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ABSTRACT
In this paper, we introduce a new method to avoid zero re-
ductions in Gröbner basis computation. We call this method
LASyz, which stands for Lineal Algebra to compute Syzy-
gies. LASyz uses exhaustively the information of both prin-
cipal syzygies and non-trivial syzygies to avoid zero reduc-
tions. All computation is done using linear algebra tech-
niques. LASyz is easy to understand and implement. The
method does not require to compute Gröbner bases of sub-
sequences of generators incrementally and it imposes no re-
strictions on the reductions allowed. We provide a complete
theoretical foundation for the LASyz method and we describe
an algorithm to compute Gröbner bases for zero dimensional
ideals based on this foundation. A qualitative comparison
with similar algorithms is provided and the performance of
the algorithm is illustrated with experimental data.
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1. INTRODUCTION
Gröbner bases have become the most important tool of

applied algebraic geometry. Efficient computation of Gröb-
ner bases has been the subject of abundant research, ever
since the original algorithm was proposed by Buchberger in
1965 [3]. Progress has thrust applications, boosting atten-
tion, and subsequent progress.

In a polynomial ring R, a Gröbner basis for an ideal I is
a particularly useful basis that can be computed from any
set of generators for I. A Gröbner basis solves the ideal
membership problem by providing standard representatives
for the classes of the quotient ring R/I. Most algorithms to
compute Gröbner bases start from any given basis for I and
enlarge it with other elements from I until certain saturation
condition is met.

Advancement in Gröbner basis computation has been
driven, among others, by two ideas, reducing polynomials
using linear algebra techniques, and avoiding zero reduc-
tions —linearly dependent polynomials. The relation be-
tween Linear algebra and Gröbner bases was first studied by
Lazard [15] and later transformed into practical algorithms
like F4 [11], XL [7] or MGB [5]. Zero reductions were first
studied by Buchberger [4], who proposed criteria to iden-
tify s-polynomials that reduce to zero, and later by Möller,
Mora and Traverso [18], who proposed computing simulta-
neously a basis for the module of syzygies —algebraic rela-
tions among polynomials. Although impractical, the latest
approach laid the foundation for practical implementations
like Faugère’s F5 [12].

We propose a new method to avoid zero reductions by
keeping a basis for the module of syzygies and using linear
algebra techniques. We call this method LASyz, which stands
for Lineal Algebra to compute Syzygies. LASyz uses known
syzygies to avoid redundant computation in an exhaustive
fashion. The use of linear algebra techniques for both poly-
nomial reduction and syzygy reduction makes LASyz prac-
tical. LASyz procedes one degree at a time. Syzygies found
at degree d are multiplied by monomials to predict syzygies
at degree d+ 1. Principal syzygies are assembled and group
together with other known syzygies. All known syzygies
are row reduced to avoid redundancies and they are used
to discard redundant polynomials. LASyz is easy to under-
stand and implement, and its simplicity makes transparent
the complexity of both reduction and syzygy bookkeeping.
While some of the previous attempts to prevent zero reduc-
tions compute Gröbner bases incrementally by including one
polynomial at a time, LASyz does not require incremental
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computation and it imposes no restrictions on the reduc-
tions allowed, offering more flexibility.

The paper is organized as follows. In Section 2, we pro-
vide a complete theoretical foundation for LASyz, including
a formal statement of the algorithm and results that prove
its correctness and effectiveness. In Section 3, we present
a toy example that illustrates LASyz proceeding. Then, in
Section 4, we describe a Gröbner bases algorithm based on
LASyz. In Section 5, LASyz is compared with previous work
from a qualitative point of view, and in Section 6, experi-
mental results are presented and analyzed. In Section 7, we
state conclusions and propose future work.

2. THEORETICAL FOUNDATION
Let k be a field and R = k[x1, . . . , xn] be the ring of

polynomials over k on n variables. For d ≥ 0 let Rd be the
additive subgroup of homogeneous polynomials of degree d,
so that R = ⊕∞d=0Rd is the usual gradation. Let M be the
set of all monomials and Md the set of monomials of degree
d. Let P be a sequence of m polynomials. Let α ∈ Rm

be an m-tuple of polynomials. We call leading entry of α
with respect to P (LEP (α) for short) the polynomial in P
corresponding to the first non-zero entry of α. For example,
if P = {p1, p2, p3} and α = (0, xy−yz, xyz), then LEP (α) =
p2. We often omit the reference to P when it is understood
from the context.

Define the R-module homomorphism vP : Rm → R by
vP ((αp)p∈P ) =

∑
p∈P αpp. A syzygy of P is any m-tuple

α = (α1, . . . , αm) in the kernel of vP , and we denote by
Syz(F ) the R-module of all syzygies. For f, g ∈ P , with f 6=
g, we denote by πf,g the syzygy gEf−fEg, where Ef denotes
the canonical unit vector with a single non-zero entry 1 in
the position corresponding to f . We call πf,g a principal
syzygy of P (also known as trivial syzygy) and denote by
pSyz(P ) the R-module generated by all principal syzygies.

For the rest of this section, assume that for all p ∈ P , p is
homogeneous of degree dp. Then, Rm is a graded R-module
with degree d elements defined by

Rmd := {(αp)p∈P ∈ Rm | for p ∈ P, αp = 0 or αp ∈ Rd−dp} .

With Syzd(P ) := Syz(P ) ∩ Rmd , Syz(P ) = ⊕∞d=0 Syzd(P )
is a graded module and with pSyzd(P ) := pSyz(P ) ∩ Rmd ,
pSyz(P ) = ⊕∞d=0 pSyzd(P ) is also a graded module.

Syzygies have a relative nature that is exploited by the
proposed LASyz method. For example, suppose f1, f2, g1,
g2, h1, h2 are polynomials such that f1g1h1 + f2g2h2 = 0.
We can say that (f1g1, f2g2) is a syzygy of (h1, h2) or we
can say that (f1, f2) is a syzygy of (g1h1, g2h2). We are
interested in a particular map between modules of syzygies.
Consider the family of extension sets defined for d ≥ 0 by

Pd := {tp | t ∈ M, p ∈ P,deg(tp) = d} ,

and

P(d) :=

d⋃
j=0

Pj .

There is a natural surjective k-module homomorphism

σd : Syzd(P(d)) � Syzd(Pd) ,

defined by∑
p∈P(d)

(∑
t∈M

ap,tt

)
Ep 7→

∑
p∈P(d)

∑
t∈M

ap,tEtp ,

where for p ∈ P(d) and t ∈ M, ap,t ∈ k and ap,t 6= 0 implies
deg(tp) = d. The homomorphisms σd provides a systematic
way to transform syzygies between different extension sets.

Notice that degree d syzygies of Pd have scalar entries and
they constitute a vector space. We are particularly inter-
ested in syzygies with only scalar entries, because linear al-
gebra techniques can be used for computing with them. The
set of all syzygies of P with scalar entries will be denoted
by Syz-S(P ). Using this notation, Syzd(Pd) = Syz-S(Pd).

The basic linear algebra procedure that we use can be de-
scribed as follows. Let A be an m×n matrix in k. Consider
the linear map associated with A, LA : km → kn defined by
LA(X) = XA. Suppose we are interested in finding a basis
for the row space of A consisting of a subset of its rows. For
this purpose, we can compute a triangular basis B for the
kernel of LA, and remove from A all rows that correspond
to first non-zero entries of elements in B. If we are given
a-priori a finite subset B of the kernel of LA, we can use it
to reduce the problem, by first row reducing B to echelon
form and removing from A all rows that correspond to first
non-zero entries of elements in B.

Given B ⊆ Syz-S(P ), we call C an echelon form of B if
0 /∈ C, span(B) = span(C) and for α1, α2 ∈ C, α1 6= α2

implies LE(α1) 6= LE(α2).
We describe LASyz as a method to avoid zero reductions

in an XL type algorithm [7]. Starting with a finite set of
polynomials P , we generate, degree by degree, the exten-
sion sets Pd. We discard redundant elements from Pd by
using the linear algebra procedure described above. Known
kernel elements come from two sources, principal syzygies
and redundancies found at previous degrees. We rely on the
relativity of syzygies to obtain as many syzygies as possible
from previous degrees.

Given a basis for the degree d− 1 syzygies of Pd−1, Algo-
rithm 1 computes a basis for the degree d syzygies of Pd.

Algorithm 1 LASyz(P, d,Bd−1)

Require: P is a finite subset of homogeneous polynomials.
Require: Bd−1 is a basis for Syzd−1(Pd−1)
1: A := {σd(x · α) | x ∈ {x1, . . . , xn}, α ∈ Bd−1}
2: B := {σd(πf,g) | f, g ∈ P,deg(fg) = d}
3: C := an echelon form of A ∪B
4: G := Pd \ LE(C)
5: D := a basis for Syz-S(G)
6: Bd := C ∪D
7: return Bd

Note that for f, g ∈ P and s, t ∈ M such that deg(stfg) =
d, σd(π(tf,sg)) = σd(stπ(f,g)), hence, we only need to con-
sider principal syzygies among elements of P and not among
elements in extension sets.

The following lemma explains the use of the leading entries
of C to discard elements from Pd.

Lemma 1. If C is a subset of Syz-S(P ) in echelon form,
then the set P \ LE(C) spans the same space as P does.
Moreover, if C spans Syz-S(P ) then P \LE(C) is a basis for
span(P ).
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Proof. Suppose that P = {p1, . . . , pm} and C = {α1, . . .,
αs}, s ≤ m. By reordering P if necessary and multiply-
ing by appropriate scalars, we can assume without lost of
generality that for i = 1, . . . , s, LE(αi) = pi and that the
i-th entry of αi is 1. Then, for i = 1, . . . , s, pi belongs to
span{pi+1, . . . , pm}. By induction it follows that for i =
1, . . . , s, pi belongs to span{ps+1, . . . , pm}. It follows that
P \ LE(C) = {ps+1, . . . , pm} spans the same space as P
does.

Now suppose that C spans Syz-S(P ). Since for α 6= α′ ∈
C, LE(α) 6= LE(α′), C must be a basis. Further suppose
that there exist bs+1, . . . , bm ∈ k such that

∑m
i=s+1 bipi = 0.

Then
∑m
i=s+1 biei ∈ Syz-S(P ) (ei represents the i-canonical

unit vector of Rm). Since C spans Syz-S(P ) then there exist
c1, . . . , cs ∈ k such that

∑m
i=s+1 biei =

∑s
j=1 cjαj . Looking

at the first entry of the equality we conclude that if s > 0

0 =

(
m∑

i=s+1

biei

)
1

=

(
s∑
j=1

cjαj

)
1

= c1 .

By induction on the entries, we can conclude that for j =
1, . . . , s, cj = 0 hence

∑m
i=s+1 biei =

∑s
j=1 cjαj = 0 and

therefore bs+1 = · · · = bm = 0. This shows that P \ LE(C)
is a basis for span(P ).

We are now ready to prove the main result of this section,
the correctness of LASyz.

Theorem 1. Algorithm 1 computes a basis for the degree
d syzygies of Pd.

Proof. By definition of σd, A∪B is a subset of Syz-S(Pd).
By definition of echelon form, span(C) = span(A ∪ B) and
for α 6= α′ ∈ C, LE(α) 6= LE(α′). Since Syz-S(Pd) is a
vector space over k, C is a subset of Syz-S(Pd). Then, by
Lemma 1, G = Pd \ LE(C) spans the same space as Pd.

Let α ∈ Syzd(Pd). Because C is in echelon form, there
exist β ∈ span(C) such that, for all p ∈ LE(C), the en-
try in α − β corresponding to p is zero. Then, α − β ∈
Syz-S(G) = span(D), and therefore, α ∈ span(Bd), prov-
ing that Bd spans Syzd(Pd). C and D are bases so in order
to show that Bd is a basis it suffices to show that for any
0 6= α ∈ C, and 0 6= β ∈ D, a, b ∈ k, aα + bβ = 0 implies
a = 0 = b. Indeed, because C is in echelon form, for all
p ∈ LE(C), the entry in β corresponding to p is zero and
the entry in α corresponding to p is non-zero, hence a = 0
and therefore b = 0.

We conclude this section with two results that partially
prove the effectiveness of LASyz in keeping track of syzygies.

In Algorithm 1, we look only at degree d syzygies of Pd,
but it is always possible to track them back to the original set
of generators P . For that purpose we define the surjective
k-module homomorphism

ρd : Syzd(P(d)) � Syzd(P )

by ∑
s∈M,p∈P
sp∈P(d)

αspEsp 7→
∑

s∈M,p∈P
sp∈P(d)

αspsEp.

Next theorem demonstrates that principal syzygies are
used effectively by Algorithm 1, in the sense that, if P only
possesses trivial syzygies, then all degree d syzygies of Pd

are caught before Line 5 is executed. It is stated and proved
for regular sequences but it can be adapted for semi-regular
sequences with degree bounded by the degree of regularity.

Theorem 2. If P is a regular sequence of polynomials
then Syz-S(G) = 0, in Algorithm 1.

Proof. It suffices to show that every syzygy of Pd with
scalar entries belongs to the span of C. In such case, by
Lemma 1, G is a basis for span(Pd) hence Syz-S(G) = 0.
Since P is a regular sequence and the polynomials are ho-
mogeneous, pSyz(P ) = Syz(P ).

Let α ∈ Syz-S(Pd). Since, pSyz(P ) = Syz(P ), there exist
at,f,g ∈ k such that

ρd(α) =
∑

f 6=g∈P

∑
t∈M

at,f,gtπf,g ,

where at,f,g 6= 0 implies deg(tfg) = d. Then, applying σd
to both sides of the equality we obtain

α = σd(ρd(α)) =
∑

f 6=g∈P

∑
t∈M

at,f,gσd(tπf,g) .

With A and B as defined in Algorithm 1, we can split the
sum above into two parts, one coming from A and the other
from B.

α =
∑

f 6=g∈P

∑
16=t∈M

at,f,gσd(tπf,g) +
∑

f 6=g∈P

a1,f,gσd(πf,g)

Note that for at,f,g 6= 0 with t 6= 1 there exist x ∈ {x1, . . .,
xn} such that t

x
∈ M thus σd−1( t

x
πf,g) ∈ Syz-S(Pd−1)=

span(Bd−1) hence σd(tπf,g) = σd(xσd−1( t
x
πf,g)) ∈ span(A).

Also, for a1,f,g 6= 0, σd(πf,g) ∈ B. Therefore α ∈ span(A ∪
B) = span(C).

The following theorem shows that syzygies of Pd with
scalar entries account for all syzygies, which justifies focus-
ing only on those.

Theorem 3. If Bd is a basis for Syz-S(Pd) then ρd(Bd)
is a basis for Syzd(P ).

Proof. Let α =
∑
p∈P αpEp ∈ Syzd(P ). Since α is a

degree d syzygy, αp = 0 whenever deg(p) > d. Hence α
can be written as a syzygy of P(d), α

′ =
∑
p∈P(d)

α′pEp with

α′p = αp whenever p ∈ P and α′p = 0 otherwise.
Consider σd(α

′) ∈ Syz-S(Pd). Because Bd is a basis for
Syz-S(Pd), there exist Aβ ∈ k such that

σd(α
′) =

∑
β∈Bd

Aββ .

Applying the homomorphism ρd on both sides of the equality
we obtain

α = ρd(σd(α
′)) = ρd

∑
β∈Bd

Aββ

 =
∑
β∈Bd

Aβρd(β) .

This shows that ρd(Bd) generates Syzd(P ).
Now suppose

∑
β∈Bd

Aβρd(β) = 0 for some Aβ ∈ k. Then

0 = σ

∑
β∈Bd

Aβρd(β)

 =
∑
β∈Bd

Aβσ(ρd(β)) =
∑
β∈Bd

Aββ ,

and because Bd is a basis for Syz-S(Pd), it follows that Aβ =
0 for all β ∈ Bd and therefore ρd(Bd) is a basis.
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3. TOY EXAMPLE
We illustrate how LASyz avoids reductions to zero by

means of a simple example. Let

P = {p1 = 22x2 + 4xz + 20y2 + 5yz + 14z2

p2 = 15x2 + 17xy + 7xz + 12y2 + 3yz + 10z2

p3 = x2 + 4xy + 8xz + 16y2 + 18yz + 18z2

p4 = x2 + 7xy + 22xz + 11y2 + 2yz + 10z2},

a set of degree 2 polynomials in the variables x, y, z with
coefficients in GF(23). These polynomials are linearly inde-
pendent. However, the polynomials in P3 are not —

P3 = {xp1, xp2, xp3, xp4, yp1, yp2, yp3, yp4, zp1, zp2, zp3, zp4} .

Using linear algebra over the matrix that represents P3, we
are able to find two linear relations among the polynomials
in P3,

α =
(
1 0 6 18 20 1 2 14 19 20 2 5

)
,

β =
(
0 1 0 8 6 15 12 18 11 11 3 5

)
∈ Syz(P3).

From these, and by multiplying by x, y, z, we can obtain
syzygies among the polynomials in P4. For example, the
syzygy α corresponds to the equation

xp1 + 6xp3 + 18xp4 + 20yp1 + yp2 + 2yp3 + · · ·+ 5zp4 = 0 .

By multiplying it by x we obtain

x2p1+6x2p3+18x2p4+20xyp1+xyp2+2xyp3+ · · ·+5xzp4 = 0 ,

which corresponds to the syzygy of P4

Ex2p1
+6Ex2p3

+18Ex2p4
+20Exyp1+Exyp2+2Exyp3+· · ·+5Exzp4 ,

where Ep denotes the canonical unit vector with a single
non-zero entry 1 in the position corresponding to p. In this
fashion, we can obtain six elements of Syz(P4) corresponding
to xα, xβ, yα, yβ, zα, zβ.

We also know a-priori the principal syzygies of P . For
example, p1Ep2 − p2Ep1 which corresponds to the equation

(22x2 + · · ·+ 14z2)p2 − (15x2 + · · ·+ 10z2)p1 = 0 ,

or equivalently

22x2p2 + · · ·+ 14z2p2 − 15x2p1 − · · · − 10z2p1 = 0 ,

which corresponds to the syzygy of P4

22Ex2p2
+ · · ·+ 14Ez2p2 − 15Ex2p1

− · · · − 10Ez2p1 .

Overall, we have obtained twelve elements of Syz(P4), six
from multiplying elements of Syz(P3) by variables, and six
principal syzygies. Next, we put these twelve vectors on
a matrix and row reduce it to obtain a row echelon form.
Each pivot column corresponds to a redundant element of
P4 revealing redundant the polynomials

x2p1, x
2p2, x

2p3, xyp1, xyp2, xyp3, xzp1, xzp2, xzp3, xp1, xp2 .

We can safely remove them to form a smaller set of gen-
erators for the span of P4. In this fashion we are using
exhaustively the information of both principal syzygies of
P and non-trivial syzygies found at degree three, to avoid
redundancies at degree four.

4. NEW GRÖBNER BASES ALGORITHM
Next, we introduce a new algorithm to compute Gröb-

ner bases of zero-dimensional ideals based on the mutantXL

algorithm [8]. The description is for the ring of boolean
functions

B := R/〈x2
1 − x1, . . . , x

2
n − xn〉 ,

with R = k[x1, . . . , xn] and k the Galois field of order two.
We decided to describe the algorithm for this ring due to its
importance in cryptography and coding theory.
mutantXL can be summarized as follows. Assume a mono-

mial order is fixed and let P be a finite set of elements in
B (usually not homogeneous). mutantXL constructs, one de-
gree at a time, an extension set Pd, linearizes it, computes
an echelon form, and searches for mutant polynomials, i.e.
polynomials of a lower degree than d. If mutants are found,
it extends mutants before constructing the next extension
set Pd+1. The difference between the new algorithm and
mutantXL is the use of LASyz to discard redundant polyno-
mials.

We shall make some precisions in the notation for the
particular ring B and for working with non-homogeneous
polynomials:

1. In the quotient ring B, the degree of a class is de-
fined to be the minimum among the degrees of all rep-
resentatives. In the case of a syzygy, the degree of
α = (αp)p∈P ∈ Syz(P ) is the maximum among the
degrees of the αpp. We denote by Syz(d)(P ) the k-
module of syzygies of P of degree up to d. Note that
this notion of degree does not produce a gradation of
Syz(P ) but only a filtration.

2. Just as in Section 2, we are interested in syzygies with
scalar entries, because they can be computed using
linear algebra. We denote by Syz-S(P ) the k-module
of all syzygies of P with scalar entries. There is a
natural surjective k-module homomorphism

σd : Syz(d)(P(d)) � Syz-S(P(d))

defined by∑
p∈P(d)

(∑
t∈M

ap,tt

)
Ep 7→

∑
p∈P(d)

∑
t∈M

ap,tEtp ,

where for p ∈ P(d) and t ∈ M, ap,t ∈ k, and ap,t 6= 0
implies deg(tp) ≤ d.

3. In the ring B, any p ∈ B satisfies p2 = p. We include
this relations as principal syzygies by extending the
notation πf,g. We denote by πp,p the syzygy (p−1)Ep.

4. For any p ∈ B of degree d, we denote by ph the leading
form of p (the homogeneous part of p of degree d), and
by p−h the rest of the polynomial p− ph.

In Algorithm 2, we spelled out the details of the new Gröbner
bases algorithm which we call LASyzGB.

We now explain the algorithm. The while loop of the al-
gorithm produces, one degree at a time, a set G that spans
P(d). As termination condition, we can use the conditions in
Proposition 3 from [16] which we state below for complete-
ness. This proposition, together with Theorem 1 guarantee
that upon termination LASyzGB returns a Gröbner basis.

70



Algorithm 2 LASyzGB(P )

Require: P is a finite subset of polynomials in B.
1: d := 1
2: B0 := ∅
3: while termination condition do
4: A := {σd(x · α) | x ∈ {x1, . . . , xn}, α ∈ Bd−1}
5: B := A ∪ {σd(πf,g) | f, g ∈ P,deg(fg) = d}
6: repeat
7: C := an echelon form of B ∪ B1 ∪ · · · ∪ Bd−1

8: G := P(d) \ LE(C)
9: D := an echelon form of Syz-S(G)

10: G := G \ LE(D)
11: B := B ∪D
12: for i = 1, . . . , d do
13: G := {g ∈ G | deg(g) = i}
14: E := an echelon form of Syz-S(G

h
)

15: if E 6= ∅ then
16: mutants := vG(E)
17: P := P ∪mutants
18: B := B ∪ E
19: break
20: until mutants = ∅
21: Bd := B
22: d := d+ 1
23: return G

Proposition 1 ([16]). Let G be a finite subset of B

with highest degree D and suppose that the following holds:

1. LM(G) ⊇ LM(MD), and

2. if H := G∪{t · g | g ∈ G, t ∈ M and deg(t) + deg(g) ≤
D+ 1}, there exists H̃, a row echelon form of H, such

that {h ∈ H̃ | deg(h) ≤ D} = G,

then G is a Gröbner basis for the ideal I generated by G.

The set A in Algorithm 2, Line 4, groups syzygies obtained
in previous degrees extended and interpreted as syzygies of
P(d) with scalar entries. The set B in Line 5, appends to A
all principal syzygies of degree d interpreted as syzygies of
P(d) with scalar entries.

The repeat-until loop, constructs the set G and verifies
whether there are any mutant polynomials, in which case it
modifies the set P of original polynomials and reconstructs
G accordingly. Lines 7 to 11 compute syzygies using LASyz

as described in Algorithm 1.
The for loop checks for mutants at each degree i. Note

that if α ∈ Syz-S(G
h
) then vG(α) is a mutant polynomial

of G or zero. In Line 17, the mutant polynomials found
at degree i are appended to the original set of polynomials
P , and in Line 18 the corresponding relations are appended
to the set of syzygies B. If mutants are found the loop is
broken.

5. QUALITATIVE COMPARISON
This is by no means the first attempt to avoid zero re-

ductions in Gröbner basis computation. Remarkable work
precedes us by Buchberger [4], Möller, Mora and Traverso
[18], Faugère [12], among others. It is important to evaluate
from a qualitative point of view where our new approach lies
in this spectrum of algorithms.

Buchberger’s criteria to discard s-polynomials are effec-
tive for avoiding zero reductions and can be efficiently im-
plemented [14]. It has been shown that many more zero re-
ductions can be avoided by a syzygy approach [18]. Möller,
et. al. claim that their approach “covers both of Buch-
berger criteria” and “avoids more superfluous reductions”.
The algorithm proposed here is similar to Möller’s in that
it maintains a subset of the module of syzygies and uses it
to avoid reductions to zero. However, Möller’s algorithm is
not practical, as the authors claim, “The first results show
an ambiguous behavior: many useless pairs are discovered,
but this involves a lot of extra computation, so the execu-
tion time is increased.” LASyz overcomes this problem with
a different way to maintain syzygies. Syzygies are kept in
reference to the original set of generators and computation
is purely based on linear algebra. In this way, all the burden
of syzygy bookkeeping is carried by a sparse linear algebra
package. As Faugère demonstrated with his F4 algorithm,
linear algebra can make a huge impact in the efficiency.

Faugère’s F5 relies on two criteria to avoid zero reductions,
the rewritten criterion and Faugère’s criterion [10]. The for-
mer uses non-trivial syzygies previously detected, but it is
uncertain how effective it is. Faugère’s criterion relies on
principal syzygies and it has been proved to be effective,
but the cost associated still awaits to be fully understood.
The hidden cost of Faugère’s criterion lies is its incremental
nature, which restricts the reductions allowed. We explain
this last point with the aid of MatrixF5, a close relative of
F5 that was first mentioned in [1]. Let P = {p1, . . . , pm} be
homogeneous polynomials of degrees d1, . . . , dm respectively.
Define the sets

Pd,i := {tp | t ∈ M, p ∈ {p1, . . . , pi},deg(tp) = d} .

Faugère’s criterion states that if G is an echelon form of
Pd−di,i−1 and t is a leading monomial of G, then, tpi is
redundant in Pd,i. The problem with the implementation
of this criterion is its incremental nature. It is necessary to
obtain the leading monomials of an echelon form of Pd−di,i−1

in order to avoid syzygies in Pd,i, placing a burden on the
linear algebra procedure. During the reduction of Pd a strict
order must be enforced and only row operations “downward”
are allowed. Such restriction may inhibit the choice of the
most suitable sparse matrix algorithm to compute an echelon
form.

In [13], Gao et. al. propose an incremental Gröbner bases
algorithm called G2V, which offers another way to avoid zero
reductions using information from the module of syzygies.
Given G = {g1, . . . , gm} a Gröbner basis for an ideal I and
any g ∈ R, G2V computes Gröbner bases for 〈I, g〉 and
(I : g) = {u ∈ R | ug ∈ I}. Notice that u ∈ (I : g) implies
that there exist h1, . . . , hm ∈ R such that ug =

∑m
i=1 higi,

so u can be regarded as some kind of signature for the syzygy
(−h1, . . . ,−hm, u) of (g1, . . . , gm, g).

The incremental nature of G2V also acts in detriment of
its efficiency. Besides a restriction on the reductions al-
lowed, G2V also imposes a strict order in the selection of
the pairs. The paper announces a non-incremental version
which shall be very interesting, given the simplicity and ef-
ficiency achieved already by G2V. It is also important to
note that in the execution of G2V, the elements of (I : g)
are not reduced among each other, allowing redundancies
and missing opportunities for discarding zero reductions.

In this context, our proposed non-incremental algorithm
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offers an alternative that is simple, easy to implement an
analyze, that offers a comprehensive treatment of both triv-
ial and non-trivial syzygies and that relies entirely on linear
algebra procedures with no restrictions. The new algorithm
also yields a basis for the module of syzygies.

6. EXPERIMENTAL RESULTS
We have tested LASyz’ performance in avoiding zero re-

ductions and we have compared it with other methods. In
order to illustrate its capabilities and limitations, we present
here details of some experiments. We have implemented the
proposed algorithm for computing Gröbner bases in C++
and in Magma [2]. All experiments were run in a personal
computer equipped with an Intel(R) core(TM) 2 Duo CPU
E6550 @2.33GHz processor, with 2 GB of Ram, and running
Windows XP. The first experiment illustrates the behavior
of the algorithm in presence of non-trivial syzygies and the
second one aims at evaluating the cost of keeping a basis of
syzygies and detecting zero reductions. Two more experi-
ments compare LASyz with Faugère’s F5 algorithm.

6.1 Non-trivial Syzygies Experiment
For the purpose of illustrating the behavior of the algo-

rithm in presence of non-trivial syzygies, we chose polynomi-
als coming from an HFE cryptosystem [19]. The cryptosys-
tem is a random HFE with parameters: size of field q = 2,
extension degree n = 14, degree bound D = 16. The poly-
nomials are the homogeneous degree two part of the pub-
lic key and computations were made modulo 〈x2

1, . . . , x
2
n〉.

Three equations were removed, making this an HFE minus
system.

The results are presented in Table 6.1. The table shows
the number of polynomials produced at each degree by the
new algorithm and by Magma’s implementation of Faugère’s
F4 [2] for comparison.

LASyz

Degree 2 3 4 5
Number of polynomials in Pd 11 154 1001 4004
Number of polynomials used 11 154 935 2436
Dimension of kernel 0 0 46 434
Number of syzygies 66 1568

Faugère’s F4

Number of polynomials used 11 336 1958 4756

Table 1: Comparison in number of polynomials pro-
duced at each degree on an HFE minus system.

The use of less polynomials translates into less memory.
The gain comes from two sources. At degree four, 66 trivial
syzygies allow us to ignore 66 polynomials of the extension
set P4. Also, at this same degree, 46 non-trivial syzygies are
spotted in the kernel of the set P4. Then, we put together the
66 trivial plus the 46 non-trivial for a total of 112 syzygies,
which are extended to degree five by multiplying by each
variable to obtain 112(14) = 1568 syzygies of degree five.
The 1568 syzygies allow us to ignore 1568 polynomials of
the extension set P5.

6.2 Performance Experiment
In order to illustrate the performance of LASyzGB, we used

a random system of 22 polynomial equations in 14 variables
with coefficients in GF(28). We computed a Gröbner basis

for the system using Faugère’s F4 algorithm and the new
proposed algorithm implemented in C++. Because the al-
gorithm to compute row echelon forms is critical for perfor-
mance, and in order to obtain comparable results, we ran
both the proposed algorithm and our own home brew (HB)
implementation of F4 using the same row echelon form al-
gorithm as described in [6]. We also run Magma’s F4 for
reference.

The most time consuming task in both cases is the row
reduction of a large matrix that represents degree five poly-
nomials. Values for those matrices are presented in Table
6.2: number of rows and columns, number of non-zero en-
tries before and after reduction, time and memory used.

Magma F4 HB F4 LASyzGB Syzygy
rows 12413 14011 9086 3234
cols 8184 9782 11508 14938
nnz before 6074177 13183492 1087961 774396
nnz after 14258890 16051461 12961466 12448862
time(sec) 57.109 606.5 424.5 96.86
mem(MB) 60.2 456.1 339.2 241.7

Table 2: Comparison in matrix size time and mem-
ory between new algorithm and F4.

Note that LASyzGB produces less rows but more columns
than F4. The number of non-zero entries before the reduc-
tion takes place is significantly smaller, yet after the reduc-
tion it is comparable. Both the time and memory effort are
lower for the new algorithm.

The right-most column of Table 6.2 shows the same mea-
sures for the matrix that represents the degree five syzygies.
Note that the time and memory efforts for this were rela-
tively small compared to the reduction of the matrix that
represents degree five polynomials.

6.3 Comparison with Faugère’s F5

We chose a smaller system in order to compare LASyz

with available implementations of Faugère’s F5 [12]. We used
a random degree 2 homogeneous overdetermined system of
10 polynomials in 8 variables with coefficients in GF(28).
We computed a Gröbner basis for the system using LASyz

and two different implementations of Faugère’s F5, Stegers’
[20] written for Magma and Eder and Perry’s [9] written for
Singular.

In summary, the execution of Stegers’ F5 reports that 506
polynomials were treated, 65314 pairs were avoided, the
maximum degree of a critical pair was 16, the maximum
degree of a polynomial was 12 and the total number of zero
reductions was 138. The total running time was 44.80 sec-
onds. Execution of Eder and Perry’ F5 run for more than 96
hours without terminating.
LASyz generated 1245 polynomials, the maximum degree

of a polynomial was 5, the total number of zero reductions
was 48 and 405 syzygies were used in avoiding the same
number of zero reductions. Using the Magma implementa-
tion of LASyz, the total running time was 3.31. The C++
version was faster, terminating in 1.51 seconds.

6.4 A Standard Benchmark
Next we present results for Katsura 6 over GF(7). It is

important to note that this system does not have a zero di-
mensional solution thus the algorithm proposed in Section
4 does not terminate. It was necessary therefore to halt the
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algorithm artificially at degree 6, where we knew a Gröbner
basis was obtained. Also, in this case we used the Magma
implementation of LASyz, instead of the C++ implementa-
tion used in previous cases.

In summary, the execution of Stegers’ F5 reports that 74
polynomials were treated, 2519 pairs were avoided, the max-
imum degree of a critical pair was 7, the maximum degree of
a polynomial was 7 and the total number of zero reductions
was zero. The total running time was 0.469 seconds.
LASyz generated 1572 polynomials, the maximum degree

of a polynomial was 6 and the total number of zero reduc-
tions was zero. 820 syzygies were used in avoiding the same
number of zero reductions. Using the Magma implementa-
tion of LASyz, the total running time was 7.047 seconds.

6.5 Analysis of Experimental Results
The Experiments show that LASyz is effective in avoid-

ing zero reductions. The small number of polynomials used
in the HFE minus example clearly shows that a significant
amount of redundancy is being avoided. Also, in the random
example, we can observe a small number of rows compared
with F4.

For overdetermined systems the performance of the pro-
posed algorithm is comparable to Faugère’s F4 and much
better than Faugère’s F5. In such cases the incremental na-
ture of F5 militates against its performance. This is evi-
denced by the high degree of the operation. A matrix version
of F5 may perform better with overdetermined systems but
it is still unknown to the authors the impact in performance
of the restrictions in the linear algebra procedures.
LASyz exhibits a poor performance in the katsura bench-

mark compared to F5. This is due to lack of a selection
strategy, that would filter the polynomials used. Exam-
ples of such strategies are s-polynomials [3], symbolic pre-
processing [11] and partial enlargement [17]. Other examples
show a similar behavior. In order to get a more throughout
comparison, it is desirable to use a more efficient implemen-
tation of the linear algebra procedures. We are working on
optimizing our implementation.

7. CONCLUSIONS AND FUTURE WORK
We have introduced a new method to avoid reductions to

zero in Gröbner basis computation called LASyz. We have
proved that LASyz works correctly and it effectively uses triv-
ial and non-trivial syzygies to avoid zero reductions. LASyz

provides the first mechanism to avoid zero reductions in XL

type algorithms that does not require an incremental compu-
tation. A comparison with previous alternatives highlights
the benefits of the new approach.
LASyz can be used to study syzygies, which is important

in algebraic geometry to study geometric properties of alge-
braic varieties.

A Gröbner basis algorithm based on LASyz was described
and tested. The Experiments ratify that using LASyz for
avoiding zero reductions is effective and that the use of
sparse linear algebra makes it efficient. For overdetermined
systems, the performance of the proposed algorithm is com-
parable to Faugère’s F4 and much better than Faugère’s F5.
LASyz does not replace the need for a selection strategy.

We envision that LASyz can be combined with s-polynomial
strategy or with any other heuristic method for partial en-
largement.

We are making progress in establishing complexity bounds

for LASyz. A possible deficiency of LASyz stems from the lack
of sparsity of non-trivial syzygies. LASyz can be adapted
to overcome this issue by restricting the use of non-trivial
syzygies to predict further syzygies. The resulting trade-off
between accuracy and cost can be studied using the frame-
work of this new method. The complexity can be studied
thanks to the simplicity of the method. This direction shall
be pursued in another paper.

Another possibility offered by the LASyz method is to
track other level of syzygies. We can use the same strat-
egy described in this paper, to manage syzygies of syzygies,
and so on.
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[14] R. Gebauer and H. Möller. On an Installation of
Buchberger’s Algorithm. Journal of Symbolic
Computation, 6(2-3):275–286, 1988.
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