
SSE Implementation of Multivariate PKCs on
Modern x86 CPUs

Anna Inn-Tung Chen1, Ming-Shing Chen2, Tien-Ren Chen2,
Chen-Mou Cheng1, Jintai Ding3, Eric Li-Hsiang Kuo2,

Frost Yu-Shuang Lee1, and Bo-Yin Yang2

1 National Taiwan University, Taipei, Taiwan
{anna1110,doug,frost}@crypto.tw
2 Academia Sinica, Taipei, Taiwan

{mschen,trchen1103,lorderic,by}@crypto.tw
3 University of Cincinnati, Cincinnati, Ohio, USA

ding@math.uc.edu

Abstract. Multivariate Public Key Cryptosystems (MPKCs) are often
touted as future-proofing against Quantum Computers. It also has been
known for efficiency compared to “traditional” alternatives. However, this
advantage seems to erode with the increase of arithmetic resources in
modern CPUs and improved algorithms, especially with respect to El-
liptic Curve Cryptography (ECC). In this paper, we show that hard-
ware advances do not just favor ECC. Modern commodity CPUs also
have many small integer arithmetic/logic resources, embodied by SSE2
or other vector instruction sets, that are useful for MPKCs. In partic-
ular, Intel’s SSSE3 instructions can speed up both public and private
maps over prior software implementations of Rainbow-type systems up
to 4×. Furthermore, MPKCs over fields of relatively small odd prime
characteristics can exploit SSE2 instructions, supported by most mod-
ern 64-bit Intel and AMD CPUs. For example, Rainbow over F31 can
be up to 2× faster than prior implementations of similarly-sized systems
over F16. Here a key advance is in using Wiedemann (as opposed to
Gauss) solvers to invert the small linear systems in the central maps. We
explain the techniques and design choices in implementing our chosen
MPKC instances over fields such as F31, F16 and F256. We believe that
our results can easily carry over to modern FPGAs, which often contain
a large number of small multipliers, usable by odd-field MPKCs.

Keywords: multivariate public key cryptosystem (MPKC), TTS, rain-
bow, �IC, vector instructions, SSE2, SSSE3, Wiedemann.

1 Introduction

Multivariate public-key cryptosystems (MPKCs) [35, 13] is a genre of PKCs
whose public keys represent multivariate polynomials over a small field K = Fq:

P : w = (w1, w2, . . . , wn) ∈ K
n �→ z = (p1(w), p2(w), . . . , pm(w)) ∈ K

m.

C. Clavier and K. Gaj (Eds.): CHES 2009, LNCS 5747, pp. 33–48, 2009.
c© International Association for Cryptologic Research 2009



34 A.I.-T. Chen et al.

Polynomials p1, p2, . . . have (almost always) been quadratic since MPKCs came
to public notice [30]. Since this is public-key cryptography, we can let P(0) = 0.

Of course, a random P would not be invertible by the legitimate user, so
almost always P = T ◦ Q ◦ S with two affine maps S : w �→ x = MSw + cS and
T : y �→ z = MT y+cT , and an “efficiently invertible” quadratic map Q : x �→ y.
The public key then comprise the polynomials in P , while the private key is
M−1

s , cs, M−1
T , cT , plus information to determine the central map Q.

MPKCs have been touted as (a) potentially surviving future attacks using
quantum computers, and (b) faster than “traditional” competitors — in 2003,
sflash was a finalist for the NESSIE project signatures, recommended for
embedded use. We seek to evaluate whether (b) is affected by the evolution of
computer architecture. Without going into any theory, we will discuss the imple-
mention of MPKCs on today’s commodity CPUs. We will conclude that mod-
ern single-instruction-multiple-data (SIMD) units also make great cryptographic
hardware for MPKCs, making them stay competitive speed-wise.

1.1 History and Questions

Conventional wisdom used to be: “MPKCs replace arithmetic operations on large
units (e.g., 1024+-bit integers in RSA, or 160+-bit integers in ECC) by faster
operations on many small units.” But the latter means many more memory ac-
cesses. People came to realize that eventually the memory latency and bandwidth
would become the bottleneck of the performance of a microprocessor [7, 36].

The playing field is obviously changing. When MPKCs were initially proposed
[25,30], commodity CPUs computed a 32-bit integer product maybe every 15–20
cycles. When NESSIE called for primitives in 2000, x86 CPUs could compute
one 64-bit product every 3 (Athlon) to 10 (Pentium 4) cycles. The big pipelined
multiplier in an AMD Opteron today can produce one 128-bit integer product
every 2 cycles. ECC implementers quickly exploited these advances.

In stark contrast, a MOSTech 6502 CPU or an 8051 microcontroller from Intel
multiplies in F256 in a dozen instruction cycles (using three table look-ups) —
not too far removed from the latency of multiplying in F256 in modern x86.

This striking disparity came about because the number of gates available has
been doubling every 18 to 24 months (“Moore’s Law”) for the last few decades.
Compared to that, memory access speed increased at a snail’s pace. Now the
width of a typical arithmetic/logic unit is 64 bits, vector units are everywhere,
and even FPGAs have hundreds of multipliers built in. On commodity hardware,
the deck has never seemed so stacked against MPKCs or more friendly to RSA
and ECC. Indeed, ECC over F2k , the only “traditional” cryptosystem that has
been seemingly left behind by advances in chip architectures, will get a new
special struction from Intel soon — the new carryless multiplication [27].

Furthermore, we now understand attacks on MPKCs much better. In 2004,
traditional signature schemes using RSA or ECC are much slower than TTS/4
and SFLASH [1,10,37], but the latter have both been broken [17,18]. Although
TTS/7 and 3IC-p seem ok today [8], the impending doom of SHA-1 [33] will force
longer message digests and thus slower MPKCs while leaving RSA untouched.



SSE Implementation of Multivariate PKCs on Modern x86 CPUs 35

The obvious question is, then: Can all the extras on modern commodity CPUs
be put to use with MPKCs as well? If so, how do MPKCs compare to traditional
PKCs today, and how is that likely going to change for the future?

1.2 Our Answers and Contributions

We will show that advances in chip building also benefit MPKCs. First, vector
instructions available on many modern x86 CPUs can provide significant speed-
ups for MPKCs over binary fields. Secondly, we can derive an advantage for
MPKCs by using as the base field Fq for q equal to a small odd prime such as 31
on most of today’s x86 CPUs. This may sound somewhat counter-intuitive, since
for binary fields addition can be easily accomplished by the logical exclusive-or
(XOR) operation, while for odd prime fields, costly reductions modulo q are
unavoidable. Our reasoning and counter arguments are detailed as follows.

1. Virtually all x86 CPUs today support SSE2 instructions, which can pack
eight 16-bit integer operands in its 128-bit xmm registers and hence dispatch
eight simultaneous integer operations per cycle in a SIMD style.
– Using MPKCs with a small odd prime base field Fq (say F31, as opposed

to the usual F256 or F16) enables us to take advantage of vector hardware.
Even with an overhead of conversion between bases, schemes over F31 is
usually faster than an equivalent scheme over F16 or F256 without SSSE3.

– MPKCs over Fq can still be faster than ECC or RSA. While q can be any
prime power, it pays to tune to a small set of carefully chosen instances.
In most of our implementations, we specialize to q = 31.

2. Certain CPUs have simultaneous look-ups from a small, 16-byte table:
– all current Intel Core and Atom CPUs with SSSE3 instruction PSHUFB;
– all future AMD CPUs, with SSE5 PPERM instruction (superset of PSHUFB);
– IBM POWER derivatives — with AltiVec/VMX instruction PERMUTE.

Scalar-to-vector multiply in F16 or F256 can get around a 10× speed-up;
MPKCs like TTS and Rainbow get a 4× factor or higher speed-up.

In this work, we will demonstrate that the advances in chip architecture do not
leave MPKCs behind while improving traditional alternatives. Furthermore, we
list a set of counter-intuitive techniques we have discovered during the course of
implementing finite field arithmetic using vector instructions.

1. When solving a small and dense matrix equation in F31, iterative methods
like Wiedemann may still beat straight Gaussian elimination.

2. X �→ Xq−2 may be a fast way to component-wise invert a vector over F
∗
q .

3. For big-field MPKCs, some fields (e.g., F3115) admit very fast arithmetic
representations — in such fields, inversion is again by raising to a high power.

4. It is important to manage numerical ranges to avoid overflow, for which cer-
tain instructions are unexpectedly useful. For example, the PMADDWD (packed
multiply-add word to double word) instruction, which computes from two 8-
long vectors of 16-bit signed words (x0, . . . , x7) and (y0, . . . , y7) the 4-long
vector of 32-bit signed words (x0y0 + x1y1, x2y2 + x3y3, x4y4 + x5y5, x6y6 +
x7y7), avoids many carries when evaluating a matrix-vector product (mod q).



36 A.I.-T. Chen et al.

Finally, we reiterate that, like most implementation works such as the one by
Bogdanov et al [6], we only discuss implementation issues and do not concern
ourselves with the security of MPKCs in this paper. Those readers interested in
the security and design of MPKCs are instead referred to the MPKC book [13]
and numerous research papers in the literature.

2 Background on MPKCs

In this section, we summarize the MPKC instances that we will investigate. Using
the notation in Sec. 1, we only need to describe the central map Q (MS and MT

are square and invertible matrices, usu. resp. of dim = n and m, respectively.
To execute a private map, we replace the “minus” components if needed, invert
T , invert Q, invert S, and if needed verify a prefix/perturbation.

Most small-field MPKCs — TTS, Rainbow, oil-and-vinegar [11, 12, 17, 29]
seem to behave the same over small odd prime fields and over F2k . Big-field
MPKCs in odd-characteristic were mentioned in [35], but not much researched
until recently. In some cases e.g., �IC-derivatives, an odd-characteristic version
is inconvenient but not impossible. Most attacks on and their respective defenses
of MPKCs are fundamentally independent of the base field. Some attacks are
known or conjectured to be easier over binary fields than over small odd prime
fields [5, 19, 9, 15], but never vice versa.

2.1 Rainbow and TTS Families of Digital Signatures

Rainbow(Fq, o1, . . . , o�) is characterized as follows as a u-stage UOV [14,17].

– The segment structure is given by a sequence 0 < v1 < v2 < · · · < vu+1 = n.
For l = 1, . . . , u + 1, set Sl := {1, 2, . . . , vl} so that |Sl| = vl and S0 ⊂ S1 ⊂
· · · ⊂ Su+1 = S. Denote by ol := vl+1 − vl and Ol := Sl+1 \Sl for l = 1 · · ·u.

– The central map Q has components yv1+1 = qv1+1(x), yv1+2 = qv1+2(x), . . . ,
yn = qn(x), where yk = qk(x) =

∑vl

i=1

∑n
j=i α

(k)
ij xixj+

∑
i<vl+1

β
(k)
i xi, if k ∈

Ol := {vl + 1 · · · vl+1}.
– In every qk, where k ∈ Ol, there is no cross-term xixj where both i and j are

in Ol. So given all the yi with vl < i ≤ vl+1, and all the xj with j ≤ vl, we can
easily compute xvl+1, . . . , xvl+1 . So given y, we guess x1, . . . xv1 , recursively
solve for all xi’s to invert Q, and repeat if needed.

Ding et al. suggest Rainbow/TTS with parameters (F24 , 24, 20, 20) and (F28 , 18,
12, 12) for 280 design security [8, 17]. According to their criteria, the former
instance should not be more secure than Rainbow/TTS at (F31, 24, 20, 20) and
roughly the same as (F31, 16, 16, 8, 16). Note that in today’s terminology, TTS is
simply a Rainbow with sparse coefficients, which is faster but less understood.

2.2 Hidden Field Equation (HFE) Encryption Schemes

HFE is a “big-field” variant of MPKC. We identify L, a degree-n extension of the
base field K with (Fq)n via an implicit bijective map φ : L → (Fq)n [34]. With



SSE Implementation of Multivariate PKCs on Modern x86 CPUs 37

y =
∑

0≤i,j<ρ aijxqi+qj

+
∑

0≤i<ρ bixqi

+ c, we have a quadratic Q, invertible
via the Berlekamp algorithm with x,y as elements of (Fq)n.

Solving HFE directly is considered to be sub-exponential [22], and a “stan-
dard” HFE implementation for 280 security works over F2103 with degree d = 129.
We know of no timings below 100 million cycles on a modern processor like a
Core 2. Modifiers like vinegar or minus cost extra.

The following multi-variable HFE appeared in [5]. First, randomly choose a
L

h → L
h quadratic map Q(X1, ..., Xh) = (Q1(X1, ..., Xh), · · · , Qh(X1, ..., Xh))

where each Q� = Q�(X1, . . . , Xh) =
∑

1≤i≤j≤h α
(�)
ij XiXj +

∑h
j=1 β

(�)
j Xj + γ(�)

is also a randomly chosen quadratic for � = 1, . . . , h. When h is small, this Q
can be easily converted into an equation in one of the Xi using Gröbner basis
methods at degree no higher than 2h, which is good since solving univariate
equations is cubic in the degree. The problem is that the authors also showed
that these schemes are equivalent to the normal HFE and hence are equally
(in-)secure.

It was recently conjectured that for odd characteristic, Gröbner basis attacks
on HFE does not work as well [15]. Hence we try to implement multivariate HFEs
over Fq for an odd q. We will be conservative here and enforce one prefixed zero
block to block structural attacks at a q-time speed penalty.

2.3 C∗, �-Invertible Cycles (�IC) and Minus-p Schemes

C∗ is the original Matsumoto-Imai scheme [30], also a big-field variant of MPKC.
We identify a larger field L with K

n with a K-linear bijection φ : L → K
n. The

central map Q is essentially Q : x �−→ y = x1+qα

, where K = Fq. This is
invertible if gcd(1 + qα, qn − 1) = 1.

The �-Invertible Cycle (�IC) can be considered as an improved extension of
C∗ [16]. Here we use the simple case where � = 3. In 3IC we also use an inter-
mediate field L = K

k, where k = n/3. The central map is Q : (X1, X2, X3) ∈
(L∗)3 �→ (Y1, Y2, Y3) := (X1X2, X2X3, X3X1). 3IC and C∗ maps have a lot in
common [16,20,11]. To sign, we do “minus” on r variables and use s prefixes (set
one or more of the variables to zero) to defend against all known attacks against
C∗ schemes [11]. This is written as C∗−p(q, n, α, r, s) or 3IC-p(q, n, r, s). Ding et
al. recommend C∗−p(24, 74, 22, 1), also known as the “pFLASH” [11].

To invert 3IC-p over a field like F3118 , from (Y1, Y2, Y3) we do the following.
1. Compute A = Y1Y2 [1 multiplication].
2. Compute B = A−1 [1 inverse].
3. Compute C = Y3B = X−2

2 [1 multiplication].
4. Compute D = C−1 = X2

2 and ±√
C = X−1

2 [1 sqrt+inverse].
5. Multiply X−1

2 to Y1, Y2, and D [3 multiplications].

We note that for odd q, square roots are non-unique and slow.

3 Background on x86 Vector Instruction Set Extensions

The use of vector instructions to speed up MPKCs is known since the seminal
Matsumoto-Imai works, in which bit slicing is suggested for MPKCs over F2 as



38 A.I.-T. Chen et al.

a form of SIMD [30]. Berbain et al. pointed out that bit slicing can be extended
appropriately for F16 to evaluate public maps of MPKCs, as well as to run the
QUAD stream cipher [2]. Chen et al. extended this further to Gaussian elimination
in F16, to be used for TTS [8].

To our best knowledge, the only mention of more advanced vector instructions
in the MPKC literature is T. Moh’s suggestion to use AltiVec instructions (only
available then in the PowerPC G4) in his TTM cryptosystem [31]. This fell into
obscurity after TTM was cryptanalyzed [21].

In this section, we describe one of the most widely deployed vector instruction
sets, namely, the x86 SIMD extensions. The assembly language mnemonics and
code in this section are given according Intel’s naming convention, which is
supported by both gcc and Intel’s own compiler icc. We have verified that the
two compilers give similar performance results for the most part.

3.1 Integer Instructions in the SSE2 Instruction Set

SSE2 stands for Streaming SIMD Extensions 2, i.e., doing the same action on
many operands. It is supported by all Intel CPUs since the Pentium 4, all AMD
CPUs since the K8 (Opteron and Athlon 64), as well as the VIA C7/Nano CPUs.
The SSE2 instructions operate on 16 architectural 128-bit registers, called the
xmm registers. Most relevant to us are SSE2’s integer operations, which treat
xmm registers as vectors of 8-, 16-, 32- or 64-bit packed operands in Intel’s termi-
nology. The SSE2 instruction set is highly non-orthogonal. To summarize, there
are the following.

Load/Store: To and from xmm registers from memory (both aligned and un-
aligned) and traditional registers (using the lowest unit in an xmm register
and zeroing the others on a load).

Reorganize Data: Various permutations of 16- and 32-bit packed operands
(Shuffle), and Packing/Unpacking on vector data of different densities.

Logical: AND, OR, NOT, XOR; Shift (packed operands of 16, 32, and 64 bits)
Left, Right Logical and Right Arithmetic (copies the sign bit); Shift entire
xmm register byte-wise only.

Arithmetic: Add/Subtract on 8-, 16-, 32- and 64-bits; Multiply of 16-bit (high
and low word returns, signed and unsigned, and fused multiply-adds) and 32-
bit unsigned; Max/Min (signed 16-bit, unsigned 8-bit); Unsigned Averages
(8/16-bit); Sum-of-differences on 8-bits.

3.2 SSSE3 (Supplementary SSE3) Instructions

SSSE3 adds a few very useful instructions to assist with our vector programming.

PALIGNR (“packed align right”): “PALIGNR xmm (i), xmm (j), k” shifts xmm (j)
right by k bytes, and insert the k rightmost bytes of xmm (i) in the space
vacated by the shift, with the result placed in xmm (i). Can be used to rotate
an xmm register by bytes.



SSE Implementation of Multivariate PKCs on Modern x86 CPUs 39

PHADDx,PHSUBx H means horizontal. E.g., consider PHADDW. If destination reg-
ister xmm (i) starts out as (x0, x1, . . . , x7), the source register xmm (j) as
(y0, y1, . . . , y7), then after “PHADDW xmm (i), xmm (j)”, xmm (i) will hold:
(x0 + x1, x2 + x3, x4 + x5, x6 + x7, y0 + y1, y2 + y3, y4 + y5, y6 + y7).
From 8 vectors v0, v1, . . . , v7, after seven invocations of PHADDW, we can
obtain

(∑
j v

(0)
j ,

∑
j v

(1)
j , . . . ,

∑
j v

(7)
j

)
arranged in the right order.

PSHUFB From a source (x0, x1, . . . , x15), and destination register (y0, y1, . . . , y15),
the result at position i is xyi mod 32. Here x16 through x31 are taken to be 0.

PMULHRSW This gives the rounded higher word of the product of two signed words
in each of 8 positions. [SSE2 only has PMULHW for higher word of the product.]

The source register xmm (j) can usually be replaced by a 16-byte-aligned memory
region. The interested reader is referred to Intel’s manual for further information
on optimizing for the x86-64 architecture [26]. To our best knowledge SSE4 do
not improve the matter greatly for us, so we skip their descriptions here.

3.3 Speeding Up in F16 and F256 via PSHUFB

PSHUFB enables us to do 16 simultaneous look-ups at the same time in a table
of 16. The basic way it helps with F16 and F256 arithmetic is by speeding up
multiplication of a vector v by a scalar a.

We will use the following notation: if i, j are two bytes (in F256) or nybbles
(in F16), each representing a field element, then i ∗ j will be the byte or nybble
representing their product in the finite field.

F16, v is unpacked, 1 entry per byte: Make a table TT of 16 entries, each
128 bits, where the i-th entry contains i ∗ j in byte j. Load TT[a] into
xmm (i), and do “PSHUFB xmm (i), v”.

F16, v 2-packed per byte or F16, a 2-packed: Similar with shifts and ORs.
F256: Use two 256 × 128-bit tables, for products of any byte-value by bytes

[0x00, 0x10, ..., 0xF0], and [0x00, 0x01, ..., 0x0F]. One AND, one
shift, 2 PSHUFBs, and one OR dispatches 16 multiplications.

Solving a Matrix Equation: We can speed up Gaussian elimination a lot
on fast row operations. Note: Both SSSE3 and bit-slicing require column-first
matrices for matrix-vector multiplication and evaluating MPKCs’ public maps.

Evaluating public maps: We can do zk =
∑

i wi

[
Pik + Qikwi +

∑
i<j Rijkwj

]
.

But on modern processors it is better to compute c := [(wi)i, (wiwj)i≤j ]T , then
z as a product of a m × n(n + 3)/2 matrix (public key) and c.

In theory, it is good to bit-slice in F16 when multiplying a scalar to a vector
that is a multiple of 64 in length. Our tests show bit-slicing a F16 scalar-to-64-
long-vector to take a tiny bit less than 60 cycles on a core of a newer (45nm)
Core 2 CPU. The corresponding PSHUFB code takes close to 48 cycles. For 128-
long vectors, we can still bit-slice using xmm registers. It comes out to around
70 cycles with bit-slicing, against 60 cycles using PSHUFB. This demonstrate the
usefulness of SSSE3 since these should be optimal cases for bit-slicing.



40 A.I.-T. Chen et al.

4 Arithmetic in Odd Prime Field Fq

4.1 Data Conversion between F2 and Fq

The first problem with MPKCs over odd prime fields is the conversion between
binary and base-q data. Suppose the public map is P : F

n
q → F

m
q . For digital

signatures, we need to have qm > 2�, where � is the length of the hash, so that
all hash digests of the appropriate size fit into Fq blocks. For encryption schemes
that pass an �-bit session key, we need qn > 2�.

Quadword (8-byte) unsigned integers in [0, 264 − 1] fit decently into 13 blocks
in F31. So to transfer 128-, 192-, and 256-bit AES keys, we need at least 26, 39,
and 52 F31 blocks, respectively.

Packing Fq-blocks into binary can be more “wasteful” in the sense that one
can use more bits than necessary, as long as the map is injective and convenient
to compute. For example, we have opted for a very simple packing strategy in
which every three F31 blocks are fit in a 16-bit word.

4.2 Basic Arithmetic Operations and Inversion Mod q

Fq operations for odd prime q uses many modulo-q. We almost always replace
slow division instructions with multiplication as follows.

Proposition 1 ( [23]). If 2n+� ≤ Md ≤ 2n+� + 2� for 2�−1 < d < 2�, then
⌊

X
d

⌋
=

⌊
2−�

⌊
XM
2n

⌋⌋
=

⌊
2−�

(⌊
X(M−2n)

2n

⌋
+ X

)⌋
for 0 ≤ X < 2n.

An instruction giving “top n bits of product of n-bit integers x, y” achieves 
xy
2n �

and thus can be used to implement division by multiplication. E.g.,when we take
n = 64, � = 5, and d = 31, Q =

⌊
1
32

(⌊
595056260442243601 x

264

⌋
+ x

)⌋
= x div 31, R =

x − 31 Q, for an unsigned integer x < 264. Note often M > 2n as here.
Inverting one element in Fq is usually via a look-up table. Often we need

to invert simultaneously many Fq elements. As described later, we vectorize
most arithmetic operations using SSE2 and hence need to store the operands in
xmm registers. Getting the operands between xmm and general-purpose registers
for table look-up is very troublesome. Instead, we can use a (q−2)-th power
(“patched inverse”) to invert a vector. For example, the following raises to the
29-th to find multiplicative inverses in F31 using 16-bit integers (short int):

y = x∗x∗x mod 31; y = x∗y∗y mod 31; y = y∗y mod 31; y = x∗y∗y mod 31.

Finally, if SSSE3 is available, inversion in a Fq for q < 16 is possible using one
PSHUFB, and for 16 < q ≤ 31 using two PSHUFB’s and some masking.

Overall, the most important optimization is avoiding unnecessary modulo op-
erations by delaying them as much as possible. To achieve this goal, we need to
carefully track operand sizes. SSE2 uses fixed 16- or 32-bit operands for most of
its integer vector operations. In general, the use of 16-bit operands, either signed
or unsigned, gives the best trade-off between modulo reduction frequency (wider
operands allow for less frequent modulo operations) and parallelism (narrower
operands allow more vector elements packed in an xmm register).



SSE Implementation of Multivariate PKCs on Modern x86 CPUs 41

4.3 Vectorizing Mod q Using SSE2

Using vectorized integer add, subtract, and multiply instructions provided by
SSE2, we can easily execute multiple integer arithmetic operations simultane-
ously. A problem is how to implement vectorized modulo operations (cf. Sec. 4.2).
While SSE2 does provide instructions returning the upper word of a 16-by-16-bit
product, there are no facilities for carries, and hence it is difficult to guarantee
a range of size q for a general q. It is then important to realize that we do not
always need the tightest range. Minus signs are okay, as long as the absolute
values are relatively small to avoid non-trivial modulo operations.

– If IMULHIb returns “the upper half in a signed product of two b-bit words”, y =
x− q · IMULHIb

(⌊
2b

q

⌋
,
(
x +

⌊
q−1
2

⌋))
will return a value y ≡ x (mod q) such

that |y| ≤ q for b-bit word arithmetic, where −2b−1 ≤ x ≤ 2b−1 − (q − 1)/2.
– For q = 31 and b = 16, we do better finding y ≡ x (mod 31),−16 ≤ y ≤ 15,

for any −32768 ≤ x ≤ 32752 by y = x − 31 · IMULHI16 (2114, x + 15) . Here
IMULHI16 is implemented via the Intel intrinsic of __mm_mulhi_epi16.

– For I/O in F31, the principal value between 0 and 30 is y′=y−31& (y≫15) ,
where & is the logical AND, and ≫ arithmetically shifts in the sign bit.

– When SSSE3 is available, rounding with PMULHRSW is faster.

4.4 Matrix-Vector Multiplication and Polynomial Evaluation

Core 2 and newer Intel CPUs have SSSE3 and can add horizontally within
an xmm register, c.f., Sec. 3.2. Specifically, the matrix M can be stored row-
major. Each row is multiplied component-wise to the vector v. Then PHADDW
can add horizontally and arrange the elements at the same time. Surprisingly,
this convenience only makes at most a 10% difference for q = 31.

If we are restricted to using just SSE2, then it is advisable to store M in the
column-major order and treat the matrix-to-vector product as taking a linear
combination of the column vectors. For q = 31, each 16-bit component in v is
copied eight times into every 16-bit word in an xmm register using an __mm_set1
intrinsic, which takes three data-moving (shuffle) instructions, but still avoids
the penalty for accessing the L1 cache. Finally we multiply this register into one
column of M, eight components at a time, and accumulate.

Public maps are evaluated as in Sec. 3.3, except that we may further ex-
ploit PMADDWD as mentioned in Sec. 1.2, which computes (x0y0 + x1y1, x2y2 +
x3y3, x4y4 + x5y5, x6y6 + x7y7) given (x0, . . . , x7) and (y0, . . . , y7). We inter-
leave one xmm with two monomials (32-bit load plus a single __mm_set1 call),
load a 4×2 block in another, PMADDWD, and continue in 32-bits until the eventual
reduction mod q. This way we are able to save a few mod-q operations.

The Special Case of F31: We also pack keys (c.f., Sec. 4.1) so that the
public key is roughly mn(n + 3)/3 bytes, which holds mn(n + 3)/2 F31 entries.
For F31, we avoid writing the data to memory and execute the public map on
the fly as we unpack to avoid cache contamination. It turns out that it does
not slow things down too much. Further, we can do the messier 32-bit mod-q
reduction without __mm_mulhi_epi32 via shifts as 25 = 1 mod 32.



42 A.I.-T. Chen et al.

4.5 Solving Systems of Linear Equations

Solving systems of linear equations are involved directly with TTS and Rain-
bow, as well as indirectly in others through taking inverses. Normally, one runs
a Gaussian elimination, where elementary row operations can be sped up by
SSE2.

However, during a Gaussian elimination, one needs frequent modular reduc-
tions, which rather slows things down from the otherwise expected speed. Say
we have an augmented matrix [A|b] modulo 31 in row-major order. Let us do
elimination on the first column. Each entry in the remaining columns will now
be of size up to about 1000 (312), or 250 if representatives are between ±16.

To eliminate on the second column, we must reduce that column mod 31
before looking up the correct multipliers. Note that reducing a single column
by table look-up is no less expensive than reducing the entire matrix when the
latter is not too large due to the overhead associated with moving data in and
out of the xmm registers, so we end up reducing the entire matrix many times.

We can switch to an iterative method like Wiedemann or Lanczos. To solve
by Wiedemann an n×n system Ax = b, one computes zAib for i = 1 . . . 2n for
some given z. Then one computes the minimal polynomial from these elements
in Fq using the Berlekamp-Massey algorithm.

It looks very counter-intuitive, as a Gaussian elimination does around n3/3
field multiplications but Wiedemann takes 2n3 for a dense matrix for the matrix-
vector products, plus extra memory/time to store the partial results and run
Berlekamp-Massey. Yet in each iteration, we only need to reduce a single vector,
not a whole matrix. That is the key observation and the tests show that Wiede-
mann is significantly faster for convenient sizes and odd q. Also, Wiedemann
outperforms Lanczos because the latter fails too often.

5 Arithmetic in Fqk

In a “big-field” or “two-field” variant of MPKC, we need to handle L = Fqk
∼=

Fq[t]/ (p(t)), where p is an irreducible polynomial of degree k. It is particularly
efficient if p(t) = tk − a for a small positive a, which is possible k|(q − 1) and in
a few other cases. With a convenient p, the map X �→ Xq in L, becomes an easy
precomputable linear map over K = Fq. Multiplication, division, and inversion
all become much easier. See some example timing for such a tower field in Tab. 1.

Table 1. Cycle counts for various F3118 arithmetic operations using SSE2

Microarchitecture MULT SQUARE INV SQRT INV+SQRT
C2 (65nm) 234 194 2640 4693 6332
C2+ (45nm) 145 129 1980 3954 5244
K8 (Athlon 64) 397 312 5521 8120 11646
K10 (Phenom) 242 222 2984 5153 7170



SSE Implementation of Multivariate PKCs on Modern x86 CPUs 43

5.1 Multiplication and the S:M (Square:Multiply) Ratio

When Fqk
∼= Fq[t]/(tk − a), a straightforward way to multiply is to copy each

xi eight times, multiply by the correct yi’s using PMULLW, and then shift the
result by the appropriate distances using PALIGNR (if SSSE3 is available) or un-
aligned load/stores/shifts (otherwise), depending on the architecture and com-
piler. For some cases we need to tune the code. E.g., for F319 , we multiply
the x-vector by y8 and the y-vector by x8 with a convenient 8 × 8 pattern
remaining.

For very large fields, we can use Karatsuba [28] or other more advanced mul-
tiplication algorithms. E.g. F3130 := F3115 [u]/(u2 − t)F3115 = F31[t]/(t15 − 3).
Then (a1u + a0)(b1u + b0) = [(a1 + a0)(b1 + b0)− a1b1 − a0b0]u + [a1b1t + a0b0].
Similarly, we treat F3154 as F3118 [u]/(u3−t), where F3118 = F31[t]/(t18−3). Then

(a2u
2 + a1u + a0)(b2u

2 + b1u + b0) = [(a2 + a0)(b2 + b0) − a2b2 − a0b0 + a1b1] u
2

+ [(a1 + a0)(b1 + b0) − a1b1 − a0b0 + ta2b2] u + [t ((a2 + a1)(b2 + b1) − a1b1 − a2b2) + a0b0] .

For ECC, often the rule-of-thumb is “S=0.8M”. Here the S:M ratio ranges from
0.75 to 0.92 for fields in the teens of F31-blocks depending on architecture.

5.2 Square and Other Roots

Today there are many ways to compute square roots in a finite field [3]. For field
sizes q = 4k + 3, it is easy to compute the square root in Fq via √

y = ±y
q+1
4 .

Here we implement the Tonelli-Shanks method for 4k + 1 field sizes, as working
with a fixed field we can include pre-computed tables with the program “for free.”
To recap, assume that we want to compute square roots in the field L, where
|L| − 1 = 2ka, with a being odd.

0. Compute a primitive solution to g2k

= 1 in L. We only need to take a
random x ∈ L and compute g = xa, and it is almost even money (i.e., x is a
non-square) that g2k−1

= −1, which means we have found a correct g. Start
with a pre-computed table of (j, gj) for 0 ≤ j < 2k.

1. We wish to compute an x such that x2 = y. First compute v = y
a−1
2 .

2. Look up in our table of 2k-th roots yv2 = ya = gj . If j is odd, then y is a
non-square. If j is even, then x = ±vyq

−j
2 because x2 = y(yv2g−j) = y.

Since we implemented mostly mod 31, for F31k taking a square root is easy when
k is odd and not very hard when k is even. For example, via fast 31k-th powers,
in F319 we take square roots by raising to the 1

4

(
319 + 1

)
-th power

i. temp1 := (((input)2)2)2, ii. temp2 :=(temp1)2∗((temp1)2)2,
iii. temp2 :=

[
temp2 ∗ ((temp2)2)2

]31
, iv.temp2 := temp2 ∗ (temp2)31,

v. result := temp1 ∗ temp2 ∗ (
(temp2)31

)31 ;



44 A.I.-T. Chen et al.

5.3 Multiplicative Inverse

There are several ways to do multiplicative inverses in Fqk . The classical one is an
extended Euclidean Algorithm; another is to solve a system of linear equations;
the last one is to invoke Fermat’s little theorem and raise to the power of qk −2.

For our specialized tower fields of characteristic 31, the extended Euclidean
Algorithm is slower because after one division the sparsity of the polynomial is
lost. Solving every entry in the inverse as a variable and running an elimination
is about 30% better. Even though it is counter-intuitive to compute X3115−2 to
get 1/X, it ends up fastest by a factor of 2 to 3.

Finally, we note that when we compute
√

X and 1/X as high powers at the
same time, we can share some exponentiation and save 10% of the work.

5.4 Equation Solving in an Odd-Characteristic Field L = Fqk

Cantor-Zassenhaus solves a univariate degree-d equation u(X) = 0 as follows.
The work is normally cubic in L-multiplications and quintic in (d, k, lg q) overall.

1. Replace u(X) by gcd(u(X), Xqk − X) so that u factors completely in L.
(a) Compute and tabulate Xd mod u(X), . . . , X2d−2 mod u(X).
(b) Compute Xq mod u(X) via square-and-multiply.
(c) Compute and tabulate Xqi mod u(X) for i = 2, 3, . . . , d − 1.
(d) Compute Xqi

mod u(X) for i = 2, 3, . . . , k, then Xqk

mod u(X).
2. Compute gcd

(
v(X)(q

k−1)/2 − 1, u(X)
)

for a random v(X), where deg v =
deg u−1; half of the time we find a nontrivial factor; repeat till u is factored.

6 Experiment Results

Clearly, we need to avoid too large q (too many reductions mod q) and too small
q (too large arrays). The choice of q = 31 seems the best compromise, since it
also allows us several convenient tower fields and easy packing conversions (close
to 25 = 32). This is verified empirically.

Some recent implementations of MPKCs over F2k are tested by Chen et al. [8]
We choose the following well-known schemes for comparison: HFE (an encryp-
tion scheme); pFLASH, 3IC-p, and Rainbow/TTS (all signature schemes). We
summarize the characteristics and performances, measured using SUPERCOP-
20090408 [4] on an Intel Core 2 Quad Q9550 processor running at 2.833 GHz, of
these MPKCs and their traditional competitors in Tab. 2. The current MPKCs
are over odd-characteristic fields except for pFLASH, which is over F16. The
table is divided into two regions: top for encryption schemes and bottom for
signature schemes, with the traditional competitors (1024-bit RSA and 160-bit
ECC) listed first. The results clearly indicate that MPKCs can take advantage of
the latest x86 vector instructions and hold their speeds against RSA and ECC.

Tab. 3 shows the speeds of the private maps of the MPKCs over binary vs. odd
fields on various x86 microarchitectures. As in Tab. 1, the C2 microarchitecture



SSE Implementation of Multivariate PKCs on Modern x86 CPUs 45

Table 2. Current MPKCs vs. traditional competitors on an Intel C2Q Q9550

Scheme Result PubKey PriKey KeyGen PubMap PriMap
RSA (1024 bits) 128 B 128 B 1024 B 27.2 ms 26.9 μs 806.1 μs
4HFE-p (31,10) 68 B 23 KB 8 KB 4.1 ms 6.8 μs 659.7 μs
3HFE-p (31,9) 67 B 7 KB 5 KB 0.8 ms 2.3 μs 60.5 μs
RSA (1024 bits) 128 B 128 B 1024 B 26.4 ms 22.4 μs 813.5 μs
ECDSA (160 bits) 40 B 40 B 60 B 0.3 ms 409.2 μs 357.8 μs
C∗-p (pFLASH) 37 B 72 KB 5 KB 28.7 ms 97.9 μs 473.6 μs
3IC-p (31,18,1) 36 B 35 KB 12 KB 4.2 ms 11.7 μs 256.2 μs
Rainbow (31,24,20,20) 43 B 57 KB 150 KB 120.4 ms 17.7 μs 70.6 μs
TTS (31,24,20,20) 43 B 57 KB 16 KB 13.7 ms 18.4 μs 14.2 μs

Table 3. MPKC private map timings in kilocycles on various x86 microarchitectures

Scheme Atom C2 C2+ K8 K10
4HFE-p (31,10) 4732 2703 2231 8059 2890
3HFE-p (31,9) 528 272 230 838 259
C∗-p (pFLASH) 7895 2400 2450 5010 3680
3IC-p (31,18,1) 2110 822 728 1550 1410
3IC-p (16,32,1) 1002 456 452 683 600
Rainbow (31,16,16,8,16) 191 62 51 101 120
Rainbow (16,24,24,20) 147 61 48 160 170
Rainbow (256,18,12,12) 65 27 22 296 211
TTS (31,24,20,20) 78 38 38 65 72
TTS (16,24,20,20) 141 61 65 104 82
TTS (256,18,12,12) 104 31 36 69 46

refers to the 65 nm Intel Core 2, C2+ the 45 nm Intel Core 2, K8 the AMD Athlon
64, and K10 the AMD Phenom processors. The results clearly indicate that even
now MPKCs in odd-characteristic fields hold their own against prior MPKCs
that are based in F2k , if not generally faster, on various x86 microarchitectures.

7 Concluding Remarks

Given the results in Sec. 6 and the recent interest into the theory of alge-
braic attacks on odd-characteristic HFE, we believe that odd-field MPKCs merit
more investigation. Furthermore, today’s FPGAs have many built-in multipli-
ers and intellectual properties (IPs), as good integer multipliers are common for
application-specific integrated circuits (ASICs). One excellent example of using
the multipliers in FPGAs for PKCs is the work of Güneysu and Paar [24]. We be-
lieve our results can easily carry over to FPGAs as well as any other specialized
hardware with a reasonable number of small multipliers. There are also a variety
of massively parallel processor architectures, such as NVIDIA, AMD/ATI, and



46 A.I.-T. Chen et al.

Intel [32] graphics processors coming. The comparisons herein must of course be
re-evaluated with each new instruction set and new silicon implementation, but
we believe that the general trend stands on our side.

Acknowledgements. CC thanks the National Science Council of Taiwan for
support under grants NSC 97-2628-E-001-010- and Taiwan Information Security
Center (grant 98-2219-E-011-001), BY for grant NSC 96-2221-E-001-031-MY3.

References

1. Akkar, M.-L., Courtois, N.T., Duteuil, R., Goubin, L.: A fast and secure imple-
mentation of SFLASH. In: Desmedt, Y.G. (ed.) PKC 2003. LNCS, vol. 2567, pp.
267–278. Springer, Heidelberg (2002)

2. Berbain, C., Billet, O., Gilbert, H.: Efficient implementations of multivariate
quadratic systems. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS, vol. 4356,
pp. 174–187. Springer, Heidelberg (2007)

3. Bernstein, D.J.: Faster square roots in annoying finite fields. In: High-Speed Cryp-
tography (2001) (to appear), http://cr.yp.to/papers.html#sqroot

4. Bernstein, D.J.: SUPERCOP: System for unified performance evaluation related
to cryptographic operations and primitives (April 2009),
http://bench.cr.yp.to/supercop.html

5. Billet, O., Patarin, J., Seurin, Y.: Analysis of intermediate field systems. Presented
at SCC 2008, Beijing (2008)

6. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-
key engines: MQ-cryptosystems as replacement for elliptic curves? In: Oswald, E.,
Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008)

7. Burger, D., Goodman, J.R., Kägi, A.: Memory bandwidth limitations of future
microprocessors. In: Proceedings of the 23rd annual international symposium on
Computer architecture, pp. 78–89 (1996)

8. Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M., Yang, B.-Y.: Practical-
sized instances of multivariate pkcs: Rainbow, TTS, and �IC-derivatives. In: Buch-
mann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108. Springer,
Heidelberg (2008)

9. Courtois, N.: Algebraic attacks over GF (2k), application to HFE challenge 2 and
SFLASH-v2. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947,
pp. 201–217. Springer, Heidelberg (2004)

10. Courtois, N., Goubin, L., Patarin, J.: SFLASH: Primitive specification (second
revised version), Submissions, Sflash, 11 pages (2002),
https://www.cosic.esat.kuleuven.be/nessie

11. Ding, J., Dubois, V., Yang, B.-Y., Chen, C.-H.O., Cheng, C.-M.: Could SFLASH
be repaired? In: Aceto, L., Damgard, I., Goldberg, L.A., Halldórsson, M.M., In-
gólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part II. LNCS, vol. 5126, pp.
691–701. Springer, Heidelberg (2008)

12. Ding, J., Gower, J.: Inoculating multivariate schemes against differential attacks.
In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS,
vol. 3958, pp. 290–301. Springer, Heidelberg (2006),
http://eprint.iacr.org/2005/255

http://cr.yp.to/papers.html#sqroot
http://bench.cr.yp.to/supercop.html
https://www.cosic.esat.kuleuven.be/nessie
http://eprint.iacr.org/2005/255


SSE Implementation of Multivariate PKCs on Modern x86 CPUs 47

13. Ding, J., Gower, J., Schmidt, D.: Multivariate Public-Key Cryptosystems. In: Ad-
vances in Information Security. Springer, Heidelberg (2006) ISBN 0-387-32229-9

14. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme.
In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531,
pp. 164–175. Springer, Heidelberg (2005)

15. Ding, J., Schmidt, D., Werner, F.: Algebraic attack on hfe revisited. In: Wu, T.-C.,
Lei, C.-L., Rijmen, V., Lee, D.-T. (eds.) ISC 2008. LNCS, vol. 5222, pp. 215–227.
Springer, Heidelberg (2008)

16. Ding, J., Wolf, C., Yang, B.-Y.: �-invertible cycles for multivariate quadratic public
key cryptography. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450,
pp. 266–281. Springer, Heidelberg (2007)

17. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New differential-
algebraic attacks and reparametrization of rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008), http://eprint.iacr.org/2008/108

18. Dubois, V., Fouque, P.-A., Shamir, A., Stern, J.: Practical cryptanalysis of
SFLASH. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 1–12.
Springer, Heidelberg (2007)

19. Faugère, J.-C., Joux, A.: Algebraic cryptanalysis of Hidden Field Equations (HFE)
using Gröbner bases. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 44–
60. Springer, Heidelberg (2003)

20. Fouque, P.-A., Macario-Rat, G., Perret, L., Stern, J.: Total break of the �IC- signa-
ture scheme. In: Cramer, R. (ed.) PKC 2008. LNCS, vol. 4939, pp. 1–17. Springer,
Heidelberg (2008)

21. Goubin, L., Courtois, N.T.: Cryptanalysis of the TTM cryptosystem. In: Okamoto,
T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 44–57. Springer, Heidelberg
(2000)

22. Granboulan, L., Joux, A., Stern, J.: Inverting HFE is quasipolynomial. In: Dwork,
C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 345–356. Springer, Heidelberg (2006)

23. Granlund, T., Montgomery, P.: Division by invariant integers using multiplication.
In: Proceedings of the SIGPLAN 1994 Conference on Programming Language De-
sign and Implementation, pp. 61–72 (1994),
http://www.swox.com/~tege/divcnst-pldi94.pdf

24. Güneysu, T., Paar, C.: Ultra high performance ecc over nist primes on commercial
fpgas. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 62–78.
Springer, Heidelberg (2008)

25. Imai, H., Matsumoto, T.: Algebraic methods for constructing asymmetric cryp-
tosystems. In: Calmet, J. (ed.) AAECC 1985. LNCS, vol. 229, pp. 108–119.
Springer, Heidelberg (1986)

26. Intel Corp. Intel 64 and IA-32 architectures optimization reference manual (Novem-
ber 2007), http://www.intel.com/design/processor/manuals/248966.pdf

27. Intel Corp. Carryless multiplication and its usage for computing the GCM mode.
(2008),
http://software.intel.com/en-us/articles/carry/
less-multiplication-and-%its-usage-for-computing-the-gcm-mode

28. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic
computers. Doklady Akad. Nauk SSSR 145, 293–294 (1962); Translation in Physics-
Doklady. 7, 595–596 (1963)

29. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced Oil and Vinegar signature schemes.
In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer,
Heidelberg (1999)

http://eprint.iacr.org/2008/108
http://www.swox.com/~tege/divcnst-pldi94.pdf
http://www.intel.com/design/processor/manuals/248966.pdf
http://software.intel.com/en-us/articles/carry/less-multiplication-and-%its-usage-for-computing-the-gcm-mode
http://software.intel.com/en-us/articles/carry/less-multiplication-and-%its-usage-for-computing-the-gcm-mode


48 A.I.-T. Chen et al.

30. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature
verification and message-encryption. In: Günther, C.G. (ed.) EUROCRYPT 1988.
LNCS, vol. 330, pp. 419–545. Springer, Heidelberg (1988)

31. Moh, T.: A public key system with signature and master key function. Communi-
cations in Algebra 27(5), 2207–2222 (1999), Electronic version,
http://citeseer/moh99public.html

32. Seiler, L., Carmean, D., Sprangle, E., Forsyth, T., Abrash, M., Dubey, P., Junk-
ins, S., Lake, A., Sugerman, J., Cavin, R., Espasa, R., Grochowski, E., Juan, T.,
Hanrahan, P.: Larrabee: a many-core x86 architecture for visual computing. ACM
Transactions on Graphics 27(18) (August 2008)

33. Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full sha-1. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 17–36. Springer, Heidelberg (2005)

34. Wolf, C.: Multivariate Quadratic Polynomials in Public Key Cryptography. PhD
thesis, Katholieke Universiteit Leuven (2005), http://eprint.iacr.org/2005/393

35. Wolf, C., Preneel, B.: Taxonomy of public key schemes based on the problem of
multivariate quadratic equations. Cryptology ePrint Archive, Report 2005/077, 64
pages, May 12 (2005),http://eprint.iacr.org/2005/077/

36. Wulf, W.A., McKee, S.A.: Hitting the memory wall: Implications of the obvious.
Computer Architecture News 23(1), 20–24 (1995)

37. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryp-
tosystems: The new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005.
LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005)

http://citeseer/moh99public.html
http://eprint.iacr.org/2005/393
http://eprint.iacr.org/2005/077/

	SSE Implementation of Multivariate PKCs on Modern x86 CPUs
	Introduction
	History and Questions
	Our Answers and Contributions

	Background on MPKCs
	Rainbow and TTS Families of Digital Signatures
	Hidden Field Equation (HFE) Encryption Schemes
	$C*$,$l$ -Invertible Cycles ($l$IC) and Minus-$p$ Schemes

	Background on x86 Vector Instruction Set Extensions
	Integer Instructions in the SSE2 Instruction Set
	SSSE3 (Supplementary SSE3) Instructions
	Speeding Up in ${\mathbb F}_{16}$ and ${\mathbb F}_{256}$ via {\tt PSHUFB}

	Arithmetic in Odd Prime Field ${\mathbb F}_{q}$
	Data Conversion between ${\mathbb F}_{2}$ and ${\mathbb F}_{q}$
	Basic Arithmetic Operations and Inversion Mod q
	Vectorizing Mod q Using SSE2
	Matrix-Vector Multiplication and Polynomial Evaluation
	Solving Systems of Linear Equations

	Arithmetic in ${\mathbb F}_{q^{k}}$
	Multiplication and the S:M (Square:Multiply) Ratio
	Square and Other Roots
	Multiplicative Inverse
	Equation Solving in an Odd-Characteristic Field ${\mathbb L} ={\mathbb F}_{q^{k}}$

	Experiment Results
	Concluding Remarks
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




