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Abstract—In this paper, we present a new algorithm to solve
algebraically the following lattice-related problems:

1) the small integer solution (SIS) problem under the condition:
if the solution is bounded by an integer β in l∞ norm, which
we call a bounded SIS (BSIS) problem, and if the difference
between the row dimension n and the column dimension m of
the corresponding basis matrix is relatively small with respect
the row dimension m;

2) the learning with errors (LWE) problems under the con-
dition: if the errors are bounded – the errors do not span the
whole prime finite field Fq but a fixed known subset of size D
(D < q), which we call a learning with bounded errors (LWBE)
problem.

We will show that we can solve these problems with polynomial
complexity.

I. INTRODUCTION

Recently, lattice-based cryptosystems have attracted a lot of
attentions. One well known problem in the area is the Small
Integer Solution (SIS) problem, which is closely related to the
provable security property of certain class of problems with
average-case to worst-case reduction. There are arguments
that the SIS problem is very hard due to its connection with
the worst-case lattice problems such as SIVP (the shortest
independent vectors problem).

SIS problem can be described as follows.
Let q be a prime number and A ∈ Zn×m

q , where A is chosen
from a uniform distribution over Zn×m

q .

Λ⊥q (A) = {~x ∈ Zm : A~x ≡ ~0 ∈ Zn (mod q)} is an m-
dimensional lattice. The SIS is to find a vector ~v ∈ Λ⊥q (A)
with ‖~v‖p ≤ β.

Here, we have key parameters n, m q, p and β.
In this paper, we will first present a new algorithm to solve

a subclass of the SIS problems, which, we call, a bounded SIS
(BSIS) problems, namely the case where

p = ∞, 2β + 1 < q

and each component of the solution vector ~v are all bounded
by the integer β (l∞ norm), and if

m > or ≈ Q(m− n, D),

where
D = 2β + 1 < q,

Q(y) =
(

D

y + D

)
=

(y + D)!
D!(y − 1)!

.

Here Q(y) is the number of monomial ( including 1) in
the polynomial ring Fq[x1, ..., xy] when D is less than q.

Therefore the number of monomials (excluding 1) is exactly
Q(y)− 1.

Note here that a vector is l∞ bounded does not at all mean
that it is lp bounded for a fixed p and p 6= ∞.

We show that we can solve this problem with polynomial
complexity in O(m3).

We would remark here that our algorithm also works in the
case where the solution component are not small integers but
rather integers in a fixed small subset of size β. Clearly, here
we exclude the case q = 2.

Another problem we will study is the Learning with Errors
(LWE) problem, introduced by Regev in 2005 [4]. It is a
problem closely related to the SIS problem. It is also used in
cryptographic constructions with some good provable secure
properties and the main claim is that it is as hard as certain
worst-case lattice problems.

LWE problem can be described as follows.
First, we have a parameter n, a prime modulus q , and an

”error” probability distribution κ on the finite field Fq with q
elements.

Let ΠS,κ on Fq be the probability distribution obtained by
selecting an element A in Fn

q randomly and uniformly, choos-
ing e ∈ Fq according to κ, and outputting (A,< A, S > +e),
where + is the addition that is performed in Fq.

An algorithm solves LWE with modulus q and error dis-
tribution κ, if, for any S in Fn

q , with an arbitrary number
of independent samples from ΠS,κ, it outputs S (with high
probability).

In the case q = 2, this problem corresponds to the learning
parity with noise (LPN) problem.

There are several ways to solve this family of problems.
One naive way to solve LWE is through a maximum likelihood
algorithm by directly solving about O(n) equations. This leads
to an algorithm that uses only O(n) samples, and runs in
time 2O(nlogn). There are other similar algorithms with similar
complexity. A more sophisticated algorithm is developed by
Blum, Kalai, and Wasserman [2] , and it requires 2O(n)

samples and time. This algorithm is based on the method to
find a special small set of equations among 2O(n) equations
to solve the problem. The Blum et al. algorithm is the best
known algorithm for the LWE problem in general, which is
related to the fact that the best known algorithms for lattice
problems require 2O(n) time.

On the theory side, there are again arguments that the
LWE problem is very hard due to the complexity of current
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algorithms and due to the connection of LWE problems with
various known hard problems such as the LPN problem,
and the worst-case lattice problems including GAPSVP (the
decision version of the shortest vector problem) and SIVP (the
shortest independent vectors problem). It is even considered
to be a hard problem for quantum computers.

We will present a similar new algorithm to solve a subclass
of the LWE problems, which, we call, the learning with
bounded errors (LWBE) problems, namely the errors from the
queries do not span the whole finite field but a fixed known
subset of size D (D < q). We show that we can solved this
problem with computation complexity O(n3D) and O(nD)
queries.

This paper is organized as follows. In the next section,
we will present the algorithm for the BSIS problem and its
complexity analysis. In the third section, we will present the
algorithm for the BLWE problem and its complexity analysis.
We will present the conclusion in the end.

II. THE NEW ALGORITHM FOR THE BSIS PROBLEM

Let us first define BSIS problem precisely.

A. The BSIS

BSIS problem is given as follows.
There are 3 parameter n, m, a prime modulus q, and a fixed

positive integer β and 2β + 1 < q.
The BSIS problem is to find a vector ~v ∈ Λ⊥q (A) with

‖~v‖∞ ≤ β, where A ∈ Zn×m
q , is chosen from a uniform

distribution over Zn×m
q , and

Λ⊥q (A) = {~x ∈ Zm : A~x ≡ ~0 ∈ Zn (mod q)},

which can be viewed as an (m-n)-dimensional lattice.

Here, let us add our first additional assumption that the
matrix A is row independent, if not, we can always use a
Gaussian to make the rows linearly independent.

From now on, let us assume that n < m.
Also for the simplicity, the problem we will look into is a

subclass of the BSIS problems, namely we require that n−m
is relatively small which is defined as:

m > or ≈ Q(m− n, D).

In the case D = 2, this means that

m− n ≈ 2
√

m;

and in the case of D = 3,

m− n ≈ 6 3
√

m.

B. The new algorithm

Clearly the vector ~v is a short solution to the equation:

A~(x) = 0.

where

~x = (x1, x2, ·, ·, ·, xn)t.

Since we know that ~v is bounded in the l∞ norm β. Then we
immediately have that

j=β∏
j=−β

(xi − j) = 0. (1)

This is a set of m degree D equations with m variables.
Then we also have a set of linear equations

AX = 0,

which is also a set of linearly independent equations.
For this set of linear equations, we can perform Gaussian

elimination, and then we substitute these equations into the
set of m degree D equations.

Then we have a set of m degree D equations with only now
m− n variables.

1) If m > Q(m − n, D), then we can perform a standard
linearization, namely we treat each monomial as an
independent variable and by solving a set of linear
equations, we should be able to find the solution we are
looking for, and the complexity is roughly O(m3). If it
does not work , we will do as in the case below, namely
increase the degree by 1 using partial enlargement.

2) If m ≈ Q(m − n, D), then we can perform a partial
enlargement as in [3], to produce a larger set of more that
Q(m−n, D+1) degree less or equal to D+1 equations
by multiplying each of equations by monomials of
degree 1, then we can solve it by linearization, and the
complexity is roughly O(m3+3/D).

By linearization, we mean that we assign each monomial
of x1, .., xm−n ( not including 1) a new variable yi and the
number of monomial is exactly Q− 1 and we assign xi to be
yQ−n+i−1.

Then this linearization will produce a new set of linear
equations in the form of

L× Y = B,

where

Y = (y1, y2, ·, ·, ·, yQ−1)t

and L is a Q′×(Q−1) matrix and B a constant vector, where
Q′ is the number of equations we have.

We then solve the linear equation

LY = B

and the output (yQ−(m−n)−1, ..., yQ−1) gives the solution ~v
and we end the algorithm.

C. Analysis of the Algorithm and Complexity

One can see easily that the success of the algorithm depends
on if we can solve the linear equation:

LY = B,
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which comes from the linearization of the set of m polynomial
equations of degree D with m− n variables.

Since the entries of the matrices follows certain almost
uniformly distribution, it is not unreasonable to assume that
the matrix from those m nonlinear equations is quite generic
and its coefficients are somewhat randomly and uniformly
distributed. In this case, it is not at all difficult to deduce that
we have a very good probability to succeed at degree D or
for sure we will succeed in degree D + 1 in the linearization
solving step.

In all the extensive experiments, (with relative large q and
D = 3 ), we have never failed. Therefore the conclusion is
that the new algorithm works nearly 100 percent correctly.

Now let us look at the complexity. It is clear that the matrix
size of the linearization step is either m, if we solve at degree
D or the size of roughly m× D

√
m, if we solve at degree D+1.

Then the complexity should be either O(m3) or O(m3+3/D).
Therefore the complexity is for sure polynomial in m.
On the other hand, surely the biggest memory requirement

is to store the matrix associate with linearization, which is of
the size roughly O(m2).

Then one may ask about the case when m − n is large,
for example, in the case of NTRU, where the associated SIS
problem is the case m = 2n. In such a case, we can use
some of the polynomial solving algorithms such as Groebner
basis or MXL algorithms [3], the complexity is surely expected
to be much higher and we do not expect to solve such a
problem easily using directly our algorithm. The details will
be discussed further a subsequent paper.

Another remark we have is that our algorithm is designed
to solve a subclass of the SIS problem, but we can easily
transform it into an algorithm of a generic short vector
problem, where the short vector is bounded by a l∞ norm
of size β, and the conclusion, we can draw here, is that the
solver does not really depend on the distribution of component
of the short vector. Similarly we can conclude here that if the
dimension of the lattice is relative small compared with the
total dimension of the space and it is l∞ bounded, then this is
an easy problem just like the problem we solve in this paper,
since they are equivalent.

III. THE NEW ALGORITHM FOR THE BLWE PROBLEM

Let us first define LWBE problem.

A. The LWBE

LWBE problem is given as follows.
There are a parameter n, a prime modulus q, and a bounded

”error” probability distribution κ on the finite field Fq with q
elements such that there are only D (and D < q) elements
whose distribution probability from κ is not zero while the
rest are all zero.

Let ES = {e1, .., eD} be the set of elements whose
probability in the distribution κ is not zero and we call this
set the error set. This set could include the zero element in Fq

and not necessarily.

Let ΠS,κ on Fq be the probability distribution obtained by
selecting an element A in Fn

q randomly and uniformly, choos-
ing e ∈ Fq according to κ, and outputting (A,< A, S > +e),
where additions are performed in Fq.

An algorithm that solves LWBE with modulus q and error
distribution κ, if, for any S in Fn

q , with an arbitrary number
of independent samples from ΠS,κ, it outputs S (with high
probability).

Surely we first conclude this problem excludes the case that
q = 2, since the error can only be 1.

The main motivation to consider this problem comes from
the consideration that often in the lattice related problems, the
short vector ( or the ’error’) are often select mainly from the
small set {1,−1} as in the NTRU case.

B. The new algorithm

Let
S = (x1, x2, ·, ·, ·, xn)t.

Let

Q =
(

D

n + D

)
=

(n + D)!
D!(n− 1)!

,

which is the number of monomial ( including 1) in the poly-
nomial ring Fq[x1, ..., xn] when D is less than q. Therefore
the number of monomials (excluding 1) is exactly Q− 1.

For a fixed D, clearly Q is of the class O(nD).

1) Step 1. Queries
We will make Q′ = Q + O(n) queries.
For the i-th query, we shall derive a linear equation that∑

ai,jxj = bi,

where bi carries the errors. Therefore it is only proba-
bilistically true.
For each such linear equation, we will produce the
degree D equation:

D∏
k=1

(
∑

ai,jxj − bi + ek) = 0. (2)

We collect those degree D equations to form a new set
we call C.

Note here that D needs to be less than q, otherwise
the equation above will be totally trivial, namely the
so-called field equations:

xq
i = xi.

2) Step 2. Linearization
We linearize the set of equations C such that we assign
each monomial of x1, .., xn (not including 1) a new
variable yi and the number of monomial is exactly Q−1
and we assign xi to be yQ−n+i−1.
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Then this linearization will produce a new set of linear
equations in the form of

L× Y = B,

where

Y = (y1, y2, ·, ·, ·, yQ−1)t

and L is a Q′× (Q− 1) matrix and B a constant vector
3) Step 3. Solving the linear equation

LY = B

and the output (yQ−n−1, ..., yQ−1) gives the solution S
and we end the algorithm.

Note here that we have more rows than columns in L.

If we can not find the solution (there are too many
depend equations), we make another R (of size O(n))
queries to derive a new set of linear equations∑

a′i,jxj = b′i,

and produce another R degree D equation:

D∏
k=1

(
∑

a′i,jxj − bi − ek) = 0. (3)

Then we amend these equation to C and then go to Step
2 again.

The reason that Step 2 works is very obvious since we know
that one of the linear factors of the polynomial

∏D
k=1(ai,jxj−

bi + ek) must be zero since it covers all possible errors.

The key point is that the degree D equations in C are
precise equations and therefore 100 percent correct unlike the
linear equations. This fundamental idea behind this method is
the same as that is used in [1], namely to use interpolation
formula to even out the noise to derive a set of precise
equations

IV. A TOY EXAMPLE

We will do a example over GF (5).
Let n=2.
Let us assume that our error set is ES = (0, 1) and in this

case D = 2. This means the error e can only be 1 ( or 0 – no
error).

We also have

Q = C(
(

D + n

D

)
) = C(

(
2

2 + 2

)
) = 6.

In this case, let us assume that we make 6 queries and the
query vectors are randomly selected as


(1, 1)
(3, 2)

(−1, 3)
(1,−1)
(2− 1)
(3,−1)


Then query results are given as

W = (1, 2, 2, 0, 1, 3)t.

The corresponding probabilistic linear equations can be
written as the set:

(x1 + x2 − 1) = 0
(3x1 + 2x2 − 2) = 0
(−x1 + 3x2 − 2) = 0

(x1 − x2) = 0
(2x1 − x2 − 1) = 0
(3x1 − x2 − 3) = 0,


which are the probabilistically true.

From this, because the error set is {0, 1}, we can derive the
corresponding quadratic (d=2) equations as:

(x1 + x2 − 1)(x1 + x2) = 0
(3x1 + 2x2 − 2)(3x1 + 2x2 − 1) = 0
(−x1 + 3x2 − 2)(−x1 + 2x2 − 1) = 0

(x1 − x2)(x1 − x2 + 1) = 0
(2x1 − x2 − 1)(2x1 − x2) = 0

(3x1 − x2 − 3)(3x1 − x2 − 2) = 0,


which are 100 percent true.
Now we assign the linearization variables as:

Y =


y1

y2

·
·
·
y5

 =


x2

1

x1 ∗ x2

x2
2

x1

x2


Then we derive the linear equation:

L× Y = B
1 2 1 4 4
4 2 4 1 4
1 0 1 3 3
1 3 1 1 4
4 1 1 3 1
4 4 1 0 0

×


y1

y2

·
·
·
y5

 =


0
2
2
0
0
1

 .

This gives us the solution that:
y1

y2

·
·
·
y5

 =


4
1
4
2
3

 .
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From this we derive that(
y4

y5

)
=

(
x1

x2

)
=

(
2
3

)
.

Therefore

S =
(

2
3

)
Therefore the correct query result should be

W̄ = (0, 2, 2,−1, 1, 3)t.

The error vector then is given as

Ē = (1, 0, 0, 1, 0, 0)t,

namely only the first and the third queries carry errors and the
rest are correct.

A. Analysis of the Algorithm and Complexity

One can see easily that the success of the algorithm depends
on if we can solve the linear equation:

L× Y = B.

Since the query vectors Ai are randomly and uniformly
chosen, it is not unreasonable to assume that coefficients of the
matrix L are somewhat randomly and uniformly distributed.
In this case, it is not at all difficult to deduce that the random
matrix L has a very high probability (roughly 1 − 1/q) ) to
be of rank Q − 1 and therefore we can derive a solution. In
all the extensive experiments (thousands and q > 3 ), we have
never failed in the first round of our algorithm. Therefore the
conclusion is that algorithm works nearly 100 percent.

In the case of toy example in section above, if we select
from the 6 queries we have 5 queries, which is minimum we
need, we can see that among all 6 choices, all but one also
are sufficient to solve the problem. The only one that does
not work is the case we choose the queries 1,2,4,5,6. This
confirms our argument above.

Now let us look at the complexity. It is clear that the matrix
size of L if roughly

(nD/D!)2

and therefore the complexity of solving LY = B is roughly

n3D/(6×D!).

Therefore, we conclude that for any fixed D, we have poly-
nomial time solver in terms of n.

On the other hand, surely the biggest memory requirement
is to store the matrix L, which is of the size

(nD/D!)2,

and could be a serious problem if D and n is large. However
in this case, we can use some of the polynomial solving
algorithms such as MXL algorithms [3] to make fewer queries
but using more time to solve it, which we are now working
on.

Another remark we have is that our algorithm does not
really depend on the distribution of the errors on the error
set.

V. CONCLUSION

In this paper, we first present a new algorithm to solve a
subclass of the small integer solution (SIS) problem, if the
solution is bounded by an integer β in l∞ norm, which we
call a bounded SIS (BSIS) problem, and and if the difference
between the row dimension and the column dimension of the
corresponding basis matrix is relatively small with respect
the row dimension, the complexity is polynomial in m, the
dimension of the solution vector. In addition, we also present
a new algorithm to solve the learning with bounded errors
(LWBE) problems, whose errors are bounded – the errors do
not span the whose finite field but a fixed know subset of size
D, with complexity O(nD).

This algorithm, we believe, present a new direction to look
at the security of the cryptographic algorithms that are related
to the SIS problem, in particular the NTRU cryptosystems
and the SWIFT family of algorithms and the security of the
cryptographic algorithms that are related to the LWE problem.
We hope that we can develop new attack tools along this line
to really enhance exiting attacks. One particular interesting
direction is to use more sophisticated algebraic solvers like in
[3] to enhance our algorithms.
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