et al. (2003) also contains a generalization to the affine setting. Perret also
presented in Perret (2005) an algorithm for the simple equivalence of polynomials
with has a time complexity lower bounded by n6qn. We focus here on an algo-
rithm presented in Faugère and Perret (2006a) since it amounts to solve a system
of equations; unfortunately, its complexity is not well understood. First of all, let us
summarize the basic solving problem one is faced with the IP problem: assuming
an internal transformation that consists of an m-tuple of multivariate polynomials
of degree d in n variables and using additional variables to describe the unknown
changes of coordinates, (9) gives a set of equations in the variables representing the
change of coordinates. A quick counting of these equations shows that the system is
over-defined with m

(
n+d
d

)
equations in m2 + n2 variables when m is about n as is

the case with several multivariate asymmetric cryptosystems. However, as the over-
all degree d increases, the number of equations and terms the attacker has to deal
with increases at fast pace. This basic way to put the IP problem into equations can
actually be much improved in the case where the internal transformation f contains
monomials of low degree—constant, linear, or quadratic—so as to be independent
of the overall degree d . Such a strategy has been proposed in Faugère and Perret
(2006a) in the case of non homogeneous systems and is described hereafter. First of
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all, notice that (9) arising from the IP problem can be rewritten as:

T −1 ◦ g(x1, . . . , xn) = f ◦ S(x1, . . . , xn), (10)

so that using variables for the unknown entries of the matrices corresponding to S

and T −1 gives a lower total degree in the resulting equations. Let us denote these
variables by s1,1, . . . , sn,n and t1,1, . . . , tm,m respectively. Then taking advantage of
the fact that the internal transformation is not homogeneous, the above equation
also holds for the homogeneous parts alone: ∀k ≤ d, T −1 ◦ g(k)(x) = f (k) ◦ S(x),
where g(k) and f (k) denotes the homogeneous part of degree k of g and f . Thus,
when the internal transformation has both a constant component and a degree one
component, a lot more linear constraints in the variables si,j and ti,j can be derived.
But this set of m(n+1) linear equations in the n2 +m2 variables is not big enough to
be over-defined. One has to adjunct another set of equations derived from a compo-
nent of higher degree, usually a component of homogeneous degree two: these addi-
tional equations then suffice to render the system over-defined, in most cases of in-
terest. (This is for instance the case with an internal transformation consisting of an
n-tuple of quadratic multivariate polynomials in n variables which is quite represen-
tative in asymmetric multivariate cryptography.) This is the reason why the IP prob-
lem with internal transformations composed of low degree monomials is insensitive
to the value of the overall degree d . However, this is not true at all for IP problems
with homogeneous internal transformations of degree d , which explains the discrep-
ancies between experiments with Matsumoto–Imai scheme A of degree four and ex-
periments with randomly generated polynomials (with components of every degree)
of overall degree four in the results of Faugère and Perret (2006a). It is not straight-
forward to derive the complexity of the strategy just described. However, experimen-
tal results from Faugère and Perret (2006a) show that the complexity of the IP prob-
lem for cryptographic purposes has sometimes been over-estimated (Patarin 1996;
Billet and Gilbert 2003; Patarin et al. 1998b).

A powerful attack against the IP problem in the special case of the Matsumoto
and Imai scheme A has also been proposed in Fouque et al. (2008b) and allows to
recover the secret key of the Matsumoto and Imai scheme A, not only to invert it.
This attack builds on a previous attack against SFLASH (Dubois et al. 2007a) and
only uses efficient linear algebra. Finally, there has been no success up to now in
attacking the IP problem underlying the HFE cryptosystem.

3.2 Two Rounds

We have seen in the previous sections that embedding a trapdoor in a tuple of
quadratic multivariate polynomials is not an easy task. A natural way to try circum-
venting the difficulty is to rely on the composition of two multivariate mappings f

and g. The first proposal based on such a strategy can be found in Patarin and Goubin
(1997). In order to ease the exposition, we only describe a restricted version of it.
It makes use of three mappings f = (f1, f2, . . . , fn), U , and g = (g1, g2, . . . , gn)
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where the fi and gi are k-tuples of multivariate quadratic polynomials in k variables
and U is a change of coordinates over K

kn. Thus, the published mapping is the
composition T ◦ g ◦ U ◦ f ◦ S where S ans T are additional changes of coordinates
over K

kn. This proposal, called two rounds by their designers, can be thought of
as an asymmetric version of the substitution and permutation network construction
classical in symmetric cryptography where the fi and gi play the role of S-boxes.
(Note that these mappings fi and gi are not required to be one-to-one.) Obviously,
those S-boxes can be easily inverted when considered alone. Thus, the security of
the proposed scheme heavily relies on the hardness of the problem of decomposition
of the public mapping:

Definition 3 (Decomposition Problem) Given a set of n+ 1 multivariate polynomi-
als f , h1, . . . , hn, in n variables defined over some finite field K, find (provided it
exists) a polynomial g of degree r such that:

f (x1, . . . , xn) = g(h1(x1, . . . , xn), . . . , hn(x1, . . . , xn)).

For multivariate polynomials of arbitrary degree, this problem is often assumed to
be difficult to solve Dickerson (1989), von zur Gathen et al. (2003), as expected by
the authors of two rounds. The decisional version of the decomposition problem is
also sometimes referred to as the ring membership problem since it amounts to de-
ciding the membership of f to the ring K[h1, . . . , hn] restricted to polynomials of
degree r . However for efficiency reasons, the degree r of g is assumed to be two in
the two round scheme, and in this case, the corresponding decomposition problem
becomes easy. Ye, Lam, and Dai indeed proposed in Ye et al. (1999, 2001) an effi-
cient strategy to solve it based on the following simple remark: when the degree of g

is two, the partial derivatives of f are nothing but elements lihj where li is a lin-
ear form and thus span an ideal Δf contained in 〈x1h1, . . . , xnh1, x1h2, . . . , xnhn〉.
Hence, computing (Δf : 〈x1, . . . , xn〉) (that is, the set of polynomials p such that
Lp lies in Δf for every linear form L) reveals 〈h1, . . . , hn〉. This fact was verified
by experiments by the authors of Ye et al. (1999). To complete the attack, a basis
of this last ideal gives an n-tuple h̃ = (h̃1, . . . , h̃n) where the h̃i are linear combina-
tions of the original polynomials hi , which is enough to recover—by interpolation
for instance—the remaining mapping g̃ such that g̃ ◦ h̃ = f .

The authors of Patarin and Goubin (1997) tweaked their original construction
so as to thwart this new threat and proposed to remove several public equations of
two rounds, so that f = g ◦ h and h are mappings in n variables, but f and g are
m-tuples of multivariate polynomials in n variables with m < n. But Faugère and
Perret (2006b) refined the ideas of Ye et al. (1999) and showed that the scheme
can still be cryptanalysed. Let us briefly describe their strategy: the basic idea is to
compute (Δf : xδ

n) for some well chosen δ > 0. Indeed, the relations:

∂fi

∂xj

=
∑

1≤k,l≤n

g
(i)
k,l

(
∂hk

∂xj

hl + ∂hl

∂xj

hk

)
(11)
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show that any linear combination of polynomials of the form z[δ−1] ∂fi

∂xj
, where z[δ−1]

stands for any monomial of degree δ − 1 in the variables xi , is also a linear combi-
nation of polynomials of the form z[δ]hi . If V denotes the vector space spanned by
the polynomials of the form z[δ]hi and Ṽ denotes the vector space spanned by the
polynomials of the form z[δ−1] ∂fi

∂xj
, then xδ

nhi belongs to Ṽ for all i as soon as the
dimension of Ṽ as a vector space over V is at least n(

n+δ−1
δ

). Thus, the computation
of a Gröbner basis of (Δf : xδ

n) provides the n-tuple (h̃1, . . . , h̃n) we were seeking.
Faugère and Perret (2006b) also give an upper bound for the degree δ which helps
evaluate the complexity of the Gröbner basis computation: the attack succeeds as
soon as δ ≥ m

n
. Thus, the results of Ye et al. (1999) come as the special case m = n.

4 Discussion

This overview of the state of the art in the cryptanalysis of multivariate asymmetric
cryptosystems shows that system solving techniques brought a lot to the understand-
ing of multivariate cryptosystems. It helped uncover structural properties of those
schemes and pushed the limits of our knowledge with respect to some difficult prob-
lems such as the functional decomposition problem or the problem of finding iso-
morphisms between tuple of polynomials. The extensive experiments with the com-
putation of Gröbner basis of randomly generated systems of polynomials together
with the mathematical insights brought by the complexity analyzes from Bardet
(2004) yield useful tools for dimensioning symmetric multivariate cryptosystems
such as Berbain et al. (2006, 2007).

While several multivariate asymmetric schemes have been shown to be suscep-
tible to some extent to Gröbner basis techniques, a lot of these attacks still lack
rigorous complexity analysis. Several of them remain slow and progresses in the
understanding of system solving techniques as applied to multivariate asymmetric
cryptosystems would be of interest to the cryptographers’ community. It also has
to be emphasized that the cryptanalytic work performed against asymmetric mul-
tivariate cryptosystems has already benefited other areas of cryptography such as
the cryptanalysis of stream ciphers which as witness a new range of attacks called
algebraic attacks (Faugère and Ars 2003; Courtois and Meier 2003).

Apart from obtaining a better understanding of existing attacks, there are sev-
eral other challenges for the cryptanalists. Concerning the multivariate schemes, the
unbalanced Oil & Vinegar scheme remains unbroken. Furthermore, the effect of re-
moving equations from the public key was shown to be inefficient in the case of
the SFLASH cryptosystem and the natural following step is to settle the case of
HFE−−. On the side of the underlying hard problems, the functional decomposi-
tion problem has been shown to be useless to design cryptosystems but the problem
of finding isomorphisms between tuples of polynomials needs a lot more study. In
particular, cryptographers need a better understanding of the mechanisms behind
the attack from Faugère and Perret (2006a) and a natural question is the possibility
of mounting a key recovery attack against the HFE cryptosystem, at least with a
rigorous complexity analysis.
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