
High-Speed Hardware Implementation of

Rainbow Signature on FPGAs

Shaohua Tang1, Haibo Yi1, Jintai Ding2,3, Huan Chen1, and Guomin Chen1

1 School of Computer Science & Engineering,
South China University of Technology, Guangzhou, China

shtang@IEEE.org, {haibo.yi87,sarlmolapple}@gmail.com, huangege@qq.com
2 Department of Applied Mathematics,

South China University of Technology, Guangzhou, China
3 Department of Mathematical Sciences,

University of Cincinnati, OH, USA
jintai.ding@mail.uc.edu

Abstract. We propose a new efficient hardware implementation of Rain-
bow signature scheme. We enhance the implementation in three direc-
tions. First, we develop a new parallel hardware design for the Gauss-
Jordan elimination, and solve a 12× 12 system of linear equations with
only 12 clock cycles. Second, a novel multiplier is designed to speed up
multiplication of three elements over a finite field. Third, we design a
novel partial multiplicative inverter to speed up the multiplicative inver-
sion of finite field elements. Through further other minor optimizations
of the parallelization process and by integrating the major optimizations
above, we build a new hardware implementation, which takes only 198
clock cycles to generate a Rainbow signature, a new record in gener-
ating digital signatures and four times faster than the 804-clock-cycle
Balasubramanian-Bogdanov-Carter-Ding-Rupp design with similar pa-
rameters.

Keywords: Multivariate Public Key Cryptosystems (MPKCs), digital
signature, Rainbow, finite field, Field-Programmable Gate Array (FPGA),
Gauss-Jordan elimination, multiplication of three elements.

1 Introduction

Due to the fast growth of broad application of cryptography, the use of secure and
efficient hardware architectures for implementations of cryptosystems receives
considerable attention. In terms of asymmetric cryptosystems, most schemes
currently used are based on the hardness of factoring large numbers or discrete
logarithm problems. However, a potential powerful quantum computer could
put much of currently used public key cryptosystems in jeopardy due to the
algorithm by Peter Shor [1].

Multivariate Public Key Cryptosystems (MPKCs) [2] is one of main families
of public key cryptosytsems that have the potential to resist the attacks by

B.-Y. Yang (Ed.): PQCrypto 2011, LNCS 7071, pp. 228–243, 2011.
c© Springer-Verlag Berlin Heidelberg 2011

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 229

quantum computation. They are based on the difficulty of the problem of solving
multivariate quadratic equations over finite fields, which is in general NP-hard.

The focus of this paper is to further speed up hardware implementation of
Rainbow signature generation (without consideration of the area cost). The Oil-
Vinegar family of Multivariate Public Key Cryptosystems consists of three fam-
ilies: balanced Oil-Vinegar, unbalanced Oil-Vinegar and Rainbow [3], a multi-
layer construction using unbalanced Oil-Vinegar at each layer. There have been
some previous works to efficiently implement multivariate signature schemes, e.g.
TTS on a low-cost smart card [4], minimized multivariate PKC on low-resource
embedded systems [5], some instances of MPKCs [6], SSE implementation of
multivariate PKCs on modern x86 CPUs [7]. Currently the best hardware im-
plementations of Rainbow signature are:

1. A parallel hardware implementation of Rainbow signature scheme [8], the
fastest work (not best in area utilization), which takes 804 clock cycles to gen-
erate a Rainbow signature;

2. A hardware implementation of multivariate signatures using systolic arrays
[9], which optimizes in terms of certain trade-off between speed and area.

In generation of Rainbow signature, the major computation components are: 1.
Multiplication of elements in finite fields; 2. Multiplicative inversion of elements
in finite fields; 3. Solving system of linear equations over finite fields. Therefore,
we focus on further improvement in these three directions.

Our contributions. In terms of multiplication over finite fields, we improve
the multiplication according to the design in [10]. In terms of solving system of
linear equations, our improvements are based on a parallel Gaussian elimination
over GF (2) [11], a systolic Gaussian elimination for computing multiplicative
inversion [12], and a systolic Gauss-Jordan elimination over GF (2n) [13], and
develop a new parallel hardware design for the Gauss-Jordan elimination to
solve a 12× 12 system of linear equations with only 12 clock cycles. In terms of
multiplicative inversion, we design a novel partial multiplicative inverter based
on Fermat’s theorem.

Through further other minor optimizations of the parallelization process and
by integrating the major optimizations above, we build a new hardware imple-
mentation, which takes only 198 clock cycles to generate a Rainbow signature,
a new record in generating digital signatures and four times faster than the
804-clock-cycle Balasubramanian-Bogdanov-Carter-Ding-Rupp design [8] with
similar parameters.

We test and verify our design on a Field-Programmable Gate Array (FPGA),
the experimental results confirm our estimates.

The rest of this paper is organized as follows: in Section 2, we present the
background information used in this paper; in Section 3, the proposed hardware
design for Rainbow signature scheme is presented; in Section 4, we implement
our design in a low-cost FPGA and experimental results are presented; in Section
5, the implementation is evaluated and compared with other hardware imple-
mentations; in Section 6, conclusions are summarized.

230 S. Tang et al.

2 Background

2.1 Definitions

A finite field, GF (28), including its additive and multiplicative structure, is de-
noted by k; The number of variables used in the signature construction, which
is also equal to the signature size, is denoted by n.

For a Rainbow scheme, the number of Vinegar variables used in the ith layer
of signature construction is denoted by vi; the number of Oil variables used in
the ith layer of signature construction is denoted by oi, and oi = vi+1 − vi; the
number of layers is denoted by u, a message (or the hash value of a message)
is denoted by Y ; the signature of Rainbow is denoted by X ′; Oi is a set of Oil
variables in the the ith layer; Si is a set of Vinegar variables in the the ith layer.

Rainbow scheme belongs to the class of Oil-Vinegar signature constructions.
The scheme consists of a quadratic system of equations involving Oil and Vine-
gar variables that are solved iteratively. The Oil-Vinegar polynomial can be
represented by the form

∑

i∈Ol,j∈Sl

αijxixj +
∑

i,j∈Sl

βijxixj +
∑

i∈Sl+1

γixi + η. (1)

2.2 Overview of Rainbow Scheme

Rainbow scheme consists of four components: private key, public key, signature
generation and signature verification.

Private Key. The private key consists of two affine transformations L1
−1, L2

−1

and the center mapping F , which is held by the signer. L1: k
n−v1 → kn−v1 and

L2: k
n → kn are two randomly chosen invertible affine linear transformations.

F is a map consists of n − v1 Oil-Vinegar polynomials. F has u − 1 layers
of Oil-Vinegar construction. The first layer consists of o1 polynomials where
{xi|i ∈ O1} are the Oil variables, and {xj |j ∈ S1} are the Vinegar variables.
The lth layer consists of ol polynomials where {xi|i ∈ Ol} are the Oil variables,
and {xj |j ∈ Sl} are the Vinegar variables.

Public Key. The public key consists of the field k and the n− v1 polynomial
components of F , where F = L1 ◦ F ◦ L2.

Signature Generation. The message is defined by Y = (y1, ..., yn−v1) ∈ kn−v1 ,
and the signature is derived by computing L2

−1 ◦ F−1 ◦ L1
−1(Y).

Therefore, first we should compute Y ′ = L1
−1(Y), which is a computation of

an affine transformation (i.e. vector addition and matrix-vector multiplication).
Next, to solve the equation Y ′ = F , at each layer, the vi Vinegar variables

in the Oil-Vinegar polynomials are randomly chosen and the variables at upper

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 231

layer are chosen as part of the Vinegar variables. After that, the Vinegar vari-
ables are substituted into the multivariate polynomials to derive a set of linear
equations with only Oil variables of that layer. If these equations have a solu-
tion, we move to next layer. Otherwise, a new set of Vinegar variables should
be chosen. This procedure for each successive layer is repeated until the last
layer. In this step, we obtain a vector X = (x1, ..., xn). The computation of this
part consists of multivariate polynomial evaluation and solving system of linear
equations.

Finally, we compute X ′ = L2
−1(X) = (x1

′, ..., xn
′). Then X ′ is the signature

for messages Y .
It can be observed that in Rainbow signature generation, two affine trans-

formations are computed by invoking vector addition and matrix-vector multi-
plication, multivariate polynomials are required to be evaluated, and system of
linear equations are required to be solved.

Signature Verification. To verify the authenticity of a signature X ′, F (X ′) =
Y ′ is computed. If Y ′ = Y holds, the signature is accepted, otherwise rejected. In
this paper, we only work on the signature generation not signature verification.

Parameters of Rainbow Signature. We adopt the parameters of Rainbow
signature suggested in [14] for practical applications to design our hardware,
which is also implemented in [9]. This is a two-layer scheme which has a secu-
rity level above 280. There are 17 random-chosen Vinegar variables and 12 Oil
variables in the first layer, and 1 random-chosen Vinegar variables and 12 Oil
variables in the second layer. The parameters are shown in Table 1.

Table 1. Parameters of Rainbow in Proposed Hardware Design

Parameter Rainbow

Ground field size GF (28)
Message size 24 bytes
Signature size 42 bytes

Number of layers 2
Set of variables in each layer (17, 12), (1, 12)

3 Proposed Hardware Design for Rainbow Signature

3.1 Overview of the Hardware Design

The flowchart to generate Rainbow signature is illustrated in Fig. 1. It can be
observed that Rainbow signature generation consists of computing affine trans-
formations, polynomial evaluations and solutions for system of linear equations.

232 S. Tang et al.

Messages Affine
Transformation1

Polynomial
Evaluation

Solving System of
Linear Equations

Signatures

3

4

5

7

2

6

Fig. 1. The Flowchart to Generate Rainbow Signature

3.2 Choice of Irreducible Polynomial for the Finite Field

The choice of the irreducible polynomial for the finite field k is a critical part
of our hardware design, since it affects the efficiency of the operations over the
finite field. The irreducible polynomials for GF (28) over GF (2) can be expressed
as 9-bit binary digits with the form x8+xk+ ...+1, where 0 < k < 8 and the first
bit and the last bit are valued one. There are totally 16 candidates. We evaluate
the performance of the multiplications based on these irreducible polynomials
respectively.

By comparing the efficiency of signature generations basing on different irre-
ducible polynomials, x8 + x6 + x3 + x2 + 1 is finally chosen as the irreducible
polynomial in our hardware design.

3.3 Efficient Design of Multiplication of Three Elements

In Rainbow signature generation, we notice that there exist not only multipli-
cation of two elements but also multiplication of three elements. An optimized
design of the multiplier can dramatically improve the overall hardware execution
efficiency.

Therefore, we design new implementation to speed up multiplication of three
elements based on the multiplication of two elements [10]. The new design is
based on a new observation that, in multiplication of three elements overGF (28),
it is much faster to multiply everything first than perform modular operation
than the other way around. This is quite anti-intuitive and it works only over
small fields. This idea, in general, is not applicable for large fields.

Suppose a(x) =
7∑

i=0

aix
i, b(x) =

7∑
i=0

bix
i and c(x) =

7∑
i=0

cix
i are three elements

in GF (28) = GF (2)[x]/f(x) , and

d(x) = a(x)× b(x)× c(x)(mod(f(x))) =

7∑

i=0

dix
i (2)

is the expected multiplication result, where f(x) is the irreducible polynomial.

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 233

First, we compute vij for i = 0, 1, ..., 21 and j = 0, 1, ..., 7 according to xi mod

f(x) =
7∑

j=0

vijx
j . Next, we compute Si for i = 0, 1, ..., 21 via Si =

∑
j+k+l=i

ajbkcl.

After that, we compute di for i = 0, 1, ..., 7 via di =
21∑
j=0

vjiSj . Finally, the

multiplication result of a(x) × b(x)× c(x) mod f(x) is
7∑

i=0

dix
i.

3.4 Efficient Design of Partial Multiplicative Inversion

The multiplicative inverse over finite fields is a crucial but time-consuming op-
eration in multivariate signature. An optimized design of the inverter can really
help to improve the overall performance. Since multiplicative inversion is only
used in solving system of linear equations, we do not implement a fully multi-
plicative inverter but adopt a partial inverter based on Fermat’s theorem in our
design.

Suppose f(x) is the irreducible polynomial and β is an element over GF (28),
where β = β7x

7 + β6x
6 + β5x

5 + β4x
4 + β3x

3 + β2x
2 + β1x + β0. According

to the Fermat’s theorem, we have β28 = β, and β−1 = β28−2 = β254. Since
28 − 2 = 2 + 22 + 23 + 24 + 25 + 26 + 27, then β−1 = β2β4β8β16β32β64β128.

We can then construct the logic expressions of these items.

β2i = β7x
2i×7 + β6x

2i×6 + β5x
2i×5 + β4x

2i×4+

β3x
2i×3 + β2x

2i×2 + β1x
2i + β0,

(3)

The computation of x2i×j should be reduction modulo the irreducible polyno-
mial, where i = 1, 2, ..., 7 and j = 0, 1, ..., 7, then β2i is transformed into the
equivalent form. For instance, β2i = β′

7x
7 +β′

6x
6 + β′

5x
5 + β′

4x
4 + β′

3x
3 +β′

2x
2 +

β′
1x+ β′

0.
We adopt the three-input multiplier described in Section 3.3 to design the

partial inverter, where ThreeMult(v1, v2, v3) stands for multiplication of three
elements and v1, v2, v3 are operands and S1, S2 are the multiplication results.

S1 = ThreeMult(β2, β4, β8),

S2 = ThreeMult(β16, β32, β64).
(4)

We call the triple (S1, S2, β
128) the partial multiplicative inversion of β. Below we

will present how we adopt partial inversion in solving system of linear equations.

3.5 Optimized Gauss-Jordan Elimination

We propose a parallel variant of Gauss-Jordan elimination for solving a system
of linear equations with the matrix size 12 × 12. The optimization and paral-
lelization of Gauss-Jordan elimination can enhance the overall performance of
solving system of linear equations.

234 S. Tang et al.

Algorithm and Architecture. We give a straightforward description of the
proposed algorithm of the parallel variant of Gauss-Jordan elimination in Algo-
rithm 1, where operation(i) stands for operation performed in the i-th iteration,
and i = 0, 1, ..., 11. The optimized Gauss-Jordan elimination with 12 iterations
consists of pivoting, partial multiplicative inversion, normalization and elimina-
tion in each iteration.

We enhance the algorithm in four directions. First, multiplication of three
elements is computed by invoking three-input multipliers designed in Section 3.3.
Second, we adopt a partial multiplicative inverter described in Section 3.4 in our
design. Third, the partial multiplicative inversion, normalization and elimination
are designed to perform simultaneously. Fourth, during the elimination in the
i-th iteration, we simultaneously choose the right pivot for the next iteration,
namely if element ai+1,i+1 of the next iteration is zero, we swap the (i+1)-th row
with another j-th row with the nonzero element aji, where i, j = 0, 1, ..., 11. The
difference from usual Gauss-Jordan elimination is that the usual Gauss-Jordan
elimination choose the pivot after the elimination, while we perform the pivoting
during the elimination. In other words, at the end of each iteration, by judging
the computational results in this iteration, we can decide the right pivoting for
the next iteration. By integrating these optimizations, it takes only one clock
cycle to perform one iteration.

Algorithm 1. Solving a system of linear equations Ax = b with 12 iterations,
where A is a 12× 12 matrix
1: var
2: i: Integer;
3: begin
4: i := 0;
5: Pivoting(i = 0);
6: repeat
7: Partial inversion(i), Normalization(i), Elimination(i);
8: Pivoting(i+1);
9: i:= i+1;
10: until i = 12
11: end.

The proposed architecture is depicted in Fig. 2 with matrix size 12×12, where
aij is the element located at the i-th row and j-th column of the matrix.

There exist three kinds of cells in the architecture, namely I, Nl, and Ekl,
where k = 1, 2, ..., 11 and l = 1, 2, ..., 12. The I cell is for partial multiplicative
inversion. As described in 3.4, two three-input multipliers are included in the I
cell for computed partial multiplicative inversion. The Nl cells are for normal-
ization. And the Ekl cells are for elimination. The architecture consists of one I
cell, 12 Nl cells and 132 Elk cells.

The matrixes depicted in Fig. 2 are used only to illustrate how the matrix
changes. The left-most matrix is the one in the first clock cycle while the i-th
matrix is the one in the i-th clock cycle. In the first clock cycle, the left-most

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 235

matrix is sent to the architecture. a00 is sent to I cell for partial multiplicative
inversion. The first row is sent to Nl for normalization. And the other rows
except the first row are sent to Elk for elimination. In this clock cycle, one
iteration of Gauss-Jordan elimination is performed and the matrix has been
updated. In the following clock cycles, the pivot element is sent to I cell for
partial multiplicative inversion. The pivot row is sent to Nl for normalization.
And the other rows except the pivot row are sent to Elk for elimination. It can
be observed that the system of linear equations with matrix size 12× 12 can be
solved with 12 clock cycles.

E1,1 E1,2 E1,11

N1

I E1,12

N2 N11 N12

E2,1 E2,2 E2,11 E2,12

E11,1 E11,2 E11,11 E11,12

...

...

...

...

0,0 0,1 0,11 0,12

1,0 1,1 1,11 1,12

11,0 11,1 11,11 11,12

...
...

...,...,...,...,...,...
...

a a a a
a a a a

a a a a

... ...
0,11 0,12

1,11 1,12

11,11 11,12

10...0

01...0
00...,...,...,...

00...0

a a

a a

a a

0,1 0,11 0,12

1,1 1,11 1,12

11,1 11,11 11,12

1 ...0

0 ...0
0...,...,...,...,...,...

0 ...0

a a a

a a a

a a a

0,12

1,12

11,12

10...00

01...00
0...,...,...,...

00...01

a

a

a

...

Fig. 2. Proposed Architecture for Parallel Solving System of Linear Equations with
Matrix Size 12× 12

Pivoting Operation. If the pivot aii of the i-th iteration is zero, we should
find a nonzero element aji in the pivot column, i.e, the i-th column, as the new
pivot element, where i, j = 0, 1, ..., 11. Then the computational results of the
j-th row is sent to the Nl cells for normalization as the new pivot row. At the
same time, the computational results of the i-th row is sent to the Ejl cells for
elimination. In this way, we can ensure that the pivot element is nonzero in a
new iteration. Therefore, the I cell, the Nl cells and the Ekl cells can execute
simultaneously.

An example of pivoting is shown in Fig. 3. Before the second iteration, the
second row is the pivot row but the pivot element is zero. The fourth row can
be chosen as the new pivot row since a31 is nonzero. Then a31 is sent to I

236 S. Tang et al.

cell for partial multiplicative inversion. The fourth row is sent to Nl cells for
normalization, and then the other rows including the second row are sent to
E1l cells for elimination. Therefore, the computation of one iteration can be
performed with one clock cycle.

E1,1 E1,2 E1,11

N1

I

E1,12

N2 N11 N12

E2,1 E2,2 E2,11 E2,12

E11,1 E11,2 E11,11 E11,12

...

...

...

...

...

0,1 0,12

1,12

2,12

3,12

11,1 11,12

1 ...

0 0 ...

0 0 ...

0 3 ...
0...,...,...
0 ...

a a

a

a

a

a a

Fig. 3. Pivoting in Solving System of Linear Equations

Normalizing Operation. The normalizing operation invokes multiplicative
inversions and multiplications, then we can enhance the implementation in two
aspects.

22 44 88 1616 1281283232 6464 RjRRj

S1S1 S2S2 S4S4

NORiNORi

Fig. 4. Optimized Normalization in Solving System of Linear Equations

First, the multiplicative inverse β−1 over GF (28) is optimized to the mul-
tiplication of 7 elements due to β−1 = β2β4β8β16β32β64β128, as mentioned in
Section 3.4.

Second, a new multiplier is designed to speed up the multiplication of three ele-
ments that denoted by ThreeMult(v1, v2, v3), where v1, v2 and v3 are operands,
while the multiplication of two elements is defined by TwoMult(v1, v2).

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 237

The schematic diagram of normalization is shown in Fig. 4, where Ri for the i-
th element in the pivot row, and NORi for the normalizing result, respectively.
Then, we have the expressions

S1 = ThreeMult(β2, β4, β8),

S2 = ThreeMult(β16, β32, β64),

S4 = TwoMult(β128, Ri),

NORi = ThreeMult(S1, S2, S4).

(5)

S1 and S2 are executed in I cell for partial multiplicative inversion while S4 and
NORi are executed in Ni cells for normalization. Thus one two-input multiplier
as well as another three-input multiplier are included in Ni cells. Since S1, S2

and S4 can be implemented in parallel in each iteration, the critical path of
normalizing consists of only two multiplications of three elements.

Eliminating Operation. The schematic diagram of normalization is shown in
Fig. 5, where Rj stands for the j-th element in the pivot row, Ci for the i-th
element in the pivot column, and ELIij is the eliminated result of aij .

22 44 88 CiCi

S1S1 S2S2 S3S3

aiji +ELIijiaij+ELIij

1616 1281283232 6464
RjRRj

Fig. 5. Optimized Elimination in Solving System of Linear Equations

Then, we have the expressions

S1 = ThreeMult(β2, β4, β8),

S2 = ThreeMult(β16, β32, β64),

S3 = ThreeMult(β128, Rj , Ci),

ELIij = aij + ThreeMult(S1, S2, S3).

(6)

S1 and S2 are executed in I cell for partial multiplicative inversion while S3 and
ELIij are executed in Eij cells for elimination. Thus two three-input multipliers
and one adder are included in Eij cells. Since S1, S2 and S3 can be implemented
in parallel in each iteration, the critical path of elimination consists of only two
multiplications of three elements and one addition.

238 S. Tang et al.

22 44 88 1616

128128

3232 6464

RjRRj

S1S1 S2S2 S3S3

NORiNORiCiCi

aiji +ELIijiaij+ELIij

S4S4 S5S5

S6S6

InvInv

Fig. 6. Original Design of Gauss-Jordan Elimination

Overall Optimization. By integrating the optimizations above, Fig. 7 shows
that the critical path of our design is reduced from five multiplications and one
addition to two multiplications and one addition, compared with the original
principle of Gauss-Jordan elimination illustrated in Fig. 6.

22 44 88 1616 1281283232 6464 RjRRj

S1S1 S2S2 S3S3

NORiNORi

CiCi

S4S4

aiji +ELIijiaij+ELIij

Fig. 7. Optimized Design of Gauss-Jordan Elimination

Therefore, our design takes one clock cycle to perform the operations in each
iteration of solving system of linear equations. In the end, it takes only 12 clock
cycles to solve a system of linear equations where the matrix size is 12× 12.

3.6 Designs of Affine Transformations and Polynomial Evaluations

L1
−1: k24 → k24 and L2

−1: k42 → k42 affine transformations are computed by
invoking vector addition and vector-multiplication over a finite field. Two-layer
Oil-Vinegar constructions including 24 multivariate polynomials are evaluated by
invoking multiplication over a finite field. Thus multiplication over a finite field is

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 239

Table 2. Number of Multiplications in L1
−1, L2

−1 Affine Transformations and Poly-
nomial Evaluations

Components Number of multiplications

L1
−1 transformation 576

The first 12 polynomial evaluations 6324
The second 12 polynomial evaluations 15840

L2
−1 transformation 1764

Total 24504

the most time-consuming operation in these computations. Table 2 summarizes
the numbers of multiplications in two affine transformations and polynomial
evaluations. The number of multiplications of the components of polynomial
evaluations is summarized in Table 3.

Table 3. Number of Multiplications in Components of Polynomial Evaluations

The first layer The second layer

ViOj 2448 4320
ViVj 3672 11160
Vi 204 360

Total 6324 15840

4 Implementations and Experimental Results

4.1 Overview of Our Implementation

Our design is programmed in VHDL and implemented on a EP2S130F1020I4
FPGA device, which is a member of ALTERA Stratix II family. Table 4 summa-
rizes the performance of our implementation of Rainbow signature measured in
clock cycles, which shows that our design takes only 198 clock cycles to generate
a Rainbow signature. In other words, our implementation takes 3960 ns to gen-
erate a Rainbow signature with the frequency of 50 MHz. All the experimental
results mentioned in this section are extracted after place and route.

Table 4. Running Time of Our Implementation in Clock Cycles

Steps Components Clock cycles

1 L1
−1 transformation 5

2 The first 12 polynomial evaluations 45
3 The first round of solving system of linear equations 12
4 The second 12 polynomial evaluations 111
5 The second round of solving system of linear equations 12
6 L2

−1 transformation 13
Total 198

240 S. Tang et al.

4.2 Implementation of Multiplier, Partial Inverter and LSEs Solver

Our multipliers and partial inverter can execute a multiplication and partial
multiplicative inversion over GF (28) within one clock cycle respectively. As
mentioned in Section 3.5, the critical path of each iteration of optimized Gauss-
Jordan elimination includes two multiplications and one addition. Since there ex-
ist some overlaps in two serial multiplications, one iteration of optimized Gauss-
Jordan elimination can be computed in 20 ns with one clock cycle. Therefore, it
takes 12 clock cycles to solve a system of linear equations of matrix size 12× 12,
which is 240 ns with a frequency of 50 MHz.

Table 5. FPGA Implementations of the Multiplier, Partial Inverter and Optimized
Gauss-Jordan Elimination over GF (28)

Components Multiplier Partial inverter Gauss-Jordan elimination

Combinational ALUTs 37 22 21718
Dedicated logic registers 0 0 1644

Clock cycles 1 1 12
Running time (ns) 10.768 9.701 240

Table 5 is extracted after place and route of multiplication, partial multi-
plicative inversion and optimized Gauss-Jordan elimination over GF (28). Three
different kinds of cells included in our proposed architecture have been described
and their resource consumptions are given in Table 6.

Table 6. The Resource Consumptions for Each Cell in the Proposed Architecture for
Solving System of Linear Equations

Cell Use Two-input multiplier Three-input multiplier Adder

I cell Partial inversion 0 2 0
N cell Normalization 1 1 0
E cell Elimination 0 2 1

4.3 Implementation of Transformations and Polynomial Evaluations

The affine transformations L1
−1 and L2

−1 invoke vector addition and matrix-
vector multiplication over GF (28). Table 7 shows that two affine transformations
take 18 clock cycles, which is 360 ns with a frequency of 50 MHz, where the sec-
ond and fourth columns are the performance of vector additions using L1 offset
and L2 offset respectively and the third and fifth columns are the performance of
matrix-vector multiplications using the matrixes of L1

−1 and L2
−1 respectively.

Table 8 illustrates that polynomial evaluations takes 156 clock cycles, which is
3120 ns with a frequency of 50 MHz, where the second, third and fourth columns
are the performances of components of multivariate polynomials, respectively.

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 241

Table 7. Clock Cycles and Running Time of Two Affine Transformations

Components L1 offset L1
−1 L2 offset L2

−1 Total

Clock cycles 1 4 1 12 18
Running time (ns) 20 80 20 240 360

Table 8. Clock Cycles and Running Time of Polynomial Evaluations

Components ViOj ViVj Vi Total cycles Total time

The first layer 17 26 2 45 900 ns
The second layer 30 78 3 111 2220 ns

Note here that our implementation focuses solely on speeding up the signing
process, and, in terms of area, we compute the size in gate equivalents (GEs),
about 150,000 GEs, which is 2-3 times the area of [8].

5 Comparison with Related Works

We compare the implementations of solving system of linear equations and
Rainbow signature generation with related works by the following tables, which
clearly demonstrate the improvements of our new implementation.

Table 9. Comparison of Solving System of Linear Equations with Matrix Size 12× 12

Scheme Clock cycles

Original Gauss-Jordan elimination 1116
Original Gaussian elimination 830

Wang-Lin’s Gauss-Jordan elimination [12] 48
B. Hochet’s Gaussian elimination [13] 47

A Bogdanov’s Gaussian elimination [11] 24
Implementation in this paper 12

Table 10. Performance Comparison of Signature Schemes

Scheme Clock cycles

en-TTS [5] 16000
Rainbow (42,24) [9] 3150

Long-message UOV [9] 2260
Rainbow [8] 804

Short-message UOV [9] 630
This paper 198

242 S. Tang et al.

6 Conclusions

We propose a new optimized hardware implementation of Rainbow signature
scheme, which can generate a Rainbow signature with only 198 clock cycles, a
new record in generating digital signatures.

Our main contributions include three parts. First, we develop a new parallel
hardware design for the Gauss-Jordan elimination, and solve a 12×12 system of
linear equations with only 12 clock cycles. Second, a novel multiplier is designed
to speed up multiplication of three elements over finite fields. Third, we design
a novel partial multiplicative inverter to speed up the multiplicative inversion
of finite field elements. Through further other minor optimizations of the paral-
lelization process and by integrating the major optimizations above, we build a
new hardware implementation, which takes only 198 clock cycles to generate a
Rainbow signature, four times faster than the 804-clock-cycle Balasubramanian-
Bogdanov-Carter-Ding-Rupp design [8] with similar parameters. Our implemen-
tation focuses solely on speeding up the signing process not area utilization.

The optimization method of three-operand multiplier, partial multiplicative
inverter, and LSEs solver proposed can be further applied to various applications
like matrix factorization, matrix inversion, and other multivariate PKCs.

Acknowledgement. This work is supported by National Natural Science Foun-
dation of China under Grant No. 61170080 and 60973131, and supported by
GuangdongProvinceUniversities andColleges PearlRiver Scholar Funded Scheme
(2011). This paper is also supported by the Fundamental Research Funds for the
Central Universities of China under Grant No.2009ZZ0035 and No.2011ZG0015.

References

1. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM Review 41(2), 303–332 (1999)

2. Ding, J., Schmidt, D.: Multivariate public key cryptosystems. In: Advances in
Information Security, vol. 25, Springer, Heidelberg (2006)

3. Ding, J., Schmidt, D.: Rainbow, a New Multivariable Polynomial Signature
Scheme. In: Ioannidis, J., Keromytis, A.D., Yung, M. (eds.) ACNS 2005. LNCS,
vol. 3531, pp. 164–175. Springer, Heidelberg (2005)

4. Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: High-Speed Signatures on a Low-Cost
Smart Card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156,
pp. 371–385. Springer, Heidelberg (2004)

5. Yang, B.-Y., Cheng, C.-M., Chen, B.-R., Chen, J.-M.: Implementing Minimized
Multivariate PKC on Low-Resource Embedded Systems. In: Clark, J.A., Paige,
R.F., Polack, F.A.C., Brooke, P.J. (eds.) SPC 2006. LNCS, vol. 3934, pp. 73–88.
Springer, Heidelberg (2006)

6. Chen, A.I.-T., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M., Yang, B.-Y.: Practical-
Sized Instances of Multivariate PKCs: Rainbow, TTS, and �IC-derivatives. In:
Buchmann, J., Ding, J. (eds.) PQCrypto 2008. LNCS, vol. 5299, pp. 95–108.
Springer, Heidelberg (2008)

High-Speed Hardware Implementation of Rainbow Signature on FPGAs 243

7. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H.,
Lee, F.Y.-S., Yang, B.-Y.: SSE Implementation of Multivariate PKCs on Modern
X86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48.
Springer, Heidelberg (2009)

8. Balasubramanian, S., Bogdanov, A., Rupp, A., Ding, J., Carter, H.W.: Fast mul-
tivariate signature generation in hardware: The case of Rainbow. In: 16th Inter-
national Symposium on Field-Programmable Custom Computing Machines, pp.
281–282 (April 2008)

9. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-Area Optimized Public-
Key Engines: MQ-Cryptosystems as Replacement for Elliptic Curves? In: Oswald,
E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg
(2008)

10. Mastrovito, E.: VLSI Designs for Multiplication over Finite Fields GF (2m). In:
Huguet, L., Poli, A. (eds.) AAECC 1987. LNCS, vol. 356, Springer, Heidelberg
(1989)

11. Bogdanov, A., Mertens, M.C., Paar, C., Pelzl, J., Rupp, A.: A parallel hardware
architecture for fast Gaussian elimination over GF (2). In: 14th Annual IEEE Sym-
posium on Field-Programmable Custom Computing Machines, pp. 237–248. IEEE
(2006)

12. Wang, C.-L., Lin, J.-L.: A systolic architecture for computing inverses and divisions
in finite fields GF (2m). IEEE Transactions on Computers 42(9), 1141–1146 (1993)

13. Hochet, B., Quinton, P., Robert, Y.: Systolic Gaussian elimination over GF (p)
with partial pivoting. IEEE Transactions on Computers 38(9), 1321–1324 (1989)

14. Ding, J., Yang, B.-Y., Chen, C.-H.O., Chen, M.-S., Cheng, C.-M.: New Differential-
Algebraic Attacks and Reparametrization of Rainbow. In: Bellovin, S.M., Gennaro,
R., Keromytis, A.D., Yung, M. (eds.) ACNS 2008. LNCS, vol. 5037, pp. 242–257.
Springer, Heidelberg (2008)

	High-Speed Hardware Implementation of
Rainbow Signature on FPGAs
	Introduction
	Background
	Definitions
	Overview of Rainbow Scheme

	Proposed Hardware Design for Rainbow Signature
	Overview of the Hardware Design
	Choice of Irreducible Polynomial for the Finite Field
	Efficient Design of Multiplication of Three Elements
	Efficient Design of Partial Multiplicative Inversion
	Optimized Gauss-Jordan Elimination
	Designs of Affine Transformations and Polynomial Evaluations

	Implementations and Experimental Results
	Overview of Our Implementation
	Implementation of Multiplier, Partial Inverter and LSEs Solver
	Implementation of Transformations and Polynomial Evaluations

	Comparison with Related Works
	Conclusions
	References

